
5 Magnetostatics in Vacuum

5.1 For current density JJJ In Coulomb gauge the vector potential (5.29) is

AAA(xxx) =
µ0

4π

∫

JJJ(xxx′)
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3
x
′.

The current distribution is in the azimuthal direction by hypothesis,

JJJ(r′,θ ′,φ ′) = Jφ (r
′,θ ′)φ̂φφ ′

so AAA will have only an azimuthal component Aφ (r,θ). Choosing an observation point with

φ = 0,

Aφ (r,θ) =
µ0

4π

∫

Jφ (r
′,θ ′) φ̂φφ ′ · φ̂φφ
|xxx− xxx′| d

3
x
′ =
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Jφ (r
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Expanding the denominator in spherical harmonics using Eq. (3.114),

Aφ (r,θ) =
µ0

4π ∑
lm

4π

2l +1
Ylm(θ ,0)

∫
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r
l+1
>

Jφ (r
′,θ ′)Y ∗
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d
3
x
′.

Replacing spherical harmonic inside the integral with an associated Legendre polynomial

using Eq. (3.117), this can be written

Aφ (r,θ) =
µ0

4π ∑
lm

4π

2l +1
Ylm(θ ,0)

× (−1)m

√

2l +1

4π

(l −m)!

(l +m)!

∫
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r
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Jφ (r
′,θ ′)Pm

l (cosθ ′)e−imφ ′
cosφ ′

d
3
x
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Evaluating the integral over dφ ′ restricts m to ±1,

∫ 2π

0
e
−imφ ′

cosθ ′
dφ ′ = π (δm,1 +δm,−1)

and using Eqs. (3.117) and (3.120), the m =±1 terms are equal for each l. Thus, convert-

ing the spherical harmonic Ylm(θ ,0) outside the integral also to an associated Legendre

polynomial,

Aφ (r,θ) =
µ0

4π ∑
l

1

l(l +1)
P

1
l (cosθ)

∫
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P
1
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3
x
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For the interior solution (r < r′) this becomes,

A
in
φ (r,θ) =
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4π ∑
l
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P

1
l (cosθ)

∫
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P
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3
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while it becomes

A
out
φ (r,θ) =

µ0

4π ∑
l

1

l(l +1)rl+1
P

1
l (cosθ)

∫

(r′)l
P

1
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′,θ ′)d
3
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′,

for the exterior solution (r > r′).

5.2 The solenoid

I

I

θ2θ1
z

of length L and radius a carries a current I through N turns per unit length. First consider a

single loop of radius a and current I,

dl

a

z

θ

I

R 

Applying the Biot–Savart law (5.7) to the single loop,

B =
µ0I

4π

∫

dlll ×RRR

|RRR|3
.

But by symmetry the magnetic field will be along the horizontal (z) axis, and

dlll ×RRR = dl Rsinθ = dl R

(

a

R

)

= adl,

where R =
√

a2 + z2. Then,

Bz =
µ0I

4π

∫

a

R3
dl

=
µ0I

4π

a

R3
(2πa)

=
µ0I

2

a2

(a2 + z2)3/2
.

Now use linear superposition of many rings, taking NL → ∞ so that we can assume each

ring is perpendicular to the axis. Then from the following diagram,
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where z1 + z2 = L, for N coils

Bz =
µ0Ia2

2

∫

z2

−z1

N dz

(a2 + z2)3/2
.

To perform the integral, make the trig substitution,

z = a tanθ dz =
a

cos2 θ
dθ ,

which gives

Bz =
µ0NI

2

∫ tan−1(z2/a)

− tan−1(z1/a)
cosθ dθ

=
µ0NI

2
sinθ

∣

∣

∣

∣

tan−1(z2/a)

− tan−1(z1/a)

=
µ0NI

2

(
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2

− z1
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1

)

=
µ0NI

2
(cosθ1 + cosθ2) ,

where we have used

sin(tan−1
x) =

x√
1+ x2

cosθ1 =− z1

a2 + z2
1

cosθ2 =
z2

a2 + z2
2

(see geometry of diagram above).


