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1. Let’s place the point charge on the positive z axis a distance d from the origin; then
we have axial symmetry about the z axis and the solution can be expanding in Legendre
polynomials rather than spherical harmonics. For the potential inside the sphere we take
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where the g/4me factor is for convenience and we take a scaled radial coordinate r/a. The

solution outside the sphere is taken to have the form
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where the first term is the potential for the point charge [see Eq. (3.111)] and @y is a
solution of the Laplace equation, V2®y = 0. From Egs. (3.97) and (3.111), we may expand

®,,; in Legendre polynomials as
I+1
( ) ] Pi(cos )

where since 7. = min(r,d) and r. = max(r,d) and we must match the solutions at r = a,
we take r. = a and r. = d when using ®, in the matching equations. For the electric field
the matching conditions are

9
Pour = dmey & {1+1

4 1 9®; 7 w A
Efy = ——2 =-—"2-Y ""P/(cosH)sinb
o r de |,_, 471:82["61 1(cos8)sin6,
19d =1
t out 9
EQt = S ra_4758021:[dl+1+ ]P,(cose)sme

where P/(cos 0) = dP,/d6. Matching these gives the constraint
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For the displacement the matching conditions are
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and matching these gives the constraint
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Thus solving the two constraint equations
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simultaneously gives
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Substituting, the potentials are then
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2. (a) The battery is disconnected, so assume that the voltage V and charge on the plates Q
are constant. From Eq. (3.8), the energy to charge the capacitor without the dielectric layer
is
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and from Eq. (4.31) the energy to charge the capacitor with the dielectric layer in place is
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Thus, the work done on the dielectric is W = Ur — U, which is positive, since € > &. Thus
the dielectric is drawn into the space between the plates.

(b) Now the battery is connected, so V may be assumed constant but the charge Q on the
capacitor places can be increased by the battery. Again, the energy to charge the capacitor
at constant Q without the dielectric layer is
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and the energy to charge the capacitor at constant Q with the dielectric layer in place is
U= —V-.
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But now charge can be transferred from the battery to the plates. Since C = Q/V/, the charge
with no dielectric is
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Thus the work Wy done in transferring additional charge to the plates is
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and the total work is
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This is positive, since € > &, so the dielectric is pulled into space between the plates in
this case also.

3. For current density J In Coulomb gauge the vector potential (5.29) is
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The current distribution is in the azimuthal direction by hypothesis,
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so A will have only an azimuthal component Ay (r,8). Choosing an observation point with
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Expanding the denominator in spherical harmonics using Eq. (3.114),
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Replacing spherical harmonic inside the integral with an associated Legendre polynomial
using Eq. (3.117), this can be written
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Evaluating the integral over d¢’ restricts m to %1,
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and using Eqgs. (3.117) and (3.120), the m = %1 terms are equal for each /. Thus, convert-
ing the spherical harmonic Y;,,(6,0) outside the integral also to an associated Legendre
polynomial,
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For the interior solution (r < r’) this becomes,
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for the exterior solution (r > ).

4. The Coulomb gauge condition is that V-A = 0. If
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then the divergence is
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since charge-current conservation requires that V -J = 0, from Eq. (1.3).



