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1. For the charge distribution
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the (traceless) quadrupole moment has cartesian components
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where 2 = |#'|* and we’ve used p(x) = N 1 qi8(x' —x;). Assuming the origin to be at the

lower left charge, that |Q| = 3 uC, and that d = 0.1 m, the quadrupole moment cartesian
components are
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0:=0u=0x=0,,=0,=0 (since z = 0 for all charges),

where we have used that 2 = x2 + yz. Note that TrQ = Oy + Oyy + Q. =0 and Q;; = Qj;.

2. For separation of variables in the axially-symmetric Laplace equation the most general
solution is given by Eq. (3.96),
D(r,0) = ZAlrle(cos 0)+ Z Blr*(l“)PI(cos 0).
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For the inside solution (r < R) the B; terms vary as 1/ r/*1 and are unbounded at the origin
and must be discarded, so

o(r,0) = iAlrlP[(cosG) (r <R).
=0

For the outside solution (r > R) the A; terms vary as ' and are unbounded for large r and
must be discarded, leaving

®(r,0) =Y Br""Vp(cos8)  (r>R).
1=0
Next we require the solutions to be continuous at r = R, implying that

Y AR'P(cos0) =Y B,R~ VP (cos ),
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which is satisfied if

Bl — R2l+1Al.

From Eq. (3.11), the radial derivative of ® has a discontinuity when a charge layer is
crossed,
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which means that the derivatives of the inside and outside solutions must satisfy
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Evaluating the derivatives,
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and upon combining the terms on the left side using B; = R**1A;,
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Finally, we can determine the coefficients A; and B; = R**'A; using the Legendre poly-
nomial orthogonality condition: multiply the preceding equation by Py (cos 0)sin 846 and

integrate from 0 to 7 to give
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By virtue of the Legendre polynomial orthogonality condition of Eq. (3.98),
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the only term that survives in the sum on the left side is for [ = k, giving
QU+ 1)R1A 2 = L /7r G(8)P,(cos ) sin 06,
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so the coefficients A; are determined by
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from which the coefficients B; may be obtained using B; = R**1A;. Thus the interior and
exterior solutions

0)= iAlrlPl(cose) (r<R).
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0)=Y Bir""UP(cos8)  (r>R).
=0
are now given in terms of infinite sums with known coefficients A; and B; for all terms in
the sums.

3. The potential is
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Inserting the effective density
Per(x) = —p- V& (x —x0),

for p(x’), the potential is
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where V, means the gradient with respect to x’, in line 2 we have used that the delta
function anticommutes with derivatives [see Eq. (A.61)], in line 3 we’ve invoked the basic
property of the delta function, and in line 4 we have used that

1 x—x
V =
. <|x—x/|> x—x

from Eq. (A.11b). This is the expected potential for a dipole at xy. Likewise, Eq. (3.123)
gives for the energy of this dipole in an external field,

W= /p(x)CID x)d’x




Inserting pes(x) for p(x'),
W=-— /p-Vé(x—x0)¢(x)d3x

_ /S(xfxo)poVCID(x)d%c
=p-VO(x)|_,,
=p-VP(xo)

=—p-E(x),

where in line 2 the delta function has been anticommuted with the derivative operator V,
in line 3 the basic property of the delta function has been invoked, and in the last line we
have used E = —V®. This is the dipole interaction energy with an external field appearing
in the multipole expansion of Eq. (3.125).

4. From Eq. (3.119), the quadrupole moment tensor is
0= / (33, — 128,) p ()Y,

where 2 = |x'|%. This formula for a continuous charge distribution p (x') can be converted

into a formula for N discrete point charges ¢; using

N
p(x) =Y qi6(x' —x),
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so that
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= Z qi(3xixj — r25,~j).
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Thus letting i be the index for the discrete charges and k = {1,2,3} = {x,y,z} be the
cartesian component index, the trace (sum over diagonal elements) is
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where ¥} _| 2 = x? +)? + 22 has been used.



