Physics 541

Spring, 2024

Dr. Guidry

Test 1 Solutions

1. For the charge distribution

the (traceless) quadrupole moment has cartesian components

$$
Q_{i j} \equiv \int\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) \rho\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}=\sum_{k=1}^{N} q_{k}\left(3 x_{i} x_{j}-r^{2} \delta_{i j}\right)
$$

where $r^{\prime 2} \equiv\left|\boldsymbol{x}^{\prime}\right|^{2}$ and we've used $\rho(\boldsymbol{x})=\sum_{i=1}^{N} q_{i} \boldsymbol{\delta}\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{i}\right)$. Assuming the origin to be at the lower left charge, that $|Q|=3 \mu \mathrm{C}$, and that $d=0.1 \mathrm{~m}$, the quadrupole moment cartesian components are

$$
\begin{aligned}
Q_{x x} & =\sum_{i=1}^{N} q_{i}\left(3 x_{i} x_{i}-r_{i}^{2}\right) \\
& =Q\left(3\left[0^{2}-d^{2}+d^{2}-0^{2}\right]-\left[0-d^{2}+2 d^{2}-d^{2}\right]\right)=0 \\
Q_{x y} & =\sum_{i=1}^{N} q_{i}\left(3 x_{i} y_{i}\right)=Q \times 3 d^{2}=3 \times 10^{-6} \mathrm{C}=9 \times 10^{-8} \mathrm{C} \cdot \mathrm{~m}^{2} \\
Q_{y x} & =\sum_{i=1}^{N} q_{i}\left(3 y_{i} x_{i}\right)=Q \times 3 d^{2}=9 \times 10^{-8} \mathrm{C} \cdot \mathrm{~m}^{2} \\
Q_{y y} & =\sum_{i=1}^{N} q_{i}\left(3 y_{i} y_{i}-r_{i}^{2}\right)=Q\left(\left[3 d^{2}-3 d^{2}\right]-\left[-d^{2}+2 d^{2}-d^{2}\right]\right)=0 \\
Q_{z z} & \left.=Q_{x z}=Q_{z x}=Q_{y z}=Q_{z y}=0 \quad \quad \quad \text { (since } z=0 \text { for all charges }\right)
\end{aligned}
$$

where we have used that $r^{2}=x^{2}+y^{2}$. Note that $\operatorname{Tr} Q=Q_{x x}+Q_{y y}+Q_{z z}=0$ and $Q_{i j}=Q_{j i}$.
2. For separation of variables in the axially-symmetric Laplace equation the most general solution is given by Eq. (3.96),

$$
\Phi(r, \theta)=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta)+\sum_{l=0}^{\infty} B_{l} r^{-(l+1)} P_{l}(\cos \theta)
$$

For the inside solution $(r \leq R)$ the B_{l} terms vary as $1 / r^{l+1}$ and are unbounded at the origin and must be discarded, so

$$
\Phi(r, \theta)=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta) \quad(r \leq R) .
$$

For the outside solution $(r>R)$ the A_{l} terms vary as r^{l} and are unbounded for large r and must be discarded, leaving

$$
\Phi(r, \theta)=\sum_{l=0}^{\infty} B_{l} r^{-(l+1)} P_{l}(\cos \theta) \quad(r>R) .
$$

Next we require the solutions to be continuous at $r=R$, implying that

$$
\sum_{l=0}^{\infty} A_{l} R^{l} P_{l}(\cos \theta)=\sum_{l=0}^{\infty} B_{l} R^{-(l+1)} P_{l}(\cos \theta)
$$

which is satisfied if

$$
B_{l}=R^{2 l+1} A_{l} .
$$

From Eq. (3.11), the radial derivative of Φ has a discontinuity when a charge layer is crossed,

$$
\nabla \Phi_{\mathrm{above}}-\nabla \Phi_{\mathrm{below}}=-\frac{\sigma}{\varepsilon_{0}} \hat{\boldsymbol{n}},
$$

which means that the derivatives of the inside and outside solutions must satisfy

$$
\left.\left(\frac{\partial \Phi_{\text {outside }}}{\partial r}-\frac{\partial \Phi_{\text {inside }}}{\partial r}\right)\right|_{r=R}=-\frac{\sigma(\theta)}{\varepsilon_{0}} .
$$

Evaluating the derivatives,

$$
-\sum_{l=0}^{\infty}(l+1) \frac{B_{l}}{R^{l+2}} P_{l}(\cos \theta)-\sum_{l=0}^{\infty} l A_{l} R^{l-1} P_{l}(\cos \theta)=-\frac{\sigma(\theta)}{\varepsilon_{0}},
$$

and upon combining the terms on the left side using $B_{l}=R^{2 l+1} A_{l}$,

$$
\sum_{l=0}^{\infty}(2 l+1) R^{l-1} A_{i} P_{l}(\cos \theta)=\frac{\sigma(\theta)}{\varepsilon_{0}} .
$$

Finally, we can determine the coefficients A_{l} and $B_{l}=R^{2 l+1} A_{l}$ using the Legendre polynomial orthogonality condition: multiply the preceding equation by $P_{k}(\cos \theta) \sin \theta d \theta$ and integrate from 0 to π to give

$$
\sum_{l=0}^{\infty}(2 l+1) R^{l-1} A_{l} \int_{0}^{\pi} P_{l}(\cos \theta) P_{k}(\cos \theta) \sin \theta d \theta=\frac{1}{\varepsilon_{0}} \int_{0}^{\pi} \sigma(\theta) P_{k}(\cos \theta) \sin \theta d \theta .
$$

By virtue of the Legendre polynomial orthogonality condition of Eq. (3.98),

$$
\int_{0}^{\pi} P_{l}(\cos \theta) P_{k}(\cos \theta) \sin \theta d \theta=\left\{\begin{array}{cl}
\frac{2}{2 l+1} & (\text { if } l=k) \\
0 & (\text { if } l \neq k)
\end{array}\right.
$$

the only term that survives in the sum on the left side is for $l=k$, giving

$$
(2 l+1) R^{l-1} A_{l} \frac{2}{2 l+1}=\frac{1}{\varepsilon_{0}} \int_{0}^{\pi} \sigma(\theta) P_{k}(\cos \theta) \sin \theta d \theta
$$

so the coefficients A_{l} are determined by

$$
A_{l}=\frac{1}{2 \varepsilon_{0} R^{l-1}} \int_{0}^{\pi} \sigma(\theta) P_{l}(\cos \theta) \sin \theta d \theta
$$

from which the coefficients B_{l} may be obtained using $B_{l}=R^{2 l+1} A_{l}$. Thus the interior and exterior solutions

$$
\begin{array}{cr}
\Phi(r, \theta)=\sum_{l=0}^{\infty} A_{l} r^{l} P_{l}(\cos \theta) & (r \leq R) \\
\Phi(r, \theta)=\sum_{l=0}^{\infty} B_{l} r^{-(l+1)} P_{l}(\cos \theta) & (r>R)
\end{array}
$$

are now given in terms of infinite sums with known coefficients A_{l} and B_{l} for all terms in the sums.
3. The potential is

$$
\Phi(\boldsymbol{x})=\frac{1}{4 \pi \varepsilon_{0}} \int \rho\left(\boldsymbol{x}^{\prime}\right) \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

Inserting the effective density

$$
\rho_{\mathrm{eff}}(\boldsymbol{x})=-\boldsymbol{p} \cdot \boldsymbol{\nabla} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

for $\rho\left(x^{\prime}\right)$, the potential is

$$
\begin{aligned}
\Phi(\boldsymbol{x}) & =-\frac{1}{4 \pi \varepsilon_{0}} \int \boldsymbol{p} \cdot \nabla_{x^{\prime}} \boldsymbol{\delta}\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{0}\right) \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \int \delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{0}\right) \boldsymbol{p} \cdot \nabla_{x^{\prime}} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime} \\
& =\left.\frac{1}{4 \pi \varepsilon_{0}} \boldsymbol{p} \cdot \nabla_{x^{\prime}} \frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}\right|_{x^{\prime}=x_{0}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{\boldsymbol{p} \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)}{\left.\mid \boldsymbol{x}=\boldsymbol{x}_{0}\right)\left.\right|^{3}}
\end{aligned}
$$

where $\nabla_{x^{\prime}}$ means the gradient with respect to \boldsymbol{x}^{\prime}, in line 2 we have used that the delta function anticommutes with derivatives [see Eq. (A.61)], in line 3 we've invoked the basic property of the delta function, and in line 4 we have used that

$$
\nabla_{x^{\prime}}\left(\frac{1}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}\right)=\frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}}
$$

from Eq. (A.11b). This is the expected potential for a dipole at \boldsymbol{x}_{0}. Likewise, Eq. (3.123) gives for the energy of this dipole in an external field,

$$
W=\int \rho(\boldsymbol{x}) \Phi(\boldsymbol{x}) d^{3} x
$$

Inserting $\rho_{\text {eff }}(\boldsymbol{x})$ for $\rho\left(\boldsymbol{x}^{\prime}\right)$,

$$
\begin{aligned}
W & =-\int \boldsymbol{p} \cdot \boldsymbol{\nabla} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \Phi(\boldsymbol{x}) d^{3} x \\
& =\int \boldsymbol{\delta}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \boldsymbol{p} \cdot \boldsymbol{\nabla} \Phi(\boldsymbol{x}) d^{3} x \\
& =\left.\boldsymbol{p} \cdot \nabla \Phi(\boldsymbol{x})\right|_{\boldsymbol{x}=\boldsymbol{x}_{0}} \\
& =\boldsymbol{p} \cdot \nabla \Phi\left(\boldsymbol{x}_{0}\right) \\
& =-\boldsymbol{p} \cdot \boldsymbol{E}\left(\boldsymbol{x}_{0}\right),
\end{aligned}
$$

where in line 2 the delta function has been anticommuted with the derivative operator $\boldsymbol{\nabla}$, in line 3 the basic property of the delta function has been invoked, and in the last line we have used $E=-\nabla \Phi$. This is the dipole interaction energy with an external field appearing in the multipole expansion of Eq. (3.125).
4. From Eq. (3.119), the quadrupole moment tensor is

$$
Q_{i j} \equiv \int\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) \rho\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}
$$

where $r^{\prime 2} \equiv\left|\boldsymbol{x}^{\prime}\right|^{2}$. This formula for a continuous charge distribution $\rho\left(\boldsymbol{x}^{\prime}\right)$ can be converted into a formula for N discrete point charges q_{i} using

$$
\rho(\boldsymbol{x})=\sum_{i=1}^{N} q_{i} \boldsymbol{\delta}\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{i}\right)
$$

so that

$$
\begin{aligned}
Q_{i j} & =\int \sum_{k=1}^{N} q_{k} \boldsymbol{\delta}\left(\boldsymbol{x}^{\prime}-\boldsymbol{x}_{k}\right)\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) d^{3} \boldsymbol{x}^{\prime} \\
& =\sum_{k=1}^{N} q_{k}\left(3 x_{i} x_{j}-r^{2} \delta_{i j}\right) .
\end{aligned}
$$

Thus letting i be the index for the discrete charges and $k=\{1,2,3\}=\{x, y, z\}$ be the cartesian component index, the trace (sum over diagonal elements) is

$$
\begin{aligned}
\operatorname{Tr} Q & =\sum_{i=1}^{3} Q_{i i} \\
& =\sum_{i=1}^{3} \sum_{k=1}^{N} q_{k}\left(3 x_{i k} x_{i k}-r_{k}^{2}\right) \\
& =\sum_{k=1}^{N} q_{k} \sum_{i=1}^{3}\left(3 x_{i k} x_{i k}-r_{k}^{2}\right) \\
& =\sum_{k=1}^{N} q_{k}\left(3 r_{k}^{2}-3 r_{k}^{2}\right)=0
\end{aligned}
$$

where $\sum_{i=1}^{3} r_{k}^{2}=x^{2}+y^{2}+z^{2}$ has been used.

