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Test 2 Solutions

1. Let’s place the point charge on the positive z axis a distance d from the origin; then

we have axial symmetry about the z axis and the solution can be expanding in Legendre

polynomials rather than spherical harmonics. For the potential inside the sphere we take

Φin =
q

4πε ∑
l

Al

( r

a

)

Pl(cosθ),

where the q/4πε factor is for convenience and we take a scaled radial coordinate r/a. The

solution outside the sphere is taken to have the form

Φout =
1

4πε0

q

|xxx−d ẑzz|
+Φ0,

where the first term is the potential for the point charge [see Eq. (3.111)] and Φ0 is a

solution of the Laplace equation, ∇2Φ0 = 0. From Eqs. (3.97) and (3.111), we may expand

Φout in Legendre polynomials as

Φout =
q

4πε0
∑

l

[

rl
<

rl+1
>

+Bl

(a

r

)l+1
]

Pl(cosθ)

where since r< = min(r,d) and r> = max(r,d) and we must match the solutions at r = a,

we take r< = a and r> = d when using Φout in the matching equations. For the electric field

the matching conditions are

E in
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r
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∂θ
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∣

∣
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=
q
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a
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r
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∂θ

∣

∣
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=
q
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∑

l

[

al−1

dl+1
+
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a

]

P′
l (cosθ)sinθ ,

where P′
l (cosθ)≡ dPl/dθ . Matching these gives the constraint

Al =
ε

ε0

(

al

dl+1
+Bl

)

.

For the displacement the matching conditions are

Din
r = −ε

∂Φin

∂ r

∣

∣

∣

∣

r=a

=
q

4π ∑
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lAl

a
Pl(cosθ),
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∣

∣

∣

∣
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=
q
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l

(

lal−1

dl+1
−

l(l +1)Bl

a

)

Pl(cosθ),

and matching these gives the constraint

Al =
al

dl+1
−

l +1

l
Bl .



Thus solving the two constraint equations

Al =
ε

ε0

(

al

dl+1
+Bl

)

Al =
al

dl+1
−

l +1

l
Bl

simultaneously gives

Al =
2l +1

l + ε0
ε (l +1)

al

dl+1
,

Bl =
( ε0

ε −1)l

l + ε0
ε (l +1)

al

dl+1
.

Substituting, the potentials are then

Φin =
q

4πε ∑
l

2l +1

l + ε0
ε (l +1)

rl

dl+1
Pl(cosθ),

Φout =
q

4πε0
∑

l

[
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+
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l + ε0
ε (l +1)

a2l+1

(rd)l+1

]

Pl(cosθ).

2. (a) The battery is disconnected, so assume that the voltage V and charge on the plates Q

are constant. From Eq. (3.8), the energy to charge the capacitor without the dielectric layer

is

U0 =
1

2
C0V 2 =

Aε0

2d
V 2

and from Eq. (4.31) the energy to charge the capacitor with the dielectric layer in place is

Uf =
1

2
CfV

2 =
Aε

2d
V 2.

Thus, the work done on the dielectric is W =Uf −U0, which is positive, since ε > ε0. Thus

the dielectric is drawn into the space between the plates.

(b) Now the battery is connected, so V may be assumed constant but the charge Q on the

capacitor places can be increased by the battery. Again, the energy to charge the capacitor

at constant Q without the dielectric layer is

U0 =
Aε0

2d
V 2

and the energy to charge the capacitor at constant Q with the dielectric layer in place is

Uf =
Aε

2d
V 2.

But now charge can be transferred from the battery to the plates. Since C =Q/V , the charge

with no dielectric is

Q0 =C0V =
ε0A

d
V

and with dielectric,

Qf =CfV =
εA

d
V.



Thus the work WQ done in transferring additional charge to the plates is

WQ =
1

2
(ε − ε0)

AV 2

d
.

and the total work is

W = (Uf −U0)+WQ

=
AV 2

2d
ε −

AV 2

2d
ε0 +

AV 2

2d
ε −

AV 2

2d
ε0

=
AV 2

2d
(2ε −2ε0)

=
AV 2

d
(ε − ε0).

This is positive, since ε > ε0, so the dielectric is pulled into space between the plates in

this case also.

3. For current density JJJ In Coulomb gauge the vector potential (5.29) is

AAA(xxx) =
µ0

4π

∫

JJJ(xxx′)

|xxx− xxx′|
d3x′.

The current distribution is in the azimuthal direction by hypothesis,

JJJ(r′,θ ′,φ ′) = Jφ (r
′,θ ′)φ̂φφ ′

so AAA will have only an azimuthal component Aφ (r,θ). Choosing an observation point with

φ = 0,

Aφ (r,θ) =
µ0

4π

∫

Jφ (r
′,θ ′) φ̂φφ ′ · φ̂φφ

|xxx− xxx′|
d3x′ =

µ0

4π

∫

Jφ (r
′,θ ′)cosφ ′

|xxx− xxx′|
d3x′.

Expanding the denominator in spherical harmonics using Eq. (3.114),

Aφ (r,θ) =
µ0

4π ∑
lm

4π

2l +1
Ylm(θ ,0)

∫

rl
<

rl+1
>

Jφ (r
′,θ ′)Y ∗

lm(θ
′,φ ′)cosφ ′ d3x′.

Replacing spherical harmonic inside the integral with an associated Legendre polynomial

using Eq. (3.117), this can be written

Aφ (r,θ) =
µ0

4π ∑
lm

4π

2l +1
Ylm(θ ,0)

× (−1)m

√

2l +1

4π

(l −m)!

(l +m)!

∫

rl
<

rl+1
>

Jφ (r
′,θ ′)Pm

l (cosθ ′)e−imφ ′
cosφ ′ d3x′.

Evaluating the integral over dφ ′ restricts m to ±1,

∫ 2π

0
e−imφ ′

cosθ ′dφ ′ = π (δm,1 +δm,−1)



and using Eqs. (3.117) and (3.120), the m =±1 terms are equal for each l. Thus, convert-

ing the spherical harmonic Ylm(θ ,0) outside the integral also to an associated Legendre

polynomial,

Aφ (r,θ) =
µ0

4π ∑
l

1

l(l +1)
P1

l (cosθ)

∫

rl
<

rl+1
>

P1
l (cosθ ′)Jφ (r

′,θ ′)d3x′.

For the interior solution (r < r′) this becomes,

Ain
φ (r,θ) =

µ0

4π ∑
l

rl

l(l +1)
P1

l (cosθ)

∫

(r′)−l−1 P1
l (cosθ ′)Jφ (r

′,θ ′)d3x′,

while it becomes

Aout
φ (r,θ) =

µ0

4π ∑
l

1

l(l +1)rl+1
P1

l (cosθ)

∫

(r′)l P1
l (cosθ ′)Jφ (r

′,θ ′)d3x′,

for the exterior solution (r > r′).

4. The Coulomb gauge condition is that ∇∇∇ ·AAA = 0. If

AAA(xxx) =
µ0

4π

∫

JJJ(xxx′)

|xxx− xxx′|
d3x′,

then the divergence is

∇∇∇ ·AAA =
µ0

4π

∫

JJJ(xxx′) ·∇∇∇x

1

|xxx− xxx′|
d3x′

=−
µ0

4π

∫

JJJ(xxx′) ·∇∇∇x′
1

|xxx− xxx′|
d3x′

=
µ0

4π

∫

∇∇∇x′ · JJJ(xxx
′)

|xxx− xxx′|
d3x′

= 0,

since charge-current conservation requires that ∇∇∇ · JJJ = 0, from Eq. (1.3).


