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Large Stellar-Scale Energy Sources

Modern observational astronomy has revealed the existence of various
extremely violent events (different classes of supernovae and gamma-ray
bursts) that originate in objects the size of stars or smaller, but that can
release ~10°° - 10°3 erg in a matter of seconds. For reference, the Sun''s
luminosity is ~1033 erg/second, so these events can outshine an entire large
galaxy of say 100 billion normal stars for a short period of time.

What could be the energy source for such events? We know of at least three
possibilities:

© GRAVITATIONAL: Coherent collapse of a dense stellar core down to
neutron star or black hole radii, and/or incoherent accretion of mass
onto a neutron star or black hole, can release energy in this range.

© THERMONUCLEAR: Runaway nuclear burning of about 1 solar mass
of carbon or oxygen to iron-group nuclei releases energy on this scale.

© ROTATIONAL and MAGNETIC: Extraction of energy stored in
angular momentum and magnetic fields of compact stellar remnants

could release energy on this scale.
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Core of Massive Star Late in Its Life
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The Neutrino Reheating Mechanism
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Convection below the Shock in Core-Collapse Supernova
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Gravitational Potential Energy in Binary Systems: Roche Lobes
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Chandrasekhar Limiting Mass
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The Type la Supernova Mechanism
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Standardizable Candles
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Disparity of Characteristic Scales
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Reaction Networks: Sources, Sinks, and Fluxes

Coupled ordinary differential equations

Often part of a larger problem:
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Abundance Tomography from SN2002bo
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Solving Large Thermonuclear Networks
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Gravity-Confined Detonation
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The Gamma-Ray Sky

The diffuse glow running horizontally through
the image is from gamma ray sources in the
plane of our galaxy. Bright spots to the right in
the galactic plane are pulsars. Brighter spots
above and below the plane of the galaxy are
distant quasars.

Gamma-Ray Bursts

Gamma-Ray Sky, Galactic Coordinates

Gamma ray bursts were discovered in the 1960s
by U.S. Air Force Vela satellites (Spanish velar:
"to watch"). Unclassified project designed to test
detecting and monitoring nuclear explosions
violating test ban treaties.




Gamma-Ray Bursts

Several Thousand Gamma-Ray Bursts in Galactic Coordinates (BATSE)

[ Gamma-Ray Burst J




Properties of Gamma-Ray Bursts

© Isotropic distribution on the sky argues for cosmological distances.
Confirmed by direct redshift measurements for afterglow lines

Redshifts from z= 0.0085 - 4.5 (average z~ 1)

© Spectrum is non-thermal, typically peaking at ~ 200 keV and
extending perhaps to GeV.

© Duration of bursts from 0.01 seconds to several hundred seconds

© Variety of time structure, from rather smooth to millisecond
fluctuations (implying very compact source by causality).

© Two classes: long-period and short-period
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Gamma-Ray Bursts

Long-Period and Short-Period Bursts

Short-Period -

Duration ——

Y. Qin et al, Publ. Astron. Soc. Jpn. 52, 759 (2000)

A Long-Period Burst

counts/sec

|

2‘0 3‘[) 4‘0
Time since trigger (sec

T. Piran, Rev. Mod. Phys. 76, 1143 (2005)




Localization and Afterglows

Beppo-SAX GRB Localization

Required: (1) Arcminute or better resolution

(2) Response in seconds to minutes

GRB 000301C
Optical Transient

March 6, 2000

Gamma-Ray Burst Transient




Localization and Afterglows

Optical association of GRB 050509B (short-period GRB)
with a large elliptical galaxy at z = 0.225

N. Gehrels, et al, Nature 437, 851 (2005)

SWIFT (artist's conception)

BAT: Burst Alert Telescope
XRT: X-Ray Telescope
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Association with Galaxies

© The identification of afterglows has permitted gamma-ray bursts
to be associated with galaxies

© Long-period (soft) bursts appear to be strongly correlated with star-
forming regions (strong correlation with blue light).

© Short-period (hard) bursts are generally fainter and sampled at
smaller redshift than long-period bursts. Short-period bursts
appear to not be correlated with star-forming regions.

© Long-period (soft) bursts appear to be associated with regions of
low metallicity.




Long-Period Bursts and Supernovae

Emergence of SN2003dh from GRB 030029 Afterglow
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Long-Period Bursts and Supernovae

Comparison: Rest-Frame Optical spectrum
for SN2003dh (GRB 030329) and SN1998bw
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J. Hjorth et al, Nature 423, 847 (2003).



Classification of Supernovae
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Wolf-Rayet Stars, Supernovae, and GRB

Wolf-Rayet Star HD56925

Progenitors of Type Ib and Ic Supernovae
(massive, rapidly spinning, stripped of H and possibly He )



© All models require highly relativistic jets to account for properties:
(1) Lorentz I" factors of at least 200
(2) Focused with opening angle of ~0.1 rad and power ~ 10°° erg/s
(3) Long-period bursts must (at least sometimes) deliver ~ 10°? ergs to much
larger solid angle (~1 rad) to produce supernova, and central engine must
operate for 10 seconds or longer.
© Potential long power timescale implicates accretion onto compact object

[ The current working hypothesis: J

Long-period bursts result from Short-period bursts result
the core collapse of massive from the merger of neutron
rotating stars. They may stars (or possibly a neutron
often be accompanied by star and black hole).
supernova events.

Both lead to the formation of a rapidly rotating Kerr
black hole that emits relativistic jets on its polar axis




Models: Long-Period Bursts

Simulation of a Neutron-Star Merger
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Nature of jet:

© Fireball: hot baryons, thermally loaded with pairs and
radiation greatly exceeding rest mass

© Poynting Flux: Large-scale magnetic field effects
(baryons play little role; no internal shocks)

© Baryon Contamination Problem: Gamma-ray emission must
be from relativistic plasma with low baryon contamination

Annihilation of neutrino-antineutrino pairs above a neutron star
merger disk driving relativistic jets along the rotation axis.

Rotation axis .
Relativistic

Jet

Neutrino-antineutrino
annihilation Merger disk

S. Rosswog, Science 303, 46 (2004)




Magnetic Extraction of Energy from a Kerr Black Hole

Jet

Frame
Dragging

Ergosphere Horizon

B’<0

B®>0

V. Semenov, S. Dyadechkin, B. Punsly, Science
305, 978 (2004)

For movie files illustrating the
magnetic extraction of energy
from a Kerr black hole, click the
button below (Note: 3-8 MB files)

Magnetic Examples

V. Semenoy, S. Dyadechkin, B. Punsly, Science
305, 978 (2004)



Gravitational Waves

© Gravitational waves represent the last prediction of general relativity not yet
directly confirmed by observation. There is indirect evidence from the Binary
Pulsar:
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© Theoretically, the most likely events that will produce detectable gravitational
waves are (1) neutron star mergers and (2) core-collapse supernovae.




Gravitational Waves
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Livingston, Louisiana
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LISA (Proposed)
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Detection Ranges for Gravitational Waves
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Gravitational Waves: the Deepest Probe

Big Bang Singularity
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Artificial Intelligence and Galaxy Collisions

© Neural Network for pattern recognition
© Genetic Algorithm for global optimization in complex parameter space

© Scientific Engine: gravity tree plus SPH hydrodynamics to simulate
galaxy collisions.

. o Predicted
Smen_tlflc Neural
Engine Network
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Computational and Visualization Power

Jaguar cabinets

Complex visualization of a core-collapse
supernova simulation




Computational and Visualization Power

The Jaguar system, a Cray XT4 located
at ORNL's National Center for
Computational Sciences, now uses
more than 31,000 processing cores to
deliver up to 263 trillion calculations a
second (or 263 teraflops).

1 petaflop (10" floating point
operations per second) by 2009.




Computational and Visualization Power

Everest Visualization Facility

27 1280 x 1024 high-end
projectors

Approximately 9 meter by
2.5 meter spatial extent

Greater than 35 million
pixels

Driven by its own parallel
computing cluster




