Physics 541 Spring, 2024 Dr. Guidry Test 1

Do all problems. Points for each problem given in parentheses.

1. For the following charge distribution,



calculate the nine *cartesian components*  $Q_{ij} = Q_{xx}, Q_{xy}...$  of the quadruple moment tensor starting from

$$Q_{ij} \equiv \int (3x'_i x'_j - r'^2 \delta_{ij}) \rho(\mathbf{x}') d^3 x'$$

where  $r^{2} \equiv |\mathbf{x}'|^2$ , assuming that the origin of the coordinate system to be at the lower left charge and that  $|Q| = 3 \,\mu$ C. (25)

2. A surface charge density specified by a function  $\sigma(\theta)$  is pasted onto an empty 3D spherical shell of radius *R*. Assume polar coordinates with axial symmetry  $(r, \theta)$  and use separation of variables in the Laplace equation to derive a general formula for the potential  $\Phi$  inside and outside the shell radius *R*.

*Hint*: Remember that there is a discontinuity in the gradient of the potential when crossing a charge layer. (25)

3. A point dipole with dipole moment p is located at  $x_0$ . Show that for calculations of the potential  $\Phi$  or energy density W of a dipole in an external field, the dipole can be described by an effective charge density

$$\boldsymbol{\rho}_{\rm eff}(\boldsymbol{x}) = -\boldsymbol{p} \cdot \boldsymbol{\nabla} \delta(\boldsymbol{x} - \boldsymbol{x}_0),$$

where  $\delta(\mathbf{x} - \mathbf{x}')$  is the 3D Dirac delta function. (25)

4. Components of the rank-2 quadrupole tensor are given by Eq. (3.117) as

$$Q_{ij} \equiv \int (3x'_i x'_j - r'^2 \boldsymbol{\delta}_{ij}) \, \boldsymbol{\rho}(\boldsymbol{x}') d^3 x'.$$

Write an expression for  $Q_{ij}$  for a discrete set of N static charges  $q_i$  and prove that it is traceless. (25)