Physics 541

Spring, 2024
Dr. Guidry

Test 1

Do all problems. Points for each problem given in parentheses.

1. For the following charge distribution,

calculate the nine cartesian components $Q_{i j}=Q_{x x}, Q_{x y} \ldots$ of the quadruple moment tensor starting from

$$
Q_{i j} \equiv \int\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) \rho\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}
$$

where $r^{\prime 2} \equiv\left|\boldsymbol{x}^{\prime}\right|^{2}$, assuming that the origin of the coordinate system to be at the lower left charge and that $|Q|=3 \mu \mathrm{C}$. (25)
2. A surface charge density specified by a function $\sigma(\theta)$ is pasted onto an empty 3D spherical shell of radius R. Assume polar coordinates with axial symmetry (r, θ) and use separation of variables in the Laplace equation to derive a general formula for the potential Φ inside and outside the shell radius R.

Hint: Remember that there is a discontinuity in the gradient of the potential when crossing a charge layer. (25)
3. A point dipole with dipole moment \boldsymbol{p} is located at \boldsymbol{x}_{0}. Show that for calculations of the potential Φ or energy density W of a dipole in an external field, the dipole can be described by an effective charge density

$$
\rho_{\mathrm{eff}}(\boldsymbol{x})=-\boldsymbol{p} \cdot \boldsymbol{\nabla} \boldsymbol{\delta}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right),
$$

where $\boldsymbol{\delta}\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)$ is the 3D Dirac delta function. (25)
4. Components of the rank-2 quadrupole tensor are given by Eq. (3.117) as

$$
Q_{i j} \equiv \int\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) \rho\left(\boldsymbol{x}^{\prime}\right) d^{3} x^{\prime}
$$

Write an expression for $Q_{i j}$ for a discrete set of N static charges q_{i} and prove that it is traceless. (25)

