PSPFFT: Multi-threaded Parallel FFT-Based 3D Poisson Solver Reuben D. Budiardja

National Institute for Computational Sciences, University of Tennessee - Knoxville

Introduction

- Many physics simulations require the solution of Poisson's equation
- Common example: Newtonian gravitational potential, potential of electric charge, spectral method
- We implement a method that employ Fourier transform to solve the discretized Poisson's equation on 3D system
- The solver, named PSPFFT ('Poisson Solver Parallel FFT') solves the equation globally on mesh block distributed across multiple processes on parallel computer
- It is suitable for large-scale parallel simulations

Poisson's Equation

- We need to solve $\nabla^2 \Phi(\mathbf{x}) = S(\mathbf{x})$ with boundary condition $\Phi(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \to \infty$
- Formal solution:

ww.PosterPresentations.c

$$\Phi(\mathbf{x}) = \int d\mathbf{x}' G(\mathbf{x} - \mathbf{x}') S(\mathbf{x}')$$

• By convolution theorem, evaluate the integral as:

$$\widetilde{\Phi}(\mathbf{k}) = \widetilde{G}(\mathbf{k})\widetilde{S}(\mathbf{k})$$

where $\tilde{\xi}(\mathbf{k})$ is the Fourier transform of $\xi(\mathbf{x})$

Mesh Decomposition

- Discrete Fourier transform is done with FFT
- $n\log(n)$ operation
- Optimized implementation provided by FFTW (can use other library)
- Not convenient for typical brick mesh decomposition

Code Description

- PSPFFT is written in Fortran 2003 standard
- Follow object-oriented principle with abstraction, encapsulation, and polymorphism
- Currently uses FFTW, but usage is abstracted in one Fortran module such that other FFT libraries could be used without widespread code change
- Uses the latest FFTW Fortran interface and provides *façade* pattern for its advanced API
- Release will be available at http://eagle.phys.utk.edu/pspfft

Parallel Three-Dimensional FFT

• Transform 'bricks' to 'pillar' decomposition:

- Each MPI process performs multiple (x-pillar width times) 1D Fourier transform in parallel
- Multi-dimensional FFTs: sets of onedimensional transform in each dimension
- Pillars decomposition has to be transposed
- Multiple MPI sub-communicators are created to transpose data in parallel

										Y	1								
9[1]	2	3	4	5	6	7	8	9		Ī	9	9	9	9	9	9	9	9	9
8[1]	2	3	4	5	6	7	8	9			8	8	8	8	8	8	8	8	8
De	2	3	4	5	6	7	8	9			[7]	Ø	[7]	7	[Z]	7	[7]	[7]	[7]
6[1]	2	3	4	5	6	7	8	9	Transpose	ngth	6	6	6	6	6	6	6	6	6
5[1]	2	3	4	5	6	7	8	9		llar le	5	5	5	5	5	5	5	5	5
Ð _[1]	2	3	4	5	6	7	8	9	MPI_AIITOAII	y-pi	4	4	4	[4]	4	4	4	4	4
3[1]	2	3	4	5	6	7	8	9			3	3	[3]	3	3	3	3	3	3
2[1]	2	3	4	5	6	7	8	9			2	2	2	2	2	2	2	2	2
$\mathbb{D}_{[1]}$	2	3	4	5	6	7	8	9			$(1)_{[i]}$	2[1]	3[1]	(4]	5[1]	6	7 _[1]	8[1]	$\mathfrak{D}_{[i]}$
x-nillar length									x	_	<u> </u>	v-pillar height							

Multi-Threading using OpenMP

• Multiple numbers of 1D transform in each MPI process can be done in parallel using a team of threads • Each thread is completely independent transform \rightarrow linear scaling within an MPI process • Thread-safe FFTW plan is required

Results and Test Problems