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Test 1 Solutions

1. For the charge distribution
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y
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the (traceless) quadrupole moment has cartesian components

Qi j ≡
∫

(3x′ix
′
j − r′2δi j)ρ(xxx′)d3x′ =

N

∑
k=1

qk(3xix j − r2δi j)

where r′2 ≡ |xxx′|2 and we’ve used ρ(xxx) = ∑
N
i=1 qiδ (xxx

′−xxxi). Assuming the origin to be at the

lower left charge, that |Q| = 3 µC, and that d = 0.1 m, the quadrupole moment cartesian

components are

Qxx =
N

∑
i=1

qi(3xixi − r2
i )

= Q
(

3[02 −d2 +d2 −02]− [0−d2 +2d2 −d2]
)

= 0,

Qxy =
N

∑
i=1

qi(3xiyi) = Q×3d2 = 3×10−6 C = 9×10−8 C·m2

Qyx =
N

∑
i=1

qi(3yixi) = Q×3d2 = 9×10−8 C·m2

Qyy =
N

∑
i=1

qi(3yiyi − r2
i ) = Q

(

[3d2 −3d2]− [−d2 +2d2 −d2]
)

= 0,

Qzz = Qxz = Qzx = Qyz = Qzy = 0 (since z = 0 for all charges),

where we have used that r2 = x2 +y2. Note that TrQ = Qxx +Qyy +Qzz = 0 and Qi j = Q ji.

2. For separation of variables in the axially-symmetric Laplace equation the most general

solution is given by Eq. (3.96),

Φ(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ)+

∞

∑
l=0

Blr
−(l+1)Pl(cosθ).



For the inside solution (r ≤ R) the Bl terms vary as 1/rl+1 and are unbounded at the origin

and must be discarded, so

Φ(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ) (r ≤ R).

For the outside solution (r > R) the Al terms vary as rl and are unbounded for large r and

must be discarded, leaving

Φ(r,θ) =
∞

∑
l=0

Blr
−(l+1)Pl(cosθ) (r > R).

Next we require the solutions to be continuous at r = R, implying that

∞

∑
l=0

AlR
lPl(cosθ) =

∞

∑
l=0

BlR
−(l+1)Pl(cosθ),

which is satisfied if

Bl = R2l+1Al .

From Eq. (3.11), the radial derivative of Φ has a discontinuity when a charge layer is

crossed,

∇∇∇Φabove −∇∇∇Φbelow =−
σ

ε0
n̂nn,

which means that the derivatives of the inside and outside solutions must satisfy
(

∂Φoutside

∂ r
−

∂Φinside

∂ r

)∣

∣

∣

∣

r=R

=−
σ(θ)

ε0
.

Evaluating the derivatives,

−
∞

∑
l=0

(l +1)
Bl

Rl+2
Pl(cosθ)−

∞

∑
l=0

lAlR
l−1Pl(cosθ) =−

σ(θ)

ε0
,

and upon combining the terms on the left side using Bl = R2l+1Al ,

∞

∑
l=0

(2l +1)Rl−1AiPl(cosθ) =
σ(θ)

ε0
.

Finally, we can determine the coefficients Al and Bl = R2l+1Al using the Legendre poly-

nomial orthogonality condition: multiply the preceding equation by Pk(cosθ)sinθdθ and

integrate from 0 to π to give

∞

∑
l=0

(2l +1)Rl−1Al

∫ π

0
Pl(cosθ)Pk(cosθ)sinθdθ =

1

ε0

∫ π

0
σ(θ)Pk(cosθ)sinθdθ .

By virtue of the Legendre polynomial orthogonality condition of Eq. (3.98),

∫ π

0
Pl(cosθ)Pk(cosθ)sinθdθ =







2

2l +1
( if l = k),

0 (if l 6= k),



the only term that survives in the sum on the left side is for l = k, giving

(2l +1)Rl−1Al

2

2l +1
=

1

ε0

∫ π

0
σ(θ)Pk(cosθ)sinθdθ ,

so the coefficients Al are determined by

Al =
1

2ε0Rl−1

∫ π

0
σ(θ)Pl(cosθ)sinθdθ ,

from which the coefficients Bl may be obtained using Bl = R2l+1Al . Thus the interior and

exterior solutions

Φ(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ) (r ≤ R).

Φ(r,θ) =
∞

∑
l=0

Blr
−(l+1)Pl(cosθ) (r > R).

are now given in terms of infinite sums with known coefficients Al and Bl for all terms in

the sums.

3. The potential is

Φ(xxx) =
1

4πε0

∫

ρ(xxx′)
1

|xxx− xxx′|
d3x′.

Inserting the effective density

ρeff(xxx) =−ppp ·∇∇∇δ (xxx− xxx0),

for ρ(xxx′), the potential is

Φ(xxx) =−
1

4πε0

∫

ppp ·∇∇∇x′δ (xxx
′− xxx0)

1

|xxx− xxx′|
d3x′

=
1

4πε0

∫

δ (xxx′− xxx0)ppp ·∇∇∇x′
1

|xxx− xxx′|
d3x′

=
1

4πε0
ppp ·∇∇∇x′

1

|xxx− xxx′|

∣

∣

∣

∣

x′=x0

=
1

4πε0

ppp · (xxx− xxx0)

|xxx = xxx0)|
3
,

where ∇∇∇x′ means the gradient with respect to xxx′, in line 2 we have used that the delta

function anticommutes with derivatives [see Eq. (A.61)], in line 3 we’ve invoked the basic

property of the delta function, and in line 4 we have used that

∇∇∇x′

(

1

|xxx− xxx′|

)

=
xxx− xxx′

|xxx− xxx′|3
,

from Eq. (A.11b). This is the expected potential for a dipole at xxx0. Likewise, Eq. (3.123)

gives for the energy of this dipole in an external field,

W =
∫

ρ(xxx)Φ(xxx)d3x.



Inserting ρeff(xxx) for ρ(xxx′),

W =−
∫

ppp ·∇∇∇δ (xxx− xxx0)Φ(xxx)d3x

=
∫

δ (xxx− xxx0)ppp ·∇∇∇Φ(xxx)d3x

= ppp ·∇∇∇Φ(xxx)
∣

∣

xxx=xxx0

= ppp ·∇∇∇Φ(xxx0)

=−ppp ·EEE(xxx0),

where in line 2 the delta function has been anticommuted with the derivative operator ∇∇∇,

in line 3 the basic property of the delta function has been invoked, and in the last line we

have used E =−∇∇∇Φ. This is the dipole interaction energy with an external field appearing

in the multipole expansion of Eq. (3.125).

4. From Eq. (3.119), the quadrupole moment tensor is

Qi j ≡
∫

(3x′ix
′
j − r′2δi j)ρ(xxx′)d3x′,

where r′2 ≡ |xxx′|2. This formula for a continuous charge distribution ρ(xxx′) can be converted

into a formula for N discrete point charges qi using

ρ(xxx) =
N

∑
i=1

qiδ (xxx
′− xxxi),

so that

Qi j =
∫ N

∑
k=1

qkδ (xxx′− xxxk)(3x′ix
′
j − r′2δi j)d3xxx′

=
N

∑
k=1

qk(3xix j − r2δi j).

Thus letting i be the index for the discrete charges and k = {1,2,3} = {x,y,z} be the

cartesian component index, the trace (sum over diagonal elements) is

TrQ =
3

∑
i=1

Qii

=
3

∑
i=1

N

∑
k=1

qk(3xikxik − r2
k)

=
N

∑
k=1

qk

3

∑
i=1

(3xikxik − r2
k)

=
N

∑
k=1

qk(3r2
k −3r2

k) = 0,

where ∑
3
i=1 r2

k = x2 + y2 + z2 has been used.


