5.1 For current density \boldsymbol{J} In Coulomb gauge the vector potential (5.29) is

$$
\boldsymbol{A}(\boldsymbol{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\boldsymbol{J}\left(\boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

The current distribution is in the azimuthal direction by hypothesis,

$$
\boldsymbol{J}\left(r^{\prime}, \theta^{\prime}, \phi^{\prime}\right)=J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) \hat{\boldsymbol{\phi}}^{\prime}
$$

so \boldsymbol{A} will have only an azimuthal component $A_{\phi}(r, \theta)$. Choosing an observation point with $\phi=0$,

$$
A_{\phi}(r, \theta)=\frac{\mu_{0}}{4 \pi} \int \frac{J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) \hat{\boldsymbol{\phi}}^{\prime} \cdot \hat{\boldsymbol{\phi}}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}=\frac{\mu_{0}}{4 \pi} \int \frac{J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) \cos \phi^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|} d^{3} x^{\prime}
$$

Expanding the denominator in spherical harmonics using Eq. (3.114),

$$
A_{\phi}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l m} \frac{4 \pi}{2 l+1} Y_{l m}(\theta, 0) \int \frac{r_{<}^{l}}{r_{>}^{l+1}} J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) \cos \phi^{\prime} d^{3} x^{\prime}
$$

Replacing spherical harmonic inside the integral with an associated Legendre polynomial using Eq. (3.117), this can be written

$$
\begin{aligned}
A_{\phi}(r, \theta)= & \frac{\mu_{0}}{4 \pi} \sum_{l m} \frac{4 \pi}{2 l+1} Y_{l m}(\theta, 0) \\
& \times(-1)^{m} \sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} \int \frac{r_{<}^{l}}{r_{>}^{l+1}} J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) P_{l}^{m}\left(\cos \theta^{\prime}\right) e^{-i m \phi^{\prime}} \cos \phi^{\prime} d^{3} x^{\prime}
\end{aligned}
$$

Evaluating the integral over $d \phi^{\prime}$ restricts m to ± 1,

$$
\int_{0}^{2 \pi} e^{-i m \phi^{\prime}} \cos \theta^{\prime} d \phi^{\prime}=\pi\left(\delta_{m, 1}+\delta_{m,-1}\right)
$$

and using Eqs. (3.117) and (3.120), the $m= \pm 1$ terms are equal for each l. Thus, converting the spherical harmonic $Y_{l m}(\theta, 0)$ outside the integral also to an associated Legendre polynomial,

$$
A_{\phi}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l} \frac{1}{l(l+1)} P_{l}^{1}(\cos \theta) \int \frac{r_{<}^{l}}{r_{>}^{l+1}} P_{l}^{1}\left(\cos \theta^{\prime}\right) J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) d^{3} x^{\prime}
$$

For the interior solution $\left(r<r^{\prime}\right)$ this becomes,

$$
A_{\phi}^{\mathrm{in}}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l} \frac{r^{l}}{l(l+1)} P_{l}^{1}(\cos \theta) \int\left(r^{\prime}\right)^{-l-1} P_{l}^{1}\left(\cos \theta^{\prime}\right) J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) d^{3} x^{\prime}
$$

while it becomes

$$
A_{\phi}^{\mathrm{out}}(r, \theta)=\frac{\mu_{0}}{4 \pi} \sum_{l} \frac{1}{l(l+1) r^{l+1}} P_{l}^{1}(\cos \theta) \int\left(r^{\prime}\right)^{l} P_{l}^{1}\left(\cos \theta^{\prime}\right) J_{\phi}\left(r^{\prime}, \theta^{\prime}\right) d^{3} x^{\prime}
$$

for the exterior solution $\left(r>r^{\prime}\right)$.
5.2 The solenoid

of length L and radius a carries a current I through N turns per unit length. First consider a single loop of radius a and current I,

Applying the Biot-Savart law (5.7) to the single loop,

$$
B=\frac{\mu_{0} I}{4 \pi} \int \frac{d \boldsymbol{l} \times \boldsymbol{R}}{|\boldsymbol{R}|^{3}} .
$$

But by symmetry the magnetic field will be along the horizontal (z) axis, and

$$
d \boldsymbol{l} \times \boldsymbol{R}=d l R \sin \theta=d l R\left(\frac{a}{R}\right)=a d l
$$

where $R=\sqrt{a^{2}+z^{2}}$. Then,

$$
\begin{aligned}
B_{z} & =\frac{\mu_{0} I}{4 \pi} \int \frac{a}{R^{3}} d l \\
& =\frac{\mu_{0} I}{4 \pi} \frac{a}{R^{3}}(2 \pi a) \\
& =\frac{\mu_{0} I}{2} \frac{a^{2}}{\left(a^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

Now use linear superposition of many rings, taking $N L \rightarrow \infty$ so that we can assume each ring is perpendicular to the axis. Then from the following diagram,

where $z_{1}+z_{2}=L$, for N coils

$$
B_{z}=\frac{\mu_{0} I a^{2}}{2} \int_{-z_{1}}^{z_{2}} \frac{N d z}{\left(a^{2}+z^{2}\right)^{3 / 2}}
$$

To perform the integral, make the trig substitution,

$$
z=a \tan \theta \quad d z=\frac{a}{\cos ^{2} \theta} d \theta
$$

which gives

$$
\begin{aligned}
B_{z} & =\frac{\mu_{0} N I}{2} \int_{-\tan ^{-1}\left(z_{1} / a\right)}^{\tan ^{-1}\left(z_{2} / a\right)} \cos \theta d \theta \\
& =\left.\frac{\mu_{0} N I}{2} \sin \theta\right|_{-\tan ^{-1}\left(z_{1} / a\right)} ^{\tan ^{-1}\left(z_{2} / a\right)} \\
& =\frac{\mu_{0} N I}{2}\left(\frac{z_{2}}{a^{2}+z_{2}^{2}}-\frac{z_{1}}{a^{2}+z_{1}^{2}}\right) \\
& =\frac{\mu_{0} N I}{2}\left(\cos \theta_{1}+\cos \theta_{2}\right)
\end{aligned}
$$

where we have used

$$
\sin \left(\tan ^{-1} x\right)=\frac{x}{\sqrt{1+x^{2}}} \quad \cos \theta_{1}=-\frac{z_{1}}{a^{2}+z_{1}^{2}} \quad \cos \theta_{2}=\frac{z_{2}}{a^{2}+z_{2}^{2}}
$$

(see geometry of diagram above).

