PSPFFT: Multi-threaded Parallel FFT-Based 3D Poisson Solver
Reuben D. Budiardja
National Institute for Computational Sciences, University of Tennessee - Knoxville

Introduction

- Many physics simulations require the solution of Poisson's equation
- Common example: Newtonian gravitational potential, potential of electric charge, spectral method
- We implement a method that employ Fourier transform to solve the discretized Poisson's equation on 3D system
- The solver, named PSPFFT ('Poisson Solver Parallel FFT') solves the equation globally on mesh block distributed across multiple processes on parallel computer
- It is suitable for large-scale parallel simulations

Poisson's Equation

- We need to solve

$$
\nabla^{2} \Phi(\mathbf{x})=S(\mathbf{x})
$$

with boundary condition $\Phi(\mathbf{x}) \rightarrow 0$
as $|\mathbf{x}| \rightarrow \infty$

- Formal solution:

$$
\Phi(\mathbf{x})=\int d \mathbf{x}^{\prime} G\left(\mathbf{x}-\mathbf{x}^{\prime}\right) S\left(\mathbf{x}^{\prime}\right)
$$

- By convolution theorem, evaluate the integral as:

$$
\widetilde{\Phi}(\mathbf{k})=\tilde{G}(\mathbf{k}) \tilde{S}(\mathbf{k})
$$

where $\tilde{\xi}(\mathbf{k})$ is the Fourier transform of $\xi(\mathbf{x})$

Mesh Decomposition

- Discrete Fourier transform is done with FFT
- $n \log (n)$ operation
- Optimized implementation provided by FFTW (can use other library)
- Not convenient for typical brick mesh decomposition

Code Description

- PSPFFT is written in Fortran 2003 standard
- Follow object-oriented principle with abstraction, encapsulation, and polymorphism
- Currently uses FFTW, but usage is abstracted in one Fortran module such that other FFT libraries could be used without widespread code change
- Uses the latest FFTW Fortran interface and provides façade pattern for its advanced API
- Release will be available at http://eagle.phys.utk.edu/pspfft

Parallel Three-Dimensional FFT

- Transform 'bricks' to 'pillar' decomposition:

- Each MPI process performs multiple (x-pillar width times) 1D Fourier transform in parallel
- Multi-dimensional FFTs: sets of onedimensional transform in each dimension
- Pillars decomposition has to be transposed
- Multiple MPI sub-communicators are created to transpose data in parallel

Multi-Threading using OpenMP

- Multiple numbers of 1D transform in each MPI process can be done in parallel using a team of threads
- Each thread is completely independent transform \rightarrow linear scaling within an MPI process
- Thread-safe FFTW plan is required

Results and Test Problems

- $\Phi(x)$ of homogeneous spheroid (and its relative error distribution)

- Error convergence \& weak scaling:

- MPI with OpenMP comparison:

