
4 Electrostatics in Matter

4.2 From the solution of Problem 3.5, the inside solution (r ≤ R) is

Φ(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ) (r ≤ R),

and the outside solution (r > R) is

Φ(r,θ) =
∞

∑
l=0

Blr
−(l+1)Pl(cosθ) (r ≥ R),

where the coefficients Al are determined by

Al =
1

2ε0Rl−1

∫ π

0
σ(θ)Pl(cosθ)sinθdθ ,

from which the coefficients Bl may be obtained using Bl = R2l+1Al .

If σ(θ) = kP1(cosθ) = k cosθ for a constant k, then all Al values vanish except for

A1 =
k

2ε0

∫ π

0
[P1(cosθ)]2 sinθdθ =

k

3ε0
,

from which the only non-vanishing Bi is

B1 = R2(1)+1A1 =
kR3

3ε0
.

Thus inside the sphere

Φ(r,θ) = A1rP1(cosθ) =
kr

3ε0
cosθ (r ≤ R),

and outside the sphere

Φ(r,θ) = B1r−2Pl(cosθ) =
kR3

3ε0r2
cosθ (r ≥ R).

4.3 The concentric spheres with dielectric in gray:

9
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a

b

-Q

+Q

εε
0

(a) Obviously without the dielectric the electric field between the spheres would be radial,

EEE =
Q

4πε0

r̂rr

r2
,

but we would expect the dielectric to modify this. However, notice that a radial field is

tangential to the boundary between the dielectric and open region so the field matching

conditions for discontinuities given in Eqs. (4.53) and (4.54) are automatically satisfied,

suggesting that a solution with radial symmetry may still be valid in the presence of the

dielectric. Thus we try a solution of the form

EEE =C
r̂rr

r2
.

The constant C can be determined using Gauss’s law in medium (4.47a):

∮

S
DDD ·nnnda =

∫

V
ρ d3x = Q.

Using DDD = ε0EEE from Eq. (4.25) and that EEE is directed radially,

∮

S
DDD ·nnnda =

1

2
ε0

∮

S
EEE ·nnnda+

1

2
ε

∮

S
EEE ·nnnda

=
1

2
ε0 |EEE|

∮

S
da+

1

2
ε |EEE|

∮

S
da

=
ε0C

2r2
(4πr2)+

εC

2r2
(4πr2)

= 2π(ε0 + ε)C

= Q.

Therefore, C = Q/2π(ε0 + ε) and

EEE =
Q

2π(ε0 + ε)

r̂rr

r2
.

(b) The boundary matching condition is given by Eq. (4.53a),

(DDD2 −DDD1) ·nnn = σ ,

where nnn is a unit normal to the boundary surface and σ is the surface charge. But the inner
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sphere is conducting so there is no electric field inside and DDD1 = ε0EEE = 0. Thus, letting

DDD⊥ ≡ DDD1 ·nnn,

σ = DDD⊥
∣

∣

∣

r=a

Therefore, on the half of the inner sphere without dielectric outside it DDD⊥ = ε0EEE⊥ and

σ = ε0EEE⊥
∣

∣

∣

r=a
= ε0

Q

2π(ε0 + ε)r2

∣

∣

∣

∣

r=a

=
ε0

2π(ε0 + ε)

Q

a2
(half with no dielectric).

while on the half of the inner sphere with dielectric outside it,

σ = εEEE⊥
∣

∣

∣

r=a
= ε

Q

2π(ε0 + ε)r2

∣

∣

∣

∣

r=a

=
ε

2π(ε0 + ε)

Q

a2
(half with dielectric).

(c) The surface polarization-charge density is give by Eq. (4.40),

σpol = PPP ·nnn ≡−P⊥,

where the polarization PPP is given by Eq. (4.27),

PPP = (ε − ε0)EEE.

In the hemisphere with the dielectric the polarization surface charge is

σpol = −P⊥
∣

∣

∣

r=a
=− (ε − ε0)E

⊥
∣

∣

∣

r=a
=−

ε − ε0

2π(ε + ε0)

Q

a2
,

while in the hemisphere without the dielectric σpol = 0. Notice that in the hemisphere

without the dielectric the total charge density (free + polarization) is

σtotal = σ +σpol

=
ε0

2π(ε0 + ε)

Q

a2
+0

=
ε0

2π(ε0 + ε)

Q

a2
(half with no dielectric),

while in the hemisphere with the dielectric

σtotal = σ +σpol

=
ε

2π(ε0 + ε)

Q

a2
−

ε − ε0

2π(ε + ε0)

Q

a2

=
ε0

2π(ε0 + ε)

Q

a2
(half with dielectric).

Thus the total surface charge density is the same on either half of the sphere, which is why

the electric field is radially symmetric.

4.4 (a) Assume the inner conductor is positively charged with a charge of λ per unit length.

The capacitance is C = Q/V where V is the potential difference and Q the total charge. By

Gauss’s law applied to the inner cylinder the magnitude of the electric field is E = λ/2πrε0
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and by symmetry it is normal to the surface, so the potential difference between the inner

and outer cylinder is

V =
∫ b

a
Edr =

∫ b

a

λ

2πε0r
dr =

λ

2πε0
ln

(

b

a

)

.

Therefore, the capacitance per unit length C′ is

C′ =
λ

V
=

λ

(λ/2πε0) ln(b/a)
=

2πε0

ln(b/a)
.

(b) At equilibrium the electrostatic force pulling the dielectric liquid up between the cylin-

ders is just balanced by the gravitational force acting down on the liquid. The electrostatic

force is

F =
dW

ds
=

1

2
V 2 dC

ds
,

where V is the total potential difference between the cylinders, we’ve used W = 1
2
CV 2 from

Eq. (3.7), and C is the total capacitance

C =Ch +CL−h,

where Ch is the capacitance for the section with dielectric liquid between the electrodes and

CL−h is the capacitance of the section above that with air between the electrodes. From Eq.

(4.2), a capacitance C0 is modified by dielectric material between its electrodes according

to

C = κC0 = (1+χe)C0

where κ is the dielectric constant and χe is the electric susceptibility of the dielectric ma-

terial, and as shown in part (a), the capacitance per unit length is

C′ =
2πε0

ln(b/a)

for a cylindrical capacitor in vacuum. Then, neglecting the susceptibility of air,

C =Ch +CL−h

=
2πε0(1+χe)h

ln(b/a)
+

2πε0(L−h)

ln(b/a)

=
2πεe

ln(b/a)
(χeh+L) .

From this the electrostatic force is

Fe =
1

2
V 2 dC

dh
=

πε0χeV
2

ln(b/a)
,

and the gravitational force may be computed as

Fg = mg = πρ(b2 −a2)hg,
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where ρ is the mass density and m is the mass of the dielectric liquid between the elec-

trodes. Therefore, setting Fe = Fg and solving for χe gives

χe =
hgρ(b2 −a2) ln(b/a)

ε0V 2
,

for the electric susceptibility of the dielectric liquid.



5 Magnetostatics in Vacuum

5.1 For current density JJJ In Coulomb gauge the vector potential (5.29) is

AAA(xxx) =
µ0

4π

∫

JJJ(xxx′)

|xxx− xxx′|
d3x′.

The current distribution is in the azimuthal direction by hypothesis,

JJJ(r′,θ ′,φ ′) = Jφ (r
′,θ ′)φ̂φφ ′

so AAA will have only an azimuthal component Aφ (r,θ). Choosing an observation point with

φ = 0,

Aφ (r,θ) =
µ0

4π

∫

Jφ (r
′,θ ′) φ̂φφ ′ · φ̂φφ

|xxx− xxx′|
d3x′ =

µ0

4π

∫

Jφ (r
′,θ ′)cosφ ′

|xxx− xxx′|
d3x′.

Expanding the denominator in spherical harmonics using Eq. (3.114),

Aφ (r,θ) =
µ0

4π ∑
lm

4π

2l +1
Ylm(θ ,0)

∫

rl
<

rl+1
>

Jφ (r
′,θ ′)Y ∗

lm(θ
′,φ ′)cosφ ′ d3x′.

Replacing spherical harmonic inside the integral with an associated Legendre polynomial

using Eq. (3.117), this can be written

Aφ (r,θ) =
µ0

4π ∑
lm

4π

2l +1
Ylm(θ ,0)

× (−1)m

√

2l +1

4π

(l −m)!

(l +m)!

∫

rl
<

rl+1
>

Jφ (r
′,θ ′)Pm

l (cosθ ′)e−imφ ′
cosφ ′ d3x′.

Evaluating the integral over dφ ′ restricts m to ±1,

∫ 2π

0
e−imφ ′

cosθ ′dφ ′ = π (δm,1 +δm,−1)

and using Eqs. (3.117) and (3.120), the m =±1 terms are equal for each l. Thus, convert-

ing the spherical harmonic Ylm(θ ,0) outside the integral also to an associated Legendre

polynomial,

Aφ (r,θ) =
µ0

4π ∑
l

1

l(l +1)
P1

l (cosθ)

∫

rl
<

rl+1
>

P1
l (cosθ ′)Jφ (r

′,θ ′)d3x′.

For the interior solution (r < r′) this becomes,

Ain
φ (r,θ) =

µ0

4π ∑
l

rl

l(l +1)
P1

l (cosθ)

∫

(r′)−l−1 P1
l (cosθ ′)Jφ (r

′,θ ′)d3x′,
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