Overview

1.1 Taking the divergence of both sides of Eq. (1.1d),

$$
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})=\mu_{0} \boldsymbol{\nabla} \cdot \boldsymbol{j}+\frac{1}{c^{2}} \frac{\partial \boldsymbol{\nabla} \cdot \boldsymbol{E}}{\partial t}
$$

Using $\boldsymbol{\nabla} \cdot \boldsymbol{E}=\rho / \varepsilon_{0}$ from Eq. (1.1a), the identity $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{B})=0$ from Eq. (A.6), and that $\mu_{0} \varepsilon_{0}=1 / c^{2}$, this becomes

$$
\frac{\partial \rho}{\partial t}+\boldsymbol{\nabla} \cdot \boldsymbol{j}=0
$$

which is the continuity equation (1.3).

