Magnetic Fields in Matter

6.1 The vector potential inside the sphere is

$$
A_{\phi}^{\mathrm{in}}(\boldsymbol{x})=\frac{\mu_{0}}{3} M_{0} r \sin \theta
$$

and the magnetic field \boldsymbol{B} is given by the curl of \boldsymbol{A} in spherical coordinates, with the only non-vanishing terms being

$$
\boldsymbol{\nabla} \times \boldsymbol{A}_{\phi}^{\mathrm{in}}=\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta A_{\phi}^{\mathrm{in}}\right) \hat{\boldsymbol{r}}-\frac{1}{r} \frac{\partial}{\partial r}\left(r A_{\phi}^{\mathrm{in}}\right) \hat{\boldsymbol{\theta}},
$$

where Eq. (A.49) was used. But the second term is zero, since (why??), so letting $C=$ $\left(\mu_{0} / 3\right) M_{0} r$,

$$
\begin{aligned}
\boldsymbol{B}_{\text {in }}=\boldsymbol{\nabla} \times \boldsymbol{A}_{\phi}^{\text {in }} & =\frac{C}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin ^{2} \theta\right) \hat{\boldsymbol{r}} \\
& =\frac{C}{r \sin \theta}(2 \sin \theta \cos \theta) \hat{\boldsymbol{r}} \\
& =\frac{2 \mu_{0}}{3} M_{0} \cos \theta \hat{\boldsymbol{r}} \\
& =\frac{2 \mu_{0}}{3} M_{0} \hat{\boldsymbol{z}} \\
& =\frac{2 \mu_{0}}{3} \boldsymbol{M}
\end{aligned}
$$

and $\boldsymbol{H}_{\text {in }}$ is given by

$$
\boldsymbol{H}_{\text {in }}=\frac{1}{\mu_{0}} \boldsymbol{B}_{\text {in }}-\boldsymbol{M}=\left(\frac{2}{3} \boldsymbol{M}-\boldsymbol{M}\right)=-\frac{1}{3} \boldsymbol{M} .
$$

Thus the fields in the interior are

$$
\boldsymbol{H}_{\mathrm{in}}=-\frac{1}{3} \boldsymbol{M} \quad \boldsymbol{B}_{\text {in }}=\frac{2 \mu_{0}}{3} \boldsymbol{M}
$$

which is the same result obtained by a different method in Eq. (6.34).

