Physics 541

Spring, 2024

Dr. Guidry

Test 2 Solutions

1. Let's place the point charge on the positive z axis a distance d from the origin; then we have axial symmetry about the z axis and the solution can be expanding in Legendre polynomials rather than spherical harmonics. For the potential inside the sphere we take

$$
\Phi_{\mathrm{in}}=\frac{q}{4 \pi \varepsilon} \sum_{l} A_{l}\left(\frac{r}{a}\right) P_{l}(\cos \theta)
$$

where the $q / 4 \pi \varepsilon$ factor is for convenience and we take a scaled radial coordinate r / a. The solution outside the sphere is taken to have the form

$$
\Phi_{\mathrm{out}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\boldsymbol{x}-d \hat{\boldsymbol{z}}|}+\Phi_{0},
$$

where the first term is the potential for the point charge [see Eq. (3.111)] and Φ_{0} is a solution of the Laplace equation, $\nabla^{2} \Phi_{0}=0$. From Eqs. (3.97) and (3.111), we may expand $\Phi_{\text {out }}$ in Legendre polynomials as

$$
\Phi_{\mathrm{out}}=\frac{q}{4 \pi \varepsilon_{0}} \sum_{l}\left[\frac{r_{<}^{l}}{r_{>}^{l+1}}+B_{l}\left(\frac{a}{r}\right)^{l+1}\right] P_{l}(\cos \theta)
$$

where since $r_{<}=\min (r, d)$ and $r_{>}=\max (r, d)$ and we must match the solutions at $r=a$, we take $r_{<}=a$ and $r_{>}=d$ when using $\Phi_{\text {out }}$ in the matching equations. For the electric field the matching conditions are

$$
\begin{aligned}
E_{\theta}^{\mathrm{in}} & =-\left.\frac{1}{r} \frac{\partial \Phi_{\text {in }}}{\partial \theta}\right|_{r=a}=\frac{q}{4 \pi \varepsilon} \sum_{l} \frac{A_{l}}{a} P_{l}^{\prime}(\cos \theta) \sin \theta \\
E_{\theta}^{\mathrm{out}} & =-\left.\frac{1}{r} \frac{\partial \Phi_{\mathrm{out}}}{\partial \theta}\right|_{r=a}=\frac{q}{4 \pi \varepsilon_{0}} \sum_{l}\left[\frac{a^{l-1}}{d^{l+1}}+\frac{B_{l}}{a}\right] P_{l}^{\prime}(\cos \theta) \sin \theta
\end{aligned}
$$

where $P_{l}^{\prime}(\cos \theta) \equiv d P_{l} / d \theta$. Matching these gives the constraint

$$
A_{l}=\frac{\varepsilon}{\varepsilon_{0}}\left(\frac{a^{l}}{d^{l+1}}+B_{l}\right)
$$

For the displacement the matching conditions are

$$
\begin{aligned}
D_{r}^{\mathrm{in}} & =-\left.\varepsilon \frac{\partial \Phi_{\mathrm{in}}}{\partial r}\right|_{r=a}=\frac{q}{4 \pi} \sum_{l} \frac{l A_{l}}{a} P_{l}(\cos \theta) \\
D_{r}^{\text {out }} & =-\left.\varepsilon_{0} \frac{\partial \Phi_{\mathrm{out}}}{\partial r}\right|_{r=a}=\frac{q}{4 \pi} \sum_{l}\left(\frac{l a^{l-1}}{d^{l+1}}-\frac{l(l+1) B_{l}}{a}\right) P_{l}(\cos \theta)
\end{aligned}
$$

and matching these gives the constraint

$$
A_{l}=\frac{a^{l}}{d^{l+1}}-\frac{l+1}{l} B_{l} .
$$

Thus solving the two constraint equations

$$
A_{l}=\frac{\varepsilon}{\varepsilon_{0}}\left(\frac{a^{l}}{d^{l+1}}+B_{l}\right) \quad A_{l}=\frac{a^{l}}{d^{l+1}}-\frac{l+1}{l} B_{l}
$$

simultaneously gives

$$
\begin{aligned}
A_{l} & =\frac{2 l+1}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} \frac{a^{l}}{d^{l+1}} \\
B_{l} & =\frac{\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) l}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} \frac{a^{l}}{d^{l+1}}
\end{aligned}
$$

Substituting, the potentials are then

$$
\begin{aligned}
\Phi_{\text {in }} & =\frac{q}{4 \pi \varepsilon} \sum_{l} \frac{2 l+1}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} \frac{r^{l}}{d^{l+1}} P_{l}(\cos \theta), \\
\Phi_{\text {out }} & =\frac{q}{4 \pi \varepsilon_{0}} \sum_{l}\left[\frac{r_{<}^{l}}{r_{>}^{l+1}}+\frac{\left(\frac{\varepsilon_{0}}{\varepsilon}-1\right) l}{l+\frac{\varepsilon_{0}}{\varepsilon}(l+1)} \frac{a^{2 l+1}}{(r d)^{l+1}}\right] P_{l}(\cos \theta) .
\end{aligned}
$$

2. (a) The battery is disconnected, so assume that the voltage V and charge on the plates Q are constant. From Eq. (3.8), the energy to charge the capacitor without the dielectric layer is

$$
U_{0}=\frac{1}{2} C_{0} V^{2}=\frac{A \varepsilon_{0}}{2 d} V^{2}
$$

and from Eq. (4.31) the energy to charge the capacitor with the dielectric layer in place is

$$
U_{\mathrm{f}}=\frac{1}{2} C_{\mathrm{f}} V^{2}=\frac{A \varepsilon}{2 d} V^{2} .
$$

Thus, the work done on the dielectric is $W=U_{\mathrm{f}}-U_{0}$, which is positive, since $\varepsilon>\varepsilon_{0}$. Thus the dielectric is drawn into the space between the plates.
(b) Now the battery is connected, so V may be assumed constant but the charge Q on the capacitor places can be increased by the battery. Again, the energy to charge the capacitor at constant Q without the dielectric layer is

$$
U_{0}=\frac{A \varepsilon_{0}}{2 d} V^{2}
$$

and the energy to charge the capacitor at constant Q with the dielectric layer in place is

$$
U_{\mathrm{f}}=\frac{A \varepsilon}{2 d} V^{2}
$$

But now charge can be transferred from the battery to the plates. Since $C=Q / V$, the charge with no dielectric is

$$
Q_{0}=C_{0} V=\frac{\varepsilon_{0} A}{d} V
$$

and with dielectric,

$$
Q_{\mathrm{f}}=C_{\mathrm{f}} V=\frac{\varepsilon A}{d} V
$$

Thus the work W_{Q} done in transferring additional charge to the plates is

$$
W_{Q}=\frac{1}{2}\left(\varepsilon-\varepsilon_{0}\right) \frac{A V^{2}}{d}
$$

and the total work is

$$
\begin{aligned}
W & =\left(U_{\mathrm{f}}-U_{0}\right)+W_{Q} \\
& =\frac{A V^{2}}{2 d} \varepsilon-\frac{A V^{2}}{2 d} \varepsilon_{0}+\frac{A V^{2}}{2 d} \varepsilon-\frac{A V^{2}}{2 d} \varepsilon_{0} \\
& =\frac{A V^{2}}{2 d}\left(2 \varepsilon-2 \varepsilon_{0}\right) \\
& =\frac{A V^{2}}{d}\left(\varepsilon-\varepsilon_{0}\right) .
\end{aligned}
$$

This is positive, since $\varepsilon>\varepsilon_{0}$, so the dielectric is pulled into space between the plates in this case also.
3. For current density \boldsymbol{J} In Coulomb gauge the vector potential (5.29) is

$$
\boldsymbol{A}(\boldsymbol{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

The current distribution is in the azimuthal direction by hypothesis,

$$
\boldsymbol{J}\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)=J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) \hat{\boldsymbol{\phi}}^{\prime}
$$

so \boldsymbol{A} will have only an azimuthal component $A_{\phi}(r, \theta)$. Choosing an observation point with $\phi=0$,

$$
A_{\phi}(r, \theta)=\frac{\mu_{0}}{4 \pi} \int \frac{J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) \hat{\boldsymbol{\phi}}^{\prime} \cdot \hat{\boldsymbol{\phi}}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}=\frac{\mu_{0}}{4 \pi} \int \frac{J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) \cos \phi^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

Expanding the denominator in spherical harmonics using Eq. (3.114),

$$
A_{\phi}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l m} \frac{4 \pi}{2 l+1} Y_{l m}(\theta, 0) \int \frac{r_{<}^{l}}{r_{>}^{l+1}} J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) \cos \phi^{\prime} d^{3} x^{\prime}
$$

Replacing spherical harmonic inside the integral with an associated Legendre polynomial using Eq. (3.117), this can be written

$$
\begin{aligned}
A_{\phi}(r, \theta)= & \frac{\mu_{0}}{4 \pi} \sum_{l m} \frac{4 \pi}{2 l+1} Y_{l m}(\theta, 0) \\
& \times(-1)^{m} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} \int \frac{r_{<}^{l}}{r_{>}^{l+1}} J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) P_{l}^{m}\left(\cos \theta^{\prime}\right) e^{-i m \phi^{\prime}} \cos \phi^{\prime} d^{3} x^{\prime}
\end{aligned}
$$

Evaluating the integral over $d \phi^{\prime}$ restricts m to ± 1,

$$
\int_{0}^{2 \pi} e^{-i m \phi^{\prime}} \cos \theta^{\prime} d \phi^{\prime}=\pi\left(\delta_{m, 1}+\delta_{m,-1}\right)
$$

and using Eqs. (3.117) and (3.120), the $m= \pm 1$ terms are equal for each l. Thus, converting the spherical harmonic $Y_{l m}(\theta, 0)$ outside the integral also to an associated Legendre polynomial,

$$
A_{\phi}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l} \frac{1}{l(l+1)} P_{l}^{1}(\cos \theta) \int \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}^{1}\left(\cos \theta^{\prime}\right) J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) d^{3} x^{\prime}
$$

For the interior solution $\left(r<r^{\prime}\right)$ this becomes,

$$
A_{\phi}^{\mathrm{in}}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l} \frac{r^{l}}{l(l+1)} P_{l}^{1}(\cos \theta) \int\left(r^{\prime}\right)^{-l-1} P_{l}^{1}\left(\cos \theta^{\prime}\right) J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) d^{3} x^{\prime},
$$

while it becomes

$$
A_{\phi}^{\text {out }}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l} \frac{1}{l(l+1) r^{l+1}} P_{l}^{1}(\cos \theta) \int\left(r^{\prime}\right)^{l} P_{l}^{1}\left(\cos \theta^{\prime}\right) J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) d^{3} x^{\prime}
$$

for the exterior solution $\left(r>r^{\prime}\right)$.
4. The Coulomb gauge condition is that $\boldsymbol{\nabla} \cdot \boldsymbol{A}=0$. If

$$
\boldsymbol{A}(\boldsymbol{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

then the divergence is

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \boldsymbol{A} & =\frac{\mu_{0}}{4 \pi} \int \boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right) \cdot \nabla_{x} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =-\frac{\mu_{0}}{4 \pi} \int \boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right) \cdot \nabla_{x^{\prime}} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{\nabla}_{x^{\prime}} \cdot \boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =0,
\end{aligned}
$$

since charge-current conservation requires that $\boldsymbol{\nabla} \cdot \boldsymbol{J}=0$, from Eq. (1.3).

