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I. INTRODUCTION

In the following all citations of sections, subsections, equation

numbers, figure numbers, and table numbers are by default

references to the primary document “Conjectured High-Spin

Topological States in Nuclear Structure Physics” published by

the present authors in the journal xxxx (2024). If a reference

is flagged by “[this document]”, it is instead a reference to

objects in the present Supplement document.

II. THE INTEGER QUANTUM HALL EFFECT

We take as prototype the integer quantum Hall effect

(IQHE) for 2D electron gases in strong magnetic fields that

is illustrated in Fig. 1 [this document], and the explanation of

the quantized Hall resistance observed there in terms of the

Chern theorem. In the IQHE this identification leads to the

TKNN formula [5]

σH =C1
e2

h̄
(1)

Note that the Hall resistance RH that is plotted in Fig. 1 [this

document] is related inversely to the Hall conductance σH cal-

culated in Eq. (1) [this document]: RH = σ−1
H .)

For the integer quantum Hall effect (IQHE) displayed in

Fig. 1 [this document], it is found that the precise quantiza-

tion of the observed Hall resistance plateaus (as good as a part

in a billion) can be explained by the Chern theorem. Before

the topological interpretation of the IQHE, it was understood

qualitatively how filling of Landau levels could lead to the

observed plateaus for the Hall resistance. What could not be

explained was the remarkable flatness of the plateaus, given

that an experimental device is averaging over many configu-

rations as the magnetic field is varied, and that the results are

found to be robust across different device specifics. What was

needed was a principle that quantized averages of quantum

matrix elements. The Chern theorem provided that missing

link.

The plateau structure observed for the integer quantum

Hall effect becomes strongly defined only at larger values of

the magnetic field strength. As illustrated in Fig. 1 [this doc-

ument], at low magnetic fields the Hall resistance exhibits the

linear dependence on B characteristic of the classical Hall ef-

fect. Only above about B ∼ 1 T does the Hall resistance begin

to develop step structure deviating from the classical expec-

tation, and these steps become better defined as B increases.

Since rotational angular momentum is the analog of magnetic

field in the present discussion, we may expect that the impli-

cations of Eq. (23) become better defined for large average

angular momentum.

III. THE GAUSS–BONNET AND CHERN THEOREMS

For a 2D surface there is a relationship between its geometry

and its topology called the Gauss–Bonnet theorem, which may

be expressed through the Gauss–Bonnet equation,

1

2π

∫

S
KdA = 2(1−g), (2)

where the integral is over a closed surface S, the local curva-

ture is K, and g is the genus of the surface (number of “holes”,

which characterizes its topology). The Gauss–Bonnet theo-

rem relates the geometrical properties of the 2-surface (local

curvature K on the left side) and its topological properties (the

genus g on the right side), with g a topological invariant be-

cause the number of holes is not changed by smooth defor-

mations of the surface. The 2D manifolds displayed in Fig. 2

[this document] illustrate.

A fundamental implication of Eq. (2) is illustrated in Fig. 3

[this document]. The integer 2(1 − g) on the right side of

Eq. (2) cannot change continuously into another integer for a

small, smooth deformation of the surface, which implies that

the integral on the left side cannot change either. Thus, in

Fig. 3 [this document] the left side is topologically protected

against change for smooth deformations that do not change

the genus.

The Gauss–Bonnet equation (2) relates geometry and

topology for 2-surfaces, but S.-S. Chern generalized the

Gauss–Bonnet equation to the Gauss–Bonnet–Chern equation

(which for brevity we will term the Chern equation),

1

2π

∫

S
ΩdA =Cn. (3)

This resembles the Gauss–Bonnet formula (2), except that for

n a positive integer,

1. Equation (3) holds for any 2n-dimensional Riemannian

manifold.
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FIG. 1: Data illustrating the integer quantum Hall effect [6]. The Hall resistance RH (red upper curve) is equal to the inverse of the Hall

conductance σH defined in Eq. (1), and varies stepwise with changes in magnetic field strength B. Step height is given by the physical constant

h/e2 divided by an integer. The lower blue curve with multiple peaks is the longitudinal resistance RL, which essentially vanishes over each

plateau in RH. The dashed green curve is the linear behavior of RH expected from the classical Hall effect; obvious deviations from the classical

curve in the form of plateaus appear above B ∼ 1 T. The plateaus in RH are flat to as much as a part in a billion. Figure adapted from Ref. [9].

2. The Berry curvature Ω is evaluated over a manifold of

quantum states (Hilbert space) defined on S.

3. The Chern index Cn in Eq. (3) is an integer that labels

a Chern class. It is determined by the topology of a

manifold of quantum states (the Hilbert space) defined

over S.

For 2D manifolds the index Cn is a Chern number of the first

kind C1, which takes values from the set of integers Z. General

implications of Eq. (3) will be termed the Chern theorem.

Chern theorem: The integral of Berry curvature over a

closed manifold of quantum states is quantized in terms

of topological Chern numbers that take integer values.

By analogy with the Gauss–Bonnett equation (2) and Fig. 3

[this document], one finds that Eq. (3) is topologically pro-

tected under smooth deformations that do not change the

Chern number on its right side; the Chern number can be

(a) 2-sphere (g = 0) (b) 2-torus (g = 1)

FIG. 2: (a) The 2D sphere has no holes and thus has genus g = 0.

(b) The 2D torus has one hole and thus has genus g = 1. Adapted

from Ref. [9].

K dA = 0 
S

1

2π
Topological protection:

g = 1

Smooth

deformation

FIG. 3: Smooth deformations that do not change the genus g cannot

change the Gauss–Bonnet topological invariant defined by the cur-

vature K integrated over the surface in Eq. (2) [this document]. The

curvature may be changed locally by a smooth deformation but the

value of
∫

S KdA is topologically protected if the deformation does

not alter the genus for the surface by puncturing or gluing. Adapted

from Ref. [9].

changed only by a phase transition to a state that differs topo-

logically from the original state. This topological protection

accounts for the the remarkable flatness of the plateaus exhib-

ited by the integer quantum Hall effect in Fig. 1 [this docu-

ment].

General introductions to topological properties of the quan-

tum Hall effect are given in Ref. [10] and in Ch. 28 of Ref.

[9]. For a more mathematical discussion of Chern classes in

physics, see Frankel [8] or Nakahara [7].

For 2D Hilbert spaces, n = 1 and the corresponding Chern

numbers C ≡ C1 take values from the set of integers Z. In

this paper we will deal only with 2D (n = 1) manifolds and

sometimes refer loosely to C ≡ C1 as just the Chern number.

The essence of the Chern theorem is that Eq. (4) can be eval-

uated in two ways, with results that must be commensurate, as

illustrated schematically in Fig. 4 [this document].
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FIG. 4: Chern quantization for a closed 2D Hilbert space. The Berry

phase is generally a geometrical object taking continuous values, but

the Berry phase integrated specifically on a path enclosing the Hilbert

space in Eq. (4) is topological and required by the Chern theorem to

be quantized (the branch labeled “Topological”). The left side of

Eq. (4) can also be evaluated by normal quantum-mechanical means

assuming the Hilbert space to have trivial topology (the branch la-

beled “Trivial”). Equivalence of the quantities evaluated by the

“Topological” and “Trivial” methods is implied by the Chern theo-

rem, leading to topological quantization of M. Note that the integral

over the Hilbert space has been divided by 2π to give integer quan-

tum numbers.

1. If the Hilbert-space manifold is 2D Riemannian, then (in-

dependent of details) the Chern theorem requires the Berry

phase integrated over the entire Hilbert space to be quantized,

γ HS = 0,2π,4π, . . . , in terms of integer Chern numbers, C1.

This is the branch labeled “Topological” in Fig. 4 [this docu-

ment].

2. Next, evaluate the integrals in Eq. (4) using ordinary quan-

tum mechanics assuming trivial topology for Hilbert space,

M =
∮

HS
Ωn

θφ dS, (4)

where the Berry curvature tensor Ω may be calculated us-

ing nuclear eigenstates. This is the branch labeled “Trivial”

in Fig. 4 [this document] (meaning that it is formulated on a

Hilbert-space manifold assuming trivial topology). The quan-

tity M resulting from this calculation is possibly measurable

and in general would be expected to take continuous values

(it is a geometrical phase, which isn’t quantized). This is the

analog of evaluating the Hall conductance σH in Eq. (1) [this

document] using linear response theory in the IQHE problem.

But the two methods described in points 1 and 2 above

each give solutions of Eq. (4) so their results must be com-

mensurate, implying that M is proportional to an integer,

M ∝ C1 ∝ {0,1,2, . . .}, which restricts the (possibly measur-

able) quantity M to quantized values that are topologically

protected. In the IQHE this identification leads to the TKNN

formula [5], σH = C1
e2

h̄
given in Eq. (1) [this document] for

the Hall conductance σH (evaluated, for example, using linear

response theory), which attributes the remarkable flatness of

the IQHE plateaus in Fig. 1 [this document] to this topological

quantization.

In summary, the basic methodology of Chern topological

quantization is to (1) establish that the Hilbert space manifold

satisfies the Chern theorem, (2) compute M by standard quan-

tum mechanics from Eq. (5), assuming trivial topology for the

Hilbert space, and relate it to observables, and (3) restrict M

to quantized values by equating it to a multiple of a Chern

number through the Chern theorem. This is the methodology

leading to the topological interpretation of the integer quan-

tum Hall effect, and is the methology that we adopt here to

identify possible nuclear topological phases.

IV. BERRY PHASE, CONNECTION, AND CURVATURE

This section gathers important equations for Berry phases,

Berry connections, Berry curvature, and their relationship

with Chern numbers. To be definite quantities are assumed

to be evaluated in a condensed matter Brillouin zone parame-

terized by momenta kkk, and Bloch wavefunctions |unkkk〉, where

n is a band index.

A. Berry connection

The Berry connection or Berry potential An
µ(kkk) is defined

by

An
µ(kkk) = 〈unkkk|i∂µ |unkkk〉, (5)

where n is a band index, µ is the index for coordinate xµ ,

and ∂µ ≡ ∂/∂xµ . Equation (5) [this document] may also be

written in vector form

AAAn(kkk) = 〈unkkk|i∇kkk|unkkk〉. (6)

By analogy with electromagnetism, a gauge transformation

corresponding to a local phase rotation on the wavefunction

may be implemented and it is assumed that physical quantities

must be gauge invariant. The Berry connection is not gauge

invariant.

B. Berry phase

The Berry phase γn may be written as an integral of the

Berry curvature over the surface SSS bounded by the contour C,

γn =
∮

C
dkkk ·AAAn(kkk)

=
∫

SSS

(

∇kkk ×AAAn(kkk)
)

·dSSS

=
∫

SSS
ΩΩΩn(kkk) ·dSSS (mod 2π), (7)

where Stokes’ theorem was applied in the second line, n is a

band index, and mod 2π indicates that γn is a phase that is

defined up to multiples of 2π . This can also be expressed as

γn =
∮

C
〈unkkk|i∂µ |unkkk〉dkkk

=
∫

S

(

∂µ An
ν(kkk)−∂ν An

µ(kkk)
)

dkkk (8)

where C is a contour around the Hilbert space and S is the

surface enclosed by that contour. The Berry phase is gauge

invariant if interpreted as a phase modulo 2π .



The Chern Theorem and High-Spin Topological States in Nuclear Structure Physics—M. W. Guidry and Y. Sun 4

C. Berry curvature

The Berry curvature Ωn
µν(kkk) is defined as

Ωn
µν(kkk) = ∂µ An

ν(kkk)−∂ν An
µ(kkk)

=−2Im
〈

∂µ unkkk

∣

∣ ∂ν unkkk〉 , (9)

where the Berry connection An
µ(kkk) is defined in Eq. (5) [this

document] and Im denotes the imaginary part. In 3D the Berry

curvature can also be expressed in pseudovector notation as

ΩΩΩ =−Im〈∇λ u|× |∇λ u〉 (10)

If one works in a complete basis, the Berry curvature also may

be expressed as

ΩΩΩn(RRR) =

Im ∑
m6=n

〈n,RRR|∇RRRH(RRR)|m,RRR〉×〈m,RRR|∇RRRH(RRR)|n,RRR〉

[En(RRR)−Em(RRR)]2
, (11)

where |n,RRR〉 are energy eigenstates with n a band index and

RRR the coordinates, the symbol × indicates the 3-vector cross

product, H(RRR) is the Hamiltonian, and Im indicates the imag-

inary part. The Berry curvature is gauge invariant.

D. The Chern theorem

As discussed in Section III [this document], the Chern the-

orem is defined through the Chern equation,

1

2π

∫

S
ΩdS =Cn, (12)

where Ω is the Berry curvature of Eqs. (9)-(11) [this docu-

ment] evaluated for a manifold of states defined over the sur-

face S, and Cn is the Chern number associated with the nth

Chern class. For example, n = 1 in 2D and in that case the

Chern numbers C1 take values from the set of integers Z.

V. INTRINSIC NUCLEAR STATES

This section considers the relationship of deformed, intrin-

sic nuclear states to measured laboratory states of good an-

gular momentum that is depicted in Fig. 5 [this document].

We proceed from a general point of view using the method of

generator coordinates, following the presentation in Section

22.3.2 of Ref. [9].

A. Representation of Collective Rotational States

Suppose that |Φ0〉 is a deformed state obtained as a solution

of some variational calculation for a many-particle system. In

general |Φ0〉 is an intrinsic state that violates rotational invari-

ance and hence is not an eigenstate of angular momentum.

1. Generator Coordinate Wavefunction

Define a rotation operator,

D(Ω) = e−ıαJz e−ıβJye−ıγJz = e−iJJJ·ΩΩΩ, (13)

where Ji(i = x,y,z) are angular momentum operators and

Ω = (α,β ,γ) denotes Euler angles. If the Hamiltonian H is

rotationally invariant it commutes with the rotation operator,

D†(Ω)HD(Ω) = H. (14)

The matrix elements of D(Ω) for states of good angular mo-

mentum are

〈µJM|D(Ω)|νJK〉= δµν DJ
MK(Ω)∗, (15)

where DJ
MK(Ω)∗ are the usual Wigner D-functions, which

obey the orthogonality condition

∫

Ω
DI

MM′(Ω)∗DJ
NN′(Ω)dΩ =

8π2

2I +1
δMNδM′N′δIJ , (16)

with Ω = (α,β ,γ) and dΩ ≡ sinβdβdαdγ , It follows that the

action of the rotation operator on an angular momentum state

|νJK〉 is

D(Ω)|νJK〉= ∑
M

|νJM〉DJ
MK(Ω)∗. (17)

Rotational invariance of the Hamiltonian implies that all ro-

tated states distinguished by different orientations Ω,

|Φ(Ω)〉 ≡ D(Ω)|Φ0〉, (18)

are degenerate. As |Φ(Ω)〉 represents a state with a definite

spatial orientation Ω, it is independent of any other rotated

state |Φ(Ω′)〉 and the most general wavefunction corresponds

to a superposition of the rotated states [11]

|Ψ〉=
∫

F(Ω) |Φ(Ω)〉dΩ =
∫

F(Ω)D(Ω) |Φ0〉dΩ, (19)

where F(Ω) is a weight function discussed further below.

Equation (19) is a particular implementation of the genera-

tor coordinate method in which the Euler angles Ω acting as

the generator coordinates.

2. Projection of Good Angular Momentum

Expanding the weight function F(Ω) as

F(Ω) = ∑
JMK

2J+1

8π2
FJ

MKDJ
MK(Ω) (20)

and inserting into Eq. (19) gives

|Ψ〉= ∑
JMK

FJ
MKP̂J

MK |Φ0〉, (21)
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FIG. 5: Intrinsic and laboratory frames for a deformed nucleus of

angular momentum J. The projection of J is M on the laboratory

z-axis and K on the intrinsic 3-axis.

where P̂J
MK has been defined by

P̂J
MK ≡

2J+1

8π2

∫

DJ
MK(Ω)D(Ω)dΩ. (22)

The coefficients FJ
MK in Eq. (21) [this document] are now

variational parameters that replace the weight function F(Ω)
in Eq. (19) [this document]. Using Eqs. (15), (22) [this doc-

ument], and the orthogonality of the D-functions (16) [this

document], we find that the action of P̂J
MK on a state of good

angular momentum |νJ′K′〉 (where ν denotes any additional

quantum numbers that are required) is

P̂J
MK |νJ′K′〉= δJJ′δKK′ |νJM〉. (23)

Thus P̂J
MK is an angular momentum projection operator and

|Φ〉 in Eq. (21) [this document] is a state with indefinite angu-

lar momentum but the projected component P̂J
MK |Φ〉 is a state

of good angular momentum. The spectral representation of

the projection operator is

P̂J
MK = ∑

ν

|νJM〉〈νJK| ∑
JM

P̂J
MM = 1, (24)

which implies the projection properties

(

P̂J
MK

)†
= P̂J

KM P̂J
KMP̂J′

M′K′ = δJJ′δMM′ P̂J
KK′ . (25)

If |Ψ〉 defined in Eq. (21) [this document] is viewed as a trial

variational state, Eqs. (14) and (25) [this document] imply

that the summation over J and M drops out and it is sufficient

to carry out the variational calculation using the trial wave-

function

|Ψ〉= ∑
K

FJ
K P̂J

MK |Φ〉. (26)

Therefore |Ψ〉 is an eigenstate of angular momentum (J,M).

Rotational invariance restored: The intrinsic state

|Φ0〉 represents an entire band of rotational states but

the variational wavefunction |Ψ〉 projects from |Φ0〉 a

single rotationally invariant state of good angular mo-

mentum (J,M).

The rotational symmetry that was broken spontaneously by

the deformed intrinsic state |Φ0〉 has been restored by project-

ing from the intrinsic state (representing a mixture of angular

momenta) a state |Ψ〉 that has a single definite angular mo-

mentum.

B. Angular Momentum Content of an Intrinsic State

From the preceding discussion, the intrinsic state must con-

tain within it all the angular momentum states that can be pro-

jected to give a rotational band. In general, states of definite

angular momentum |JMK〉 can be written

|JMK〉= P̂J
MK |Φ0〉 (27)

where P̂J
MK is the angular momentum projector defined in

Eq. (22) [this document]. Then the the angular momentum

content of the intrinsic state |Φ0〉 is a superpositiion of angu-

lar momenta [12]

|Φ0〉= ∑
JM

CJM|JM〉, (28)

and the probability βJ that a state with eigenvalue J(J + 1)
contributes to the intrinsic state |Φ0〉 is given by

βJ ≡ ∑
M

|CJM|2 = ∑
M

〈Φ0|P̂
J
MM|Φ0〉. (29)
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FIG. 6: Angular momentum content of intrinsic states from a self-

consistent cranking model calculation for the nucleus 164Er [12].

Curves are labeled by the expectation value of the angular momen-

tum 〈Jx〉=
√

J(J+1) for the state calculated in the cranking model.

The vertical axis is the weight βJ defined in Eq. (29) [this docu-

ment] and the horizontal axis gives the angular momentum compo-

nents contributing to the state labeled by J.
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Figure 6 [this document] illustrates the angular momentum

content of an intrinsic state calculated in self-consistent crank-

ing approximation for 164Er (which has a highly deformed in-

trinsic state) [12]. A broad range of angular momenta con-

tribute to each physical angular momentum, and only at the

highest angular momenta do the peaks of curves coincide ap-

proximately with the actual angular momentum of the state.

For example, the ground state curve labeled by 〈Jx〉 = 0

has only a small component of J = 0, its largest contributions

come from angular momentum components with J ∼ 4− 6h̄,

and it contains non-trivial components of angular momenta

all the way up to J ∼ 20h̄. The spread in angular momenta

contributing to a state implies a spread in orientation angle

of ∆θ ∼ 10 degrees, by uncertainty principle arguments [12].

So such an intrinsic state contains a broad range of angular

momentum components but has a relatively small range in

orientation angle for the deformed state. This is reminiscent

of Wannier states in condensed matter, where a superposition

of spatially delocalized momentum-space wavefunctions pro-

duces a state that is spatially localized (see Section VI [this

document]).

VI. INTRINSIC NUCLEAR STATES AND BLOCH’S

THEOREM

This Section discusses the relationship between Bloch’s

theorem, which arises in condensed matter because of transla-

tional invariance, and projection of angular momentum wave-

functions from an intrinsic state, which arises in nuclear

physics because of rotational invariance. This parallel is use-

ful in constructing topological nuclear states, since the topo-

logical problem has been developed extensively in the con-

densed matter case.

A. Projection of Nuclear Angular Momentum

From Section V [this document], a general nuclear rota-

tional wavefunction may be parameterized by Euler angles

ΩΩΩ = (α,β ,γ) and takes the form

|Φ(ΩΩΩ)〉= D(ΩΩΩ)|Φ0〉, (30)

where |Φ0〉 is a deformed intrinsic wavefunction (see Fig. 5)

[this document] that does not conserve angular momentum, so

by uncertainty principle arguments it has a sharp orientation

angle that we assume initially to be ΩΩΩ0 =(0,0,0), the operator

D(ΩΩΩ) rotates an intrinsic wavefunction through an angle ΩΩΩ

and is given by,

D(ΩΩΩ) = e−iαJze−iβJy e−iγJz = e−iJJJ·ΩΩΩ, (31)

and the JJJ = (Jx,Jy,Jz) are angular momentum operators.

Thus, the Hilbert space may be parameterized by the angles ΩΩΩ

and the intrinsic wavefunction describing states in that space

may be written

|Φ(ΩΩΩ)〉= D(ΩΩΩ)|Φ0〉= e−iJJJ·ΩΩΩ |Φ0〉, (32)

where the angular coordinates ΩΩΩ of the Hilbert space impose

periodic conditions on the wavefunctions, just as momentum

periodicity of a crystal imposes periodic conditions on the

wavefunctions of the Brillouin zone in condensed matter.

From Eqs. (26), (22), (19), and (20) [this document], a ro-

tational wavefunction with good angular momentum |JM〉 can

be expressed in the form

|JM〉= ∑
K

fJK

∫

dΩΩΩDJ
MK(ΩΩΩ)D(ΩΩΩ)|Φ0〉, (33)

where fJK ≡ (2J + 1)FJ
K/8π2 with FJ

K the expansion coeffi-

cient in Eq. (26), the rotation operator D(ΩΩΩ) is given explic-

itly by D(ΩΩΩ) = eiJJJ·ΩΩΩ, and DJ
MK(ΩΩΩ) is the matrix element of

the rotation operator in an angular momentum basis |JMK〉.
The factors in the integrand of this equation have the follow-

ing interpretation,

• |Φ0〉 is an intrinsic state with respect to rotational sym-

metry (fixed orientation angle; indeterminate angular

momentum by the uncertainty principle, as illustrated

in Fig. 6) [this document] with orientation angle ΩΩΩ0 =
(0,0,0);

• D(ΩΩΩ)|Φ0〉 is an intrinsic state with orientation angle ΩΩΩ,

where values of ΩΩΩ parameterize the Hilbert space;

• DJ
MK(ΩΩΩ) is the matrix element of the rotation operator

in a basis |JMK〉 of states having good angular momen-

tum,

DJ
MK(ΩΩΩ) = 〈JMK|D(ΩΩΩ)|JMK〉 (34)

with J the total angular momentum, M the projection of

J on the laboratory z-axis, and K the projection of J on

the intrinsic 3-axis (see Fig. 5) [this document].

Thus we wish to consider the topology of the rotated nuclear

intrinsic states D(ΩΩΩ)|Φ0〉 on a Hilbert space parameterized by

the angles ΩΩΩ. Because of the periodicity of the angles, the

Hilbert space may be expected to be toroidal and thus closed.

B. Bloch States in Condensed Matter

An electronic wavefunction for a periodic crystal is ex-

pected to take the form

ψkkk(rrr) = ukkk(rrr)e
ikkk·rrr ukkk(rrr) = ukkk(rrr+TTT ), (35)

where TTT is a lattice vector. This exemplifies Bloch’s theorem.

Bloch’s theorem: Because of translational invariance,

wavefunctions on a periodic lattice take the form (35)

[this document] of a plane wave eikkk·rrr modulated by a

function ukkk(rrr) having the periodicity of the lattice.

The wavefunction (35) [this document] implied by Bloch’s

theorem is illustrated schematically in Fig. 7 [this document].
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Bloch’s theorem is of broad applicability because it derives

solely from translational invariance.

It is most common in condensed matter to work in a mo-

mentum representation as for Eq. (35) [this document]. An

alternative description of electronic structure may be given in

terms of Wannier functions, which are electronic wavefunc-

tions localized in real space that are Fourier transforms of the

Bloch waves (35) [this document] in momentum space. Let’s

define the Wannier function |W0(rrr)〉 for a unit cell located at

coordinate rrr of the direct lattice by superposing every Bloch

wave function |ψnkkk(rrr)〉 of Eq. (35) [this document] with a kkk

lying in the corresponding Brillouin zone (BZ) of the recipro-

cal lattice

|W0(rrr)〉= ∑
kkk∈BZ

|ψnkkk(rrr)〉 ≃
V

(2π)3

∫

BZ
|ψnkkk(rrr)〉dkkk, (36)

where n is a band index and V is the volume of a unit cell of

the direct lattice. The Wannier functions in different unit cells

of the direct lattice are related by translational invariance so

the Wannier function |W0(rrr)〉 can be translated a distance RRR

by the translation operator T (RRR) = e−ikkk·RRR and we define

|WnRRR(rrr)〉= ∑
kkk∈BZ

T (RRR)|ψnkkk(rrr)〉= ∑
kkk∈BZ

e−ikkk·RRR|ψnkkk(rrr)〉

≃
V

(2π)3

∫

BZ
e−ikkk·RRR |ψnkkk(rrr)〉dk, (37)

The Wannier function |WnRRR(rrr)〉 in this equation has the form

of a Fourier transform, so the inverse transform gives the

Bloch wavefunction in momentum space

|ψnkkk(rrr)〉= ∑
RRR

eikkk·RRR |WnRRR(rrr)〉. (38)

Thus, Eqs. (37) and (38) [this document] transform between

the momentum space and real space forms of the wavefunc-

tion. The Bloch functions |ψnkkk〉 form an orthonormal set, as

do the Wannier functions |WnRRR〉,

〈ψnkkk| ψmkkk′〉=
(2π)3

V
δnmδkkkkkk′ , (39a)

〈WnRRR|WmRRR′〉= δnmδRRRRRR′ . (39b)

u
k
(x)

eikx

FIG. 7: The real part of a 1D Bloch wavefunction ψkkk = eikkk·xxxukkk(xxx)
given by Eq. (35) [this document]. Circles represent the position of

atoms. The dashed curve represents the plane wave eikkk·xxx and the solid

curve is the function ukkk(xxx) representing the effect of local atomic

interaction with the electrons.

By uncertainty principle arguments the Bloch wavefunc-

tions of Eq. (35) [this document] have definite momentum

but uncertain position, while the Wannier wavefunctions of

Eq. (37) [this document] have localized position but indefinite

momentum. We may form a trial wavefunction by a superpo-

sition of Wannier functions,

|ψ〉=
∫

dRRR f (RRR)Wnrrr(rrr)

=
∫

dRRR f (RRR) ∑
kkk∈BZ

eikkk·rrrT (RRR)|ukkk(rrr)〉

= ∑
kkk∈BZ

∫

dRRR f (RRR)eikkk·rrr T (RRR) |ukkk(rrr)〉, (40)

where f (RRR) is a weight function, Eq. (35) [this document] was

used, eikkk·rrr is a translational eigenfunction, T (RRR) = e−ikkk·RRR is

the translation operator, and |ukkk(rrr)〉 may be interpreted as an

intrinsic state.

The states |ψ〉 of Eq. (40) [this document] are not states

of good momentum because of the sum over kkk, but if we fol-

lowed a similar procedure as in Eqs. (19)-(26) [this document]

for the rotational case and expanded the weight factor f (RRR) in

states of good linear momentum we could presumably intro-

duce a projector for linear momentum and eliminate the sum

over kkk. If we ignore the weight f (RRR) and the sum over kkk in

Eq. (40) [this document], we may interpret the factors in the

integrand as follows.

• |ukkk(rrr)〉 is an intrinsic state with respect to translational

symmetry, with position rrr.

• T (RRR) |ukkk(rrr)〉 = e−ikkk·RRR |ukkk(rrr)〉 is an intrinsic state with

respect to translational symmetry having position rrr−RRR,

where values of rrr −RRR parameterize the Hilbert space.

The periodicity implied by Bloch’s theorem means that

the coordinates parameterizing Hilbert space will be-

come angles parameterizing a torus.

• eikkk·rrr is a translational eigenfunction in a basis of good

linear momentum.

These are seen to parallel the interpretation of the factors in

the integrand of Eq. (33) [this document] given in Section

VI A [this document].

C. Comparison of Bloch and Nuclear States

Comparing Eqs. (33) and (40) [this document], we see

that a Bloch wave (35) [this document]in a crystal has a very

similar structure to the nuclear rotational wavefunction (32)

[this document], with translational invariance being central to

Eq. (35) [this document] and rotational invariance being cen-

tral to Eq. (32) [this document], and with ukkk(rrr) playing a sim-

ilar role in the Bloch wave as the intrinsic state |Φ0〉 plays for

the rotational state.

1. For the nuclear wavefunction the intrinsic rotational

state |Φ0〉 has a fixed orientation angle [chosen to be
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ΩΩΩ= (0,0,0)] and by the uncertainty principle it violates

conservation of angular momentum maximally. From

Eq. (36) [this document], for the Wannier wavefunction

localized at position rrr of a unit cell on the direct lattice,

|W0(rrr)〉= ∑
kkk∈BZ

|ψnkkk(rrr)〉= ∑
kkk∈BZ

eikkk·rrr|ukkk(rrr)〉,

where Eq. (35) [this document] was used. This suggests

that the Wannier state |W0(rrr)〉 behaves as an intrinsic

state analogous to the nuclear intrinsic state |Φ0〉.

• The nuclear intrinsic state |Φ0〉 violates rotational

symmetry because of its fixed orientation angle

ΩΩΩ0 = (0,0,0);

• the Wannier intrinsic state |W0(rrr)〉 violates trans-

lational symmetry because of its localized posi-

tion rrr.

2. In the nuclear case the intrinsic rotational state at orien-

tation angle ΩΩΩ,

Φ(ΩΩΩ) = D(ΩΩΩ)|Φ0〉= eiJJJ·ΩΩΩ |Φ0〉,

where D(ΩΩΩ) is the operator rotating through an angle ΩΩΩ,

is also an intrinsic state that violates rotational symme-

try because it has a definite orientation angle ΩΩΩ. Like-

wise, the translated Wannier state at location rrr−RRR,

|WnRRR(rrr)〉=
V

(2π)3

∫

BZ
|ψnkkk(rrr)〉e−ikkk·RRR dkkk

=
V

(2π)3

∫

BZ
e−ikkk·(rrr−RRR) |unkkk(rrr)〉dkkk,

is an intrinsic state that violates translational symmetry

because of its fixed location rrr−RRR.

3. In both nuclear and Wannier cases we can use the

symmetry-breaking intrinsic states to convert to states

of good angular momentum and linear momentum, re-

spectively, by taking a superposition of intrinsic states

having all possible angular momenta and linear mo-

menta, respectively. For the nuclear case a state of good

angular momentum (JM) is given by Eq. (33) [this doc-

ument],

|JM〉= ∑
K

fJK

∫

dΩΩΩDJ
MK(ΩΩΩ)D(ΩΩΩ)|Φ0〉.

For the condensed matter case, a corresponding state is

given by Eq. (40),

|ψ〉= ∑
kkk∈BZ

∫

dRRR f (RRR)eikkk·rrr T (RRR) |ukkk(rrr)〉.

Thus, with respect to evaluation of Berry phases and

Berry curvature in the nuclear Hilbert space, the intrin-

sic rotational states are the candidates for evaluation of

matrix elements, just as the intrinsic states |ukkk(rrr)〉 are

used in condensed matter to evaluate matrix elements

to construct Berry phases and Berry curvature on the

Hilbert space of states.

In this connection it is important to note the conclusion in

condensed matter that one must use the “intrinsic state” |ukkk〉
(the “cell periodic wavefunction”) to construct Berry phases

and Berry curvatures rather than the full wavefunction |ψnk
〉

appearing in Eq. (35) [this document]; see the comments in

Section 3.4 of Vanderbilt [2]. Basically the argument is that

all the |ukkk〉 belong to the same Hilbert space but that is not

true of all the |ψnkkk〉. The net effect is that using |ukkk〉 ensures

finite and well behaved integrals. This, and the parallels be-

tween the condensed matter and nuclear cases discussed in

this section, provide further encouragement that our proposal

to use intrinsic rotational states for computing Berry phases

and Berry curvature for the nuclear case is perhaps on the right

track.

VII. SAMPLE CALCULATIONS

In this section some example calculations are shown to il-

lustrate techniques likely to be important in evaluating possi-

ble nuclear topological states.

A. Single Electron in a Magnetic Field

This example illustrates calculating the Berry curvature

and Berry phase for a single electron in a magnetic field. It

is adapted from the solution of Prob. 27.6 in Ref. [9]. The

Hamiltonian for an electron interacting with a magnetic field

BBB may be written

H =−
1

2
µσσσ ·BBB

=−
1

2
µ (σxBx +σyBy +σzBz) , (41)

where the σi are Pauli matrices,

σx =

(

0 1

1 0

)

σy =

(

0 −i

i 0

)

σz =

(

1 0

0 −1

)

,

The eigenvalues for the Schrödinger equation H|ψ〉 = E|ψ〉
are

E±(B) =±
1

2
µ
√

B2
x +B2

y +B2
z =±

1

2
µB, (42)

where B ≡ |BBB|, and the corresponding eigenvectors are given

by

|ψ+〉=

(

cos θ
2

e−iφ/2

sin θ
2

eiφ/2

)

|ψ−〉=

(

−sin θ
2

e−iφ/2

cos θ
2

eiφ/2

)

, (43)

where the angles θ and φ are related to the magnetic field

components by

Bx = Bsinθ cosφ By = Bsinθ sinφ Bz = Bcosθ .
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The Berry phase may be expressed in the form (11), which

requires evaluation of the quantity ∇BH(BBB). For the Hamilto-

nian (41),

∇BH(BBB) = ∇B

(

−
µ

2
σσσ ·BBB

)

=−
µ

2

(

iii
∂

∂X
+ jjj

∂

∂Y
+ kkk

∂

∂Z

)

(σxX +σyY +σzZ)

=−
µ

2
(iiiσx + jjjσy + kkkσz)

=
µ

2
σσσ .

The Berry curvature is given by Eq. (11) [this document]. Let-

ting m = |ψ−〉 and n = |ψ+〉 in that expression, we must eval-

uate

〈mBBB|∇BBBH|nBBB〉×〈nBBB|∇BBBH|mBBB〉

(En(BBB)−En(BBB))2
=

〈ψ−|∇BBBH|ψ+〉×〈ψ+|∇BBBH|ψ−〉

(E−−E+)2
=

µ2

4
〈ψ−|σσσ |ψ+〉×〈ψ+|σσσ |ψ−〉

(E−−E+)2

=
µ2

4(E−−E+)2

∣

∣

∣

∣

∣

∣

iii jjj kkk

〈−|σx|+〉 〈−|σy|+〉 〈−|σz|+〉
〈+|σx|−〉 〈+|σy|−〉 〈+|σz|−〉

∣

∣

∣

∣

∣

∣

=
µ2

4(E−−E+)2





〈−|σy|+〉〈+|σz|−〉 − 〈−|σz|+〉〈+|σy|−〉
−〈−|σx|+〉〈+|σz|−〉 + 〈−|σz|+〉〈+|σx|−〉
〈−|σx|+〉〈+|σy|−〉 − 〈−|σy|+〉〈+|σx|−〉



 .

To evaluate this expression, let us choose a coordinate system

such that the z axis points in the direction of the magnetic field

BBB,

σz|±〉=±|±〉 σx|±〉= |∓〉 σy|±〉=±|∓〉.

Then, for example,

〈−|σx|+〉〈+|σy|−〉 − 〈−|σy|+〉〈+|σx|−〉=

−i〈−| −〉〈+|+〉 − i〈−| −〉〈+|+〉=−2i.

Evaluating the other matrix elements in a similar way leads to

the result

〈mBBB|∇BBBH|nBBB〉〈nBBB|∇BBBH|mBBB〉=
µ2

4





0

0

−2i



 .

Then from Eq. (11) [this document],

ΩΩΩ−(BBB) = i

(

〈−|∇BBBH|+〉〈+|∇BBBH|−〉

(E−−E+)2

)

= i











1
µ

2
(−B−B)





2
(

µ2

4

)





0

0

−2i











= i





1

4B2





0

0

−2i









=−
1

2B2





0

0

1



 .

This result was obtained assuming a unit vector in the z di-

rection, which is of the form BBB/B, so the general solution for

arbitrary axes is

ΩΩΩ−(BBB) =−
1

2

(

BBB

B3

)

.

By a similar analysis,

ΩΩΩ+(BBB) =
1

2

(

BBB

B3

)

.

These are the results that would be expected for a magnetic

monopole of strength ± 1
2

placed at the origin of parameter

space.

B. Chern Numbers on a 2D Torus

This example illustrates calculating the Berry phase and

Chern numbers for a band with states in a Hilbert space de-

fined on a 2-torus, as displayed in Fig. 9(a) [this document]. It

was adapted from the solution of Prob. 28.6 in Ref. [9] which

is specifically for a 2D Brillouin zone. Here we work with a

general Hilbert space defined in terms of two periodic angu-

lar coordinates. The Berry flux or Berry phase γn for a band

labeled by an index n can be defined by the integral over the

Hilbert space

γn =
∫

S
Ωn

θφ dS, (44)

with the Berry curvature tensor given by

Ωn
θφ ≡ ∂θ An

φ (θ ,φ)−∂φ An
θ (θ ,φ), (45)
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where we parameterize the Hilbert space in terms of angles

(θ ,φ) on the 2-torus of Fig. 8 [this document], and the Berry

θ
φ

FIG. 8: Angular coordinates (θ ,φ) for a 2-torus.

connections Ai are given by

Aθ ≡ 〈ψ|i∂θ |ψ〉 Aφ ≡ 〈ψ|i∂φ |ψ〉, (46)

where wavefunctions in the Hilbert space are denoted by |ψ〉
and we use the shorthand notation

∂θ ≡
∂

∂θ
∂φ ≡

∂

∂φ
.

From Eqs. (44) and (45) [this document], the Berry phase γ
evaluated over the entire Hilbert space of wavefunctions is

given by

γn ≡
∫

S
Ωn

θφ dS =
∫ θf

θi

dθ

∫ 2π

0
dφ(∂θ Aφ −∂φ Aθ ). (47)

In general, states on the boundaries of the angular range

are related by a phase (gauge) factor

|ψn,φ=2π〉= eiη |ψn,φ=0〉 (48)

that we are free to choose (see the discussion in Vanderbilt [2],

p. 46). Here we shall assume a periodic gauge condition by

setting the phase factor to unity so that Aθ at φ = 0 and φ = 2π
are equivalent, even up to phases: |ψn,φ=0〉= |ψn,φ=2π〉. Thus

the second term in the integral (47) [this document] vanishes

because
∫ θf

θi

dθ

∫ 2π

0
dφ(∂φ Aθ ) =

∫ θf

θi

dθ

∫ Aθ (2π)

Aθ (0)
dAθ = 0, (49)

since by the periodic gauge condition Aθ (2π) = Aθ (0). Thus

γn ≡
∫

S
Ωn

θφ dS =
∫ θf

θi

dθ

∫ 2π

0
dφ

∂Aφ

∂θ

=
∫ θf

θi

dθ
∂

∂θ

∫ 2π

0
dφAφ =

∫ θf

θi

dθ
∂γφ

∂θ

=
∫ θf

θi

dγφ = γφ (θf)− γφ (θi), (50)

where in line 2 we have used that the Berry phase evaluated

for a cyclic path in φ is

γφ =
∫ 2π

0
Aφ dφ ,

from Eq. (44) [this document]. On the torus the endpoints for

θ are identified modulo 2π , so at the end of a cycle in θ the

Berry phase will have evolved by

γ = γφ (θf)− γφ (θi) = 2πm, (51)

where m is an integer. But from the Chern equation,

1

2π

∫

S
ΩdA =C, (52)

where C ≡ C1 is an integer Chern number (of the first type).

Thus the Berry phase is related to the Chern number C by

γ ≡
∫

S
Ωθφ dS = 2πC. (53)

Comparing Eqs. (51) and (50) [this document] gives C = m,

and the Chern index may be interpreted as the winding num-

ber m along φ in one cycle over θ , as illustrated in Fig. 9(b-g)

[this document]. For example, from Eq. (51) [this document]

we have γφ (θf)− γφ (θi), so

1. if m = 0, then as θ varies from 0 to 2π the phase φ
varies from φ(θi) to φ(θi+2πm) = φ(θi), as illustrated

in Fig. 9(b) [this document]. The corresponding wind-

ing on the torus is illustrated in Fig. 9(e) [this docu-

ment];

2. if m = 1, then as θ varies from 0 to 2π the phase φ
varies from φ(θi) to φ(θi + 2πm) = φ(θi + 2π), as il-

lustrated in Fig. 9(c) [this document]. The correspond-

ing winding on the torus is illustrated in Fig. 9(f) [this

document];

3. if m = 2, then as θ varies from 0 to 2π the phase φ
varies from φ(θi) to φ(θi + 2πm) = φ(θi + 4π), as il-

lustrated in Fig. 9(d) [this document]. The correspond-

ing winding on the torus is illustrated in Fig. 9(g) [this

document].

Thus, the integral Chern numbers may be interpreted as wind-

ing numbers on the 2-torus of Fig. 9(a) [this document].

VIII. VISUALIZING THE 2D-ROTOR HILBERT SPACE

We may visualize the topology of the 2D-rotor Hilbert

space if the angular variable β with range 0− π is mapped

to a variable β ′ ≡ 2β with range 0− 2π . Then, identifying

γ = 0 with γ = 2π , and β ′ = 0 with β ′ = 2π , the Hilbert space

is topologically the 2-torus in Fig. 9(a) [this document]. The

phase φ(γ) must return to its initial value for once around the

torus in the γ direction, but only modulo an integer multiple

of 2π:

φ(γ = 2π) = φ(γ = 0)+2πm = φ(γ = 0)+2πC1. (54)

This implies that the Chern number C1 may be interpreted as

a winding number m giving the number of times the torus is

wrapped in the β ′ direction as γ is varied once around the

torus, as illustrated in Fig. 9(b-g) [this document]. Three ex-

amples for the variation of φ(γ) are illustrated in Fig. 9 [this

document].
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γ

(a) Hilbert

space

β'(γ)

γ

0

2π

4π

0

(c) m = 1

γ

0

2π

4π

0 2π 2π 2π

(b) m = 0

γ

0

2π

4π

0

(d) m = 2

Chern (winding) numbers

φ(γ) φ(γ) φ(γ)

(e) (f) (g)

FIG. 9: Chern numbers C1 associated with the 2D quantum rotor Hilbert space, for angular variables (β ′ = 2β ,γ). (a) The toroidal Hilbert

space parameterized by the periodic angular variables γ and β ′(γ), with the cyclic coordinate β ′ ≡ 2β assumed to range 0 to 2π . (b-g) Winding

numbers corresponding to Chern numbers C1 =m= 0,1,2, . . ., with φ(γ = 2π) = φ(γ = 0)+2πm. The points γ = 0 and γ = 2π are assumed to

be identified, so each cylinder in (e-g) is actually the closed 2-torus in (a). On the 2-torus the winding numbers then define distinct topological

sectors of the theory labeled by C1 = m = 0,1,2, . . ., and a solution in one sector cannot be deformed continuously into one in another sector.

1. In Fig. 9(b, e) [this document], C1 = 0 and the phase

φ(γ) varies from φ(0) at γ = 0 to φ(0) at γ = 2π . The

corresponding winding number is m =C1 = 0, as illus-

trated in Fig. 9(e) [this document], which lies in the triv-

ial topological sector where standard nuclear structure

is formulated.

2. In Fig. 9(c, f) [this document], C1 = 1 and the phase

φ(γ) varies from φ(0) at γ = 0 to φ(0)+2π at γ = 2π .

The corresponding winding number is m = C1 = 1, as

illustrated in Fig. 9(f) [this document]: φ(γ) wraps once

around the torus of Fig. 9(a) [this document]in the β ′

direction as γ varies from 0 to 2π .

3. In Fig. 9(d, g) [this document], C1 = 2 and the phase

φ(γ) varies from φ(0) at γ = 0 to φ(0) + 4π at γ =
2π . The corresponding winding number is m =C1 = 2,

as illustrated in Fig. 9(g) [this document]: φ(γ) wraps

twice around the torus of Fig. 9(a) [this document] in

the β ′ direction as γ varies from 0 to 2π .

Clearly the three solutions labeled by m = C1 = {0,1,2} in

Fig. 9 [this document] cannot be deformed continuously into

each other since the winding is around a torus; hence, they

are topologically distinct and the corresponding values of the

integers m =C1 are topologically protected invariants.

IX. CHERN THEOREM FOR 2D ROTOR HILBERT SPACE

This section contains derivations and technical details associated with Chern quantization of a quantum rotor with 2D Hilbert

space.

A. Angular Momentum Operators

The orientation angles for the rotor restricted to two orientation angles can also be expressed in the standard spherical coordi-

nate system (θ ,φ) illustrated in Fig. 1(c). Comparing the Euler angles (β ,γ) in Fig. 1(b) with the spherical polar angles (θ ,φ)
in Fig. 1(c), successive rotations through the Euler angles γ and then β , and successive rotations through the polar angles φ and

then θ , are related by

eiβ Ĵyeiγ Ĵz ↔ eiθ Ĵyeiφ Ĵz .

Therefore, the 2D Euler-angle coordinate system in Fig. 1(b) is equivalent to the spherical polar coordinate system in Fig. 1(c)

under the mapping θ ↔ β . and φ ↔ γ , and this mapping may be used to express formulas valid for the spherical polar coordinates

(θ ,φ) in the 2D Euler-angle space (β ,γ). For example, the coordinate representation of the angular momentum operators
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(Jx,Jy,Jz) in the (β ,γ) coordinates is obtained from standard formulas expressed in spherical coordinates using the mapping

(θ ,φ)↔ (β ,γ) as

Ĵx = ih̄

(

sinγ
∂

∂β
+ cotβ cosγ

∂

∂γ

)

, (55a)

Ĵy = ih̄

(

−cosγ
∂

∂β
+ cotβ cosγ

∂

∂γ

)

, (55b)

Ĵz =−ih̄
∂

∂γ
. (55c)

(We may drop the explicit factors of h̄ if h̄ = 1 units are chosen.)

Let’s find expectation values of angular momentum components for the lab frame (Ĵx, Ĵy, Ĵz) and the intrinsic frame (Ĵ1, Ĵ2, Ĵ3).

Consider Ĵx in the lab frame; utilizing Eq. (8),

〈ψ|Ĵx|ψ〉= 〈Φ|eiγ Ĵz eiβ Ĵy Ĵxe−iβ Ĵye−iγ Ĵz |Φ〉. (56)

But if the intrinsic-frame operator component Ĵ1 is defined in terms of the lab-frame component Ĵx by

Ĵ1 = D̂−1Ĵx D̂ = eiγ Ĵz eiβ Ĵy Ĵxe−iβ Ĵye−iγ Ĵz , (57)

then 〈ψ|Ĵx|ψ〉= 〈Φ|Ĵ1|Φ〉. and from Eqs. (56)-(57) [this document],

〈ψ|Ĵx|ψ〉= 〈Φ|eiγ Ĵz eiβ Ĵy Ĵxe−iβ Ĵye−iγ Ĵz |Φ〉= 〈Φ|Ĵ1|Φ〉, (58)

where Ĵx and |ψ〉 are lab-frame and Ĵ1 and |Φ〉 are intrinsic-frame quantities. Now consider Ĵy in the lab frame,

〈ψ|Ĵy|ψ〉= 〈Φ|eiγ Ĵzeiβ Ĵy Ĵye−iβ Ĵy e−iγ Ĵz |Φ〉

= 〈Φ|eiγ Ĵzeiβ Ĵy e−iβ Ĵy Ĵye−iγ Ĵz |Φ〉

= 〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉, (59)

where we have used that [A,eB ] = 0 only if [A,B] = 0. But defining the intrinsic frame operator component Ĵ2 ≡ D̂−1Ĵy D̂ in

terms of the lab frame component Ĵy,

Ĵ2 ≡ eiγ Ĵz eiβ Ĵy Ĵye−iβ Ĵye−iγ Ĵz = eiγ Ĵz Ĵye−iγ Ĵz , (60)

and using 〈ψ|Ĵy|ψ〉= 〈Φ|Ĵ2|Φ〉 and Eq. (59) [this document],

〈ψ|Ĵy|ψ〉= 〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉= 〈Φ|Ĵ2|Φ〉, (61)

where Ĵy and |ψ〉 are defined in the lab frame, and Ĵ2 and |Φ〉 are defined in the intrinsic frame. Finally, consider the expectation

value of Ĵz evaluated in the laboratory frame,

〈ψ|Ĵz|ψ〉= 〈Φ|eiγ Ĵz eiβ Ĵy Ĵze
−iβ Ĵy e−iγ Ĵz |Φ〉. (62)

If the intrinsic-frame operator component Ĵ3 is defined by

Ĵ3 ≡ D̂−1Ĵz D̂ = eiγ Ĵzeiβ Ĵy Ĵze
−iβ Ĵye−iγ Ĵz , (63)

then 〈ψ|Ĵz|ψ〉= 〈Φ|Ĵ3|Φ〉 and from Eqs. (62)-(63) [this document],

〈ψ|Ĵz|ψ〉= 〈Φ|eiγ Ĵzeiβ Ĵy Ĵze
−iβ Ĵye−iγ Ĵz |Φ〉= 〈Φ|Ĵ3|Φ〉, (64)

with Ĵz and |ψ〉 laboratory and Ĵ3 and |Φ〉 intrinsic quantities.
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B. Important Commutation Relations

In the derivations in this paper it will often be necessary to commute operators in expressions. In doing so we will use

extensively that an operator Â commutes with a function f (Â) of that operator

[Â, f (Â)] = 0. (65)

For example, Eq. (55c) [this document] implies that e−iγ Ĵz is a function of the derivative operator ∂
∂γ

,

e−iγ Ĵz = e
−γ ∂

∂γ = f ( ∂
∂γ
), (66)

and therefore e−iγ Ĵz commutes with ∂
∂γ

,

[e−iγ Ĵz , ∂
∂γ
] = 0. (67)

We will also use that an operator Â commutes with the exponentiation of an operator B̂ if and only if Â and B̂ commute:

[Â,eB̂ ] = 0 (iff [Â, B̂] = 0). (68)

For example Eq. (68) [this document] implies that Jz commutes with eiγJz . We will also use extensively that the derivative of an

exponential of an operator can be written with either the residual exponential or the derivative of the exponent to the right. For

example,

∂

∂β

(

e−iβ Ĵy

)

= i
∂(β Ĵy)

∂β
e−iβ Ĵy = i e−iβ Ĵy

∂(β Ĵy)

∂β
, (69)

which follows from taking the derivative of the expression [Ĵy,e
−iβ Ĵy ] = 0, which is true because of Eq. (65) [this document].

Finally we will often use that since the intrinsic state |Φ〉 is assumed to be independent on the Euler angles (β ,γ), any derivative

operator gives zero when applied to |Φ〉,

∂

∂β
|Φ〉=

∂

∂γ
|Φ〉=

∂ 2

∂β 2
|Φ〉=

∂ 2

∂γ2
|Φ〉=

∂ 2

∂β∂γ
|Φ〉=

∂ 2

∂γ∂β
|Φ〉= 0. (70)

This will allow elimination of terms involving derivatives if the derivative operator can be commuted to the right to act on the

intrinsic state.

C. Some Derivatives

Let’s calculate some derivatives that will be needed, assuming that the Liebniz relation for derivatives of products

d

dx
(AB) =

d

dx
(A)B+A

d

dx
(B) (71)

holds also for possibly non-commuting operators. Then,

∂

∂β

(

e−iβ Ĵy

)

=−ie−iβ Ĵy
∂

∂β
(β Ĵy) =−ie−iβ Ĵy

(

Ĵy +β
∂ Ĵy

∂β

)

=−ie−iβ Ĵy

[

Ĵy − iβ

(

cosγ
∂ 2

∂β 2
+

sinγ

sin2 β

∂

∂γ

)]

, (72)

where we have used that

∂ Ĵy

∂β
= i

∂

∂β

(

−cosγ
∂

∂β
+ cotβ cosγ

∂

∂γ

)

=−i

(

cosγ
∂ 2

∂β 2
+

sinγ

sin2 β

∂

∂γ

)

, (73)
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from Eq. (55b) [this document]. In a similar manner,

∂

∂β

(

e−iγ Ĵz

)

= ie−iγ Ĵz
∂

∂β
(γ Ĵz) = iγe−iγ Ĵz

∂Jz

∂β

= iγe−iγ Ĵz
∂

∂β

(

−i
∂

∂γ

)

= γe−iγ Ĵz
∂ 2

∂β∂γ
, (74)

where we have used Eq. (55c) [this document] in line 2. Likewise,

∂

∂γ

(

e−iβ Ĵy

)

=−ie−iβ Ĵ j
∂

∂γ
(β Ĵy) =−ie−iβ Ĵ j β

∂ Ĵy

∂γ

= e−iβ Ĵ j β

(

sinγ
∂

∂β
+ cotβ cosγ

∂

∂γ
+ cotβ sinγ

∂ 2

∂γ2

)

, (75)

where we have used Eq. (55b) [this document] to calculate the derivative

∂ Ĵy

∂γ
= i

[

sinγ
∂

∂β
+ cotβ

(

cosγ
∂

∂γ
+ sinγ

∂ 2

∂γ2

)]

. (76)

In a similar manner,

∂

∂γ

(

e−iγ Ĵz

)

=−ie−iγ Ĵz
∂

∂γ
(γ Ĵy) =−ie−iγ Ĵz

(

Ĵz − iγ
∂ 2

∂γ2

)

, (77)

where we have used

∂

∂γ

(

γ Ĵz

)

= Ĵz + γ
∂ Ĵz

∂γ
= Ĵz − iγ

∂ 2

∂γ2
, (78)

which was deduced from Eq. (55c) [this document] upon setting h̄ = 1.

D. Berry Connections

The Berry connections for the Hilbert space of Eq. (8) are

Aβ ≡ 〈ψ|i∂β |ψ〉 Aγ ≡ 〈ψ|i∂γ |ψ〉, (79)

where ∂α ≡ ∂/∂α . The wavefunctions |βγ〉 ≡ |ψ(β ,γ)〉 are

|βγ〉= e−iβ Ĵy e−iγ Ĵz |Φ〉 〈βγ|= 〈Φ|eiγ Ĵz eiβ Ĵy , (80)

Using these wavefunctions, we then have

∂

∂γ
|βγ〉=

∂

∂γ

(

e−iβ Ĵye−iγ Ĵz

)

|Φ〉=
∂

∂γ

(

e−iβ Ĵy

)

e−iγ Ĵz |Φ〉+ e−iβ Ĵy
∂

∂γ

(

e−iγ Ĵz

)

|Φ〉

= e−iβ Ĵyβ

(

sinγ
∂

∂β
+ cotβ cosγ

∂

∂γ
+ cotβ sinγ

∂ 2

∂γ2

)

e−iγ Ĵz |Φ〉− ie−iβ Ĵye−iγ Ĵz

(

Ĵz − iγ
∂ 2

∂γ2

)

|Φ〉

=−ie−iβ Ĵy Ĵze
−iγ Ĵz |Φ〉, (81)

where in lines 2-3 manipulations like the following have been used to set all terms containing derivative operators to zero:

sinγ
∂

∂β

(

e−iγ Ĵz

)

|Φ〉= sinγ e−iγ Ĵz
∂

∂β
(γ Ĵz)|Φ〉

= sinγ e−iγ Ĵzγ
∂

∂β

(

−i
∂

∂γ

)

|Φ〉

=−iγ sinγ e−iγ Ĵz
∂ 2

∂β∂γ
|Φ〉= 0,
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where Eqs. (55c), (69), and (70) [this document] have been used. By similar reasoning,

cotβ cosγ
∂

∂γ
e−iγ Ĵz |Φ〉= 0, (82)

where we have used that from Eqs. (70) and (69) [this document],

∂

∂γ
e−iγ Ĵz |Φ〉= e−iγ Ĵz

∂

∂γ
|Φ〉= 0. (83)

Finally we have

cotβ sinγ
∂ 2

∂γ2
e−iγ Ĵz |Φ〉= cotβ sinγ

∂

∂γ

(

e−iγ Ĵz
∂

∂γ

)

|Φ〉= 0, (84)

by virtue of Eq. (83) [this document], and

iγ
∂ 2

∂γ2
|Φ〉= 0, (85)

because of Eq. (70) [this document]. Therefore, all terms in Eq. (81) [this document] involving derivative operators vanish and

we are left with

∂

∂γ
|βγ〉=−ie−iβ Ĵy Ĵze

−iγ Ĵz |Φ〉. (86)

In a similar manner we find

∂

∂β
|βγ〉=

∂

∂β

(

e−iβ Ĵye−iγ Ĵz

)

|Φ〉

=

[

∂

∂β

(

e−iβ Ĵy

)

e−iγ Ĵz + e−iβ Ĵy
∂

∂β

(

e−iγ Ĵz

)

]

|Φ〉

=−ie−iβ Ĵy

[

Ĵy − iβ

(

cosγ
∂ 2

∂β 2
+

sinγ

sin2 β

∂

∂γ

)]

=−iĴye−iβ Ĵye−iγ Ĵz |Φ〉. (87)

The results in Eqs. (81) and (87) [this document] may then be used to calculate the Berry connections Aβ and Aγ from

Aβ = 〈βγ |i ∂
∂β

|βγ〉 Aγ = 〈βγ|i ∂
∂γ
|βγ〉.

From Eq. (87) [this document]

∂

∂β
|βγ〉=−iĴye−iβ Ĵye−iγ Ĵz |Φ〉, (88)

∂

∂γ
|βγ〉=−ie−iβ Ĵy Ĵze

−iγ Ĵz |Φ〉, (89)

where |Φ〉 is assumed not to depend on the Euler angles (β ,γ). The connection Aβ is given by

Aβ = 〈βγ|i ∂
∂β

|βγ〉= i(−i)〈Φ|eiγ Ĵzeiβ Ĵy Ĵye−iβ Ĵy e−iγ Ĵz |Φ〉

= 〈Φ|eiγ Ĵz eiβ Ĵye−iβ Ĵy Ĵye−iγ Ĵz |Φ〉

= 〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉= 〈Φ|Ĵ2|Φ〉, (90)

where we’ve used Eq. (88) [this document], that [Â,eB̂ ] = 0 only if [Â, B̂] = 0 from Eq. (68) [this document], and Eq. (60) [this

document]. Likewise, the connection Aγ is

Aγ = 〈βγ|i ∂
∂γ
|βγ〉= i(−i)〈Φ|eiγ Ĵz eiβ Ĵye−iβ Ĵy Ĵze

−iγ Ĵz |Φ〉

= 〈Φ|eiγ Ĵz Ĵze
−iγ Ĵz |Φ〉= 〈Φ|Ĵz|Φ〉, (91)

where Eq. (89) [this document] was used.
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E. Berry Curvature

From Eq. (16), we need ∂Aβ/∂γ to evaluate the integral of Berry curvature over Hilbert space. From Eq. (90) [this document],

∂Aβ

∂γ
=

∂

∂γ
〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉

=

〈

Φ

∣

∣

∣

∣

∂

∂γ

(

eiγ Ĵz

)

Ĵye−iγ Ĵz

∣

∣

∣

∣

Φ

〉

(Term 1)

+

〈

Φ

∣

∣

∣

∣

eiγ Ĵz
∂ Ĵy

∂γ
e−iγ Ĵz

∣

∣

∣

∣

Φ

〉

(Term 2)

+

〈

Φ

∣

∣

∣

∣

eiγ Ĵz Ĵy

∂

∂γ

(

e−iγ Ĵz

)

∣

∣

∣

∣

Φ

〉

(Term 3), (92)

where |Φ〉 is assumed to be independent of (β ,γ). Let’s now evaluate each of the three terms in Eq. (92) [this document]. For

the first term,

Term 1 =

〈

Φ

∣

∣

∣

∣

∂

∂γ

(

eiγ Ĵz

)

Ĵye−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

ieiγ Ĵz

(

Ĵz − γ
∂ 2

∂γ2

)

Ĵye−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=
〈

Φ

∣

∣

∣ie
iγ Ĵz ĴzĴye−iγ Ĵz

∣

∣

∣Φ

〉

+

〈

Φ

∣

∣

∣

∣

eiγ Ĵzγ
∂ 2

∂γ2
Ĵye−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=
〈

Φ

∣

∣

∣ie
iγ Ĵz ĴzĴye−iγ Ĵz

∣

∣

∣Φ

〉

+

〈

Φ

∣

∣

∣

∣

eiγ Ĵzγ
∂

∂γ

[

∂

∂γ

(

Ĵye−iγ Ĵz

)

]∣

∣

∣

∣

Φ

〉

=
〈

Φ

∣

∣

∣ie
iγ Ĵz ĴzĴye−iγ Ĵz

∣

∣

∣Φ

〉

, (93)

where in line 2 Eq. (77) [this document] was used and the second term of line 4 was eliminated by

〈

Φ

∣

∣

∣

∣

eiγ Ĵzγ
∂

∂γ

[

∂

∂γ

(

Ĵye−iγ Ĵz

)

]∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵz γ
∂

∂γ

[(

∂ Ĵy

∂γ

)

e−iγ Ĵz + Ĵy

∂

∂γ

(

e−iγ Ĵz

)

]∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵz γ
∂

∂γ

[(

∂ Ĵy

∂γ

)

e−iγ Ĵz + Ĵy

(

e−iγ Ĵz

) ∂

∂γ

]∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵzγ
∂

∂γ

[(

∂ Ĵy

∂γ

)

e−iγ Ĵz

]∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵz iγ
∂

∂γ

[(

sinγ
∂

∂β
+ cotβ cosγ

∂

∂γ
+ cotβ sinγ

∂ 2

∂γ2

)

e−iγ Ĵz

]∣

∣

∣

∣

Φ

〉

= 0, (94)

where in line 2 we have used Eq. (67) [this document], in line 3 we have used Eq. (70) [this document], in line 4 we have used

Eq. (70) [this document], and in line 4 the partial derivative factors can all be brought to the right to act on |Φ〉 and give zero by

commuting with the exponential factor exp(−iγ Ĵz):

• The exponential exp(−iγ Ĵz) does not depend on β so it commutes with ∂/∂β .

• From Eq. (67) [this document], exp(−iγ Ĵz) commutes with ∂/∂γ .

• In the last term of line 5,

∂ 2

∂γ2
e−iγ Ĵz =

∂

∂γ

[

∂

∂γ
e−iγ Ĵz

]

=
∂

∂γ

[

e−iγ Ĵz
∂

∂γ

]

where Eq. (67) [this document] was used.
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From Eq. (70) [this document], the partial derivative factors then all give zero when operating on the intrinsic state |Φ〉 and the

entire contribution of Eq. (94) [this document] to Term 1 vanishes. By similar means, Term 2 vanishes identically,

Term 2 =

〈

Φ

∣

∣

∣

∣

eiγ Ĵz

(

∂ Ĵy

∂γ

)

e−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵz i

(

sinγ
∂

∂β
+ cotβ cosγ

∂

∂γ
+ cotβ sinγ

∂ 2

∂γ2

)

e−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵz i

(

sinγ e−iγ Ĵz
∂

∂β
+ cotβ cosγ e−iγ Ĵz

∂

∂γ
+ cotβ sinγ

∂

∂γ

[

e−iγ Ĵz
∂

∂γ

])∣

∣

∣

∣

Φ

〉

= 0, (95)

where Eq. (76) [this document] was used to expand
∂ Ĵy

∂γ
in line 2, and in line 3 the partial derivative factors can all be brought to

the right to act on |Φ〉 by commuting with the exponential factor exp(−iγ Ĵz) on their right in the same manner as for Term 1:

• The exponential exp(−iγ Ĵz) does not depend on β so it commutes with ∂/∂β .

• From Eq. (67) [this document], exp(−iγ Ĵz) commutes with ∂/∂γ .

• In the last term of line 2,

∂ 2

∂γ2
e−iγ Ĵz =

∂

∂γ

[

∂

∂γ
e−iγ Ĵz

]

=
∂

∂γ

[

e−iγ Ĵz
∂

∂γ

]

,

where Eq. (67) [this document] was used.

From Eq. (70) [this document], the partial derivative factors then all give zero when operating on the intrinsic state |Φ〉 and Term

2 vanishes. Proceeding in a similar way, Term 3 gives

Term 3 =

〈

Φ

∣

∣

∣

∣

eiγ Ĵz Ĵy

∂

∂γ

(

e−iγ Ĵz

)

∣

∣

∣

∣

Φ

〉

=

〈

Φ

∣

∣

∣

∣

eiγ Ĵz Ĵy(−i)

(

Ĵz − iγ
∂ 2

∂γ2

)

e−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=−i
〈

Φ

∣

∣

∣e
iγ Ĵz ĴyĴze

−iγ Ĵz

∣

∣

∣Φ

〉

−

〈

Φ

∣

∣

∣

∣

eiγ Ĵz Ĵyγ
∂ 2

∂γ2
e−iγ Ĵz

∣

∣

∣

∣

Φ

〉

=−i
〈

Φ

∣

∣

∣e
iγ Ĵz ĴyĴze

−iγ Ĵz

∣

∣

∣Φ

〉

−

〈

Φ

∣

∣

∣

∣

eiγ Ĵz Ĵyγ
∂

∂γ

(

e−iγ Ĵz
∂

∂γ

)∣

∣

∣

∣

Φ

〉

=−i〈Φ|eiγ Ĵz ĴyĴze
−iγ Ĵz |Φ〉, (96)

where Eq. (67) [this document] was used in the second term of line 3 to bring ∂/∂γ to the right and the second term in line

4 vanishes because of Eq. (70) [this document]. Inserting the results (93), (95), and (96) [this document] into Eq. (92) [this

document] leads to

∂Aβ

∂γ
=

∂

∂γ
〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉

= 〈Φ|iĴze
iγ Ĵz Ĵye−iγ Ĵz |Φ〉− i〈Φ|eiγ Ĵz ĴyĴze

−iγ Ĵz |Φ〉

= i〈Φ|eiγ Ĵz ĴzĴye−iγ Ĵz |Φ〉− i〈Φ|eiγ Ĵz ĴyĴze
−iγ Ĵz |Φ〉

= i〈Φ|eiγ Ĵz(ĴzĴy − ĴyĴz)e
−iγ Ĵz |Φ〉

= i〈Φ|eiγ Ĵz [Ĵz, Ĵy ]e
−iγ Ĵz |Φ〉

= 〈Φ|eiγ Ĵz Ĵxe−iγ Ĵz |Φ〉, (97)

where in the second line we have used the usual formula for the derivative of a product and in the last line we have used that the Ĵi

are generators of angular momentum that obey an SU(2) Lie algebra [Ĵi, Ĵ j ] = iεi jkĴk, where εi jk is the completely antisymmetric

rank-2 tensor. Thus, integration of the Berry curvature over the Hilbert space has recovered the SU(2) Lie algebra of the rotor

angular momentum operators. This gives Eq. (97) [present document] for ∂Aβ/∂γ .
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Then the Berry curvature integrated over the Hilbert-space manifold Γγβ is

Γγβ ≡
∫

S
ΩdA =

∫ γ f

γi

dγ

∫ π

0
dβ sinβ

(

∂Aγ

∂β
−

∂Aβ

∂γ

)

=−
∫ γ f

γi

dγ

∫ π

0
dβ sinβ

(

∂Aβ

∂γ

)

=−
∫ γ f

γi

dγ
∂

∂γ

∫ π

0
dβ sinβAβ

=−
∫ γ f

γi

dγ
∂φ β

∂γ

=−
∫ γ f

γi

dφ β

= φ β (γi)−φ β (γ f ), (98)

where in line 3 the order of integration and differentiation has been switched, and the Berry phase φ β (γ) evaluated on a closed

path in β at fixed γ has been defined by

φ β (γ)≡
∫ π

0
dβ sinβAβ

= 〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉
∫ π

0
dβ sinβ

= 2〈Φ|eiγ Ĵz Ĵye−iγ Ĵz |Φ〉= 2〈Φ|Ĵ2|Φ〉, (99)

where Eq. (90) [this document] has been used and in the second step the intrinsic state |Φ〉 has been assumed to be independent

of β . This result gives Eq. (19) of the main manuscript.

From Eq. (17), the volume of the 2D Hilbert space is VH = 4π . Thus, dividing both sides of Eq. (21) by VH, the Chern theorem

takes the form

Γ
γβ

≡
Γγβ

VH

=
2〈Φ|eiγi Ĵz Ĵye−iĴz |Φ〉−2〈Φ|eiγf Ĵz Ĵye−iγf Ĵz |Φ〉

4π

=
1

2π

[

〈

〈Φ|eiγi Ĵz Ĵye−iγi Ĵz |Φ〉
〉

−
〈

〈Φ|eiγf Ĵz Ĵye−iγf Ĵz |Φ〉
〉

]

=
1

2
C1 =

1

2
×{0,1,2,3, . . .} , (100)

where C1 is a first Chern number and the double-bracket notation

〈

〈A|B|C〉
〉

≡
〈A|B|C〉

VH

(101)

indicates an average of a matrix element 〈A|B|C〉 over the Hilbert-space volume VH. This gives Eq. (23) of the main manuscript.


