Supplement: Emergent Fermion Dynamical Symmetries for Monolayer Graphene in a Strong Magnetic Field

Fletcher Williams, Lianao Wu, and Mike Guidry

This document provides supplemental material and proofs of some important equations for the review article "Emergent Fermion Dynamical Symmetries for Monolayer Graphene in a Strong Magnetic Field" by Mike Guidry, Lianao Wu, and Fletcher Williams.

1. Introduction

In the following all citations of sections, subsections, equation numbers, figure numbers, and table numbers are by default references to the primary document "Emergent Dynamical Symmetries for Monolayer Graphene in a Strong Magnetic Field". If a reference is flagged by "[this document]", it is instead a reference to objects in the present Supplement document.

2. Pairing operators

As a representative example, from Eq. (126) the $S=1, M_{S}=0, T=0$ pair is,

$$
\begin{equation*}
A_{00}^{\dagger} \dagger_{10}=\sum_{m_{k}} \sum_{m_{1} m_{2}} \sum_{n_{1} n_{2}}\left\langle\left.\frac{1}{2} m_{1} \frac{1}{2} m_{2} \right\rvert\, 10\right\rangle\left\langle\left.\frac{1}{2} n_{1} \frac{1}{2} n_{2} \right\rvert\, 00\right\rangle c_{m_{1} n_{1} m_{k}}^{\dagger} c_{m_{2} n_{2}-m_{k}}^{\dagger} . \tag{1}
\end{equation*}
$$

But generally for Clebsch-Gordan coefficients,

$$
\begin{equation*}
\left\langle\left.\frac{1}{2} n_{1} \frac{1}{2} n_{2} \right\rvert\, 00\right\rangle=\frac{(-1)^{1 / 2-n_{1}}}{\sqrt{2}} \delta_{n_{1},-n_{2}}, \tag{2}
\end{equation*}
$$

so that

$$
A_{00}^{\dagger}=\sum_{m_{k}} \sum_{m_{1} m_{2}} \sum_{n_{1}} \frac{(-1)^{1 / 2-n_{1}}}{\sqrt{2}}\left\langle\left.\frac{1}{2} m_{1} \frac{1}{2} m_{2} \right\rvert\, 10\right\rangle c_{m_{1} n_{1} m_{k}}^{\dagger} c_{m_{2}-n_{1}-m_{k}}^{\dagger} .
$$

The remaining Clebsch-Gordan coefficient in this expression vanishes unless $m_{2}=-m_{1}$, so

$$
A_{00}^{\dagger 10}=\sum_{m_{k}} \sum_{m_{1} n_{1}} \frac{(-1)^{1 / 2-n_{1}}}{\sqrt{2}}\left\langle\left.\frac{1}{2} m_{1} \frac{1}{2}-m_{1} \right\rvert\, 10\right\rangle c_{m_{1} n_{1} m_{k}}^{\dagger} c_{-m_{1}-n_{1}-m_{k}}^{\dagger} .
$$

Writing the four terms in the sum over m_{1} and n_{1} out explicitly for $n_{1}=\left(-\frac{1}{2}, \frac{1}{2}\right)$ and $m_{1}=\left(-\frac{1}{2}, \frac{1}{2}\right)$ gives

$$
\begin{aligned}
A_{00}^{\dagger 10}= & -\frac{1}{\sqrt{2}} \sum_{m_{k}}\left\langle\left.\frac{1}{2}-\frac{1}{2} \frac{1}{2} \frac{1}{2} \right\rvert\, 10\right\rangle c_{-\frac{1}{2}-\frac{1}{2} m_{k}}^{\dagger} c_{\frac{1}{2} \frac{1}{2}-m_{k}}^{\dagger} \\
& +\frac{1}{\sqrt{2}} \sum_{m_{k}}\left\langle\left.\frac{1}{2}-\frac{1}{2} \frac{1}{2} \frac{1}{2} \right\rvert\, 10\right\rangle c_{-\frac{1}{2} \frac{1}{2} m_{k}}^{\dagger} c_{\frac{1}{2}-\frac{1}{2}-m_{k}}^{\dagger} \\
& -\frac{1}{\sqrt{2}} \sum_{m_{k}}\left\langle\left.\frac{1}{2} \frac{1}{2} \frac{1}{2}-\frac{1}{2} \right\rvert\, 10\right\rangle c_{\frac{1}{2}-\frac{1}{2} m_{k}}^{\dagger} c_{-\frac{1}{2} \frac{1}{2}-m_{k}}^{\dagger} \\
& +\frac{1}{\sqrt{2}} \sum_{m_{k}}\left\langle\left.\frac{1}{2} \frac{1}{2} \frac{1}{2}-\frac{1}{2} \right\rvert\, 10\right\rangle c_{\frac{1}{2} \frac{1}{2} m_{k}}^{\dagger} c_{-\frac{1}{2}-\frac{1}{2}-m_{k}}^{\dagger} .
\end{aligned}
$$

Utilizing from Table I [this document] that

$$
\left\langle\left.\frac{1}{2}-\frac{1}{2} \frac{1}{2} \frac{1}{2} \right\rvert\, 10\right\rangle=\left\langle\left.\frac{1}{2} \frac{1}{2} \frac{1}{2}-\frac{1}{2} \right\rvert\, 10\right\rangle=\frac{1}{\sqrt{2}}
$$

we may write

$$
\begin{align*}
A_{00}^{\dagger 10}= & -\frac{1}{2} \sum_{m_{k}} c_{-\frac{1}{2}-\frac{1}{2} m_{k}}^{\dagger} c_{\frac{1}{2} \frac{1}{2}-m_{k}}^{\dagger}+\frac{1}{2} \sum_{m_{k}} c_{-\frac{1}{2} \frac{1}{2} m_{k}}^{\dagger} c_{\frac{1}{2}-\frac{1}{2}-m_{k}}^{\dagger} \\
& -\frac{1}{2} \sum_{m_{k}} c_{\frac{1}{2}-\frac{1}{2} m_{k}}^{\dagger} c_{-\frac{1}{2} \frac{1}{2}-m_{k}}^{\dagger}+\frac{1}{2} \sum_{m_{k}} c_{\frac{1}{2} \frac{1}{2} m_{k}}^{\dagger} c_{-\frac{1}{2}-\frac{1}{2}-m_{k}}^{\dagger} \\
= & -\frac{1}{2} \sum_{m_{k}} c_{4 m_{k}}^{\dagger} c_{1-m_{k}}^{\dagger}+\frac{1}{2} \sum_{m_{k}} c_{2 m_{k}}^{\dagger} c_{3-m_{k}}^{\dagger}-\frac{1}{2} \sum_{m_{k}} c_{3 m_{k}}^{\dagger} c_{2-m_{k}}^{\dagger}+\frac{1}{2} \sum_{m_{k}} c_{1 m_{k}}^{\dagger} c_{4-m_{k}}^{\dagger} \\
= & \frac{1}{2} A_{14}^{\dagger}+\frac{1}{2} A_{23}^{\dagger}+\frac{1}{2} A_{23}^{\dagger}+\frac{1}{2} A_{14}^{\dagger} \\
= & A_{14}^{\dagger}+A_{23}^{\dagger}, \tag{3}
\end{align*}
$$

where in the second equation the mapping between spin and isospin quantum numbers and the label a in Fig. 25(a) has been used to replace labels (σ, τ) with the label a, we have performed manipulations such as

$$
-\frac{1}{2} \sum_{m_{k}} c_{4 m_{k}}^{\dagger} c_{1-m_{k}}^{\dagger}=\frac{1}{2} \sum_{m_{k}} c_{1-m_{k}}^{\dagger} c_{4 m_{k}}^{\dagger}=\frac{1}{2} \sum_{-m_{k}} c_{1 m_{k}}^{\dagger} c_{4-m_{k}}^{\dagger}=\frac{1}{2} A_{14}^{\dagger},
$$

where the first equality is because independent fermion creation operators anticommute, the second equality is because m_{k} is a dummy summation index that may be replaced with another summation index, and the third equality employed the definition of $A_{a b}^{\dagger}$ in Eq. (119). The other five possibilities may be determined in a completely analogous way, with the results

$$
\begin{array}{lll}
A_{00}^{\dagger 10}=A_{14}^{\dagger}+A_{23}^{\dagger} & A_{10}^{\dagger 10}=\sqrt{2} A_{13}^{\dagger} & A_{-10}^{\dagger 10}=\sqrt{2} A_{24}^{\dagger}, \tag{4}\\
A_{00}^{\dagger 01}=A_{14}^{\dagger}-A_{23}^{\dagger} & A_{01}^{\dagger 01}=\sqrt{2} A_{12}^{\dagger} & A_{0-1}^{\dagger 01}=\sqrt{2} A_{34}^{\dagger} .
\end{array}
$$

The hermitian conjugates of these give the six corresponding pair annihilation operators in coupled representation. These are the generators given in Eq. (127), up to a normalization.

To take another example, from Eq. (126) the $S=0, T=1, M_{T}=1$ pair is,

$$
\begin{equation*}
A_{01}^{\dagger 01}=\sum_{m_{k}} \sum_{m_{1} m_{2}} \sum_{n_{1} n_{2}}\left\langle\left.\frac{1}{2} m_{1} \frac{1}{2} m_{2} \right\rvert\, 00\right\rangle\left\langle\left.\frac{1}{2} n_{1} \frac{1}{2} n_{2} \right\rvert\, 11\right\rangle c_{m_{1} n_{1} m_{k}}^{\dagger} c_{m_{2} n_{2}-m_{k}}^{\dagger} . \tag{5}
\end{equation*}
$$

But generally for Clebsch-Gordan coefficients,

$$
\left\langle\left.\frac{1}{2} m_{1} \frac{1}{2} m_{2} \right\rvert\, 00\right\rangle=\frac{(-1)^{1 / 2-m_{1}}}{\sqrt{2}} \delta_{m_{1},-m_{2}}
$$

so that

$$
A_{01}^{\dagger 01}=\sum_{m_{k}} \sum_{n_{1} n_{2}} \sum_{m_{1}} \frac{(-1)^{1 / 2-m_{1}}}{\sqrt{2}}\left\langle\left.\frac{1}{2} n_{1} \frac{1}{2} n_{2} \right\rvert\, 11\right\rangle c_{m_{1} n_{1} m_{k}}^{\dagger} l_{-m_{1} n_{2}-m_{k}}^{\dagger}
$$

The remaining Clebsch-Gordan coefficient in this expression vanishes unless $n_{1}=n_{2}=\frac{1}{2}$, and $\left\langle\left.\frac{1}{2} \frac{1}{2} \frac{1}{2} \right\rvert\, 11\right\rangle=1$ so

$$
A_{01}^{\dagger 01}=\sum_{m_{k}} \sum_{m_{1}} \frac{(-1)^{1 / 2-m_{1}}}{\sqrt{2}} c_{m_{1} \frac{1}{2} m_{k}}^{\dagger} c_{-m_{1} \frac{1}{2}-m_{k}}^{\dagger}
$$

Writing the two terms in the sum over m_{1} out explicitly for $m_{1}=\left(-\frac{1}{2}, \frac{1}{2}\right)$ gives

$$
\begin{align*}
A_{01}^{\dagger 01} & =\frac{1}{\sqrt{2}} \sum_{m_{k}} c_{\frac{1}{2} \frac{1}{2} m_{k}}^{\dagger} c_{-\frac{1}{2} \frac{1}{2}-m_{k}}^{\dagger}-\frac{1}{\sqrt{2}} \sum_{m_{k}} c_{-\frac{1}{2} \frac{1}{2} m_{k}}^{\dagger} c_{\frac{1}{2} \frac{1}{2}-m_{k}}^{\dagger} \\
& =\frac{1}{\sqrt{2}} \sum_{m_{k}} c_{1 m_{k}}^{\dagger} c_{2-m_{k}}^{\dagger}-\frac{1}{\sqrt{2}} \sum_{m_{k}} c_{2 m_{k}}^{\dagger} c_{1-m_{k}}^{\dagger} \\
& =\frac{1}{\sqrt{2}} A_{12}^{\dagger}+\frac{1}{\sqrt{2}} A_{12}^{\dagger} \\
& =\sqrt{2} A_{12}^{\dagger} . \tag{6}
\end{align*}
$$

3. Coupled representation for particle-hole operators

It is desirable to express the particle-hole generators of Eq. (120) in coupled representation. Let us begin by introducing a set of operators

$$
\begin{equation*}
P_{\mu}^{r}=\sum_{m_{j} m_{l}}(-1)^{\frac{3}{2}+m_{\ell}}\left\langle\left.\frac{3}{2} m_{j} \frac{3}{2} m_{\ell} \right\rvert\, r \mu\right\rangle B_{m_{j}-m_{\ell}} \tag{7}
\end{equation*}
$$

with the definition

$$
\begin{equation*}
B_{m_{j}-m_{\ell}} \equiv \sum_{m_{k}} c_{m_{j} m_{k}}^{\dagger} c_{-m_{\ell} m_{k}}-\frac{1}{4} \delta_{m_{j}-m_{\ell}} \Omega \tag{8}
\end{equation*}
$$

where m_{j} and m_{ℓ} take the values of the fictitious angular momentum projection m_{i} in the table of Fig. 25(a), providing a labeling equivalent to that of a and b in $B_{a b}$, with m_{j} or m_{ℓ} values $\left\{\frac{3}{2}, \frac{1}{2},-\frac{1}{2},-\frac{3}{2}\right\}$ mapping to a or b values $\{1,2,3,4\}$, respectively. For example, from the table of Fig. 25(a), $B_{a b}=B_{12}$ and $B_{m_{j} m_{\ell}}=B_{3 / 2,1 / 2}$ label the same quantity, which is defined in Eq. (120). From the standard selection rules for coupling of angular momentum, the index r in Eq. (7) [this document] can take the values $r=0,1,2,3$, with $2 r+1$ projections μ for each possibility, which gives a total of 16 operators P_{μ}^{r}. By inserting the explicit values of the Clebsch-Gordan coefficients the P_{μ}^{r} may be evaluated in terms of the $B_{a b}$. For example,

$$
\begin{aligned}
P_{0}^{0} & =\sum_{m_{j} m_{l}}(-1)^{\frac{3}{2}+m_{l}}\left\langle\left.\frac{3}{2} m_{j} \frac{3}{2} m_{l} \right\rvert\, 00\right\rangle B_{m_{j}-m_{l}} \\
& =\frac{1}{2}\left(B_{-3 / 2,-3 / 2}+B_{-1 / 2,-1 / 2}+B_{1 / 2,1 / 2}+B_{3 / 2,3 / 2}\right) \\
& =\frac{1}{2}\left(B_{44}+B_{33}+B_{22}+B_{11}\right),
\end{aligned}
$$

where the mapping between the labels m_{i} in line 2 and a in line 3 in this equation may be found in Fig. 25(a), and $B_{a b}$ is defined in Eq. (120). Evaluating for other values of the indices gives

$$
\begin{gather*}
P_{0}^{0}=\frac{1}{2}\left(B_{11}+B_{22}+B_{33}+B_{44}\right)=\frac{1}{2}\left(n_{1}+n_{2}+n_{3}+n_{4}-\Omega\right)=\frac{1}{2}(n-\Omega), \\
P_{0}^{1}=\sqrt{\frac{9}{20}}\left(B_{11}-B_{44}\right)+\sqrt{\frac{1}{20}}\left(B_{22}-B_{33}\right)=\sqrt{\frac{9}{20}}\left(n_{1}-n_{4}\right)+\sqrt{\frac{1}{20}}\left(n_{2}-n_{3}\right), \\
P_{1}^{1}=-\sqrt{\frac{3}{10}} B_{12}-\sqrt{\frac{4}{10}} B_{23}-\sqrt{\frac{3}{10}} B_{34} \quad P_{-1}^{1}=\sqrt{\frac{3}{10}} B_{21}+\sqrt{\frac{4}{10}} B_{32}+\sqrt{\frac{3}{10}} B_{43}, \\
P_{0}^{2}=\frac{1}{2}\left(B_{11}-B_{22}+B_{44}-B_{33}\right)=\frac{1}{2}\left(n_{1}-n_{2}+n_{4}-n_{3}\right) \quad P_{1}^{2}=\frac{1}{\sqrt{2}}\left(B_{34}-B_{12}\right), \\
P_{-1}^{2}=\frac{1}{\sqrt{2}}\left(B_{21}-B_{43}\right) \quad P_{2}^{2}=-\frac{1}{\sqrt{2}}\left(B_{13}+B_{24}\right) \quad P_{-2}^{2}=-\frac{1}{\sqrt{2}}\left(B_{31}+B_{42}\right), \tag{9}\\
P_{0}^{3}=\sqrt{\frac{1}{20}}\left(B_{11}-B_{44}\right)+\sqrt{\frac{9}{20}}\left(B_{33}-B_{22}\right)=\sqrt{\frac{1}{20}}\left(n_{1}-n_{4}\right)-\sqrt{\frac{9}{20}}\left(n_{2}-n_{3}\right), \\
P_{1}^{3}=-\sqrt{\frac{1}{5}} B_{12}+\sqrt{\frac{3}{5}} B_{23}-\sqrt{\frac{1}{5}} B_{34} \quad P_{-1}^{3}=\sqrt{\frac{1}{5}} B_{21}-\sqrt{\frac{3}{5}} B_{32}+\sqrt{\frac{1}{5}} B_{43}, \\
P_{2}^{3}=\sqrt{\frac{1}{2}}\left(B_{24}-B_{13}\right) \quad P_{-2}^{3}=\sqrt{\frac{1}{2}}\left(B_{42}-B_{31}\right) \quad P_{3}^{3}=-B_{14} \quad P_{-3}^{3}=B_{41} .
\end{gather*}
$$

where the quantities n_{i} given by

$$
\begin{equation*}
n_{i}=B_{i i}=\sum_{m_{k}} c_{i m_{k}}^{\dagger} c_{i m_{k}}-\frac{1}{4} \Omega \tag{10}
\end{equation*}
$$

are number operators for each of the four states and the total particle number n is the sum over the four states labeled by a in the table of Fig. 25(a), $n=n_{1}+n_{2}+n_{3}+n_{4}=$ total particle number. It will be convenient to sometimes replace the operator P_{0}^{0} with the operator S_{0}, according to

$$
\begin{equation*}
S_{0} \equiv \frac{1}{2}(n-\Omega)=P_{0}^{0} \tag{11}
\end{equation*}
$$

where 2Ω is the degeneracy of the space for the particles that participate in the $\operatorname{SO}(8)$ symmetry. Physically $S_{0}=\frac{1}{2}(n-\Omega)$ is one half the particle number measured from half filling (which corresponds to $n=\Omega$).

4. Transformations between different basis states

In exploring dynamical symmetries of the $\mathrm{SO}(8)$ algebra in Eq. (121) it is often useful to use different basis sets for the generators. This section gathers the relationships between the different sets of basis vectors employed in the main text. For brevity in the following, $\left\{P^{1}, P^{2}, P^{3}, S_{0}, S, S^{\dagger}, D_{\mu}, D_{\mu}^{\dagger}\right\}$ will be termed the nuclear $\mathrm{SO}(8)$ basis and $\left\{S_{\alpha}, T_{\alpha}, N_{\alpha}, \Pi_{\alpha x}, \Pi_{\alpha y}, S_{0}, S, S^{\dagger}, D_{\mu}, D_{\mu}^{\dagger}\right\}$ will be termed the graphene $\mathrm{SO}(8)$ basis.

First note that the $\mathrm{SO}(8)$ particle-hole operators (120) can be replaced by the operators of Eq. (110) through a comparison of their definitions. For example, consider the spin operator \mathcal{S}_{y}. From Eq. (110),

$$
\begin{aligned}
\mathcal{S}_{y} & =\sum_{m_{k}} \sum_{\tau \sigma \sigma^{\prime}}\left\langle\sigma^{\prime}\right| \sigma_{y}|\sigma\rangle c_{\tau \sigma^{\prime} m_{k}}^{\dagger} c_{\tau \sigma m_{k}} \\
& =\sum_{m_{k}}\left(-i c_{+\uparrow m_{k}}^{\dagger} c_{+\downarrow m_{k}}+i c_{+\downarrow m_{k}}^{\dagger} c_{+\uparrow m_{k}}-i c_{-\uparrow m_{k}}^{\dagger} c_{-\downarrow m_{k}}+i c_{-\downarrow m_{k}}^{\dagger} c_{-\uparrow m_{k}}\right) \\
& =-i B_{12}+i B_{21}-i B_{34}+i B_{43},
\end{aligned}
$$

where the standard 2×2 Pauli matrix representation for $\sigma_{2}=\sigma_{y}$ was employed and equivalences between the indices a and (τ, σ) in the table of Fig. 25(a) were used to map to indices for $B_{a b}$. The results for the complete set of operators are displayed in Eqs. (122)-(125).

In transforming from the nuclear $\mathrm{SO}(8)$ basis to the graphene $\mathrm{SO}(8)$ basis the particle number (charge) operator n or S_{0} and the 12 pairing operators $\left\{D_{\mu}, D_{\mu}^{\dagger}, S, S^{\dagger}\right\}$ are retained, but the $15 \mathrm{SU}(4)$ generators $\left\{P^{1}, P^{2}, P^{3}\right\}$ in the nuclear representation are replaced with the $15 \mathrm{SU}(4)$ generators $\left\{\mathcal{S}_{\alpha}, T_{\alpha}, N_{\alpha}, \Pi_{\alpha x}, \Pi_{\alpha y}\right\}$ defined in the graphene representation of Eq. (110). The explicit transformation from the $\left\{P^{1}, P^{2}, P^{3}\right\}$ generators to the $\left\{S_{\alpha}, T_{\alpha}, N_{\alpha}, \Pi_{\alpha x}, \Pi_{\alpha y}\right\}$ generators is given by

$$
\begin{gather*}
\mathcal{S}_{x}=\sqrt{\frac{6}{5}}\left(P_{-1}^{1}-P_{1}^{1}\right)+\frac{2}{\sqrt{5}}\left(P_{-1}^{3}-P_{1}^{3}\right) \quad \mathcal{S}_{y}=i\left[\sqrt{\frac{6}{5}}\left(P_{1}^{1}+P_{-1}^{1}\right)+\frac{2}{\sqrt{5}}\left(P_{1}^{3}+P_{-1}^{3}\right)\right], \\
\mathcal{S}_{z}=\frac{2}{\sqrt{5}} P_{0}^{1}+\frac{4}{\sqrt{5}} P_{0}^{3}=n_{1}-n_{2}+n_{3}-n_{4} \quad T_{x}=-\sqrt{2}\left(P_{2}^{2}+P_{-2}^{2}\right) \quad T_{y}=i \sqrt{2}\left(P_{2}^{2}-P_{-2}^{2}\right), \\
T_{z}=\frac{4}{\sqrt{5}} P_{0}^{1}-\frac{2}{\sqrt{5}} P_{0}^{3}=n_{1}+n_{2}-n_{3}-n_{4} \quad N_{x}=\frac{1}{\sqrt{2}}\left(P_{-1}^{2}-P_{1}^{2}\right) \quad N_{y}=\frac{i}{\sqrt{2}}\left(P_{-1}^{2}+P_{1}^{2}\right), \\
N_{z}=P_{0}^{2}=n_{1}-n_{2}+n_{4}-n_{3} \quad \Pi_{x x}=\frac{1}{2}\left[P_{-3}^{3}-P_{3}^{3}+\sqrt{\frac{2}{5}}\left(P_{-1}^{1}-P_{1}^{1}\right)+\sqrt{\frac{3}{5}}\left(P_{1}^{3}-P_{-1}^{3}\right)\right], \tag{12}\\
\Pi_{y x}=\frac{i}{2}\left[\sqrt{\frac{2}{5}} P_{-3}^{3}+P_{3}^{3}+\sqrt{\frac{2}{5}}\left(P_{-1}^{1}+P_{1}^{1}\right)-\sqrt{\frac{3}{5}}\left(P_{1}^{3}+P_{-1}^{3}\right)\right] \quad \Pi_{z x}=-\frac{1}{\sqrt{2}}\left(P_{2}^{3}+P_{-2}^{3}\right), \\
\Pi_{x y}=\frac{i}{2}\left[\sqrt{\frac{2}{5}} P_{-3}^{3}+P_{3}^{3}-\sqrt{\frac{2}{5}}\left(P_{-1}^{1}+P_{1}^{1}\right)+\sqrt{\frac{3}{5}}\left(P_{1}^{3}+P_{-1}^{3}\right)\right] \quad \Pi_{z y}=-\frac{i}{\sqrt{2}}\left(P_{2}^{3}-P_{-2}^{3}\right), \\
\Pi_{y y}=\frac{1}{2}\left[-P_{-3}^{3}+P_{3}^{3}-\sqrt{\frac{2}{5}}\left(P_{1}^{1}-P_{-1}^{1}\right)+\sqrt{\frac{3}{5}}\left(P_{1}^{3}-P_{-1}^{3}\right)\right] .
\end{gather*}
$$

In Eqs. (122)=(125) (and in Eqs. 12 [this document]) the graphene basis $\left\{\mathcal{S}_{\alpha}, T_{\alpha}, N_{\alpha}, \Pi_{\alpha x}, \Pi_{\alpha y}\right\}$ has been expressed in terms of the generators $B_{a b}$ defined in Eq. (120). The inverse transformations giving the $B_{a b}$ generators in terms of the $\left\{\mathcal{S}_{\alpha}, T_{\alpha}, N_{\alpha}, \Pi_{\alpha x}, \Pi_{\alpha y}\right\}$ generators are [23]

$$
\begin{array}{cc}
B_{12}=\frac{1}{2} N_{x}+\frac{1}{2} i N_{y}+\frac{1}{4} \mathcal{S}_{x}+\frac{1}{4} i S_{y} & B_{13}=\frac{1}{4} T_{x}+\frac{1}{4} i T_{y}+\frac{1}{2} \Pi_{z x}-\frac{1}{2} i \Pi_{z y}, \\
B_{14}=\frac{1}{2} \Pi_{x x}-\frac{1}{2} i \Pi_{y x}-\frac{1}{2} i \Pi_{x y}-\frac{1}{2} \Pi_{y y} & B_{23}=\frac{1}{2} \Pi_{x x}+\frac{1}{2} i \Pi_{y x}-\frac{1}{2} i \Pi_{x y}+\frac{1}{2} \Pi_{y y}, \\
B_{24}=\frac{1}{4} T_{x}+\frac{1}{4} i T_{y}-\frac{1}{2} \Pi_{z x}+\frac{1}{2} i \Pi_{z y} & B_{34}=\frac{1}{4} \mathcal{S}_{x}-\frac{1}{2} i N_{y}-\frac{1}{2} N_{x}+\frac{1}{4} i \mathcal{S}_{y}, \tag{13}\\
B_{11}=\frac{1}{4} S_{z}+\frac{1}{4} T_{z}+\frac{1}{2} N_{z}+\frac{1}{4}(n-\Omega) & B_{22}=-\frac{1}{4} \mathcal{S}_{z}+\frac{1}{4} T_{z}-\frac{1}{2} N_{z}+\frac{1}{4}(n-\Omega), \\
B_{33}=\frac{1}{4} S_{z}-\frac{1}{4} T_{z}-\frac{1}{2} N_{z}+\frac{1}{4}(n-\Omega) & B_{44}=-\frac{1}{4} \mathcal{S}_{z}-\frac{1}{4} T_{z}+\frac{1}{2} N_{z}+\frac{1}{4}(n-\Omega),
\end{array}
$$

where the unlisted operators may be obtained from $B_{b a}=B_{a b}^{\dagger}$ and the diagonal operators have been assumed to obey the $\mathrm{U}(4)$ constraint

$$
\begin{equation*}
B_{11}+B_{22}+B_{33}+B_{44}=n-\Omega \tag{14}
\end{equation*}
$$

with $n=n_{1}+n_{2}+n_{3}+n_{4}$ the total particle number and Ω the total pair degeneracy given by Eq. (104).

5. Lie algebra in the nuclear $\mathrm{SO}(8)$ basis

Because the six operators defined by Eq. (127), their six hermitian conjugates, and the 16 operators defined by Eq. (7) [this document] are independent linear combinations of the $\mathrm{SO}(8)$ generators defined in Eqs. (119) and (120), the 28 operators $\left\{P_{\mu}^{\ell}, S, S^{\dagger}, D_{\mu}, D_{\mu}^{\dagger}\right\}$ also close an $\mathrm{SO}(8)$ algebra under commutation. The $\mathrm{SO}(8)$ commutation relations for the coupledrepresentation generators

$$
G_{\mathrm{SO}(8)}^{\prime}=\left\{P^{1}, P^{2}, P^{3}, S_{0}, S, S^{\dagger}, D_{\mu}, D_{\mu}^{\dagger}\right\}
$$

in Eq. (152) are given explicitly by $[31,48]$

$$
\begin{align*}
{\left[S, S^{\dagger}\right] } & =-2 S_{0}, \tag{15a}\\
{\left[D_{\mu^{\prime}}, D_{\mu}^{\dagger}\right] } & =-2 \delta_{\mu \mu^{\prime}} S_{0}+\sum_{t \text { odd }}(-1)^{\mu^{\prime}}\left\langle 2,-\mu^{\prime} 2 \mu \mid t, \mu-\mu^{\prime}\right\rangle\left\{\begin{array}{lll}
2 & 2 & t \\
\frac{3}{2} & \frac{3}{2} & \frac{3}{2}
\end{array}\right\} P_{\mu,-\mu^{\prime}}^{t}, \tag{15b}\\
{\left[D_{\mu}^{\dagger}, S\right] } & =P_{\mu}^{2}, \tag{15c}\\
{\left[P_{\mu}^{r}, S^{\dagger}\right] } & =2 \delta_{r 2} D_{\mu}^{\dagger}+2 \delta_{r 0} \delta_{\mu 0} S^{\dagger}, \tag{15d}\\
{\left[P_{\mu^{\prime}}^{r}, D_{\mu}^{\dagger}\right] } & =2(-1)^{\mu^{\prime}} \delta_{r 2} \delta_{-\mu \mu^{\prime}}-4 \sqrt{5(2 r+1)}\left\langle r \mu^{\prime} 2 \mu \mid 2, \mu+\mu^{\prime}\right\rangle\left\{\begin{array}{lll}
2 & 2 & r \\
\frac{3}{2} & \frac{3}{2} & \frac{3}{2}
\end{array}\right\} D_{\mu+\mu^{\prime}}^{\dagger}, \tag{15e}\\
{\left[P_{\mu^{\prime}}^{r}, P_{\mu}^{s}\right] } & =2(-1)^{r+s} \sqrt{(2 r+1)(2 s+1)} \sum_{t}\left\langle r \mu^{\prime} s \mu \mid t, \mu+\mu^{\prime}\right\rangle\left[1-(-1)^{r+s+t}\right]\left\{\begin{array}{lll}
r & s & t \\
\frac{3}{2} & \frac{3}{2} & \frac{3}{2}
\end{array}\right\} P_{\mu+\mu^{\prime}}^{t}, \tag{15f}
\end{align*}
$$

where S_{0} is defined in Eq. (11) and $\}$ denotes the Wigner 6- j symbol [49] for the recoupling of three angular momenta to good total angular momentum.

6. Tables

For convenience we include below Table I [this document] of Clebsch-Gordan coefficients and Table II [this document] of $3 J$-symbols, with the Clebsch-Gordan coefficients $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$ and $3 J$-symbols related by

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & J \tag{16}\\
m_{1} & m_{2} & -M
\end{array}\right)=\frac{(-1)^{j_{1}-j_{2}+M}}{\sqrt{2 J+1}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle
$$

The values of these vector coupling coefficients are useful in various proofs contained in this Supplement.

TABLE I: Some $\mathrm{SO}(3)$ Clebsch-Gordan Coefficients $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$ from Ref. [4]

j_{1}	j_{2}	m_{1}	m_{2}	J	M	CG	j_{1}	j_{2}	m_{1}	m_{2}	J	M	CG
$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	1	1	$1 / 2$	$1 / 2$	$1 / 2$	$-1 / 2$	1	0	$\sqrt{1 / 2}$
$1 / 2$	$1 / 2$	$1 / 2$	$-1 / 2$	0	0	$\sqrt{1 / 2}$	$1 / 2$	$1 / 2$	$-1 / 2$	$1 / 2$	1	0	$\sqrt{1 / 2}$
$1 / 2$	$1 / 2$	$-1 / 2$	$1 / 2$	0	0	$-\sqrt{1 / 2}$	$1 / 2$	$1 / 2$	$-1 / 2$	$-1 / 2$	1	-1	1
1	$1 / 2$	1	$1 / 2$	$3 / 2$	$3 / 2$	1	1	$1 / 2$	1	$-1 / 2$	$3 / 2$	$1 / 2$	$\sqrt{1 / 3}$
1	$1 / 2$	1	$-1 / 2$	$1 / 2$	$1 / 2$	$\sqrt{2 / 3}$	1	$1 / 2$	0	$1 / 2$	$3 / 2$	$1 / 2$	$\sqrt{2 / 3}$
1	$1 / 2$	0	$1 / 2$	$1 / 2$	$1 / 2$	$-\sqrt{1 / 3}$	1	$1 / 2$	0	$-1 / 2$	$3 / 2$	$-1 / 2$	$\sqrt{2 / 3}$
1	$1 / 2$	0	$-1 / 2$	$1 / 2$	$-1 / 2$	$\sqrt{1 / 3}$	1	$1 / 2$	-1	$1 / 2$	$3 / 2$	$-1 / 2$	$\sqrt{1 / 3}$
1	$1 / 2$	-1	$1 / 2$	$1 / 2$	$-1 / 2$	$-\sqrt{2 / 3}$	1	$1 / 2$	-1	$-1 / 2$	$3 / 2$	$-3 / 2$	1
1	1	1	1	2	2	1	1	1	1	0	2	1	$\sqrt{1 / 2}$
1	1	1	0	1	1	$\sqrt{1 / 2}$	1	1	0	1	2	1	$\sqrt{1 / 2}$
1	1	0	1	1	1	$-\sqrt{1 / 2}$	1	1	1	-1	2	0	$\sqrt{1 / 6}$
1	1	1	-1	1	0	$\sqrt{1 / 2}$	1	1	1	-1	0	0	$\sqrt{1 / 3}$
1	1	0	0	2	0	$\sqrt{2 / 3}$	1	1	0	0	1	0	0
1	1	0	0	0	0	$-\sqrt{1 / 3}$	1	1	-1	1	2	0	$\sqrt{1 / 6}$
1	1	-1	1	1	0	$-\sqrt{1 / 2}$	1	1	-1	1	0	0	$\sqrt{1 / 3}$
1	1	0	-1	2	-1	$\sqrt{1 / 2}$	1	1	0	-1	1	-1	$\sqrt{1 / 2}$
1	1	-1	0	2	-1	$\sqrt{1 / 2}$	1	1	-1	0	1	-1	$-\sqrt{1 / 2}$
1	1	-1	-1	2	-2	1							
2	$1 / 2$	2	$1 / 2$	$5 / 2$	$5 / 2$	1	2	$1 / 2$	1	$-1 / 2$	$5 / 2$	$3 / 2$	$\sqrt{1 / 5}$
2	$1 / 2$	2	$-1 / 2$	$3 / 2$	$3 / 2$	$\sqrt{4 / 5}$	2	$1 / 2$	1	$1 / 2$	$5 / 2$	$3 / 2$	$\sqrt{4 / 5}$
2	$1 / 2$	1	$1 / 2$	$3 / 2$	$3 / 2$	$-\sqrt{1 / 5}$	2	$1 / 2$	1	$-1 / 2$	$5 / 2$	$1 / 2$	$\sqrt{2 / 5}$
2	$1 / 2$	1	$-1 / 2$	$3 / 2$	$1 / 2$	$\sqrt{3 / 5}$	2	$1 / 2$	0	$1 / 2$	$5 / 2$	$1 / 2$	$\sqrt{3 / 5}$
2	$1 / 2$	0	$1 / 2$	$3 / 2$	$1 / 2$	$-\sqrt{2 / 5}$	2	$1 / 2$	0	$-1 / 2$	$5 / 2$	$-1 / 2$	$\sqrt{3 / 5}$
2	$1 / 2$	0	$-1 / 2$	$3 / 2$	$-1 / 2$	$\sqrt{2 / 5}$	2	$1 / 2$	-1	$1 / 2$	$5 / 2$	$-1 / 2$	$\sqrt{2 / 5}$
2	$1 / 2$	-1	$1 / 2$	$3 / 2$	$-1 / 2$	$-\sqrt{3 / 5}$	2	$1 / 2$	-1	$-1 / 2$	$5 / 2$	$-3 / 2$	$\sqrt{4 / 5}$
2	$1 / 2$	-1	$-1 / 2$	$3 / 2$	$-3 / 2$	$\sqrt{1 / 5}$	2	$1 / 2$	-2	$1 / 2$	$5 / 2$	$-3 / 2$	$\sqrt{1 / 5}$
2	$1 / 2$	-2	$1 / 2$	$3 / 2$	$-3 / 2$	$-\sqrt{4 / 5}$	2	$1 / 2$	-2	$-1 / 2$	$5 / 2$	$-5 / 2$	1
$3 / 2$	$1 / 2$	$3 / 2$	$1 / 2$	2	2	1	$3 / 2$	$1 / 2$	$3 / 2$	$-1 / 2$	2	1	$1 / 2$
$3 / 2$	$1 / 2$	$3 / 2$	$-1 / 2$	1	1	$\sqrt{3 / 4}$	$3 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	2	1	$\sqrt{3 / 4}$
$3 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	1	1	$-1 / 2$	$3 / 2$	$1 / 2$	$1 / 2$	$-1 / 2$	2	0	$\sqrt{1 / 2}$
$3 / 2$	$1 / 2$	$1 / 2$	$-1 / 2$	1	0	$\sqrt{1 / 2}$	$3 / 2$	$1 / 2$	$-1 / 2$	$1 / 2$	2	0	$\sqrt{1 / 2}$
$3 / 2$	$1 / 2$	$-1 / 2$	$1 / 2$	1	0	$-\sqrt{1 / 2}$	$3 / 2$	$1 / 2$	$-1 / 2$	$-1 / 2$	2	-1	$\sqrt{3 / 4}$
$3 / 2$	$1 / 2$	$-1 / 2$	$-1 / 2$	1	-1	$1 / 2$	$3 / 2$	$1 / 2$	$-3 / 2$	$1 / 2$	2	-1	$1 / 2$
$3 / 2$	$-3 / 2$	$1 / 2$	1	-1	$-\sqrt{3 / 4}$	$3 / 2$	$1 / 2$	$-3 / 2$	$-1 / 2$	2	-2	1	

TABLE II: Some $3 J$ coefficients $\left(\begin{array}{ccc}j_{1} & j_{2} & J \\ m_{1} & m_{2} & M\end{array}\right)$ from Ref. [50]

$$
\begin{aligned}
& \left(\begin{array}{ccc}
a & a+1 / 2 & 1 / 2 \\
b & -b-1 / 2 & 1 / 2
\end{array}\right)=(-1)^{a-b-1}\left[\frac{a+b+1}{(2 a+1)(2 a+2)}\right]^{1 / 2} \\
& \left(\begin{array}{ccc}
a & a & 1 \\
b & -b-1 & 1
\end{array}\right)=(-1)^{a-b}\left[\frac{(a-b)(a+b+1)}{2 a(a+1)(2 a+1)}\right]^{1 / 2}
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
a & a & 1 \\
b & -b & 0
\end{array}\right)=(-1)^{a-b} \frac{b}{[a(a+1)(2 a+1)]^{1 / 2}}
$$

$$
\left(\begin{array}{ccc}
a & a+1 & 1 \\
b & -b-1 & 1
\end{array}\right)=(-1)^{a-b}\left[\frac{(a+b+1)(a+b+2)}{(2 a+1)(2 a+2)(2 a+3)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+1 & 1 \\
b & -b & 0
\end{array}\right)=(-1)^{a-b-1}\left[\frac{(a-b+1)(a+b+1)}{(a+1)(2 a+1)(2 a+3)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+1 / 2 & 3 / 2 \\
b & -b-3 / 2 & 3 / 2
\end{array}\right)=(-1)^{a-b-1}\left[\frac{3(a+b+1)(a+b+2)(a-b)}{2 a(2 a+1)(2 a+2)(2 a+3)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+1 / 2 & 3 / 2 \\
b & -b-1 / 2 & 1 / 2
\end{array}\right)=(-1)^{a-b}(a-3 b)\left[\frac{a+b+1}{2 a(2 a+1)(2 a+2)(2 a+3)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+3 / 2 & 3 / 2 \\
b & -b-3 / 2 & 3 / 2
\end{array}\right)=(-1)^{a-b-1}\left[\frac{(a+b+1)(a+b+2)(a+b+3)}{(2 a+1)(2 a+2)(2 a+3)(2 a+4)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+3 / 2 & 3 / 2 \\
b & -b-1 / 2 & 1 / 2
\end{array}\right)=(-1)^{a-b}\left[\frac{3(a-b+1)(a+b+1)(a+b+2)}{(2 a+1)(2 a+2)(2 a+3)(2 a+4)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a & 2 \\
b & -b-2 & 2
\end{array}\right)=(-1)^{a-b}\left[\frac{3(a+b+1)(a+b+2)(a-b-1)(a-b)}{a(2 a+3)(2 a+2)(2 a+1)(2 a-1)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a & 2 \\
b & -b-1 & 1
\end{array}\right)=(-1)^{a-b}(2 b+1)\left[\frac{3(a-b)(a+b+1)}{a(2 a+3)(2 a+2)(2 a+1)(2 a-1)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a & 2 \\
b & -b & 0
\end{array}\right)=(-1)^{a-b} \frac{3 b^{2}-a(a+1)}{[a(a+1)(2 a+3)(2 a+1)(2 a-1)]^{1 / 2}}
$$

$$
\left(\begin{array}{ccc}
a & a+1 & 2 \\
b & -b-2 & 2
\end{array}\right)=(-1)^{a-b}\left[\frac{(a+b+1)(a+b+2)(a+b+3)(a-b)}{a(a+1)(2 a+4)(2 a+3)(2 a+1)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+1 & 2 \\
b & -b-1 & 1
\end{array}\right)=(-1)^{a-b-1}(a-2 b)\left[\frac{(a+b+2)(a+b+1)}{a(a+1)(2 a+4)(2 a+3)(2 a+1)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+1 & 2 \\
b & -b & 0
\end{array}\right)=(-1)^{a-b-1} b\left[\frac{3(a+b+1)(a-b+1)}{a(a+1)(a+2)(2 a+3)(2 a+1)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+2 & 2 \\
b & -b-2 & 2
\end{array}\right)=(-1)^{a-b}\left[\frac{(a+b+1)(a+b+2)(a+b+3)(a+b+4)}{(2 a+1)(2 a+2)(2 a+3)(2 a+4)(2 a+5)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+2 & 2 \\
b & -b-1 & 1
\end{array}\right)=(-1)^{a-b-1}\left[\frac{(a+b+1)(a+b+2)(a+b+3)(a-b+1)}{(a+1)(a+2)(2 a+1)(2 a+3)(2 a+5)}\right]^{1 / 2}
$$

$$
\left(\begin{array}{ccc}
a & a+2 & 2 \\
b & -b & 0
\end{array}\right)=(-1)^{a-b}\left[\frac{3(a+b+1)(a+b+2)(a-b+1)(a-b+2)}{(a+1)(2 a+5)(2 a+4)(2 a+3)(2 a+1)}\right]^{1 / 2}
$$

