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Abstract

Most modern astrophysical problems such as supernova simulation require application of state-of-

the-art computational tools. Despite the fact that number of nuclei included in coupled simulations

tends to be small, problems such as nuclear burning networks are often part of a large set of inter-

connected programs that require significant computing resources. Expansion of the nuclear reaction

network to realistic sizes can easily make element and energy production the leading consumer

of both time and memory in simulations. Therefore, in solving nuclear reaction networks cou-

pled to (radiation) hydrodynamics in astrophysics simulations, the development of methods capable

of improving on the traditional approaches becomes important. Reactions in thermonuclear net-

works may exhibit huge differences in the time scales characterizing their behavior. This causes

instabilities (stiffness) in the differential equations that make most standard numerical integration

methods impractical. In astrophysics applications, implicit numerical integration has traditionally

been used to overcome the stiffness problem. This approach is stable in typical applications, but is

computationally expensive and has poor scaling behavior with network size. Thus, even the best

previous calculations have been forced to use unrealistically small networks in multi-dimensional

hydrodynamics simulations. Explicit flux-limited integration to cure stiffness far from equilibrium

combined with asymptotic approximations used to cure stiffness in the approach to equilibrium pro-

vide an attractive alternative if they can be made fast enough and accurate enough for production

use. Because of very favorable scaling behavior, the advantages of this approach are especially

noticable in the case of (more realistic) large networks. The purpose of this dissertation is to evalu-

ate the feasibility of using this new approach to couple thermonuclear networks of realistic size to

3-dimensional hydrodynamics for Type Ia supernova simulations.
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Chapter 1

Introduction

Supernovae are among the most violent and spectacular events that occur in the Universe. Although

substantial progress has been made in understanding the mechanisms of these events, all numerical

simulations of supernovae to date have of necessity employed serious limitations on the physics

that could be incorporated. These limitations are partially associated with lack of fundamental

input information, but ultimately are defined by shortcomings in current computational power and

algorithms. As a result, it is fair to say that we have a broad understanding of supernova physics but

many details of these explosions remain elusive at the theoretical level.

In addition to their intrinsic interest, supernovae are increasingly important in understanding a

variety of other phenomena in astrophysics. Traditionally, they have been central to issues such

as galactic chemical evolution and the understanding of elemental abundances. More recently, su-

pernovae have assumed importance in topics of even broader cosmological interest. Perhaps the

two most important examples are accumulating evidence that long-period gamma-ray bursts may

be associated intimately with particular classes of core-collapse supernovae, and the role of Type Ia

supernovae in the emergence of the New Cosmology, in particular their role in suggesting that the

Universe is dominated by a mysterious dark energy that is causing the expansion to accelerate.

Because of their fundamental role in modern observational cosmology, understanding the mech-

anism of Type Ia supernovae is of particular importance (see references [1]–[13] for an overview

of our current understanding of supernovae, with particular emphasis on Type Ia). As shall be de-

scribed in more detail below, Type Ia supernovae are at center stage in cosmology today because

they are very bright (so they can be seen at great distance) and because there is phenomenological
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evidence that their intrinsic brightness can be predicted from their observable characteristics (mean-

ing that they can be used as reliable distance indicators). It is vital that we understand the mechanism

responsible for energy production in Type Ia supernovae, both because of intrinsic interest in what

causes such a spectacular outburst, and because of their critical role as distance indicators in modern

cosmology.

This study is devoted to a particular aspect of Type Ia supernova simulations: the coupling of

the nuclear burning network that is responsible for powering the supernova to the multidimensional

radiation hydrodynamics that describes the time evolution of many observables in the supernova.

In particular, it was demonstrated that a new approach to the nuclear burning network permits the

coupling of a more realistic network to the hydrodynamical simulation than has been possible to

date. Since it is this burning network that is responsible for the energy release in the supernova, and

since all Type Ia simulations to date have of necessity employed a highly truncated and schematic

burning network, this work has the potential for significant impact both in understanding the mech-

anism for Type Ia supernovae and in shoring up the observational foundations of the emerging New

Cosmology.

The organization of this thesis is as follows. A general introduction is presented in Chapter

1. Chapter 2 gives today’s picture of Type Ia supernovae and their place in modern astrophysics.

The status of modern computer modeling of Type Ia Supernovae and available research tools are

described in Chapter 3. New explicit numerical solutions of large thermonuclear networks are

described in Chapter 4. Chapter 5 is devoted to testing the explicit method presented in the previous

chapter in alpha networks and in large networks under hot-CNO conditions. Post-processing testing

of the explicit method under Type Ia supernova conditions is presented in Chapter 6. Finally the

results of computer modeling of an operator split coupling of a realistic network to multidimensional

hydrodynamics is presented in Chapter 7. The final chapter contains a summary of what has been

accomplished in this work, a listing of remaining issues, and a brief discussion of possible future

directions for the work presented here.
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Chapter 2

Type Ia Supernovae

2.1 Classification of Supernovae

Supernovae can be divided according to observational characteristics into two broad categories:

Type I and Type II (See Fig. 2.1 ).

With modern technology, spectra measured at early and late-times and photometric light curves

are usually sufficient for reliable classification. Supernovae of Type I (SNe I) are hydrogen deficient

while Type II supernovae (SNe II) spectra are dominated by strong Hα emission lines. SNe I can

be divided into three classes: Ia, Ib, and Ic. In early-time spectra of SNe Ia strong Si II structure is

present (most notably, λ6355 in Fig. 2.2 ), while Ib and Ic subclasses do not show this line. Type

Ib is characterized by prominent He I lines, especially He I λ5876, while neither Si II nor He I can

be found in SNe Ic spectra.

Light curve analysis for SNe of different types leads to the conclusion that SNe I curves are all

quite similar to each other while SNe II are not simply photometrically similar to one another (See

Fig. 2.4). SNe II light curves can be subdivided into two categories: one of which is similar to

SNe I (it is designated as II-L on the figure) and the other has a “plateau”(II-P). The peak absolute

magnitudes of SNe II-P display a broad dispersion thought to be associated with the radii (envelope

sizes) of the progenitor stars, while SNe II-L tend to have uniform peak absolute magnitudes and

their late-time light curves are similar. However, it is the observed uniformity of SNe Ia light

curves that has important ramifications for modern observational cosmology (see Section 2.6). It is

believed that SNe II, SNe Ib and Ic originate in the same basic mechanism (different from SNe Ia):

3
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Figure 2.1: The current classification of supernovae. Type Ia SNe are connected with thermonuclear
runaways on accreting WDs. Type II SNe and Types Ib and Ic are associated with core-collapse of
massive stars.
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Figure 2.2: Early-time spectra for major types of supernovae [3]

Figure 2.3: Late-time spectra for major types of supernovae [3]
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they evolve from massive stars (> 8-10 M¯) that undergo core collapse, leaving behind a neutron

star or a black hole. In the case of SNe Ib and Ic, the core physics is similar to that of SN II, except

that before the explosion the progenitors were deprived of their hydrogen (Ib case) and possibly

helium (Ic case) envelopes either by stellar winds or Roche lobe overflow onto a companion star.

A significant part of the optical display of SNe Ia is caused by photons from the radioactive

decay of 56Ni (see, for example, Ref. [14]). The amount of 56Ni and the depth to which it is buried

in the ejecta will affect the light curve. The composition of the ejecta and the resulting opacity

are also very important, as they determine the escape parameters of radiation. The temperature

dependence of the opacity is the primary factor in determining the light curve shape. The ejecta

of SNe Ia form an opaque expanding sphere into which energy is deposited by radioactive decay

at an exponentially declining rate. Because initially the sphere is highly opaque, the energy is

mainly converted into kinetic energy and the luminosity is quite small. As time passes, the ejecta

becomes more dilute and the luminosity increases. Superimposed on this changing opacity is the

exponentially declining energy input. This convolution produces a definitive peak in the light curve.

Shortly after the peak a considerable amount of radiation will be trapped and will begin diffusing

outward. Because the energy deposition is declining very fast, the luminosity will remain at the

maximum level for a while until all the stored excess energy is depleted. Finally the luminosity

becomes equal to the instantaneous deposition rate. From this point forward the photon energy is

primarily from the decay of the radioactive 56Co in the ejecta. Thus we can talk of two stages in

light curves for Type Ia supernovae: the first one occurs near peak when the luminosity first rises

above the rate of energy accumulation, the second occurs when the excess stored energy is exhausted

and the luminosity falls to a value equal to the instantaneous deposition. Most of the difficulty in

producing light curves and spectra arises from correctly characterizing the transport and escape of

the thermalized radiation. The rate of decline of light curves at later time after the maximum is close

to that expected if they are powered by the decay of 56Co to 56Fe.

6



Figure 2.4: Schematic light curves for SNe of different types (subtypes) [3]

2.2 Thermonuclear Supernovae

2.3 Progenitors

For SNe Ia, the literature is dominated by three possible progenitor models: a sub-Chandrasekhar

mass white dwarf (WD) undergoing a surface He flash, merging white dwarfs, and accreting carbon–

oxygen WDs belonging to a binary system and reaching Chandrasekhar mass before the explosion.

In the first model carbon detonation is triggered by thermonuclear runaway in an accreted He layer

that drives a strong enough shock to initiate detonation in the carbon. This scenario has the ad-

vantage of having a relatively high rate of occurrence, but the exquisitely precise accretion rates

required to obtain this situation instead of a nova or accretion-induced collapse makes its practical

realization unlikely [1]. Also models show unobserved high-velocity Ni in the ejecta.

The second model is also called the doubly-degenerate (DD) scenario for SNe Ia. Some sim-

ulations show that it is accompanied by the gravitational disruption of the less massive star, which

leads to the formation of an accretion disk around the more massive star. Later evolution is then

determined by the accretion rate of the disk. Again, although the possible rate for the DD scenario

7



and the natural explanation for the absence of hydrogen provided by the scenario are attractive, the

particulars of the mechanism and attempts to match observations have placed it in disfavor [1].

The third model is the most plausible at this point. It is generally accepted that the progenitors

of SNe Ia are carbon–oxygen white dwarfs that belong to a binary system with a less-evolved com-

panion. The WD accretes matter from the companion star and after reaching the Chandrasekhar

mass limit undergoes a thermonuclear runaway initiated by an instability deep in the WD.

2.4 Pre-ignition evolution

The evolution preceding ignition constitutes an essential part of the model. The following processes,

in large part, determine the energetics of evolving WDs in binaries ( [1], [15]).

1. Compressional heating caused by accretion.

2. Nuclear burning. Compression and heating cause carbon burning in WDs. The burning leads

to a thermonuclear runaway when T > 5 ·107 K.

3. Neutrino emission. The energy loss by neutrino emission is important.

The start of the last stage of progenitor evolution is marked by the equality of energy production

due to carbon burning and energy loss by neutrino emission. The locus defined by this condition

in the plane of central density and temperature is known as the “ignition line.” The development of

a convective core that serves to deliver energy produced by carbon burning outward in the WD is

very important for understanding the subsequent evolution. The convective phase lasts about 1000

years and is called the “smoldering phase,” as the nuclear burning changes the internal energy of the

matter little during this stage. Convection involves most of the WD mass at temperatures 6-7·108 K.

At T ∼ 109 K the critical temperature is reached for carbon burning. At this temperature the energy

generation rate is equal to the heat conduction rate (mediated mostly by the degenerate, relativistic

electrons deep in the WD core). This point defines the ignition of the thermonuclear runaway (the

start of type Ia Supernova explosion). The detailed picture is of course more complicated and there

are many unanswered questions concerning the physics of the evolution to this point, some of which

will be discussed later.

8



2.5 The Explosion Mechanism and Confronting Observations

In the Type Ia explosion there is a thermonuclear burn corresponding to conversion of carbon and

oxygen fuel into heavier elements by nuclear reactions that release large amounts of energy. This

burn is extremely violent and involves energy and temperature scales far beyond our everyday expe-

rience, but it shares many qualitative properties with ordinary chemical burning. There is a burning

front that proceeds through the white dwarf, with “cooler” unburned fuel in front and hot burned

products (ash) behind. This burning front can be remarkably narrow—as small as millimeters. Thus

there are two extremely different distance scales characterizing the explosion: the size of the white

dwarf, which is of order 104 km, and the width of the burning front that consumes it, which can

be billions of times smaller. This presents severe difficulties in accurately modeling Type Ia explo-

sions, since standard numerical approaches to solving the equations governing the explosion cannot

handle such disparate scales without drastic approximation.

In thermonuclear and ordinary chemical burning there is an important distinction associated with

the speed of the burning front. If the burning front advances through the fuel at a speed less than the

speed of sound in the medium (subsonic), it is termed a deflagration wave. In a deflagration fuel in

front of the advancing burn is heated to the ignition temperature by conduction of heat across the

burning front (recall that matter described by a degenerate equation of state is a very good thermal

conductor, much like a metal). On the other hand, if the burn front advances at greater than the

speed of sound in the medium (supersonic) it is called a detonation wave. In a detonation a shock

wave forms and the fuel within the shock/burning front is heated to ignition temperature by shock

heating.

Deflagrations and detonations can produce different isotopic abundance signatures in the ash

that is left behind. The detailed observational characteristics of Type Ia supernovae (in particular,

the elemental abundances detected in the expanding debris) could be accounted for most naturally

if we assume that the burn begins life as a deflagration and transitions later to a detonation. This is

a difficulty for the theory because although general considerations suggest that the explosion starts

off as a deflagration it is not easy to obtain a transition to a detonation without some additional con-

siderations. Thus, we believe that the proposed Type Ia mechanism is plausible in outline, but there
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are bothersome details that leave some doubt about whether we understand fully the mechanism of

these gigantic explosions.

One natural method to obtain a deflagration to detonation transition (DDT) has recently been

posited by [16]. This “gravitationally confined detonation” (GCD) is shown schematically in Fig.

2.5. The mechanism begins with an initial single-point ignition near (but not precisely at) the center

of the WD. A buoyant bubble of hot ash accelerates toward the surface of the WD, consuming

stellar fuel and being shaped by fluid instabilities as it rises. The rapid ascent of the bubble toward

the surface pushes the stellar material located just above the bubble. This piston reaches the stellar

surface and breaks out of the WD. This material in the bubble wraps around the stellar surface (in

an essentially Keplerian orbit), followed by the partially burnt bubble material. The material wraps

around the star in each direction spreading in two streams along the WD surface. Both streams

remain gravitationally confined to a relatively thick ≈ 1000 km layer. The flood of surface material

converges at the point opposite to the bubble breakout location, forming a conical compressed region

bounded by a shock. At this point in the evolution, conditions in the shocked region approach the

detonation regime: the density exceeds 1.7×106 g cm−3 and the temperature is≈ 2.2×109 K. The

resulting detonation propagates inward through the WD surface, completely burning (i.e. to NSE)

the fresh nuclear fuel it encounters. This available fuel is prodigious, as the initial deflagration

only serves to burn roughly 5% of the total stellar mass. The scenario seems likely to accurately

reproduce spectral observations without having to resort to an ad hoc invocation of a DDT. It is this

particular GCD scenario that is treated below as a laboratory for our new network methods.

2.6 Standardized Candles and Cosmology

It is appropriate here to comment on the applicability of SNe Ia observations to modern observa-

tional cosmology, especially their key role as the most direct indicator that the expansion of the

Universe is currently accelerating, implying that the Universe is permeated by a mysterious dark

energy that can effectively turn gravity into antigravity.

It is well established that the properties of Type II SNe, as well as those of Types Ib and Ic,

differ essentially from one sample to another. However, the properties of Type Ia SNe are quite

homogeneous. Both spectra and optical light curve shapes of most of SNe Ia are similar to each
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Figure 2.5: The gravity confined detonation (GCD) mechanism.

other. This resemblance of characteristics of SNe Ia attracted attention long ago and further studies

led to the conclusion that SNe Ia can be used as what are termed standardizable candles.

A standard candle is an object having a very small luminosity scatter. Careful studies of SNe Ia

show that, due to dissimilarities between them, they cannot be used as standard candles directly. At

the same time it was noticed that there exist some correlations between spectroscopic line strength,

ejecta velocities, colors, peak absolute magnitudes, and light curves. Especially useful appeared to

be the very special relation between the light curve shapes of SNe Ia and their peak luminosities,

which allowed normalization of the light curves to a universal one that can provide an extremely

accurate determination of relative cosmological distances (see, for example, Ref. [17]).

Therefore we consider SNe Ia to be standardizable, not standard, candles. The reliable under-

standing of the differences mentioned above, which is vital to achieving appropriate accuracy in

relating SNe Ia observations to their distance, cannot be provided by observational data only. Thor-

ough modeling and complete understanding of physics behind the phenomena astronomers observe

as SNe Ia is important to provide a firm foundation for using SNe Ia as standardizable candles. That

is why computer simulation of Type Ia supernova explosions is a challenging numerical problem of

extreme importance.
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Chapter 3

Computer Modeling of Type Ia

Supernovae

Modeling astrophysical phenomena requires coupling of physical processes that act on vastly dis-

parate spatial and temporal scales. Furthermore, each of the physical processes described can in-

volve processes on quite different space and time scales. For example, the time scales of thermonu-

clear reactions important in astrophysical processes can differ by many orders of magnitude among

themselves. The spread in thermonuclear reaction rates can cause troubles with solving appropriate

ordinary differential equations (ODE) that describe abundances of the elements produced and the

corresponding energy released in network calculations. Beyond this, the thermonuclear time scales

are often many orders of magnitude smaller than typical hydrodynamic time scales in astrophysi-

cal settings. In addition, hydrodynamic schemes must contend with distance scales ranging from

millimeters (e.g. the thermal width of the flame front in Type Ia simulations) to hundreds or more

kilometers (e.g. common hydrodynamical scales in WDs).

Aside from contending with these difficult, but straightforward, problems, a host of other chal-

lenges are present in astrophysical simulations. For example, shocks are ubiquitous in astrophysical

settings and often require treatment with special methods. Very often there is no possibility to check
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computations and associated models in terrestrial labs, since reproduction of stellar conditions (tem-

peratures, pressures, densities, etc.) is often impossible. All these problems mean that tackling as-

trophysical problems requires application of state-of-the-art computational tools and software. The

requirements imposed on numerical simulations for Type Ia explosions include [1]:

1. Ejecta composition and velocity should match the measured spectra and light curves.

2. The explosion mechanism should be robust: the homogeneity of SNe Ia observations requires

that fine-tuning of parameters and initial conditions should not change the results fundamen-

tally.

3. Intrinsic variability supposes that, despite being robust, the model should provide at least one

parameter that could be responsible for the observed variation of explosion strengths in SNe

Ia.

4. The explosion strength should be correlated with the nature of the progenitor WD (to explain

the observed variations in SNe Ia as a function of host stellar population).

3.1 Hydrodynamics

FLASH is a multi-dimensional, AMR (Adaptive Mesh Refinement), reactive flow code for astro-

physical problems involving nuclear burning (see Sec. ?? for a more complete description). It

served as the “coupling laboratory” for the experiments described here. Our primary modification

is the replacement of the standard thermonuclear burning module(s) with a new one implementing

the explicit flux-constrained asymptotic burning algorithm. The equations solved by FLASH (see,

for example, Ref. [18]) connect fluid mass density ρ , its velocity~v, pressure P, total internal energy

E and kinetic energy per unit mass ε . In the FLASH code this corresponds to Euler’s equations for

compressible gas dynamics:

∂ρ/∂ t +∇ ·ρ~v = 0, (3.1)

∂ρ~v/∂ t +∇ · (ρ~v~v)+∇P = ρ~g, (3.2)

∂ρE/∂ t +∇ · (ρE +P)~v = ρ~v ·~g, (3.3)
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E = ε +
1
2

v2, (3.4)

where ~g is the acceleration due to gravity and t is the time coordinate. An equation of state (EOS)

closes the hydrodynamics equations. One simple possibility is

P = (γ−1)ρε, (3.5)

which connects pressure P and density ρ. (Note that the EOS used in these studies is more compli-

cated, being appropriate to describe degenerate conditions present in WD matter). It is also common

to add the continuity equation for flows of each nuclear species

∂ρXl/∂ t +∇ ·ρXl~v = 0, (3.6)

under the condition that the mass fraction Xl of the lth species satisfies

∑
l

Xl = 1. (3.7)

A standard notation is used here:

Xl =
NlAl

ρNA
, (3.8)

Yl =
Xl

Al
=

Nl

ρNA
, (3.9)

where Nl is a number density of species l, NA is Avogadro’s number, and Yl is a mole fraction or

abundance of species l.

3.1.1 Thermonuclear Flames

Detonation and Deflagration

Because numerical simulations of turbulent burning often involve length scales differing by many

orders of magnitude they have always presented a challenge for simulations. In the case of Type Ia

supernovae, the sizes of representative bubbles can range from 107 cm (the largest ones) down to
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Figure 3.1: Comparison of scale disparities in Type Ia supernova simulations.

10−4 cm (the macroscopic Kolmogorov scale) [19]. In another example, the thickness of the flame

can differ from the radius of a WD by 10-12 orders of magnitude [20]. Figure 3.1 compares the

large scale disparities that characterize a Type Ia supernova simulation.

There are no computers capable of resolving this range of scales. That is why one has to resort to

statistical or scaling approximations in order to formulate a subgrid model capable of representing

burning on unresolved scales. Models attempt to reproduce two different regimes of thermonuclear

burning in WD: subsonic deflagration and supersonic detonation. The regimes differ by the mech-

anism of propagation of the reactive wave. A deflagration involves heat conduction or turbulent

mixing while a detonation involves shock compression. In both cases the energy is generated by

the same thermonuclear reactions. Currently in the most favorable models the explosion starts as

a deflagration close to the center of the star. Unstable blobs of hot burned material subject to the

Rayleigh-Taylor instability move upward, as the hot ash is buoyant in the cold fuel of the WD. At the

flame interface shear-induced turbulence occurs, further wrinkling the flame front. This increases

the surface area of flamelets and thus the rate of fuel consumption and the total energy generation

rate of the turbulent front. The turbulent flame speed becomes larger than the laminar speed. In fact,

the turbulent flame speed, being roughly equal to the Rayleigh-Taylor speed, becomes independent

of the laminar speed and therefore of the microphysics of burning and diffusion, and scales only

with the velocity of the largest turbulent eddy. Currently, the distributed burning regime in WDs is
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often wholly neglected in full-scale SNe simulations, as nuclear burning, diffusion, and turbulent

mixing in the flame front cannot be properly described by simplified procedures. Problematically,

it is precisely in this regime where a transition from deflagration to detonation may happen. Accu-

rate determination of this transition is necessary to provide simulation data in good agreement with

observations.

3.1.2 Thermonuclear Networks

Coupled Differential Equations

Thermonuclear burning in stars is not only a source of energy, but also a mechanism for element pro-

duction, providing an explanation for the origin and evolution of chemical elements in the universe.

Abundances of elements and thermonuclear energies are obtained as a result of the integration of

ODEs describing coupled thermonuclear reactions. A correct treatment of thermonuclear energy

generation is a costly simulation process in both memory and time. Isotopic abundances are stored

at each grid point and memory requirements can be quite restrictive for 3D hydrodynamical prob-

lems, even if modern computational tools are used. Nuclear reaction networks are composed of a

system of stiff ODEs. Stiff differential equations are equations with large variation in their rate con-

stants. They present serious stability issues and generally must be solved by special methods, often

involving implicit, iterative techniques. If the number of isotopes becomes greater than about 30,

computation of evolving isotopic abundances by solving the ODEs in fully-coupled reactive flow

codes can dominate the total cost of the model. A common trade-off is to evolve a limited number

of abundances and at the same time to find an approximate value for the thermonuclear energy gen-

eration. In many cases, particularly for SNe Ia, high precision in the total energy is very important

since it is vital in evaluating the validity of the model used (and eventually to provide a theoretical

justification for considering SNe Ia as standardizable candles). Also, some measure of the precision

of the isotopic profile is required to match observations. In this context, the search for methods that

can compete with traditional approaches for solving stiff ODEs is important.
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In a Lagrangian formulation and restricting ourselves to two-body reactions for simplicity of

discussion, nuclear burning can be described by

dYi/dt +∇ · (Yi~Vi) = Ṙi, (3.10)

where

Ṙi = ∑
j,k

YlYkλk j(l)−YiYjλ jk(i), (3.11)

and where

• Yi is a specific abundance of isotope i,

• Ṙi is the total reaction rate caused by binary reaction,

• λk j and λ jk are creation and destruction reaction rates, respectively,

• ~Vi are mass diffusion velocities (pressure, temperature, abundance gradients, etc. taken into

account in dealing with mass diffusion processes).

In the work presented here we will employ an operator-splitting approximation. In such an ap-

proach, one updates the network for a short interval at fixed hydrodynamic conditions, then uses the

network results to update the hydrodynamics, then updates the network using the updated hydrody-

namics results, and so on. The set of thermonuclear network differential equations in this case can

be written as

dYi/dt = Ṙi. (3.12)

This set of equations constitutes a reaction network. The reaction network and the hydrodynamics

are coupled because the rates in the reaction network are strongly dependent on the hydrodynamical

variables and the reaction network, in turn, modifies the energy and composition variables entering

the hydrodynamics. This coupling is particularly strong in a Type Ia supernova because essentially

the entire energy of the explosion (of order 1051 ergs) originates in the thermonuclear reaction

network.
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Stiffness and Traditional Implicit Solutions

As was mentioned earlier, the element production process (thermonuclear burning process) is de-

scribed by stiff ODEs. It is rather difficult to give a rigorous definition of stiffness. That is why in

the literature in different places it is defined differently, though the nature of stiffness is perfectly

understandable qualitatively and is associated primarily with numerical stability rather than with the

accuracy of computations. One definition states that “stiff equations are the equations where certain

implicit methods ... perform better, usually tremendously better, than explicit ones” [21]. As noted

earlier, stiffness typically occurs in equations that have rate coefficients differing by many orders of

magnitude. Nuclear reaction networks in particular are often inherently extremely stiff. (General

methods for solving stiff differential equations in stellar hydrodynamics are surveyed in [22].) To-

day in element production problems implicit methods for solving stiff ODEs are the most widely

used. It is not clear whether substantial (orders of magnitudes) increases in speed and efficiency can

be realized by improvement of standard implicit solvers.

For realistic coupling of nuclear burning networks to hydrodynamics for astrophysical simula-

tions, it will be necessary to couple networks containing hundreds or even thousands of isotopes to

the hydrodynamical simulation. Under those circumstances, element production networks would

dominate in the simulation time and it is advantageous to explore possible approximation schemes

for coupling nuclear burning to hydrodynamics that allow networks of realistic size to be imple-

mented. In the next section I describe a new explicit flux-constrained asymptotic approach to nu-

clear burning networks that obtains an approximate solution to the coupled ODE problem quickly

and predicts the energy production accurately while scaling very gently with network size.
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Chapter 4

Explicit Numerical Solutions of Large

Thermonuclear Networks

In this chapter we take up the issue of developing stable explicit methods as alternatives to the

solution of large thermonuclear networks by standard implicit means.

4.1 Motivation

Basic ideas describing the explicit approach for integrating large stiff reaction networks that we

shall employ here are described in Ref. [25–27]. Discussions in these works are carried out in

very general terms of fluxes between sources and sinks which are referred to as boxes. The whole

system of sources, sinks, and boxes is called a reaction network. Our interest and emphasis will be

of course on thermonuclear reaction networks among nuclear isotopes in astrophysics, which can be

considered a specific case of the general approach. Such systems are usually represented by a set of

coupled ordinary differential equations (ODE) describing a continuous flow of population through

the boxes. As we mentioned earlier, since reaction rates in astrophysics may differ by many orders

of magnitude, such sets are termed stiff systems. Loosely, stiff systems are characterized by having

at least two timescales in the system that differ by many orders of magnitude [28–31].

For stiff sets of ODE usually timesteps are constrained not by accuracy requirements but by

numerical stability restrictions. Explicit numerical integration of stiff systems is often impractical
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since stability requirements make timesteps too small for obtaining efficient solutions (see, for ex-

ample, Refs. [30, 31]). To solve this problem, the most common approach is to switch to implicit

integration, which gives stable solutions and permits stable relatively large timesteps, but has large

computational overhead within each step.

In principle every box in a reaction network might be connected to every other box in the system

by a reaction flux but practically the connection is strong only for a very limited number of boxes

in most physical applications. These restrictions on the coupling of boxes imply that the matrices

appearing in iterative implicit solutions are sparse. In implicit algorithms the time is mostly con-

sumed by numerical matrix transformations. In a typical case more than 90% of the processor time

is spent in matrix manipulations [22,32]. The efficiency of implicit methods will strongly depend on

the size of the networks. Increasing the size of the network increases the time required for implicit

solutions, and in typical cases of working codes in astrophysics this dependence is from quadratic to

cubic. Therefore implicit algorithms for solving stiff systems do not scale very gracefully to larger

networks.

In many application requiring large networks the reaction network is only a part of a larger prob-

lem. In astrophysics, conditions in the network are controlled by multi-dimensional hydrodynamics

that determines (for example) temperature and density. On the other hand, the network influences

the hydrodynamic evolution through energy production and changes in composition. Taking into

account the discussion above concerning restrictions on the computations and the complexity of

practical problems, the usual approaches are very time-consuming and not many calculations have

attempted to couple the element and energy production strongly to hydrodynamics using networks

of realistic sizes. Usually small networks are coupled to the hydrodynamical simulations to provide

important information like energy production that may be correct in some averaged sense. At the

next stage a more complete network is run in a separate “post-processing” step where fixed hydro-

dynamical data computed using the small network are used to compute the changes in populations

with time.
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4.2 Explicit Flux-Constrained Integration

Two major problems in treatment of reaction networks of realistic sizes can be identified: (1) sta-

bility requirements force the use of implicit solutions, and (2) practical working codes often do not

exploit the sparseness of coupled systems very efficiently. A new method of solving large networks

that is based on explicit but stable manipulations of populations will be introduced in this chapter

that we term asymptotic flux-constrained integration. It will be shown later that the new method

reproduces the results of the traditional approaches. The properties of the new method may make

it particularly suitable to large-scale computing applications. Investigation of whether this is so in

practical problems will be the central theme of this dissertation.

4.2.1 The Basic Problem

Let us consider a coupled set of N ordinary differential equations

dYi

dt
= ∑

j
Fi j, (4.1)

where Yi(i = 1 . . .N) describe the dependent variables (typically measures of abundance), t is the

independent variable (often the time), the fluxes between species i and j are given by Fi j, and the

sum for each variable i is over all variables j coupled to i by a non-zero Fi j. Representing sources

and sinks of flux by boxes, with the arrows representing non-zero flux links between them, we can

connect the differential equations given in Eq. 4.1 with Fig. 4.1. This simple 4-box representation

can be generalized to sets of coupled equations describing thousands of boxes and tens of thousands

of fluxes. The fluxes Fi j entering (4.1) may in the simplest cases be expressed as the product of a

rate constant and the population of a single box, but can also be used to describe more general cases

of non-linear behavior of fluxes as functions of time, for example.

4.2.2 The Flux-Limiting Prescription

The basic ideas of the explicit flux-constrained algorithm grew conceptually from the observation

that physically thermonuclear networks evolve discrete (countable) populations. This has the imme-

diate physical implication that (because the flux out of a box is proportional to a physical population
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Figure 4.1: A simple box model.

of the box), it can never be negative. In the large particle-number limit approximation of such an

algorithm we should recover the usual set of coupled differential equations, but we may seek to

preserve this physical property by requiring that no flux Fi j out of box i can be smaller than zero.

Detailed study demonstrates that such an algorithm is equivalent to forward Euler finite differencing,

but supplemented by the elementary flux constraint

Fi j →max(Fi j,0)≡ F̃i j. (4.2)

That is, explicit forward Euler integration, which is highly unstable in the presence of stiffness,

achieves extreme stability in the presence of stiffness through the simple prescription of replacing

in each timestep any negative value of Fi j with zero. We shall refer to explicit Euler integration

subject to this constraint as flux-constrained explicit Euler integration. It is important to note that

this algorithm permits negative populations, but does not permit them to propagate by virtue of the

flux constraint; thus, it conserves particle number.

4.2.3 Advantages and Limitations of Explicit Flux-Constrained Integration

Systematic study of this explicit flux-limiting algorithm applied to the solution of large, sparse

reaction networks has demonstrated that it has some highly desirable properties:

1. The algorithm decouples stability and accuracy issues for the stiff system. The algorithm

is stable because it reproduces the natural way of evolving discrete populations preventing

negative populations from propagating in the network.
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2. The algorithm employs the sparseness of the system perfectly since the fluxes follow only the

paths of non-zero transition probability; there is a possibility to exclude from consideration

flux links that are smaller than a problem-specific threshold in a numerically stable way.

3. The scaling of the algorithm with size of the network for sparse systems is linear; the time

required for computing large networks often is not much larger than that required for a small

network. Implicit solvers on the contrary commonly scale with the size of the network from

quadratically to cubically.

4. A trade-off of accuracy against computing time is allowed by the explicit flux-constrained

algorithm; it is independent of stability issues. This means that the computations can be

adjusted in a stable way to optimize the required accuracy for the problem versus computing

time. Even for very aggressive timesteps the physical characteristics established mostly by

stronger populations tend to be reproduced well.

This method will be shown in the next Chapter to give an accurate, stable, and efficient solution of

large networks that are of considerable practical importance in astrophysics such as those associated

with hot-CNO burning in nova explosions. However, it does not deal well with approach to equilib-

rium. Since many of the problems in astrophysics that require large networks (for example, Type Ia

supernovae) involve significant periods of near-equilibrium conditions, this limits the applicability

of the explicit flux-constrained algorithm. In the next section we will outline a further develop-

ment that will extend this explicit approach in a way much more suited to systems approaching

equilibrium.

4.3 Asymptotic Flux-Constrained Integration

Because of overall simplicity and economy, and highly favorable scaling with network size, we

have seen that it is desirable to integrate large, complex networks with explicit methods. To do so

requires overcoming formidable numerical stability problems for explicit methods that are referred

to generically as stiffness. As suggested above, the nature of stiffness is different for networks that

are far from equilibrium compared with networks approaching equilibrium. This implies that the

modifications of standard explicit methods required to stabilize them when stiffness is encountered
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far from equilibrium (for example, the flux-limiting approach described in the previous section)

must be altered when the same network approaches equilibrium.

4.3.1 Non-Equilibrium Stiffness

In the explicit flux-constrained integration method one systematically prohibits the propagation of

“negative flux” (flux out of a box that is negative, which originates in box populations that have

become negative). This goes a long way toward stabilizing explicit integration (allowing timesteps

much larger than would be allowed in a normal explicit method for large sparse networks), because

a major source of stiffness instability is the coupling to the rest of the network of populations that

become slightly negative because of numerical errors. (This change in sign turns normally expo-

nentially decaying terms highly unstable exponentially-growing terms.) For example, this method

allows an efficient explicit integration of networks containing of order 1000 isotopes under nova

conditions, with stable explicit timesteps that are 105 or more times as large as would be stable with

normal explicit methods, as we shall demonstrate in the next chapter.

4.3.2 Stiffness in the Approach to Equilibrium

The minimal explicit flux-constrained method encounters efficiency problems in the approach to

equilibrium for complex networks because the maximum stable timestep shortens and eventually

tends to the limit set by normal explicit integration as equilibrium is approached. The reason for

this behavior is also stiffness, but in a somewhat different guise than the mechanism described

above. In the approach to equilibrium the population of a box is a delicate balance between a total

flux F+ populating the box and a total flux F− depleting it. Very near equilibrium the difference

F = F+−F− becomes orders of magnitude smaller than F+ or F− and small numerical errors

in F+ or F− can produce large errors in the difference F . Because of the population coupling in

complex networks, this error propagates and compromises the accuracy of the network unless the

timestep is sufficiently short that the difference F is computed accurately for each population in the

network. But this restriction means that the maximum timestep is set by the largest fluxes (that is,

the largest stable timestep is determined by the inverses of the highest rates); this lands us back in
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the explicit integration conundrum that the maximum stable timestep is set by the fastest transitions,

even if the primary interest is in quantities that are varying on a much longer timescale.

Thus, in the approach to equilibrium the problem with explicit integration is not propagation

of negative fluxes directly, but an unacceptable loss of accuracy that may occur even before any

populations become negative. However, this is still a stiffness issue because it involves stability in

systems with widely-varying timescales: we may view the approach to equilibrium as defining a

longest timescale in the system that tends to infinity, implying that any (finite) rate for individual

transitions in the system is very short compared to the timescale of primary physical interest (that for

approach to equilibrium). Thus, any system close enough to equilibrium can be expected to exhibit

this stiffness instability, even if there are not large differences in the rates for individual transitions

in the network.

4.3.3 Curing Stiffness in the Approach to Equilibrium

Because stiffness instability in the approach to equilibrium need not be caused directly by propaga-

tion of negative flux, it cannot be cured fundamentally by the flux-constrained explicit prescription

(the flux-limiting constraint may help in prolonging stability closer to equilibrium than would be

the case for normal explicit methods, but it cannot cure the basic problem). However, as we now

demonstrate, we may deal more efficiently with the approach to equilibrium if we extend the ex-

plicit flux-constrained integration method in a manner that turns the approach to equilibrium from

a liability into an asset. We may do so by identifying particular conditions under which some of

the differential equations in the network have an approximate solution that may be specified ana-

lytically, and using that information to remove the stiffest equations from the general numerical so-

lution, thereby improving the overall stability of the network. In the following section one specific

possibility for accomplishing this is discussed. (The general basis for the approximations examined

below is discussed in Ref. 31).

4.3.4 Asymptotic Approximations

The general form of the differential equations that we must solve is

dyi

dt
= F+

i −F−i (4.3)
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where F+
i is the total flux increasing the population yi and F−i is the total flux depleting the pop-

ulation y in a given timestep. For an N-species network there will be N such equations in the

populations yi, generally coupled to each other because of the dependence of the fluxes on the right

side on the different yi, but for simplicity we will not display the i index explicitly in many of the

following equations.

Generally, F+ and F− for a given species each consist of a number of terms depending on the

other populations in the network. For the networks of primary interest to us in astrophysics the

depletion flux for the population y will be proportional to y,

F− = (k1 + k2 + . . .kn)y≡ ky, (4.4)

where the kn are rate parameters (in units of time−1) for each process that can deplete y (these

may generally depend on the others populations yi, and on system variables such as temperature or

pressure).∗ From Eq. (4.4) we may define the effective depletion rate for the population y at a give

time as as

k =
F−

y
, (4.5)

permitting Eq. (4.3) to be written as

y =
1
k

(
F+− dy

dt

)
. (4.6)

Thus, in a finite-difference approximation at timestep tn we have

y(tn) =
F+(tn)
k(tn)

− 1
k(tn)

dy
dt

∣∣∣∣
t=tn

. (4.7)

We now define the asymptotic limit to be F+ ' F−, implying that dy/dt ' 0. In this limit Eq. (4.7)

then gives as a first approximation for y(tn)

y(1)(tn) =
F+(tn)
k(tn)

. (4.8)

∗For 3-body reactions like triple-α the effective k itself will also depend on the population y.
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For small dy/dt we may then get a correction term by using y(1)(tn) from Eq. (4.8) to approximate

the derivative term in Eq. (4.7)

dy
dt

∣∣∣∣
t=tn

' 1
∆t

(
y(1)

n − y(1)
n−1

)
=

1
∆t

(
F+(tn)
k(tn)

− F+(tn−1)
k(tn−1)

)
. (4.9)

Therefore, Eq. (4.8) is improved to

y(2)
n ' F+

n

kn
− 1

k∆t

(
F+

n

kn
− F+

n−1

kn−1

)
, (4.10)

where we now employ compact index notation yn ≡ y(tn), and so on. Because we are approximating

the derivative term defined in Eq. (4.7) at time tn by its average between tn and tn−1, we expect that

Eq. (4.10) is valid only if the second term is small, implying that our asymptotic approximation

becomes more valid if k∆t is large.

4.3.5 Asymptotic Flux-Constrained Algorithm

We now use the preceding to define an explicit asymptotic flux-constrained integration algorithm: At

each timestep, cycle through all network populations and compute the product ki∆t for each species

i using Eq. (4.5) and the proposed timestep ∆t. Since formally we expect an explicit integration to

be stable if ki∆t < κ and to potentially be unstable if ki∆t ≥ κ , where κ is a number of order one,

for each population species i

1. If ki∆t < 1, update the population using the flux-constrained explicit algorithm.

2. Otherwise, update the population using the asymptotic approximation given in Eq. (4.10).

Notice that at each timestep some species may be updated by the flux-constrained explicit approach

and some by the asymptotic approximation, and that the division of species between these two

categories may change at each timestep since the product ki∆t may change at each timestep for

each species. Also, the approximation (4.10) does not guarantee that total population is exactly

conserved, so in setting an adaptive timestep one should make a check that ensures conservation

of population at the level required by the problem at hand. Generally, if population conservation

does not satisfy the required tolerance at a given timestep, making the timestep smaller will tend to
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improve conservation of population because it will reduce ki∆t and therefore will tend to decrease

the number of isotopes being treated asymptotically.

In the next section we demonstrate the dependence of results in the asymptotic approximation

on conservation of population and demonstrate that for precise enough conservation of population

the asymptotic approximation gives results essentially identical to results from exact numerical

integration.
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Chapter 5

Tests of Explicit Methods on Alpha

Networks and under Hot CNO

Conditions

In the previous chapter a new approach to providing stability for time integration of complex net-

works was discussed. Curing stiffness requires different medicine depending on whether you are

far from or approaching nuclear statistical equilibrium (NSE). Tests of the validity of the method

are performed in this chapter for two cases of significance in astrophysics: alpha networks and

hot CNO (nova explosion) conditions. The computational examples presented here demonstrate

the high accuracy and efficiency of the new method both in the areas that are far from and those

that are approaching NSE. The influence of the tolerance parameter associated with imposing mass

(particle-number) conservation on the accuracy is also demonstrated.

5.1 Energy and Isotope Production in an Alpha Network

Figures 5.1 and 5.2 illustrate a comparison of energy production rate dE/dt and integrated energy

production E as a function of time (in seconds) for an alpha network integrated to NSE. The exact

results are from an explicit integration with short enough timestep to be stable. The other cases

correspond to asymptotic approximations with different choices for the tolerance parameter, which

is the deviation of sum of mass fractions from 1.0 (it is called masTol in Figs. 5.3 and 5.4) that limits
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Figure 5.1: Energy production rate dE/dt and integrated energy production E for various
levels of asymptotic approximation compared with an exact numerical integration. The
asymptotic curves are labeled by the value of the tolerance parameter defining the maxi-
mum fractional violation of particle number permitted in a single integration step. These
calculations used an alpha network with REACLIB reaction rates at constant temperature
T = 7×109 K and constant density ρ = 1×108 g cm−3. For tolerance parameters of 10−8

or smaller the asymptotic result is essentially exact over the entire integration range (com-
pare the red dashed curve with the green solid curve).

the maximum violation of particle number that can occur in one integration step. Note that in Fig.

5.1 a tolerance of 1× 10−8 gives essentially exact results over the entire range of integration (the

dashed red line), while larger values of this parameter give essentially correct results at larger energy

production but increasingly deviate from the correct result at late times (low energy generation rate).

Since E and dE are plotted on log scales, the absolute value is plotted and +, − is used to denote

the sign for dE/dt, which fluctuates between positive and negative in this calculation. Likewise, in

Fig. 5.2 the asymptotic result is indistinguishable from the exact result over the entire time range

for small tolerance parameters.

Figures 5.3 and 5.4 illustrate a comparison of mass fractions as a function of time for an al-

pha network integrated to NSE. The exact result is from an explicit integration with short enough

timestep to be stable. The other cases correspond to asymptotic approximation with different
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Figure 5.2: Rate of energy production dE/dt as in Fig. 5.1 but for constant T = 5×
109 K and constant ρ = 1× 108 g cm−3. For tolerance parameters of 10−8 or smaller
the asymptotic result is indistinguishable from the exact result (green line) over the entire
integration range, and the more generous tolerance parameters cause deviations only at the
very latest times.

choices for the parameter that limits the maximum violation of particle number that can occur in

one integration step. Note from Fig. 5.4 that a tolerance of 1×10−8 gives essentially exact results

over the entire range of integration while a tolerance of 1×10−6 gives almost exact results except

for small differences at late times (Fig. 5.3).

5.2 Hot CNO Cycle at Constant Temperature and Density

Some isotopic abundances under nova (hot CNO) conditions calculated using the explicit asymp-

totic algorithm are shown in Fig. 5.5 (these are representative; of order 100 isotopes are populated in

the calculation). The rates are strongly temperature and density dependent, and were recomputed at

each timestep in the algorithm (the computation of such rates is typically the most time-consuming

step of a realistic explicit calculation). However, for simplicity in comparison here a constant tem-

perature and density time profile was assumed, with a temperature of 0.25× 109 K and a density

of 500 g cm−3. In this and subsequent figures illustrating calculations under nova conditions, an

initial isotopic abundance distribution enriched in heavy elements has been assumed and reaction
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Figure 5.3: Comparison of mass fractions X for isotopes in the alpha network of Fig. 5.1.
Solid lines represent exact numerical integration and dashed lines illustrate an asymptotic
approximation with a particle number conservation tolerance number of 1× 10−6. The
asymptotic and exact results are indistinguishable except for small differences at very late
times. Compare with Fig. 5.4, where the asymptotic result is essentially exact over the
entire time range.
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Figure 5.4: Comparison of mass fraction X for isotopes in the alpha network of Fig. 5.1.
Solid lines represent exact numerical integration and dashed lines illustrate an asymptotic
approximation with a particle number conservation tolerance number of 1×10−8. For this
value of the tolerance parameter or smaller, the asymptotic results are indistinguishable
from the exact result. The integrated energy production is also illustrated by green +
symbols and is indistinguishable between the exact and asymptotic approximations.
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(b) Rates and timescales characteristic of a nova simulation. Conditions as for part (a) but with
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representative explicit flux-constrained integrations.
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rates from the REACLIB library [33] have been used. Figure 5.5(a) (a) displays some representa-

tive populations, with the results of a standard implicit calculation [34] shown as dashed lines and

the explicit flux-constrained calculations as symbols. Note the almost perfect agreement between

implicit and explicit methods over six orders of magnitude in the mass fractions in Fig. 5.5(a). An

adaptive timestep was used in the explicit integration, with the timestep adjusted to keep the num-

ber of particles transferred in a timestep for some key populations within a prescribed range. As

we discuss further below, this timestep is much larger than would be stable in a standard explicit

integration.

In the nova simulation the difference between the slowest and fastest rates is about 18 orders of

magnitude at any timestep, as illustrated in Fig. 5.5(b). It is obvious that we deal with an extremely

stiff system. If standard explicit algorithms are used, the largest timestep permitted is close to the

inverse of the fastest rate in the network (see Ch. 16 of Ref. [30]). For the data presented in Fig.

5.5(b) the inverse of the fastest rate gives the lower curve in Fig. 5.5(c). Thus, stability requirements

for a normal explicit algorithm will restrict timesteps by requiring them to be in the shaded region

below this curve (dt ' 10−7 seconds or less).

On the other hand for the flux-constrained explicit integration two curves, shown in Fig 5.5(c)

and representing timesteps (adaptive), lie far above this region. The timestep for the curve marked

dt is small enough to provide accuracy comparable to Fig. 5.5(a). At the same time it is about a

factor of 105 larger than the one required to guarantee stability for a normal explicit integration. A

much larger explicit algorithm timestep corresponding to the curve marked dt ′ compromises accu-

racy for weaker transitions, but stability is not lost and stronger transitions are computed correctly.

The timestep dt ′ ∼ 100 seconds is about 9 orders of magnitude larger that than would be stable for

a standard explicit algorithm. Taking into account that dt ′ already is comparable to the character-

istic timescale (∼ 103 seconds) of the entire physical process being simulated, it is clear from this

example that a stable explicit flux-constrained integration timestep can in some cases be effectively

arbitrarily large in comparison with the usual upper limit for explicit methods.

35



5.3 Large Networks under Nova Conditions

In the last two figures of this chapter a network under nova conditions is considered. Figure 5.6

illustrates evolution of a thermonuclear network with a hydrodynamic temperature–density profile

taken from simulations of hot nova outbursts. Figure 5.7 illustrates the hydrodynamic profiles and

other conditions associated with the calculation in Fig. 5.6.

In the calculations the hydrodynamic profiles represent temperature and density as a function of

logarithm of time (computed from hydrodynamical simulations). They are depicted on the bottom

right of Fig. 5.6 (the profiles are reproduced for convenience in Fig. 5.7 also on the right side). The

analysis starts where heavier elements are quite abundant. On the top of Fig. 5.6 mass fractions

and released integrated energy are plotted vs. logarithm of time. The results of the calculations—

isotopic abundance patterns—are presented on the bottom of this figure from the left side in the

proton vs. neutron plane. Note again from Fig. 5.7 that the asymptotic explicit timestep is much

larger (6-8 orders of magnitude) than would be possible for a normal explicit method. This entire

calculation is so fast that it is difficult to time, completing in a fraction of a second on a modern

processor.
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Figure 5.6: Evolution of a network under hot nova conditions starting with an enriched abundance of
heavier elements. The top figure shows the evolution of individual mass fractions and the integrated
energy release (plus signs). The bottom left figure shows the isotopic abundance pattern at the end
of the simulation. The bottom right figure shows the temperature and density hydrodynamic profiles
assumed in the calculation. Additional details of the simulation are shown in Fig. 5.7.
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the largest integration step that would be stable using a standard explicit method. The flux-limited
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Chapter 6

Post-Processing Tests of Explicit

Methods under Type Ia Conditions

In the previous chapters we analyzed the example of running networks using hydrodynamics pro-

files. Now it is time to consider this question in a more detailed manner for the specific problem of

Type Ia supernovae.

6.1 Post-Processing Approximations

In astrophysics often a procedure called post-processing is used. In application to our case, post-

processing simply means that initially a small network is coupled to hydrodynamics. The tem-

perature and density profiles that are obtained in this case are then used to solve the full network

problem. It is clear that such an approach is not entirely correct. But since coupling a full network

to hydrodynamics has been very difficult in the past, using the profiles obtained after running hy-

drodynamics coupled to a small network can give a feeling for the physics of what could possibly

happen if a full network would be coupled to hydrodynamics. It is obvious that this approach is

far from rigorous from the point of view of mathematics but its usefulness, especially under some

known physical conditions, can be understood and justified.
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6.2 Example: High-Density, High-Temperature Burns to NSE

The energy released in a Type Ia supernova explosion derives primarily from the thermonuclear

burning of carbon and oxygen to heavier nuclei. If the explosion lasts long enough to achieve nuclear

statistical equilibrium (NSE), the primary final products of this burning will be iron-group nuclei

(unless the temperature becomes so high that all nuclei photodisintegrate into alpha particles). An

example of network evolution under conditions typical of the Type Ia explosion in the deep interior

of the white dwarf is illustrated in Fig. 6.1.

In this calculation, the initial temperature was T9 = 2, the initial density was ρ = 1×108 g cm−3,

and the initial composition was assumed to be equal mass fractions of 12C and 16O. The explosion

is initiated by carbon burning, which quickly raises the temperature (see the inset to the figure) and

initiates burning of oxygen and all the reaction products that are produced by carbon and oxygen

burning. The rapid temperature rise is associated with the coupling of the large energy release from

the thermonuclear burning described by the reaction network to the fluid of the white dwarf, which

is described by hydrodynamics. This energy release (through the equation of state) causes a rapid

rise in temperature in the fluid representing the white dwarf, and this in turn increases rapidly the

rate of nuclear reactions in the network. The net result is the almost vertical rise in temperature

from T9 ∼ 2 to T9 ∼ 6.6 in a period of less than 10−5 s, during which time the isotopic species in

the network have increased from 2 to about 500, with significant population of the iron group of

nuclei already evident (see the population distribution versus proton number and neutron number in

the lower portion of Fig. 6.1). The very narrow range in time in Fig. 6.1 over which the network

releases much of its energy and over which the temperature rises from T9∼ 2 to T9∼ 6.6 is illustrated

in greatly expanded scale in Fig. 6.2. Notice the rapid increase in population for hundreds of new

elements. Under these conditions, as the thermonuclear flame burns through the white dwarf the

carbon and oxygen fuel in each region is burned in a tiny fraction of a second, and the entire white

dwarf is consumed on a timescale of less than a second.
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Figure 6.2: Calculation of Fig. 6.1 with the timescale greatly expanded in the region where much
of the energy is released and there is a rapid increase in temperature.
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6.3 Example: Gravity-Confined Detonation Conditions

Figure 2.5 illustrates the gravity confined detonation (GCD) mechanism which was discussed in

Section 2.5 earlier. The profile is given by the insert in the bottom picture of Fig. 6.3. While

analyzing the evolution of abundances under these conditions, what impresses first of all is that the

processes are extremely fast, especially if one takes into account that the events are happening in a

very large body. The major nuclear transformations, as it follows from the top picture of Fig. 6.3,

are basically concentrated around the beginning of NSE and covering a small fraction of the x-axis,

which itself spans a tiny time interval. The results of computations (final abundances) after running

the network are presented in the bottom part of Fig. 6.3. A broad spectrum of isotopes is shown on

this figure. Just a tiny fraction of a second ago there were only two elements present. This idea of

extremely fast processes and intense interaction of isotopes producing the new ones is demonstrated

in more detail in Fig. 6.4. A sequence of snapshots of abundances in the proton vs. neutron plane

is depicted here. It is easy to see how the new isotopes are born and how their abundances are

changing with time from this sequence.

43



-5.13000 -5.12600 -5.12200 -5.11800 -5.11400 -5.11000

-14.0

-13.0

-12.0

-11.0

-10.0

-9.0

-8.0

-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

Log Time (seconds)

Log X (364 isotopes; legends 101 largest)

 Z=2 N=2

 Z=8 N=8

 Z=6 N=6

 Z=14 N=14

 Z=10 N=10

 Z=14 N=16

 Z=16 N=18

 Z=24 N=28

 Z=16 N=16

 Z=26 N=30

 Z=14 N=15

 Z=25 N=28

 Z=12 N=12

 Z=15 N=16

 Z=1 N=0

 Z=26 N=29

 Z=16 N=17

 Z=18 N=20

 Z=26 N=28

 Z=24 N=27

 Z=27 N=30

 Z=17 N=18

 Z=25 N=30

 Z=24 N=29

 Z=23 N=28

 Z=18 N=18

 Z=25 N=29

 Z=24 N=26

 Z=28 N=32

 Z=12 N=14

 Z=13 N=14

 Z=7 N=7

 Z=22 N=26

 Z=19 N=20

 Z=27 N=32

 Z=11 N=12

 Z=23 N=26

 Z=18 N=19

 Z=26 N=31

 Z=17 N=20

 Z=28 N=30

 Z=23 N=27

 Z=16 N=19

 Z=28 N=31

 Z=24 N=30

 Z=26 N=32

 Z=25 N=27

 Z=15 N=17

 Z=17 N=19

 Z=22 N=24

 Z=15 N=18

 Z=22 N=27

 Z=20 N=20

 Z=22 N=25

 Z=27 N=29

 Z=20 N=22

 Z=0 N=1

 Z=8 N=9

 Z=22 N=28

 Z=14 N=17

 Z=15 N=15

 Z=27 N=31

 Z=27 N=28

 Z=20 N=21

 Z=12 N=13

 Z=28 N=33

 Z=28 N=34

 Z=18 N=21

 Z=16 N=20

 Z=26 N=27

 Z=20 N=23

 Z=25 N=26

 Z=20 N=24

 Z=21 N=24

 Z=23 N=25

 Z=19 N=21

 Z=24 N=25

 Z=28 N=29

 Z=2 N=1

 Z=13 N=15

 Z=19 N=22

 Z=25 N=31

 Z=6 N=7

 Z=10 N=11

 Z=12 N=11

 Z=21 N=26

 Z=23 N=29

 Z=27 N=33

 Z=29 N=32

 Z=14 N=18

 Z=29 N=34

 Z=14 N=13

 Z=6 N=8

 Z=18 N=22

 Z=15 N=14

 Z=1 N=1

 Z=13 N=16

 Z=22 N=23

 Z=23 N=24

 Z=21 N=22

 Z=21 N=25

 Z=35 N=33

Time = 7.762471E-6

Abundance Y

3.6696E-15

0.1606

0.0069

3.0031E-4

1.2985E-5

5.6148E-7

2.4278E-8

1.0498E-9

4.5392E-11

1.9627E-12

8.4867E-14

36

34

32

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

1

3

5

7

9

11

13

15 17

19 21 23 25 27 29 31

33

35

37

39

41

43

N e u t r o n s

P
r
o
t
o
n
s

2

3

4

5

6

7

T9 ρ = 107 g/cm3

-5.130 -5.110
log t

Figure 6.3: Mass fractions (top) and abundances (bottom) for a temperature profile (lower right)
thought to be characteristic of gravity confined detonation conditions. The evolution of abundances
with time in this calculation is illustrated further in Fig. 6.4.
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Figure 6.4: Evolution of abundances in the proton (vertical) and neutron (horizontal) plane as a
function of time for the calculation presented in Fig. 6.3.
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Chapter 7

Operator-Split Coupling of Realistic

Networks to Hydrodynamics for the

Type Ia Supernova Problem

In this section we finally come to the heart of the matter and demonstrate the coupling of a re-

alistic network to 3-dimensional radiation hydrodynamics under conditions expected in Type Ia

supernovae. We have run various simulations recently suggesting that large networks coupled to 3-

dimensional hydrodynamics using the explicit flux-limited asymptotic methods described in previ-

ous chapters may now represent a tractable numerical problem. We shall illustrate with one example

below, and will discuss the results of calculations below.

Figure 7.1 illustrates a calculation using a 150-isotope network and the FLASH 3D hydrody-

namics code, with the network coupled to the hydrodynamics by operator splitting. In this simu-

lation the initial conditions were T = 3× 109 K and ρ = 1× 107 g cm−3, with initial equal mass

fractions of 12C and 16O. These conditions were chosen because they are are thought to be similar

to those that may prevail at the onset of the gravity confined detonation (GCD) mechanism dis-

cussed in previous chapters. The variation of the energy production rate and the temperature for this

simulation are shown in Fig 7.2.
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Figure 7.1: A 3-dimensional hydrodynamics simulation coupled to a realistic network.
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Figure 7.3: Comparison of average energy released by the network per hydrodynamic timestep
dE = (dE/dt)dt with the internal specific energy of the gas as a function of time. The left figure was
constructed from the left figure in Fig. 7.2 by multiplying by an average timestep. The fluctuations
in dE at late times are seen to be many ofders of magnitudes smaller than the specific energy of the
gas at that time.
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These figures represent a snapshot of an ongoing calculation after approximately 13 hours of

running on a single 2 GHz P4 processor. The rapid burning of the carbon and then the oxygen pro-

duces a large outpouring of energy (see Fig. 7.3) that quickly raises the temperature to T ∼ 6.5×109

K (under these conditions the density remains essentially constant over the time ranges simulated

here). By the end of the snapshot shown here the system is well on its way to nuclear statistical

equilibrium: the alpha particles are already the dominant species and are nearly equilibrated, and

most of the silicon group has already burned to iron-group nuclei (with various iron-group nuclei

such as 54Fe already approximately equal to 28Si in mass fraction), and the net rate of energy pro-

duction is decreasing rapidly and is already down by 4 orders of magnitude from its peak, though it

is exhibiting large fluctuations at lower energy production rates that need to be understood.

The energy fluctuations described in the preceding paragraph appear to be associated with a bug

in the network timestepping algorithm that causes it intermittently to take a timestep too large to

resolve fully the energy release at lower energy production rates. Tests with the network uncoupled

from the hydrodynamics indicate that a too-aggressive timestep can cause such an energy fluctua-

tion, and we have shown that the timestepper in the code coupled to FLASH is sometimes taking

a too-aggressive timestep that is not taken by the reference version of the code (which is written

in Java rather than F90). Work is underway to correct this problem. However, although the en-

ergy release is fluctuating at later times, we note that there is little evidence that this is causing a

corresponding fluctuation in other quantities like the temperature, internal energy, or the elemental

abundances. This can be understood in basic terms. Near maximum energy production from the

network (carbon and oxygen burning), for the timesteps being taken by the hydrodynamic solver

the energy released in a single hydrodynamical timestep is a significant fraction (0.001–0.01) of the

specific internal energy of the gas. However in the region exhibiting fluctuations in Fig. 7.2, the

energy being released per unit mass per hydrodynamical timestep by the network is many orders of

magnitude smaller than the internal energy per unit mass of the gas. Thus the fluctuations in Fig. 7.2

are not of much practical consequence and do not alter the hydrodynamical evolution significantly,

leaving quantities like the temperature, internal energy and the elemental abundances undisturbed.

The bulk of the mass has been burned to the iron group and light ions by the latest time shown

from this ongoing calculation, but notice that there is appreciable population distributed over a broad

range of isotopes between silicon and iron that looks as if it will remain until the end of the explosion
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since the system is beginning to equilibrate. This is important because of the earlier discussion that

observations require a substantial amount of intermediate-mass material to be produced in the Type

Ia explosion, and that the GCD mechanism is one promising idea to cause part of the white dwarf

to be consumed in a deflagration and part in a detonation that could in combination produce the

required mix of elements in the explosion debris.

Initial tests with larger networks coupled to the hydrodynamics code suggest that the time to run

the network does indeed increase approximately linearly with the size of the network, as expected

on conceptual grounds for the explicit asymptotic algorithm. Therefore, it appears that the coupling

to multidimensional hydrodynamics of even larger networks than that shown here may be feasible

using this technique. Initial simulations with larger networks are underway.
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Chapter 8

Summary and Conclusions

It is important in any doctoral dissertation to state clearly what has been accomplished and why this

represents a significant advance, what remains to be done to consolidate and exploit this advance,

and what promising new directions are suggested by the thesis work.

8.1 What Has Been Accomplished in this Work

• A new method has been applied to solving large thermonuclear networks, and has been

demonstrated to do a good job for a number of applications of importance in astrophysics.

• Much work remains to be done, but for the first time a network that can be called “large” by

modern standards has been implemented in the reactive hydrodynamics code FLASH and the

resulting simulations have been shown to be tractable, if challenging, for reasonable resolu-

tions and processor counts under Type Ia supernova conditions. Thus, coupling of networks

of realistic size to state-of-the-art multidimensional hydrodynamics codes shows considerable

promise, based on the results obtained to this point.

• The linear scaling expected for the explicit methods that we have tested has been demon-

strated to occur under realistic conditions in networks of astrophysical interest. This holds

considerable promise for future work with even larger networks since, in contrast to the case

for the cubic scaling of standard implicit codes, significant increases in network size do not

cost much computationally with this approach.

51



• A state-of-the-art code such as FLASH can now incorporate much more realistic physics

in supernova simulations. Initial comparisons of calculations with small networks and net-

works of realistic size suggest that the results for them can differ quite noticeably. This is

not surprising. For example, the realistic networks used in the present study include proton

and neutron reactions that are completely absent from the networks used in standard super-

nova simulations. The potential significance of this follows immediately upon noting that the

fastest reactions under supernova conditions are often proton or neutron reactions, not alpha

network reactions.

8.2 What Remains to Be Done

The results presented in this dissertation demonstrated that the flux-constrained asymptotic method

itself, and its coupling with FLASH, were efficient and promising. However, the testing demon-

strated here has been implemented using versions of the flux-constrained asymptotic approach that

are far from optimized numerically, and that have yet to incorporate into the algorithm improve-

ments that have already been demonstrated in test applications to greatly increase the speed of the

code. Our testing suggests that deployment of these demonstrated algorithmic improvements, cou-

pled with standard aggressive numerical optimization, can realize increases in speed over the present

calculations by factors of 100 or more. Such development tasks are important for the eventual de-

ployment of the approaches developed here for systematic large-scale simulations with realistic

networks.

8.3 What New Directions Are Suggested by this Work

The flux-constrained asymptotic approach discussed here has permitted initial calculations with re-

alistic networks coupled to 3-dimensional hydrodynamics. However, the asymptotic approximation

that is critical to the speed of this approach works very efficiently through the carbon and oxygen

burn (where most of the energy is released), but it does not work nearly as efficiently in the approach

to nuclear statistical equilibrium. Although the present work suggests that even with these limita-

tions the current algorithm is fast enough for many realistic applications coupling large networks
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to hydrodynamics, we believe that even greater speed and efficiency can be obtained by employ-

ing newer approaches specifically designed for the approach to nuclear statistical equilibrium. One

such approach that is suggested by this work is a different approximation near equilibrium that ex-

ploits steady flux conditions there to damp stiffness instabilities for explicit timesteps. Another is

suggested by work already initiated by Parete–Koon, Hix, and collaborators that takes advantage of

quasi-equilibrium to reduce the effective number of isotopes in the network. (This latter approach

would not help the present explicit approach so much by reducing network size directly because of

the linear scaling, but it potentially could help a much larger amount through removing sources of

stiffness, thereby permitting larger stable timesteps.)

With the above caveat in mind, however, it should be noted that the inclusion of a realistic

network in Type Ia simulations is most important for realistic isotopic evolution in the distributed

burning regime, i.e. at lower densities near the surface of the white dwarf. The time scale to achieve

NSE at these densities (≈ 1.0×107 g cm−3) exceeds the explosion timescale (i.e. > 2 s). Therefore,

it can be argued that the ability of a network solver to accurately characterize the isotopic evolution

for burning stages up to silicon burning under these conditions is the most important criterion for

utility. This requirement is already very close to being met in this work.

53



Bibliography



Bibliography

[1] W. Hillebrandt and J.C. Niemeyer, Annu. Rev. Astron. Astrophys. 2000. 38: 191–230

[2] B. Leibundgut, Annu. Rev. Astron. Astrophys. 2001. 39: 67–90

[3] A.V. Fillipenko, Annu. Rev. Astron. Astrophys. 1997. 35: 309–355

[4] W.D. Arnett. 1996. Supernovae and Nucleosynthesis. Princeton Univ. Press

[5] J.C. Niemeyer, J.W. Truran, eds. 1999. Type Ia Supernovae: Theory and Cosmology. Cam-
bridge, UK: Cambridge Univ. Press

[6] M. Livio, N. Panagia, K. Sahu, eds. 2000. Supernovae and Gamma-Ray Bursts. Cambridge,
UK: Cambridge Univ. Press

[7] P. Ruiz-Lapuente, R. Canal, J. Isern, eds. 1997. Thermonuclear Supernovae. Dordtecht, Ger.:
Kluwer

[8] B. Leibundgut, Nuclear Physics, A688: 1c–8c, 2001

[9] B. Leibundgut, Computer Physics Communication 147 459–464, 2002

[10] J.L. Torny. et al., The Astrophysical Journal, 594: 1–24, 2003 September 1

[11] B. Leibundgut, Astrophysics and Space Science 290: 29–41, 2004

[12] S. Blinnikov, E. Sorokina, Astrophysics and Space Science 290: 13–28, 2004

[13] A.G. Riess, et al., The Astronomical Journal, 607: 665–687, 2004 June 1

[14] P.A. Pinto, R.G. Eastman, The Astrophysical Journal, 530: 744-756, 2000, February 20

[15] L. Iapichino, M. Bruggen, W. Hillebrandt, and J.C. Niemeyer, Astronomy and Astrophysics,
450: 655–665, 2006

[16] T. Plewa, A.C. Calder, and D.Q. Lamb, The Astrophysical Journal, 612: L37-L40, 2004,
Septermber 1

[17] M.M. Phillips, The Astrophysical Journal Letters, 413: L105–108, 1993

[18] B. Fryxell, et. al., The Astrophysical Journal Supplement Series, 131: 273–334, 2000 Novem-
ber

55



[19] W. Hillebrandt, New Astronomy Reviews 48: 615–621, 2004

[20] Vadim N. Gamezo, Alexei M. Khokhlov, and Elaine S. Oran, The Astrophysical Journal, 623:
337–346, 2005, April 10

[21] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, (Stiff and Differential-
Algebraic Problems), 1991, Springer-Verlag, Berlin Heidelberg

[22] F.X. Timmes, The Astrophysical Journal Supplement Series, 124: 241–263, 1999 September

[23] P. Colella, P.R. Woodward, J. Comp. Phys., 54: 172–201, 1984, September

[24] F.X. Timmes, and F.D Swesty, The Astrophysical Journal Supplement Series, 126: 501–516,
2000 February

[25] Mike Guidry, Kenneth J. Roche, Erin McMahon, and Reuben Budiardja, unpublished
manuscript

[26] M.W. Guidry, O.E.B. Messer, and . Hix, and K.J. Roche, unpublished manuscript

[27] M.W. Guidry, R. Budiardja, E.Feger, W.R. Hix, O.E.B. Messer, and K.J. Roche, unpublished
manuscript

[28] C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice
Hall (1971)

[29] J. D. Lambert, Numerical Methods for Ordinary Differential Equations, Wiley (1991)

[30] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P Flannery, Numerical Recipes in For-
tran, Cambridge University Press (1992)

[31] E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow, Cambridge University
Press (2005)

[32] W. R. Hix and B. S. Meyer, to appear in special issue of Nuc. Phys. A; astro-ph/0509698

[33] T. Rauscher and F.-K. Thielemann, At. Data Nuclear Data Tables 75, 1 (2000)

[34] R. Hix and F.-K. Thielemann, J. Comp. Appl. Math. 109, 321 (1999)

[35] M. Ruffert and H.-Th. Janka, Astrophysics and Astronomy, 380: 544–577, 2001

[36] A.M. Khokhlov, Journal of Computational Physics, 143(2): 519–543, 1998

[37] F.K. Ropke, W.Hillebrandt, J.C Niemeyer, and S.E. Woosley, Astronomy and Astrophysics,
448: 1–14, 2006

[38] P.A. Mazzali, F.K. Ropke, S. Benetti, W. Hillenbrandt, Science, 315: 825-828, 9 February
2007

[39] F.K. Ropke, and W.Hillebrandt, arXiv:astro-ph/0409286 v1 13 Sep 2004

[40] A.C. Calder, D.M. Townsley, I.R. Seitenzahl, F. Pang, O.E.B. Messer, N.Vladimirova, E.F.
Brown, J.W. Truran, and D.Q. Lamb, The Astrophysical Journal, 656: 313–332, 2007 Febru-
ary 10

56



[41] M. Zingale, S.E. Woosley, C.A. Rendleman, M.S. Day, and J.B. Bell, The Astrophysical Jour-
nal, 632: 1021-1034, 2005, October 20

[42] L.D. Landau, E.M. Lifshitz (1959): Fluid Mechanics. vol. 6 of Course of Theoretical Physics,
Pergamon Press, Oxford

[43] M. Zingale, L.J. Dursi, The Astrophysical Journal, 656: 333-346, 2007, February 10

[44] S.E. Woosley, S. Wunsch, M. Kuhlen. The Astrophysical Journal, 607: 921-930, 2004, June 1

57



Vita

Viktor M. Chupryna was born in Ukraine on September 22, 1946. He received his Masters De-
gree (Equivalent) in 1964 from Kharkiv Technical University of Radio and Electronics, Kharkiv,
Ukraine. In 2000 he joined the Physics and Astronomy Department of the University of Tennessee,
Knoxville as a graduate student. During his study he worked both as a Graduate Teaching and as
a Graduate Research Assistant. He taught undergraduate Physics labs and recitation. He did his
research in the fields of astrophysics and dynamic atomic collisions. He completed his Doctoral
Degree in December 2008.

58


