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Chapter 1

Overview

The first inkling of electricity and magnetism were when hu-
mans began to realize and remark upon

• naturally occurring electricity in amber, and

• naturally occurring magnetism in lodestones.

These properties were known to the ancient

Greeks, but the modern quantitative understanding
of electricity and magnetism emerged over a pe-

riod of only about a century, beginning in the late
1700s.

1



2 CHAPTER 1. OVERVIEW

1.1 The Synthesis of Classical Electromagnetism

The great explosion in knowledge of electricity and magnetism,
and the forging of that knowledge into a theoretically and math-

ematically coherent understanding, was highlighted by

1. Cavendish’s pioneering experiments in electrostatics in
the early 1770s,

2. Publication of Coulomb’s work on electrostatics begin-
ning in 1785, which triggered world-wide interest in the
subject.

3. Faraday’s study of time-varying currents and magnetic

fields in the mid-1800s,

4. Maxwell’s famous 1865 paper synthesizing in equations
the prior results into a dynamical theory of the electro-

magnetic field,

5. Heaviside’s reformulation of Maxwell’s equations in their

modern vector calculus form in the late 1800s, and

6. Herz’s publication in 1888 of data demonstrating that
transverse electromagnetic waves propagated at the speed

of light, thereby placing Maxwell’s theory on a firm em-
pirical footing.

Thus, by the year 1900 classical electromagnetic
theory was in place, and could be summarized con-
cisely in the Maxwell equations.



1.1. THE SYNTHESIS OF CLASSICAL ELECTROMAGNETISM 3

The Maxwell equations may be written in free space using SI

units and modern notation as

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×BBB− 1
c2

∂EEE

∂ t
= µ0 jjj (Ampère–Maxwell law),

1. EEE is the electric field,

2. BBB is the magnetic field,

3. ρ is the charge density,

4. jjj is the current vector,

5. ε0 is the permittivity of free space,

ε0 ≃ 8.85×10−12 C2

N m2 = 8.85×10−12 F
m
,

where the farad (F) is the derived SI unit of capacitance,

6. and µ0 is the permeability of free space,

µ0 = 4π ×10−7 N A−2.
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For the Maxwell equations

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×BBB− 1
c2

∂EEE

∂ t
= µ0 jjj (Ampère–Maxwell law),

the density ρ and the current jjj satisfy the continuity equation

∂ρ

∂ t
+∇∇∇ · jjj = 0 (continuity equation),

which ensures conservation of charge by requiring that

• charge variation in some volume (arbitrarily small)

• is caused by current through the surface bounding the vol-

ume.

Ampère’s original law was valid only for stationary charge

densities because it lacked the ∂EEE/∂ t term of the 4th Maxwell
equation.

1. Maxwell realized that for time-dependent densities Am-
père’s law was incompatible with the continuity equation.

2. Maxwell added the ∂ EEE/∂ t term to Ampère’s law, which
brought the Maxwell equations into harmony with the

continuity equation.
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Maxwell’s modification of the Ampére law

∇∇∇×BBB = µ0 jjj (Ampère law),

to the Ampére–Maxwell law

∇∇∇×BBB− 1
c2

∂EEE

∂ t︸ ︷︷ ︸
Maxwell

= µ0 jjj (Ampère–Maxwell law),

The term added by Maxwell is called the displacement current.

This coupling of EEE and BBB unified the previously

separate subjects of electricity and magnetism.

This has a number of far-reaching implications.

1. We may now speak of electromagnetism.

2. This will lead eventually to the interpretation of electro-

magnetic waves as light.

3. That Maxwell’s equations obey the continuity equation

∂ρ

∂ t
+∇∇∇ · jjj = 0

will lead to the idea of electromagnetic gauge invariance

and a quantum field theory of electromagnetism (QED).

4. Electromagnetic gauge invariance will eventually be gen-
eralized to the weak and strong interactions, resulting in
the quantum field theory that we call the Standard Model

of elementary particle physics.
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Symmetry plays a fundamental role in physics. The Maxwell
equations exhibit some important symmetries.

• Invariance under Space and Time Translations: Invari-
ance under translations in the spatial and time axes is asso-
ciated with conservation of momentum and energy. This
implies that we can assign energy and momentum to the

electromagnetic field.

• Invariance under Rotations: The vector form of
the Maxwell equations ensures rotational invariance

(isotropy of space), which in turn implies conservation of

angular momentum by the electromagnetic field.

That invariance under space and time translations,
and rotations imply conservation of momentum,
energy, and angular momentum, respectively, fol-
lows from Noether’s theorem: For every contin-

uous symmetry of a field theory Lagrangian there

is a corresponding conserved quantity.

• Symmetry under Space Inversion (Parity) P: In the pres-
ence of rotational invariance, parity is equivalent to mirror
reflection. Under parity EEE → −EEE, which is the transfor-
mation law for a polar vector (normal 3-vector), but under
parity BBB → BBB, which is the transformation law for a pseu-

dovector or axial vector.
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• Symmetry under Time Reversal (T): A motion picture of
electromagnetic events would look the same if run back-

wards or forward.

• Lorentz Invariance: Electromagnetism is Lorentz invari-

ant (consistent with special relativity). Einstein was
strongly influenced by this property of electromagnetism
in formulating the special theory of relativity.

• Gauge Invariance (Charge Conservation): That the
Maxwell equations are consistent with the continuity
equation implies that charge is conserved locally. This
conservation law is associated with local gauge invari-

ance for the electromagnetic field.

We shall have more to say about the local gauge

symmetry of electromagnetism and its far-reaching
implications in later chapters.

• Electric and Magnetic Field Asymmetry: The Maxwell
equations exhibit a large asymmetry between the roles of

electric and magnetic fields. If magnetic charge existed,
the Maxwell equations would become highly symmetric
under a transformation EEE → BBB and BBB →−EEE.

However, no magnetic charges (no magnetic

monopoles) have ever been observed.
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The four Maxwell equations, supplemented by boundary con-

ditions, may be solved (in principle) for the fields EEE and BBB, if
the charge density ρ and current jjj are known.

• However, these equations make no reference to forces,
which are often the connection to experimental results.

• This is remedied by introducing the Lorentz force law,

FFF = q(EEE + vvv×BBB) (Lorentz force),

The force on a particle with charge q and velocity
vvv at the point xxx is determined completely by the
instantaneous values of the fields EEE and BBB at xxx.

• Then Newton’s second law,

d ppp

dt
= FFF ,

determines the motion of charges in the electromagnetic
field.
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Then the understanding of classical electromagnetic theory

could be summarized in a succinct admonition:

Solve Maxwell’s equations with appropriate

boundary conditions for the electric and magnetic

fields, and use those to compute observables for

the problem at hand.

While this admonishion is not wrong, it is in danger of leaving
two things at loose ends.

1. The solution of Maxwell’s equations with appropriate
boundary conditions often requires considerable mathe-

matical and computational prowess.

2. Classical electromagnetism itself has changed little since
the late 1800s, but the context in which we view classi-

cal electromagnetism has changed dramatically because
of modern advances in quantum field theory.

1. The following chapters will address the first point at a prac-
tical level, by providing mathematical and computational tools

to facilitate solution of Maxwell’s equations.

2. The remainder of the current chapter will address the second
point at a more philosophical level, by setting electromagnetism

in the context of modern theoretical physics.
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1.2 Electromagnetism in Modern Physics

One of the remarkable findings of modern physics is that

• the already beautiful edifice of Maxwell’s equations for
electromagnetism

• hides within it a deceptively powerful symmetry called
(local) gauge invariance—in essence a symmetry under
local phase transformations—

• that, with suitable exposition, explains the origin of both
classical and quantum theories of electromagnetism.

But that is not all! The local gauge symmetry describing elec-
tromagnetism can be generalized mathematically into a more
powerful theory

• that can partially unify the electromagnetic and weak nu-
clear forces into a single electroweak interaction,

• and this can be generalized into the Standard Model that
partially unifies the electromagnetic, weak, and strong in-
teractions in a single gauge theory.
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1.2.1 Quantization of Electrical Charge

The basic unit of electrical charge is given by the magnitude of
the charge on an electron, which is measured to be

|qe|= 1.60217733×10−19 C (in SI or MKS units).

• The charges on all presently known particles or systems
of particles, are found to be integral multiples of this unit

(with positive or negative signs).

• It is known experimentally that the ratios of charges be-
tween different particles are integers to one part in 1020.

• Indeed, the stability of the atomic matter all around us

would be compromised by even a tiny difference in the
absolute values of the electron and proton charges.

There is presently no convincing explanation for quantization

of charge, but it is an empirical fact.

Dirac proposed long ago that, if magnetic

monopoles existed, there could be a topological

reason for charge quantization. However, no mag-
netic monopoles have been found, so Dirac’s idea
remains conjecture.
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Figure 1.1: Elementary particles of the Standard Model. Photons are labeled by
γ and gluons by G. Elementary particles of half-integer spin that don’t undergo
strong interactions are called leptons; electrons and electron neutrinos are exam-
ples. Particles made from quarks, antiquarks, and gluons (and thus that undergo
strong interactions) are called hadrons; pions (pi mesons) and protons are exam-
ples. A subset of hadrons corresponding to more massive particles containing three
quarks are called baryons; protons and neutrons are examples. The different types
of neutrinos (νe,νµ , . . .) and the different types of quarks (u, d, s, . . . ) are called
flavors. For simplicity the parallel classification of antiparticles has been omitted.

1.2.2 Particles in the Universe

Matter consists of the fermions in the Standard Model. The
particles of the Standard Model are summarized in Fig. 1.1.

• In the Standard Model matter is formed from fermions,

• while interactions between elementary particles are medi-
ated by the exchange of gauge bosons, and

• masses for bare (that is, non-interacting) particles arise
from interactions with the Higgs boson.
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For reasons that are not yet understood,

• the fermions (matter fields) of the Standard Model may be
divided into three generations (or families), I, II, and III,

• with the fermions of each generation being successively

more massive than in the preceding generation, and

• with many properties repeating themselves in successive

generations.

For example, the muon µ in generation II acts in
many respects as if it were a heavier version of the

electron e in generation I.

The Standard Model property of most interest to us is electrical

charge.

• All leptons (weakly interacting fermions) in the Standard
Model have charges that are a multiple of |qe|,

• but the hadrons (strongly interacting fermions) are the
quarks, with charges that are multiples of 1

3 |qe|.

For example,

• the charge of the up quark u is 2
3 |qe| and

• the charge of the down quark d is −1
3 |qe|.
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However, the non-abelian gauge field theory of the strong in-
teractions (quantum chromodynamics) predicts that

Quarks are confined and can never appear as free

particles.

Indeed, no free particles with 3rd-integer charges have ever

been observed in experiments.

For example, charge is an additive quantum num-

ber and a proton has a udu quark structure (two
up quarks and one down quark). The charge Qp

for a proton is then

Qp = 2Qu+Qd = 2

(
2
3

)
+

1
3
=+1,

in terms of the fundamental charge unit |qe|, while
a neutron has a udd quark structure and

Qn = Qu+2Qd =
2
3
+2

(
−1

3

)
= 0,

and the neutron charge |Qn| is zero.

Thus, some particle charges are fractions of |qe|,
but the physically observable particles all appear
to have charges that are integer multiples of the

fundamental charge unit given by |qe|.



Chapter 2

Introduction to Electrostatics

The fundamental problem to be solved in electrodynamics is
illustrated schematically in part (a) of the following figure

Q

q1

q2

q3

q4

q5 q6

q7
q8

Source

charges
Test charge

(a) (b)
q1

q2

x1

x2

If we have a distribution of n distinct source

charges q1, q2, q3, . . . qn, what net force do they
exert on a test charge Q?

15
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Q

q1

q2

q3

q4

q5 q6

q7
q8

Source

charges
Test charge

(a) (b)
q1

q2

x1

x2

Figure 2.1: (a) The prototype electrostatics problem: interaction in vacuum of a
test charge Q with a set of stationary source charges qn. (b) Coulomb interaction
between two isolated test charges.

In the most general case both the source charges and test
charges may be in motion but

• we shall begin with the simpler case of electrostatics,

where the source charges are assumed to be fixed in spa-

tial position.

• We shall also assume initially that the source and test

charges are embedded in vacuum.

Let us now consider a quantitative description of
this idealized problem, utilizing data, mathemat-
ics, and physical intuition as our guides.
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2.1 Coulomb’s Law

Consider first the force acting between two isolated charges at
rest with respect to each other, as illustrated in part (b) of the
following figure.

Q

q1

q2

q3

q4

q5 q6

q7
q8

Source

charges
Test charge

(a) (b)
q1

q2

x1

x2

The force exerted on a single charge q1 located at position xxx1

by a single charge q2 located at position xxx2 may be measured
experimentally and is found to be given by Coulomb’s law,

FFF = kq1q2
xxx1− xxx2

|xxx1− xxx2|3
,

where

• the charges qn are algebraic quantities that may be posi-

tive or negative,

• the force points along the line from q1 to q2 and is attrac-

tive if the signs of the charges are opposite and repulsive

if they are the same.

The constant k depends on the system of units that is in use.
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Two common choices are electrostatic units and the SI system.

1. In electrostatic units (esu; also termed Gaussian or CGS),
k = 1 and unit charge is chosen such that it exerts a force
of one dyne on an equivalent point charge located one cen-
timeter away. In the esu system the unit charge is called a
statcoulomb.

2. In the SI system of units,

k =
1

4πε0
,

where the constant ε0 is called the permittivity of free

space. In the SI system the unit of force is the Newton (N),
the unit of distance is the meter (m), the unit of charge is
the coulomb (C), and

ε0 ≃ 8.85×10−12 C2

N m2 = 8.85×10−12 F
m
,

where the farad (F) is the derived SI unit of electrical ca-
pacitance. Thus Coulomb’s law expressed in SI units is

FFF =
q1q2

4πε0

xxx1 − xxx2

|xxx1− xxx2|3
.

Other systems of units such as Heaviside–Lorentz

(where k = 1/4π) are favored in certain areas of
physics, but we shall primarily use the SI (or at
times the esu) system of units.
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Deviations from the Inverse-Square Law

It is common to report possible experimental deviation from the

inverse square law in one of two ways.

1. Assume that the electrostatic force has the dependence
F ∼ 1/r2+ε and report an upper experimental limit on ε .

2. Assume that the electrostatic potential has the Yukawa

form

V ∼ r−1e−µr = r−1e−(mγc/h̄)r µ ≡ mγc

h̄
,

where mγ is the mass of the photon

The photon should be identically massless for an
inverse square force law.

3. Then possible deviations from the inverse square law are
often reported as an upper limit on µ or an upper limit on

mγ .
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1. The original experiments of Cavendish using concentric
spheres in 1772 established an upper limit |ε| ≤ 0.02.

2. Modern determinations based on Gauss’s law have
pushed this limit to ε = (2.7±3.1)×10−16.

3. The best limit on the mass of the photon come from mea-

suring planetary magnetic fields. Such measurements
place a limit on the photon mass of mγ < 4×10−51 kg.

Experimental limits suggest that

• we can assume that the photon is massless

and

• deviations from Coulomb’s law are negligible

on all length scales investigated thus far.
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2.2 The Electric Field

In experiments determining the interaction of charges one typ-

ically measures a force.

• However, much of the power of modern theoretical
physics derives from the ability to abstract broader im-

plications from direct measurements.

• Perhaps no abstract concept has been more powerful in the
development of physics than that of a field (an instance of
something defined at every point of spacetime).

• Let us introduce an electric field EEE acting on a test charge
q by defining

FFF = qEEE.

• Thus the electric field is the force per unit test charge at a
particular point in spacetime.

• Since

– force is a vector and

– charge is a scalar,

the electric field generated by a charge is a vector field

EEE(t,xxx) defined at each point of spacetime (t,xxx).
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z

Figure 2.2: The electric field vector EEE at a point P, generated by a charge q1 located
at position xxx1.

• Comparing with Coulomb’s law, the electric field at a
point P(xxx) produced by a point charge q1 at xxx1 is

EEE(xxx) = kq1
xxx− xxx1

|xxx− xxx1|3
,

as illustrated in Fig. 2.2.

• The electric field is produced by the source charges.

• It exists at a point whether there is a test charge there or
not.

• The SI unit of charge is the coulomb (C) and

• the electric field EEE has units of volts per meter in the SI
system.

We are presently considering electrostatics, so the
time coordinate will be suppressed for now.



2.2. THE ELECTRIC FIELD 23

Significance of Fields in Electromagnetism

• As suggested by FFF = qEEE, we generally measure force and
fields may be inferred from that, suggesting a derivative

role for fields.

• But modern physics places strong emphasis on the fields.

• Indeed, Maxwell’s equations are formulated in terms of

– electric fields EEE and

– magnetic fields BBB,

and electromagnetic fields are the central concept of the
theory of electromagnetism.

• The importance of fields is most obvious in relativistic

quantum field theory, which is not our subject here.

• However, the field concept traces historically to the intro-

duction of electric and magnetic fields in the description
of classical electromagnetism, which is our subject.
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Originally it was believed that forces associated with charges,
currents, and magnets

• constituted action at a distance,

• meaning that the forces acted instantaneously over any

distance.

Similar statements apply to gravity, since Newto-

nian gravity acts instantaneously. General rela-

tivity (in which gravity propagates at lightspeed)
eliminated action at a distance in gravitational
physics.

The modern view—shaped by experimental measurement and
the development of quantum field theory is that

• fields are every bit as fundamental as particles (arguably
even more so)

• In this picture, forces are mediated by fields, and

• the lightspeed limit set by special relativity means that

no signal can transmit a force faster than the speed
of light,

• This relegates action at a distance to the dustbin.
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If, for example, a charge moves,

• the fields created by the charge change, but

• that change isn’t felt immediately at every point (xxx,t) of
spacetime.

• Maxwell’s equations require the change to be propagated
through changes in the electric field EEE(xxx,t) and the mag-

netic field BBB(xxx,t), defined at each point of spacetime, and

• those changes can propagate no faster than the speed of

light c.

This abstract view was initially resisted by many, particularly
because

• the fields could exist in vacuum, and

• did not describe tangible matter.

Remember that the prevailing view until Einstein

and special relativity in 1905 was that

• waves require a medium for propagation and
that

• light propagated through a special “material”
called the aether.
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But modern physics views things quite differently:

• First, the aether is fiction and light can propagate in a

vacuum.

• Introduction of electric and magnetic fields allows a sim-

ple and clean mathematical description of electromag-

netic phenomena,

• but the fields are not just mathematical abstractions;

they are real physical entities (“as real as a rinoceros”—
Classical Electromagnetism in a Nutshell, A. Garg).

• They carry concrete physical properties such as energy,
momentum, and angular momentum.

• This is most clear in quantum field theory, where

– these physical attributes become properties of quanta

of the field (photons) and

– one views electromagnetic interactions as being me-

diated by exchange of virtual photons.

• These photons associated with the electromagnetic field
are observable:

At sufficiently high energy, collision of two pho-

tons can produce matter in the form of an electron
and positron pair; real as a rinoceros, indeed!
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Summary: Relativistic quantum field theory implies that all

non-gravitational fundamental interactions (electromagnetic,
strong, and weak)

• are mediated by the gauge bosons of the Standard Model

(γ , G, W, Z in figure shown below)

• that are the quanta of gauge fields generalizing the gauge
symmetry of photons.

Thus is the rich legacy of introducing the concept of fields in

classical electromagnetism.
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2.3 Principle of Superposition

Q

q1

q2

q3

q4

q5 q6

q7
q8

Source

charges
Test charge

(a)

Now let us address the more general case in the figure above of
the interaction of a test charge with n source charges.

• In principle this could be a quite complicated problem, but

• it is an experimental fact that if the interactions between
charged particles are not too large, and

• if we can ignore quantum effects at the microscopic level,

• the interaction between any two charges is unaffected by
the presence of all other charges.

• Thus, the total force acting on the test charge Q can be
obtained by summing the interactions of the charges pair-

wise.

• This is termed the principle of linear superposition.

The ultimate source of superposition is the linear-

ity of the Maxwell equations in EEE and BBB .
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Since the principle of linear superposition applies to the forces
it applies also to the electric fields computed from FFF .

• The electric field acting at position xxx in in the above figure
is given by a vector sum of contributions from all source

charges qi,

EEE(xxx) =
1

4πε0

n

∑
i=1

qi
xxx− xxxi

|xxx− xxxi|3
,

where we work in SI units.

• In most practical problems the charges can be approxi-
mated by a continuous charge density ρ(xxx′), such that

• the charge contained in a small 3D volume element d3x′ ≡
dx′dy′dz′ centered at xxx′ is ∆q = ρ(xxx′)∆x∆y∆z.

• Then the sum over discrete charges may be replaced by an
integral over a continuous charge distribution,

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3 d3x′.
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S
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θ
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Figure 2.3: Closed surface S illustrating Gauss’s law. The electric field generated
by the charge q is EEE , the normal vector to the surface is nnn, and da is an element of
surface area.

2.4 Gauss’s Law

The electric field for a continuous charge distribution may be
calculated from

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3 d3x′.

• However, evaluating the integral in this equation isn’t al-
ways the easiest solution for the electric field

• If a problem has some level of symmetry, often another
integral result called Gauss’s law can lead to an easier so-
lution.



2.4. GAUSS’S LAW 31
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The figure shows a charge q enclosed by a surface S.

• The normal component of EEE times a surface element da is

EEE ·nnnda =
q

4πε0

cosθ

r2 da =
q

4πε0
dΩ,

• where in the last step we have used that

cosθ da = r2 dΩ,

with dΩ being the solid angle subtended by da at the po-
sition of the charge.

• If the normal component of EEE is now integrated over the
entire surface,

∮

S
EEE ·nnnda =

{
q/ε0 for q inside S,

0 for q outside S,

where
∮

S
EEE ·nnnda is the flux through the surface S.

• This is Gauss’s law in integral form for a single charge.
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• For a set of discrete charges Gauss’s law takes the form,
∮

S
EEE ·nnnda =

1
ε0

∑
i

qi,

• where the summation over i is restricted to charges qi that
are inside the surface S.

• For a continuous charge distribution Gauss’s law takes the
form ∮

S
EEE ·nnnda =

1
ε0

∫

V
ρ(xxx)d3x,

where the right-side integration is over the volume V con-
tained within the surface S.
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Gauss’s law may be viewed as integral formulations of the law

of electrostatics. Corresponding differential forms of Gauss’s

law may be obtained using the divergence theorem.

Divergence theorem: For a vector field defined
within a volume V enclosed by a surface S,

∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

where the left side is the surface integral of the
outward normal component of AAA and the right side

is the volume integral of the divergence of AAA.

The divergence theorem allows the expression
∮

S
EEE ·nnnda =

1
ε0

∫

V
ρ(xxx)d3x,

to be written in the form
∫

V

(
∇∇∇ ·EEE − ρ

ε0

)
d3x = 0.

But this can be true for arbitrary V only if the integrand van-

ishes, so

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law),

which is the differential form of Gauss’s law for continuous
charge distributions.

We have obtained the first Maxwell equation. Only
three more to go!
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Figure 2.4: Examples of applying Gauss’s law to find the electric field. (a) A ball of
uniformly distributed charge with radius R. (b) A cylinder carrying a charge density
proportional to the distance s from the cylindrical axis.

Example: Figure 2.4(a) shows a charged solid 2-sphere (a ball) of

radius R, for which the total charge Q is assumed to be evenly dis-

tributed. What is the electric field outside the ball?

We may solve this using Gauss’s law in integral form. Imagine sur-
rounding the charged ball with a 2-sphere of radius r > R (this is
called a Gaussian surface). Applying Gauss’s law

∮
EEE ·nnnda =

1
ε0

Q,

where Q is the total charge. Because of the spherical symmetry, EEE

and nnnda point radially outward so that the scalar product is trivial to
evaluate: ∮

EEE ·nnnda =

∮
|EEE|da,
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and the magnitude |EEE| is constant over the surface by symmetry, so it
can be pulled out of the integral,

∮
|EEE|da = |EEE|

∮
da = 4πr2|EEE|.

Combining the preceding results,

4πr2|EEE|= 1
ε0

Q,

or finally,

EEE =
1

4πε0

Q

r2 r̂rr,

where r̂rr is a unit vector in the radial direction.

Notice the well-known result that the field external
to the charge distribution is the same that would
have been obtained by putting all charge at the cen-
ter of the ball.
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Example: Consider Fig. (b) above, where a long cylinder carries

a charge density proportional to the distance s′ from the axis of the

cylinder, ρ = ks′, where k is a constant. What is the electric field

inside the cylinder?

Let’s draw a Gaussian cylinder of radius s and length L, as illustrated
in Fig. (b). Gauss’s law for this surface is

∮
EEE ·nnnda =

1
ε0

Q,

where Q is the total charge enclosed by the Gaussian surface, which
is given by integrating the charge over the volume within the Gaus-
sian surface using cylindrical coordinates with a cylindrical volume
element dτ = sdsdφ dz

Q =
∫

ρdτ = k

∫ s

0
s′2ds′

∫ 2π

0
dφ
∫ L

0
dz

= 2πkL

∫ s

0
s′2ds′ =

2
3

πkLs3.
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By symmetry EEE must point radially outward from the cylinder’s cen-

tral axis, so for the curved portion of the Gaussian cylinder
∫

EEE ·nnnda =

∫
|EEE|da = |EEE|

∫
da = 2πsL |EEE|,

while the two ends contribute zero because EEE is perpendicular to nnnda.
Thus, from Gauss’s law,

2πsL |EEE|= 1
ε0

(
2
3

πkLs3
)

and the electric field is given by

EEE =
1

3ε0
ks2ŝss,

where ŝss is a unit vector pointing radially from the central axis of the
cylinder.
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One sees generally from such examples that using Gauss’s the-
orem ∮

EEE ·nnnda =
1
ε0

Q,

to determine the electric field

• is most useful when there is a high degree of symmetry

that can be exploited to evaluate integrals.

• Generally our goal with Gauss’s law is to simplify the in-

tegral on the left side.

Often this can be done if we can choose a gaussian surface such
that one or more of the following conditions holds.

1. The electric field is zero over the surface.

2. The electric field is constant over the surface, by symme-
try arguments.

3. The integrand EEE · nnnda reduces to the algebraic product
|EEE|da because the vectors EEE and nnn are parallel.

4. The integrand EEE ·nnnda is zero because the vectors EEE and nnn

are orthogonal.

If none of these possibilities are fulfilled, Gauss’s
law is still valid but it may not be the easiest way
to determine the electric field.
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Figure 2.5: Line integral in an electric field generated by a charge Q at the origin.

2.5 The Scalar Potential

Consider a line integral between two points AAA and BBB in a field
generated by a single charge Q at the origin, as illustrated in
Fig. 2.5. In spherical coordinates the electric field EEE and line
element dlll are

EEE =
1

4πε0

Q

r2 r̂rr dlll = dr r̂rr+ r dθθ̂θθ + r sinθdφ φ̂φφ ,

where r̂rr, θ̂θθ , and φ̂φφ are unit vectors. Therefore,
∫ BBB

AAA
EEE ·dlll =

1
4πε0

∫ BBB

AAA

Q

r2 dr

=
−Q

4πε0r

∣∣∣∣
RB

RA

=
1

4πε0

(
Q

RA

− Q

RB

)
.

The integral around a closed path is then zero,
∮

EEE ·dlll = 0,

since Ra = Rb in that case. Now invoke Stokes’ theorem.
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Stokes’ theorem: If AAA is a vector field and S is an arbitrary
open surface bounded by a closed curve C, then

∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

where nnn is the normal to S, the line element on the curve C is dlll,
and the path in the line integration is traversed in a right-hand
screw sense relative to nnn.
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Then Stokes’ theorem
∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

implies that
∫

S
(∇∇∇×EEE) ·nnnda =

∮

P
EEE ·dlll = 0,

and since this must be valid for any closed path,

• the integrand on the left side must vanish,

∇∇∇×EEE = 000,

and the curl of the electric field EEE is zero.

• Because of ∇∇∇×EEE and Stokes’ theorem, the line integral

of the electric field around any closed loop is zero,

• which implies that the line integral between points AAA and
BBB has the same value for all possible paths.
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Thus we can define a function Φ(xxx) by

Φ(xxx) =−
∫ xxx

G

EEE(xxx) ·dlll,

where G is a chosen standard reference point.

The function Φ(xxx) is called the scalar potential or
the electric potential.
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The scalar potential Φ(rrr) associated with a point charge at the

origin is given by

Φ(rrr) =
1

4πε0

(
1
r

)
,

where r is the separation between charge and point.

Invoking superposition, the potential generated by a collection

of n charges is

Φ(rrr) =
1

4πε0

n

∑
i=1

qi

ri
.

For a continuous charge distribution the potential evaluates to

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d3x′ (3D volume charge),

Φ(xxx) =
1

4πε0

∫
σ(xxx′)
|xxx− xxx′| da′ (2D surface charge),

Φ(xxx) =
1

4πε0

∫
λ (xxx′)
|xxx− xxx′| dl′ (1D line charge),

where in these expressions

• ρ is a volume charge density,

• σ is a surface charge density, and

• λ is a line charge density.
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2.6 The Electric Field and the Scalar Potential
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The electric field is special because it has vanishing curl.

We shall now use this to reduce finding the electric
field (a vector problem) to a simpler scalar prob-
lem.

The potential difference between points AAA and BBB (see figure) is
given by

Φ(BBB)−Φ(AAA) =−
∫ BBB

G

EEE ·dlll+
∫ AAA

G

EEE ·dlll

=−
∫ BBB

G

EEE ·dlll−
∫

G

AAA
EEE ·dlll

=−
∫ BBB

AAA
EEE ·dlll.
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Applying the fundamental theorem for gradients,

F(BBB)−F(AAA) =

∫ BBB

AAA
(∇∇∇F) ·dlll,

to the above result

Φ(BBB)−Φ(AAA) =−
∫ BBB

AAA
EEE ·dlll

then gives ∫ BBB

AAA
(∇∇∇Φ) ·dlll =−

∫ BBB

AAA
EEE ·dlll.

But since this must be true for any points AAA and BBB, the inte-

grands on the two sides must be equal and we obtain

EEE =−∇∇∇Φ,

which is a differential version of

Φ(xxx) =−
∫ xxx

G

EEE(xxx) ·dlll.
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In SI units force is measured in newtons and charge in

coulombs. Then

• electric fields EEE have units of newtons per coulomb.

• The potential Φ has units then of newton-meters per

coulomb, or joules per coulomb, where

1
joule

coulomb
≡ 1 volt

A big advantage of the potential formulation is
that

– if you can determine Φ ,

– then you can obtain the electric field by tak-
ing the gradient, EEE =−∇∇∇Φ.

• This is perhaps surprising because

– Φ is a scalar with only one component, while

– EEE is a vector with three components.

• The source of this seeming miracle lies in the restrictions

following from ∇∇∇×EEE = 0, which implies the constraints

∂Ex

∂y
=

∂Ey

∂x

∂Ez

∂y
=

∂Ey

∂ z

∂Ex

∂ z
=

∂Ez

∂x
.
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There is an essential ambiguity in defining the potential be-
cause of the arbitrary reference point G appearing in

Φ(xxx) =−
∫ xxx

G

EEE(xxx) ·dlll,

since changing it shifts the potential by a constant amount.

• Thus the potential itself has no physical meaning, but

• if we choose the same reference G for all potentials,

1. differences between potentials (Φ(xxxi)−Φ(xxx j) are in-
dependent of the reference point and

2. gradients of the potential ∇∇∇Φ are unaffected by shift-
ing the reference point a constant amount, since the
derivative of a constant is zero,

so these have physical meaning.

The selection of a reference point is in principle arbitrary.

The most common choice in electrostatics is to
take the reference point for potentials to be

• an infinite distance away from the charges,

• where the potential drops to zero.
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2.7 Superposition of Scalar Potentials

The scalar potential Φ obeys the superposition principle:

• The forces acting on a test charge Q are the vector sum of
contributions from each source charge qi,

FFF = FFF1+FFF2+FFF3+ . . .

• and since FFF = QEEE , dividing by Q implies linearity for the
electric fields EEE also,

EEE = EEE1+EEE2+EEE3 + . . .

• Thus, from the preceding definitions the scalar potential
Φ is expected to obey linear superposition,

Φ = Φ1 +Φ2+Φ3+ . . .

meaning that the potential at a point xxx is the sum of the

potentials due to all source charges computed separately.

• However, there is a fundamental difference between linear
superposition for potentials and linear superposition for
forces and electric fields.

– Linear superposition of electrostatic forces FFF and
electric fields EEE corresponds to vector sums,

– but linear superposition of potentials entails an ordi-
nary arithmetic sum over scalar quantities Φi,
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Figure 2.6: (a) An electric dipole charge configuration. (b) Uniformly charged disk
of radius R and surface charge density σ .

Example: Let’s calculate the electric field for the electric dipole

charge configuration displayed in Fig. 2.6(a) at the point P, and also

at a very large distance x ≫ a along the x axis from the charges.

The distance from −q to P is x+ a and the distance from +q to P is
x−a. Then at the point P the potential Φ is

Φ =
1

4πε0

(
q

x−a
+

−q

x+a

)
=

1
2πε0

(
qa

x2 −a2

)
.

The electric field is then oriented along the x axis and given by minus

the gradient of the potential

Ex =−∇∇∇Φ =−dΦ

dx
=

1
4πε0

(
aqx

(x2 −a2)2

)
.

The scalar potential and electric field may be approximated as

Φ ≃ 1
2πε0

(aq

x2

)
Ex ≃−dΦ

dx
=

1
πε0

(aq

x3

)
,

if x ≫ a, so that x2 −a2 ∼ x2.
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Example: Let’s calculate the electric field at the point P along the

x axis for the charged disk of radius R and uniform surface charge

density σ illustrated in Fig. (b) above.

For a ring of radius r and width dr the charge element at a distance

(r2+ x2)1/2 from the point P is dq = (2πrdr)σ . Then

dΦ =
1

2ε0

(
σrdr√
x2 + r2

)

and the total Φ at the point P is obtained by integration over the disk,

Φ =
∫

dΦ =
∫ R

0

1
2ε0

(
σrdr√
x2 + r2

)

=
σ

2ε0

∫ R

0

r dr√
x2 + r2

=
σ

4ε0

∫ R

0

d(x2 + r2)√
x2+ r2

(change variables)

=
σ

2ε0

[√
x2 + r2

]R

0

=
σ

2ε0

(√
x2 +R2− x

)
,
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where we changed variables in the third line. Finally, the electric field

at P is minus the gradient of the potential,

Ex =−dΦ

dx
=

σ

2ε0

(
1− x√

x2+R2

)
,

where by symmetry EEE has only x components.
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• For relatively simple charge distributions like those in the
preceding two examples, we can

– find the potentials Φ easily and

– then determine the electric field from the gradient of

the potential, EEE =−∇∇∇Φ.

• However, for more complex situations we may need more

powerful and systematic ways to determine potentials.

• In the next section we show that finding the potentials can
be cast in the form of solving a second-order partial dif-

ferential equation.

• This approach may be preferred over the ones we have ex-
amined so far, particularly for problems with complicated

boundary conditions.
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What is the curl of the electric field? What is the
divergence of EEE?
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2.8 The Poisson and Laplace Equations

The curl of the electric field vanishes, ∇∇∇×EEE = 0. What is the
divergence of the electric field equal to? From EEE =−∇∇∇Φ,

∇∇∇ ·EEE = ∇∇∇ · (−∇∇∇Φ) =−∇∇∇2Φ,

and comparing with Gauss’s law

∇∇∇ ·EEE =
ρ

ε0
,

gives Poisson’s equation,

∇∇∇2Φ =− ρ

ε0
(Poisson’s equation),

where the Laplacian operator ∇∇∇2
operates on a scalar to return

a scalar.

In cartesian coordinates (x,y,z) the Laplacian operator is

∇∇∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 ,

in spherical coordinates (r,θ ,φ) the Laplacian operator is

∇∇∇2 =
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2 sin2 θ

∂ 2

∂φ2 ,

and in cylindrical coordinates (ρ ,θ ,φ) the Laplacian operator
is

∇∇∇2 =
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂ 2

∂φ2 +
∂ 2

∂ z2 .
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For regions where ρ = 0, Poisson’s equation reduces to
Laplace’s equation,

∇∇∇2Φ = 0 (Laplace’s equation).

By construction, solving Poisson’s equation or

Laplace’s equation with appropriate boundary
conditions is equivalent to solving for the poten-

tial Φ using

Φ(xxx) =−
∫ xxx

G

EEE(xxx) ·dlll,

from which the electric field EEE can be calculated

using EEE =−∇∇∇Φ.
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Example: Earlier it was asserted that

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d3x′

gives the scalar potential Φ(xxx) for a 3D continuous charge distribu-

tion. If correct, Φ(xxx) should be a solution of the 3D Poisson equation

∇∇∇2Φ(xxx) =−ρ(xxx)

ε0
.

Let’s check that it is.

Applying the Laplacian operator to both sides of this equation gives

∇∇∇2Φ(xxx) =
1

4πε0

∫
ρ(xxx′)∇∇∇2

(
1

|xxx− xxx′|

)
d3x′.

• Evaluating the right side is potentially tricky in that the integrand

is singular as xxx′ → xxx, but this

• may be handled elegantly using that the Laplacian of |xxx− xxx′|−1

is proportional to a Dirac delta function,

∇∇∇2
(

1
|xxx− xxx′|

)
=−4πδ (xxx− xxx′),

• giving immediately

∇∇∇2Φ(xxx) =− 1
ε0

∫
ρ(xxx′)δ (xxx− xxx′)d3x′ =−ρ(xxx)

ε0
.

This is Poisson’s equation, proving the assertion that

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d3x′

is the scalar potential for a 3D continuous charge distribution.
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Figure 2.7: Moving an electrical charge Q on a path between endpoints AAA and BBB in
an electric field generated by a set of source charges.

2.9 Work and Energy in Electric Fields

A question of fundamental importance in electrostatics is illus-
trated in Fig. 2.7:

If we have a stationary configuration of source
charges and a test charge is moved along some
path between two points AAA and BBB, how much work

will be done?
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Question: How do we calculate work done along a
path?
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2.9.1 Work to Move a Test Charge

The force exerted on the test charge Q is FFF = QEEE, where the
electric field EEE is generated by the source charges.

• Thus a minimal force −QEEE must be exerted at each point
to move the charge along the path and

• the total work W done is given by the line integral

W =
∫ BBB

AAA
FFF ·dlll =−Q

∫ BBB

AAA
EEE ·dlll = Q [Φ(BBB)−Φ(AAA)],

where

Φ(BBB)−Φ(AAA) =−
∫ BBB

AAA
EEE ·dlll.

has been used.



60 CHAPTER 2. INTRODUCTION TO ELECTROSTATICS

q1

q2

q3

q4

q5 q6

q7
q8

Source

charges

A

B

Q

The work Q [Φ(BBB)−Φ(AAA)] is independent of path.

• Therefore the electrostatic force is conservative,

• meaning that it depends

– only on the difference in potentials between the end-

points of the path and

– not on the details of the path followed.

• If we wish to move the charge from an infinite distance
away to a point BBB,

W = Q [Φ(BBB)−Φ(∞)],

so if we make the standard choice that the reference point
for the potential is Φ(∞) = 0,

• the work done in moving a test charge from infinity to a
point xxx ≡ BBB is

W = QΦ(xxx) −→ Φ(xxx) =
W

Q
.
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• Thus Φ(xxx) = W/Q and the scalar potential Φ(xxx) is the
work per unit charge done against EEE to move a test charge
from infinity to xxx.

• It may also be interpreted as

– a potential energy stored in the fields of the assembled
charge configuration

– that could be released by moving the charge back to

infinity.



62 CHAPTER 2. INTRODUCTION TO ELECTROSTATICS

Example: Let’s use W = QΦ(xxx) to calculate the total work done in

assembling a set of n charges qi, by bringing them from infinity to

their final positions in a local assembly of charges.

1. The first charge costs nothing to move, since there are no assem-
bled charges and no electric field to fight against.

2. Adding each additional charge will require the work summed

pairwise over contributions from all charges.

3. Therefore the total work to assemble the charge distribution is

W =
1
2

1
4πε0

n

∑
i=1

n

∑
j 6=i

qiq j

ri j

=
1
2

n

∑
i=1

qi

(
n

∑
j 6=i

1
4πε0

q j

ri j

)

=
1
2

n

∑
i=1

qi Φ(rrri),

• where ri j is the distance between charges i and j,

• the initial factor of 1
2 is to correct for the double counting of pairs

in the double summation,

• the factor in parentheses on line 2 represents the potential Φ(rrri)

at position rrri of charge qi generated by all the other charges.

• W represents the work required to assemble the n charges into
some local configuration, or

• a total (potential) energy stored in the electric fields of the final

assembly of charges



2.9. WORK AND ENERGY IN ELECTRIC FIELDS 63

2.9.2 Energy of a Continuous Charge Distribution

• From the discrete-charge expression

W =
1
2
· 1

4πε0

n

∑
i=1

n

∑
j 6=i

qiq j

ri j
=

1
2

n

∑
i=1

qi Φ(rrri),

we deduce that assembling a continuous volume charge

requires work

W =
1
2

∫
ρ Φdτ,

where dτ is a volume element.

This can be rewritten to eliminate ρ and Φ in favor

of EEE in the following way.

• Use Gauss’s law ρ = ε0∇∇∇ ·EEE to express ρ in terms of EEE,

W =
ε0

2

∫
(∇∇∇ ·EEE)Φdτ,

• and integrate by parts to give

W =
ε0

2

(
−
∫

V
EEE · (∇∇∇Φ)dτ +

∮

S
ΦEEE ·daaa,

)
daaa≡ nnnda.

• But ∇∇∇Φ =−EEE, so

W =
ε0

2

(∫

V
E2 dτ +

∮

S
ΦEEE ·daaa

)
,

where E ≡ |EEE|, and V encloses all charge.
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If we let V → ∞ in

W =
ε0

2

(∫

V
E2 dτ +

∮

S
ΦEEE ·daaa,

)

then the second (surface) term tends to zero relative to the first
term and we obtain

W =
ε0

2

∫
E2dτ,

where it is understood that the integration is over all space. The
use of this equation is illustrated in the following example.
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Example: Let’s calculate the energy of a uniformly charged spherical

shell of total charge Q and radius R.

From the solution of Problem 2.4, inside the sphere EEE = 0 and outside

EEE =
1

4πε0

Q

r2 r̂rr −→ E2 =
Q2

(4πε0)2r4 ,

where we work in spherical coordinates. Therefore,

W =
ε0

2

∫
E2dτ =

Q2

8πε0

∫ ∞

R

dr

r2 =
1

8πε0

Q2

R
,

where all contributions to the energy have come from fields outside
the sphere.
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Chapter 3

Electrostatic Boundary Value

Problems

In the preceding chapter we introduced

• the Poisson equation, with solutions corresponding to
scalar potentials Φ(xxx) in the presence of a charge density,
and

• the Laplace equation, with solutions corresponding to
scalar potentials Φ(xxx) in the absence of a charge density.

Those solutions result from solving the corresponding partial
differential equations subject to boundary conditions, which
can be a highly nontrivial matter.

In this chapter we address the nature of the solu-
tions of the Poisson and Laplace equations, and
some actual means of obtaining solutions.

67
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3.1 Properties of Conductors

There are a number of categories for the classification of matter
in materials science. One of the most fundamental distinctions
is between

• insulators, which correspond to matter with charge carri-
ers tightly bound to atoms or molecules that do not trans-
port electrical charge well, and

• conductors, which have many delocalized charge carriers
that are free to transport electrical charge. Conductors are
also often called metals.

The charge carriers are typically electrons, electron holes, or
ions, but for purposes of discussion we shall normally assume
electrons to be the charge carriers.
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Figure 3.1: (a) Conducting slab in a uniform electric field EEE. (b) Gaussian surface
(dashed curve) inside a conductor. (c) Cylindrical gaussian surface perpendicular
to the surface of a conductor.

The free mobility of charge carriers in good conductors leads
to many of their basic properties:

1. EEE = 0 inside a conductor. Qualitatively an electric field
inside the conductor would accelerate electrons, violating
electrostatic equilibrium. More precisely,

• Consider Fig. 3.1(a), where a conducting slab is im-
mersed in an external electric field EEE.

• Initially the external field will attract negative charges
to the left side, leaving a net positive charge on the
right side (an induced charge).

• This polarization of charge will create an internal
electric field EEE ′ that opposes the external field.

• Charge will continue to flow until the induced inter-
nal electric field EEE ′ exactly cancels the external field,
leaving a net zero electric field inside the conductor.

This is a conductor so generation of internal fields that cancel
the external field typically occurs on a timescale so short that it
can be assumed to be instantaneous.
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2. Consider the gaussian surface shown in Fig. (b) above.
From Gauss’s law with zero internal electric field (point 1
above),

∮

S
EEE ·nnnda =

∮

S
000 ·nnnda = 0 =

Q

ε0
,

where Q is the total enclosed charge. Hence the absence of
an electric field means necessarily that the charge density
ρ = 0 in the interior of the conductor.

3. Any excess charge in a conductor must reside at the sur-

face of the conductor. This follows immediately from
point 2 above.

– Since the gaussian surface (dashed curve) in Fig. (b)
above can be place arbitrarily close to the surface,

– any excess charge can only exist at the surface.
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4. Any electric field outside the conductor is generated by
the surface charge and is perpendicular to the surface.

– Consider the cylindrical gaussian surface partially in-
side and partially outside the conductor in Fig. (c).

– If EEE had a component tangent to the surface of the
conductor, this would cause electrons to move along
the surface and disturb electrostatic equilibrium.

– Thus EEE is perpendicular the the surface and there is no
flux through the curved part of the gaussian cylinder.

– There is also no flux through the flat face of the cylin-
der inside the conductor, because EEE is zero there
(point 1 above).

– Hence the net flux is only through the flat face of
the gaussian cylinder outside the conductor. Apply-
ing Gauss’s law to this surface,

∮

S
EEE ·nnnda =

∫

base

|EEE|da = EA =
Q

ε0
=

σ

ε0
,

where σ is the surface charge density A is the area of

the cylindrical endplate.



72 CHAPTER 3. ELECTROSTATIC BOUNDARY VALUE PROBLEMS

E

E'

(a)

(b) (c)

Gaussian

surface

Gaussian

surface

Area = A
E

Thus any external electric field is proportional to the sur-
face charge density and perpendicular to the surface.

5. The potential Φ(xxx) has the same value at each point in the
conductor (a conductor is an equipotential), since for any
two points in the conductor or on its surface, EEE = 0 and

Φ(AAA) = Φ(BBB) =−
∫ BBB

AAA
EEE ·dlll = 0,

6. If the conductor is of irregular shape, the surface charge

density σ is greatest where the surface has the largest lo-

cal curvature (smallest radius of curvature). Proof:

– Consider an irregularly shaped conductor and

– partition the surface into small elements of area dai

subtending equal angles measured from the center.

– Points 1 and 3 then require σi dai to be constant, and

– since dai depends on the radius of curvature, the
smaller the radius of curvature (the larger the curva-
ture) the larger the local surface charge density σ .

If conductors are present, these properties often
play a large role in determining boundary condi-
tions and solutions.
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Figure 3.2: A parallel-plate capacitor.

3.2 Capacitance

By Coulomb’s law the electric field for an isolated conductor is pro-
portional to the source charge Q and therefore the potential Φ is also,
so Q and Φ are proportional to each other. The constant of proportion-
ality is called the capacitance C. For an isolated conductor carrying
a charge Q with potential Φ, the capacitance is

C =
Q

Φ
.

In the SI system the charge is measured in coulombs, the potential in
volts, and the capacitance in farads (F), with 1F ≡ 1coulomb/volt.

The farad is a very large unit for typical phenom-
ena, so it is common to use microfarads (1 µF =
10−6 F) and picofarads (1pF = 10−9 F) as units of
capacitance in practical calculations.

Capacitance is also a very useful concept in dealing with the change
and potential associated with two or more conductors. The generic
example is the parallel-plate capacitor illustrated in Fig. 3.2.
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For two conductors the capacitance is defined to be the charge on the
positive plate divided by the difference in potential between the two
plates. If we define the difference in potential for two conductors to
be V ,

V ≡ Φ+−Φ−,

the capacitance is given by

C =
Q

V
(two conductors).

For the parallel-plate capacitor in the figure shown above the capaci-
tance depends only on the geometry,

C =
ε0A

s
(parallel-plate capacitor),

where A is the surface area of a plate and s is the separation between
the (assumed parallel) plates.

As will be discussed later, the capacitance of a capacitor like that in
the figure above can be increased significantly by replacing the air gap
between the electrodes with a layer of insulating (dielectric) material
such as teflon. This is a consequence of the electric field polarizing
the charge distribution in the dielectric layer between the plates.
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3.3 Energy Stored in a Capacitor

Charging a capacitor (for example, by connecting the two plates in
the figure above to the poles of a battery) stores energy in the electric
field created between the oppositely-charged electrodes of the device.
We may determine how much energy by computing the work done to
charge the capacitor to a particular level. Consider the parallel-plate
capacitor shown above. If at some point in the charging process the
charge on the positive plate is q, from

W =
∫ BBB

AAA
FFF ·dlll =−Q

∫ BBB

AAA
EEE ·dlll = Q [Φ(BBB)−Φ(AAA)]

and C = Q/V , the work increment dW required to add the next charge
increment dq is given by

dW =
( q

C

)
dq,

implying that the total work that must be done to charge the plate
from q = 0 to q = Q is

W =
∫

dW =
∫ Q

0

( q

C

)
dq =

Q2

2C
.

Therefore, using Q = CV , the work required to charge to a potential
difference V between the electrodes is

W =
1
2

CV 2,

for a capacitor having capacitance C.
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ε
A σ

Figure 3.3: Discontinuous normal of EEE at surface of a conductor. The surface
charge density is σ and the top area of the rectangular gaussian surface is A.

3.4 Boundary Conditions

The electric field exhibits a discontinuity if a surface charge is
crossed.

• Consider Fig. 3.3, which shows a small piece of a surface
having a surface charge density σ , and

• place a very thin rectangular gaussian box of height ε that
extends vertically just below and just above the surface.

• From Gauss’s law,
∮

S
EEE ·daaa =

Q

ε0
=

σA

ε0
,

where Q = σA is the enclosed charge and daaa = nnna.

• In the limit ε → 0 the sides of the box contribute no flux.
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ε
A σ

• The electric fields due to the surface charge are perpendic-
ular to the local plane and parallel to nnn, so

∮

S
EEE ·daaa = E

∫
da = EA

and the difference between electric fields above and below
the plane is

EEEabove −EEEbelow =
σ

ε0
n̂nn,

where n̂nn is a unit vector perpendicular to the surface and
is chosen to point upward in the figure above.

Thus, the electric field is discontinuous at the
boundary, changing by an amount σ/ε0.
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ε
A σ

The scalar potential, on the other hand, is continuous across the
boundary because

• if AAA is a point just below the surface and BBB is a point just
above it,

Φabove −Φbelow =−
∫ BBB

AAA
EEE ·dlll,

• which tends to zero as the distance between AAA and BBB is
decreased.

• The gradient of Φ is related to EEE by EEE = −∇∇∇Φ, so it in-
herits the discontinuity in EEE,

∇∇∇Φabove −∇∇∇Φbelow =
σ

ε0
n̂nn.

These boundary conditions are valid only just
above and just below the surface, so the above
equations are valid only in the limit that we ap-
proach the surface very closely from the top or bot-
tom in the figure above.
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3.5 Properties of Poisson and Laplace Solutions

Since the Poisson or Laplace equations can be difficult to solve
with appropriate boundary conditions for may real-world prob-
lems, it is useful to catalog those features that are generic. Let
us consider one-dimensional equations first before tackling 2D
and 3D versions.
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3.5.1 One-Dimensional Laplace Equation

Laplace’s equation in one dimension is a function of a single
variable, which we choose to be x,

∇∇∇2Φ = 0 −→ ∂ 2Φ

∂x2 = 0 −→ d 2Φ

dx2 = 0,

• where we indicate explicitly in the last step that the usual
partial differential equation (PDE) reduces to an ordinary
differential equation (ODE), if there is only one variable.

• This ordinary differential equation has a general solution

Φ(x) = ax+b,

which graphs as a straight line parameterized by the con-
stants a and b (there are two parameters because it is a
solution to a second-order ordinary differential equation).

• The values of the parameters are determined by imposing
boundary conditions.

• In this case two boundary conditions are required, since
there are two undetermined parameters.

• In this example, the boundary conditions could consist of
specifying Φ(x) at two different values of x.

The boundary conditions in actual applications re-
flect the detailed physics of the system.



3.5. PROPERTIES OF POISSON AND LAPLACE SOLUTIONS 81

This solution of the 1D Laplace equation has two unique fea-
tures (which will carry over in suitable form to 2D and 3D).

1. A solution Φ(x) is an average of Φ(x− c) and Φ(x+ c),

Φ(x) =
1
2
[Φ(x+ c)+Φ(x− c)] ,

for any c.

2. There can be no local maxima or minima for the solution

as a function of the parameter x, which actually follows
from the first point.

3. If there were a local maximum or minimum of Φ at some
value of x it could not be the average of points on either
side of it, contradicting feature 1.

Thus, maxima or minima can occur only at the
endpoints of the plot.
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3.5.2 2D and 3D Laplace Equations

Let us now move to more realistic 2D and 3D versions of
Laplace’s equation, with equations of the form

∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 = 0
∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 +
∂ 2Φ

∂ z2 = 0

• In general this introduces a higher level of difficulty than
for the 1D case We will illustrate for 3D.

• The solutions of the Laplace and Poisson equations have
two unique features that generalize those found in 1D.

1. The value of the solution Φ(xxx) at a point xxx is an aver-
age of values over a sphere centered at xxx.

Φ(xxx) =
1

4πR2

∮
Φda,

where the integral is over the surface of a sphere of
radius R centered at xxx.

2. Because of point 1, the solution cannot have local

minima or maxima and extrema must occur on the
boundaries.
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Figure 3.4: Averaging Φ over a sphere of radius R with a single point charge q

external to the sphere.

Example: A single point charge q outside a sphere.

For Fig. 3.4 the law of cosines gives for the distance d from the
charge q to the patch da,

d2 = r2+R2−2rRcosθ .

At a single point on the surface of the sphere the potential is,

Φ =
1

4πε0

q√
r2+R2−2rRcosθ

,

and the average over the sphere is

Φavg =
1

4πR2

q

4πε0

∫
(r2+R2−2rRcosθ)−1/2R2 sinθ dθ dφ

=
q

4πε0

1
2rR

(r2+R2−2rRcosθ)1/2
∣∣∣
π

0

=
q

4πε0

1
2rR

[(r+R)− (r−R)] =
1

4πε0

q

r
,

which is the potential due to q at the center of the sphere.
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Figure 3.5: Generic example of an electrostatics problem formulated in a 3D vol-
ume V that is bounded by a 2D surface S. In this case the (finite) volume V is sur-
rounded by a rectangular conducting box S with boundary conditions corresponding
to five of the six conducting box faces held at zero potential, Φ = 0, and one face
at a finite potential, Φ = Φ0. Since the potential is being specified on the bounding
surface S, this is an example of Dirichlet boundary conditions. The problem would
typically be to solve for the electrostatic potential Φ(x,y,z) in the volume V , subject
to the boundary conditions on S. If the charge density ρ(x,y,z) is zero in the volume
V , this would correspond to solving the Laplace equation, subject to the boundary
conditions.

3.6 Uniqueness Theorems

Use of the Poisson or Laplace equations to determine the po-
tential Φ requires the solution of partial differential equations
with boundary conditions. A simple example of such a problem
is illustrated in Fig. 3.5.
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• For partial differential equations it is often not immedi-
ately obvious what constitutes appropriate boundary con-
ditions (meaning that they allow a solution and that it is
physically well-behaved).

• The proof that a given set of boundary conditions fits the
bill is called a uniqueness theorem.

• Two categories of boundary conditions are common in
electrostatics problems.

1. Dirichlet boundary conditions correspond to specifi-
cation of the potential on a closed surface.

2. Neumann boundary conditions correspond to specifi-
cation of the electric field at every point on the surface
(equivalent to specifying the normal derivative of the
potential, or the surface charge density, everywhere
the surface).

This leads to two uniqueness theorems.
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Uniqueness Theorem I: The solution of Poisson’s or Laplace’s
equations in some volume V is uniquely determined if Φ is
specified everywhere on the boundary surface S of the volume
V .

The simplest way to set boundary conditions is to specify the
value of the scalar field Φ on all surfaces surrounding the region
(Dirichlet boundary conditions).

• Then the first uniqueness theorem applies.

• However, in some situations we may not know the poten-

tial at the boundaries but we do know the total charge on

conducting surfaces.

This leads to a second uniqueness theorem.

Uniqueness Theorem II: If a volume V is surrounded by
conductors of specified charge density ρ , the electric field is
uniquely determined if the total charge on each conductor is
specified.

Thus the second uniqueness theorem is appropriate for Neu-

mann boundary conditions.
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3.7 Uniqueness Theorems by Green’s Methods

V

S

Φ=Φ0

Φ=0
Φ=0

Φ=0

Φ=0
Φ=0

The solution of the Laplace or Poisson equation in a volume
V bounded by a surface S with either Dirichlet or Neumann
boundary conditions on S can be obtained using Green’s func-

tion methods.

• These may be derived beginning with the divergence the-

orem, ∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

which is valid for any well-behaved vector field AAA in a
volume V bounded by the closed surface S.

• Let AAA = φ∇∇∇ψ where φ and ψ are arbitrary scalar fields.
Then

∇∇∇ · (φ∇∇∇ψ) = φ∇∇∇2ψ +∇∇∇φ ·∇∇∇ψ

and

φ∇∇∇ψ ·nnn = φ
∂ψ

∂n
,

• where ∂/∂n is the normal derivative at the surface, di-
rected from inside to outside the volume V .
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Substitution of these equations into the divergence theorem
then gives Green’s first identity

∫

V
(φ∇∇∇2ψ +∇∇∇φ ·∇∇∇ψ)d3x =

∮

S

∂ψ

∂n
da.

If we then subtract from this the same expression but with φ
and ψ interchanged, we obtain Green’s theorem (also termed
Green’s second identity)

∫

V
(φ∇∇∇2ψ −ψ∇∇∇2φ)d3x =

∮

S

[
φ

∂ψ

∂n
−ψ

∂φ

∂n

]
da
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Let us now choose a particular function for the scalar ψ ,

ψ ≡ 1
R
=

1
xxx− xxx′

,

where xxx is the observation point and xxx′ is the integration vari-
able, set φ equal to the scalar potential φ = Φ, use Poisson’s
equation

∇∇∇2Φ =− ρ

ε0

and use that

∇∇∇2
(

1
R

)
= 4πδ (xxx− xxx′)

so that Green’s theorem becomes
∫

V

[
−4πΦ(xxx′)δ (xxx− xxx′)+

1
ε0R

ρ(xxx′)
]

d3x′ =

∮

S

[
Φ

∂

∂n′

(
1
R

)
− 1

R

∂Φ

∂n′
da′
]
.

Then, if xxx lies within the volume V , this becomes

Φ(xxx) =
1

4πε0

∫

V

ρ(xxx′)
R

d3x′+
1

4π

∮

S

[
1
R

∂Φ

∂n′
−Φ

∂

∂n′

(
1
R

)]
da′.
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Notice two important implications of the result

Φ(xxx) =
1

4πε0

∫

V

ρ(xxx′)
R

d3x′+
1

4π

∮

S

[
1
R

∂Φ

∂n′
−Φ

∂

∂n′

(
1
R

)]
da′

︸ ︷︷ ︸
surface term

.

1. If the surface S goes to infinity and the electric field on S

falls off faster than R−1, the surface term vanishes and we
recover the usual result

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d3x′.

2. In the second (surface) term both the the scalar potential
Φ and the normal derivative ∂Φ/∂n′ appear.

• Specifying Φ is associated with Dirichlet boundary

conditions.

• Specifying ∂Φ/∂n′ is associated with Neumann

boundary conditions.

Thus the system is overdetermined since it isn’t
permitted to impose both types of boundary con-
ditions on the same closed surface.

• Since it is overdetermined, the equation above is not

a valid solution.

• Later we shall address how to correct this deficiency.
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Let us now use Green’s first identity to show that the use of ei-

ther (but not both) Dirichlet or Neumann boundary conditions

defines a unique potential problem.

• Assume that there are two potentials, Φ1 and Φ2 that sat-
isfy the Poisson equation. Let

U = Φ2 −Φ1

• Then ∇∇∇2
U = 0 inside V and on the boundary S either

– U = 0 (Dirichlet boundary conditions) or

– ∂U/∂n = 0 (Neumann boundary conditions).

• From Green’s first theorem with φ = ψ =U ,
∫

V
(U∇∇∇2

U +∇∇∇U ·∇∇∇U)d3x =
∮

S
U

∂U

∂n
da.

• With the specified properties of U and either type of
boundary condition this reduces to

∫

V
|∇∇∇U |2 d3x

which implies that ∇∇∇U = 0. Thus, U is constant inside V .

• For Dirichlet boundary conditions U = 0 on S, so U =
Φ2 −Φ1 = 0 inside V and the solution is unique.

• Likewise, for Neumann boundary conditions the solution

is unique, apart from an arbitrary additive constant.
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Thus we have shown that

• for either Dirichlet or Neumann boundary conditions the
solution of the Poisson equation is unique.

• By similar proofs the solution is unique if the closed sur-

face S has mixed boundary conditions (part Dirichlet, part
Neumann).

• However, since Dirichlet and Neumann boundary condi-
tions each define a unique solution,

• imposing both Dirichlet and Neumann conditions on the

same surface (Cauchy boundary conditions) will overde-
termine the system and no reliable solution will exist.
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Let us summarize some general statements about Dirichlet and
Neumann boundary conditions in electrostatics problems.

1. One can specify either Dirichlet or Neumann constraints

at each point on a boundary, but not both.

2. Since either Dirichlet or Neumann conditions are ade-

quate, if both are specified the system is overdetermined.

Mathematically, an overdetermined system effec-
tively has more equations than unknowns.

• Such a system is inconsistent (no set of pa-
rameter values satisfies all equations), and

• its equations can be manipulated to obtain
contradictory results.

3. It is OK to specify parts of a boundary using Dirichlet

conditions and other parts using Neumann conditions.

The uniqueness property means that a solution ob-
tained by any method that we wish is the (unique)

correct solution if it

• satisfies the Poisson/Laplace equations and

• implements the correct boundary conditions.
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Much of the uniqueness of Poisson and Laplace solutions fol-
lows from the Helmholtz Theorem.

Helmholtz Theorem: Let FFF(rrr) be any continuous vector field
with continuous first partial derivatives. Then FFF(rrr) can be
uniquely expressed in terms of the negative gradient of a scalar
potential Φ(rrr) and the curl of a vector potential AAA(rrr),

FFF(rrr) =−∇∇∇Φ(rrr)+∇∇∇×AAA(rrr).

This can also be written as the Helmholtz decomposition,

FFF(rrr) = FFFL(rrr)+FFFT(rrr),

where L denotes a longitudinal component and T a transverse

component of a vector field.

This is sometimes paraphrased into a uniqueness statement:

A vector field whose curl and divergence are
known everywhere is uniquely determined, pro-
vided that the sources vanish at infinity, and that
the field vanishes at least as fast as r−2.

We will have more to say about the Helmholtz decomposition
in later discussion of gauge invariance and transverse and lon-
gitudinal components of the electromagnetic field.
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3.8 Boundary-Value Problems by Green Functions

In obtaining the result

Φ(xxx) =
1

4πε0

∫

V

ρ(xxx′)
R

d3x′+
1

4π

∮

S

[
1
R

∂Φ

∂n′
−Φ

∂

∂n′

(
1
R

)]
da′

︸ ︷︷ ︸
surface term

.

(Not valid, because boundary conditions are overdetermined)
we chose the function ψ to be 1/|xxx− xxx′|, which satisfies

∇∇∇2
(

1
|xxx− xxx′|

)
=−4πδ 3(xxx− xxx′).

The function 1/|xxx − xxx′| is one of a class of functions called
Green functions that satisfy the above equation. Generally a
Green function G(xxx,xxx′) satisfies

∇∇∇2
G(xxx,xxx′) =−4πδ (xxx− xxx′)

where we define

G(xxx,xxx′) =
1

|xxx− xxx′|+F(xxx,xxx′),

with F(xxx,xxx′) satisfying the Laplace equation inside V ,

∇∇∇2
F(xxx,xxx′) = 0.

The first term on the right side of G(xxx,xxx′) is the simplest Green
function and is called the Green function of free space,

G0(xxx,xxx
′) =

1
|xxx− xxx′|.
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Recall that we derived

Φ(xxx) =
1

4πε0

∫

V

ρ(xxx′)
R

d3x′+
1

4π

∮

S

[
1
R

∂Φ

∂n′
−Φ

∂

∂n′

(
1
R

)]
da′

︸ ︷︷ ︸
surface term

.

by substituting G0(xxx,xxx
′) into Green’s theorem.

• But this is not a valid solution because it mixes Dirichlet

and Neumann boundary terms in the surface integral.

• The additional term F(xxx,xxx′) in the generalized Green
function raises the possibility that if we substitute the gen-

eralized Green function into Green’s theorem,

• the function F(xxx,xxx′) can be chosen to eliminate from the

resulting surface integral either the Dirichlet or the Neu-

mann terms,

• thus leaving a result with consistent boundary conditions.

• Indeed, if we substitute φ = Φ, and ψ = G(xxx,xxx′) into
Green’s theorem and use

∇∇∇2
G(xxx,xxx′)=−4πδ (xxx−xxx′) G(xxx,xxx′)=

1
|xxx− xxx′|+F(xxx,xxx′)

we obtain

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

+
1

4π

∮

S

[
G(xxx,xxx′)

∂Φ

∂n′
−Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′.
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Now the freedom to choose F(xxx,xxx′) in the definition of the

Green function means that we can make the surface integral

depend on a chosen type of boundary condition.

• For Dirichlet boundary conditions, we require that

G(xxx,xxx′) = 0 (for xxx′ on S).

in the equation

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

+
1

4π

∮

S

[
G(xxx,xxx′)

∂Φ

∂n′
−Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′

︸ ︷︷ ︸
surface integral

.

Then the first term in the surface integral vanishes and the
solution with Dirichlet boundary conditions is

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

− 1
4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′.
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If instead Neumann boundary conditions are desired, we must
be a little more careful.

• The obvious choice ∂G(xxx,xxx′)/∂n′ = 0 for xxx′ on S indeed
banishes the second term in the surface integral of

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

+
1

4π

∮

S

[
G(xxx,xxx′)

∂Φ

∂n′
−Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′

︸ ︷︷ ︸
surface integral

.

• However, application of Gauss’s theorem to

∇∇∇2
G(xxx,xxx′) =−4πδ (xxx− xxx′)

indicates that ∮

S

∂G

∂n′
da′ =−4π ,

implying the simplest allowable boundary condition

∂G(xxx,xxx′)
∂n′

=−4π

Σ
for xxx′ on S,

where Σ is the total area of the bounding surface S.

• Then the solution with Neumann boundary conditions is

Φ(xxx)= 〈Φ〉S+
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′+

1
4π

∮

S

∂Φ

∂n′
Gda′,

where 〈Φ〉S is the average of the potential over the entire
surface.



3.8. BOUNDARY-VALUE PROBLEMS BY GREEN FUNCTIONS 99

Thus, we have shown formally using Green func-
tions how to impose consistent Dirichelet or

Neumann boundary conditions in an electrostatic
boundary-value problem.
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3.9 Method of Images

In the method of images one

• replaces the actual Poisson or Laplace problem with a dif-
ferent one (analog problem) that is (we can hope) easier
to solve,

• but that is tailored to have boundary conditions equivalent
to those of the actual problem.

• Then, since the analog problem has the same boundary
conditions and is a solution of the Laplace or Poisson
equation just as the actual problem,

Uniqueness Theorem I supports the validity of the
solution.
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Figure 3.6: (a) Charge a distance d above an infinite conducting plane held at zero
potential. (b) An analogous image-charge configuration with the charge −q on the
negative z axis, and no infinite plane.

In Fig. 3.6(a)
• we consider a charge q placed at a distance d above an

infinite conducting plane that is grounded (Φ = 0).

• What is the potential in the region z > 0?

• The presence of the charge will polarize the plane,

• so the potential will have a part associated with the charge
q and a part generated by the polarized conducting plane.

• How can we determine the field in the region above the
conducting plane when we don’t know beforehand the dis-
tribution of the polarized charge?

• One way is to solve Poisson’s equation for z > 0 with the
boundary conditions,

1. Φ = 0 at z = 0 (grounded conducting plane).

2. Φ → 0 at very large distances from the charge.

The first uniqueness theorem indicates that there can be only

one independent solution of the Poisson equation. Thus, if we
can find such a solution, it must be the correct one.
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Now consider the completely different problem illustrated in
Fig. (b) above.

• This problem has the original charge q at a distance d

above the origin, but also has an additional charge −q at
a distance d below the origin, and there is no conducting
plane.

• The problem in Fig. (b) is simple and can be solved easily
using Coulomb’s law,

Φ(x,y,z)=
1

4πε0

(
q√

x2+ y2+(z−d)2
− q√

x2 + y2+(z+d)2

)

• where the quantities in the denominators are distances be-
tween the charge and the point P(x,y,z).

But how does this help us? We want the solution for the
problem of Fig. (a), not Fig. (b).
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Well, notice that the boundary conditions are the same for the
two problems: There is a single charge q in the region z > 0
(which is where we seek a solution), and from

Φ(x,y,z)=
1

4πε0

(
q√

x2+ y2+(z−d)2
− q√

x2 + y2+(z+d)2

)

1. the potential Φ is equal to zero in the x− y plane, and

2. at large distances from the charges, Φ → 0.

Thus, we conclude that the solution of our original
problem in Fig. (a) is given by the equation above,
which is the solution of problem in Fig. (b).

This approach is called the method of images.

• It can be a powerful approach, but is dependent on think-
ing up an analog problem that has the same boundary con-
ditions and is easy to solve.

• Notice that the image charges must in general be put in a
region that is not in the domain of the original problem.

• In the present case we put it in the region z < 0 but re-
quired a solution for z > 0.
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Now that the potential has been found for z > 0 we can determine the
induced charge in the conducting plane caused by the positive charge
at z = d.

• keeping the above contribution,

σ =−ε0
∂Φ

∂n
.

• The normal derivative of Φ at the surface is in the z direction, so

σ = −ε0
∂Φ

∂ z

∣∣∣∣
z=0

,

• and the derivative may be evaluated as,

∂Φ

∂ z

∣∣∣∣
z=0

=
1

4πε0

( −q(z−d)

[x2 + y2+(z−d)2]3/2
+

q(z+d)

[x2 + y2+(z+d)2]3/2

)∣∣∣∣
z=0

,

=
1

4πε0

(
qd

[x2 + y2+d2]3/2
+

qd

[x2+ y2+d2]3/2

)

=
1

2πε0

qd

[x2 + y2+d2]3/2

• and the surface charge density is

σ =− ε0
∂Φ

∂n

∣∣∣∣
z=0

=− qd

2π [x2+ y2+d2]3/2
.
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We can then obtain the total induced charge Q by integration.

• Using polar coordinates (r,φ) with r2 = x2+ y2 and da =

r dr dφ ,

Q =
∫ 2π

0

∫ ∞

0

−qd

2π [x2+ y2+d2]3/2
r dr dφ =

qd√
r2+d2

∣∣∣∣
∞

0
=−q.

• So the total induced charge in the infinite sheet has the
same magnitude as the polarizing charge q, but has the
opposite sign.

Let us also calculate the force FFF on q produced by the induced
charge.

• From the analog problem the force is, from Coulomb’s
law,

FFF =− 1
4πε0

q2

(2d)2 ẑzz,

where ẑzz is a unit vector in the z direction.

• The potential, electric field, and force acting on q are ex-
pected to be the same in the analog and actual problem.

• Thus we deduce that the force for the analog problem is
also the force felt in the actual problem.
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3.10 Green Function for the Conducting Sphere

As discussed in Section 3.8,

• Solution of the Laplace or Poisson equations in a finite
volume V with either

– Dirichlet boundary conditions or

– Neumann boundary conditions

on the bounding surface S of V can be obtained using

Green functions.

• For example,

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

− 1
4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′.

solves for the potential Φ in terms of a Green function with

Dirichelet boundary conditions and

• the expression

Φ(xxx)= 〈Φ〉S+
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′+

1
4π

∮

S

∂Φ

∂n′
Gda′,

solves for the potential in terms of a Green function with

Neumann boundary conditions.

However, choosing an appropriate Green function

for a given problem can be difficult.
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Figure 3.7: (a) Geometry of image charge method for a charge q outside a conduct-
ing sphere, with image charge q′ inside the sphere. (b) Coordinates associated with
the Green function G(xxx,xxx′) for a conducting sphere.

As discussed by Jackson, for image problems like those de-
scribed in Section 3.9,

• the potential due to a unit source and its image(s), cho-
sen to satisfy homogeneous boundary conditions is just
the Green function of

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

− 1
4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′.

for Dirichlet boundary conditions and

Φ(xxx)= 〈Φ〉S+
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′+

1
4π

∮

S

∂Φ

∂n′
Gda′,

for Neumann boundary conditions.

• For example, consider a charge outside a conduct-

ing sphere solved by the image method illustrated in
Fig. 3.7(a).
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In the Green function G(xxx,xxx′),

• xxx′ refers to the location of the unit source and

• xxx is the point P at which the potential is evaluated.

• xxx and xxx′, and a sphere of radius a are shown above right.

• For Dirichlet boundary conditions on the sphere of radius
a, the Green function defined by

∇∇∇′2
G(xxx,xxx′) =−4πδ (xxx− xxx′),

for a unit source and its image is given by the right side of

Φ(xxx) =
q/4πε0

|xxx− yyy| +
q′/4πε0

|xxx− yyy′|︸ ︷︷ ︸
∼ Conducting sphere Green function

,

• with q′ and yyy′ chosen such that the potential vanishes on

the surface of the sphere (|xxx|= a), which requires that

q′ =−a

y
q y′ =

a2

y
,

and that q be replaced by 4πε0 (unit source charge).
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• With these changes the right side of

Φ(xxx) =
q/4πε0

|xxx− yyy| +
q′/4πε0

|xxx− yyy′| ,

is converted into the Green function

G(xxx,xxx′) =
1

|xxx− xxx′| −
a

x′ |xxx− (a2/x′2)xxx′|,

• which can be expressed in spherical coordinates as

G(xxx,xxx′) =
1

(x2 + x′2−2xx′ cosγ)1/2

− 1

(x2x′2/a2+a2−2xx′ cosγ)
1/2

,

where γ is the angle between xxx and xxx′.
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• For the solution

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

− 1
4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′,

︸ ︷︷ ︸
need normal derivative of Green function

of Poisson equation with Dirichlet boundary conditions,

• the second term requires the normal derivative ∂G/∂n′.
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nnn′ is the unit normal vector outward from the volume of interest.

• Thus, for the solution outside the sphere (top left figure),
it is inward along xxx′, toward the origin and

∂G

∂n′

∣∣∣∣
x′=a

=− x2−a2

a(x2 +a2−2axcosγ)3/2
.

• Therefore, if there is no charge distribution ρ(xxx′) in the
problem, the solution outside the conducting sphere of the
Laplace equation with the potential specified on its surface
(Dirichlet boundary conditions) is

Φ(xxx)=
1

4π

∫
Φ(a,θ ′,φ ′)

a(x2−a2)

(x2 +a2−2axcosγ)3/2
dΩ′ (outside),

• where dΩ′ is the element of solid angle at the point
(a,θ ′,φ ′), and

cosγ = cosθ cosθ ′+ sinθ sinθ ′ cos(φ −φ ′).
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y

z

x

x '

x
γ
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• If there is a charge distribution ρ(xxx′), add the first term of

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

︸ ︷︷ ︸
Add

− 1
4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′.

• with the associated Green function

G(xxx,xxx′) =
1

(x2 + x′2−2xx′ cosγ)1/2

− 1

(x2x′2/a2+a2−2xx′ cosγ)
1/2

,

For the solution interior to the sphere the only thing that
changes is that the normal derivative is radially outward, so

• the sign on the right side changes.

• Thus the interior solution is

Φ(xxx)=
1

4π

∫
Φ(a,θ ′,φ ′)

a(a2− x2)

(x2 +a2−2axcosγ)3/2
dΩ′ (inside).
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band

Φ = +V

Φ = -V

Figure 3.8: (Example 3.2) Two hemispheres of radius a separated by an insulating
band lying in the z = 0 plane, with the upper hemisphere kept at potential +V and
the lower hemisphere kept at potential −V .

Example 3.2

Let’s illustrate use of the exterior solution by considering a conduct-

ing sphere of radius a, divided into two hemispherical shells sepa-

rated by an insulating ring, as illustrated in Fig. 3.8.

• From

Φ(xxx)=
1

4π

∫
Φ(a,θ ′,φ ′)

a(x2−a2)

(x2 +a2−2axcosγ)3/2
dΩ′ (outside),

the solution for Φ(x,θ ,φ) is

Φ(x,θ ,φ) =
V

4π

∫ 2π

0
dφ ′
(∫ 1

0
d(cosθ ′)−

∫ 0

−1
d(cosθ ′)

)

× a(x2 −a2)

(x2 +a2−2axcosγ)3/2
.

• By a change of variables in the second integral

θ ′ → π −θ ′ φ ′ → φ ′+π ,
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• this can be put in the form

Φ(x,θ ,φ) =
Va(x2 −a2)

4π

∫ 2π

0
dφ ′

×
∫ 1

0
d(cosθ ′)

[
(a2+ x2−2ax cosγ)−3/2 − (a2+ x2+2ax cosγ)−3/2

]
.

• Because of the complicated dependence among the angles in

cosγ = cosθ cosθ ′+ sinθ sinθ ′ cos(φ −φ ′).

this cannot be integrated easily in closed form.

• If one restricts to the positive z axis the integrals can be done,
with the result

Φ(z) =V

[
1− z2−a2

z
√

z2+a2

]
(valid on positive z axis),

which correctly reduces to Φ =V at z = a.

• Of potentially more use is to expand the denominator in a power

series and integrate term by term, which yields

Φ(x,θ ,φ) =
3Va2

2x2

[
cosθ − 7a2

12x2

(
5
2

cos2 θ − 3
2

cosθ

)
+ · · ·

]
.

• This expansion has been shown to converge rapidly for large

x/a, and agrees with the special solution on the positive z axis
for cosθ = 1.
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3.11 Solving the Poisson and Laplace Equations Directly

• For relatively simple electrostatics problems solutions
may be found using

– Coulomb’s law directly,

– Gauss’s theorem, or

– image methods.

• For more complicated problems these methods may be
difficult to apply and a more straightforward way to pro-
ceed may be to solve the Poisson or Laplace differential

equations directly.

• One method to do so is by separation of variables.
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3.11.1 Separation of Variables in Cartesian Coordinates

A typical case to be solved:

• the potential or the charge density is specified on the

boundaries of a region, and

• we wish to find the potential in the interior.

• A standard approach to such a problem is to solve
Laplace’s equation by the separation of variables method,
which we consider initially in cartesian coordinates.

• The basic idea is assume that the solution can be written
in the product form

Φ(x,y,z) = X(x)Y (y)Z(z),

where X(x), Y (y), and Z(z) are functions only of x, y, and
z, respectively.

Let us illustrate the method by considering the problem corre-
sponding to the following figure.

y

x

z

Φ = 0

Φ0
Φ = 0

a
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y

x

z

Φ = 0

Φ0
Φ = 0

a

• Electrodes assumed to extend infinitely in the x and z di-
rections.

• The problem is independent of the z direction, and

• we assume that there is no charge density between the

plates.

• Therefore, we wish to solve the 2D Laplace equation in

cartesian coordinates,

∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 = 0,

subject to the boundary conditions

Φ = 0 (y = 0, y = a),

Φ = Φ0 (x = 0),

Φ → 0 (x → ∞).
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• Inserting the 2D product function

Φ(x,y) = X(x)Y (y)

and dividing through by Φ = X(x)Y (y) gives

1
X

d 2X

dx2 +
1
Y

d 2Y

dy2 = 0,

• where we write the derivatives as ordinary derivatives
since X(x) and Y (y) are functions of a single variable.

• Now the second term is independent of x and the first term
is independent of y, and the two terms must always sum to
zero.

• Thus each term must be equal to a constant Cn,

1
X

d 2X

dx2 =C1
1
Y

d 2Y

dy2 =C2.

• This implies that C1+C2 = 0, so for later convenience we
introduce a new constant k and set C1 = k2 and C2 =−k2.

• Therefore, the problem has been reduced to solving two
ordinary differential equations

d 2X

dx2 − k2X = 0,

d 2Y

dy2 + k2Y = 0.
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As verified by substitution, the second equation has a solution

Y = Asin(ky)+Bcos(ky),

where A and B are arbitrary constants.

• Determine constants by imposing boundary conditions.

• Φ = 0 at y = 0 requires that B = 0, and

• Φ = 0 at y = a requires that

k =
nπ

a
(n = 1,2,3, · · · ).

• Therefore,

Y = Asin
(nπy

a

)
(n = 1,2,3, · · ·).

• The equation for X now takes the form

d 2X

dx2 − k2X = 0 −→ d 2X

dx2 −
(nπ

a

)2
X = 0,

which has a solution

X = Genπx/a +He−nπx/a,

• However, the boundary condition Φ → 0 as x → ∞ can be
satisfied only if G = 0, so we discard the first term and
insert previous results to give

Φ(x,y) =C sin
(nπy

b

)
e−nπx/a,

with C another arbitrary constant.
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The solution still does not satisfy the boundary condition Φ =
Φ0 at x = 0.

• However, the Laplace equation is linear, meaning that if
{Φ1,Φ2,Φ3, · · · ,Φn} satisfy it, then the linear combina-
tion

Φ = a1Φ1+a2Φ2+a3Φ3 + · · ·+anΦn

where an are arbitrary constants, satisfies it also.

• Therefore, we take as a better approximation a linear com-
bination of solutions in the form

Φ(x,y) =
∞

∑
n=1

cn sin
(nπy

a

)
e−nπx/a,

• The boundary condition Φ = Φ0 at x = 0 implies that

Φ(0,y) = Φ0 =
∞

∑
n=0

cn sin
(nπy

a

)
,

which is a Fourier sine series,

• so we can use the corresponding orthogonality properties

to evaluate the coefficients cn.

• Specifically, multiply both sides by sin[(pxy)/a], where p

is an integer, and integrate from y = 0 to y = a,
∫ a

0
Φ0 sin

( pπy

a

)
dy =

∫ a

0

∞

∑
n=1

cn sin
(nπy

a

)
sin
( pπy

a

)
dy.
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For the integral on the left side of this equation

∫ a

0
Φ0 sin

( pπy

a

)
dy =





2aΦ0

pπ
( if p is odd),

0 (if p is even),

while for the integral on the right side,

∫ a

0
cn sin

(nπy

a

)
sin
( pπy

a

)
dy =





0 ( if p 6= n),
a

2
cn (if p = n),

Comparing, we conclude that the expansion coefficients are

cn =





4Φ0

nπ
( if n is odd),

0 (if n is even),

and the potential as a function of x and y is

Φ(x,y) =
4Φ0

nπ

∞

∑
n=1,3,5,···

1
n

sin
(nxy

a

)
e−nπx/a.

• This series should converge fairly rapidly because of the
rapid decrease of the factor e−nπx/a/n with n.

• A convergent power series is adequate to define a solu-
tion, but it happens that the series can be summed exactly,
giving

Φ(x,y) =
2Φ0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)
,

in a more convenient closed form.
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Figure 3.9: Solution for 2D Laplace equation by separation of variables. (Excuse
quality; temporary placeholder).

The solution is plotted in Fig. 3.9.
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Example: Field between conducting plates

Consider the following figure,

y

x

z

Φ = 0

Φ1

Φ2

Φ = 0

b

a

where we wish to calculate the electrostatic potential in the region
between the parallel-plane electrodes (which extend infinitely in the z

direction).

• There is no z dependence so again let’s solve the 2D Laplace
equation by the method of separation of variables.

• This problem has much in common with the example just worked
out, but the boundary conditions are different.

Φ = 0 (y = 0, y = b),

Φ = Φ1 (x = 0),

Φ = Φ2 (x = a),

• The most general solution is of the form

Φ(x,y) =
∞

∑
n=1

(Ane−nπx/b)+Bnenπx/b)sin
(nπy

b

)
,

where the constants An and Bn may be determined using the

boundary conditions.
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• From the boundary condition Φ = Φ1 at x = 0 we have

Φ1 =
∞

∑
n=1

(An+Bn)sin
(nπy

b

)
.

• Upon multiplying this by sin(pπy/b) and integrating from y = 0
to y = b, only the single p = n term survives,

Φ1

∫ b

0
sin
(nπy

b

)
dy = (An +Bn)

b

2
,

implying that

An+Bn =





4Φ1

nπ
( if n is odd),

0 (if n is even).

• The boundary conditions Φ = Φ2 at x = a yields a second rela-
tionhip between An and Bn:

Φ2 =
∞

∑
n=1

(Ane−nπa/b +Bnenπa/b)sin
(nπy

b

)
.

• Multiplying this expression by sin(pπy/b) and integrating from
y = 0 to y = a yields

Ane−nπa/b +Bnenπa/b =





4Φ2

nπ
( if n is odd),

0 (if n is even).
• Then,

An =
4

nπ

(
Φ1−Φ2e−nπa/b

1− e−2nπa/b

)
Bn =

4e−nπa/b

nπ

(
Φ2−Φ1e−nπa/b

1− e−2nπa/b

)
,

where n = 1,3,5, · · · . This gives Φ(x,y) when inserted in

Φ(x,y) =
∞

∑
n=1

(Ane−nπx/b)+Bnenπx/b)sin
(nπy

b

)
,

This solution is plotted in Fig. 3.10.
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Φ

Φ0

Figure 3.10: Solution for 2D Laplace equation by separation of variables. (Excuse
quality; temporary placeholder).
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3.11.2 Separation of Variables in Spherical Coordinates

In the preceding examples of solving the Laplace equation by
separation of variables the geometry was rectangular and carte-
sian coordinates were appropriate.

• However, for some problems other coordinate systems
such as spherical or cylindrical may be more natural.

• In this section we consider solution of Laplace’s equation

in spherical coordinates (r,θ ,φ)

1
r2

∂

∂ r

(
r2 ∂Φ

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂ 2Φ

∂φ2 = 0,

• To illustrate initially we will consider problems having
axial symmetry (no dependence on φ ), in which case the
Laplacian equation reduces to

∂

∂ r

(
r2 ∂Φ

∂ r

)
+

1
sinθ

∂

∂θ

(
sinθ

∂Φ

∂θ

)
= 0.

• Just as in the cartesian coordinate examples we seek prod-
uct solutions in which the variables (r,θ) are separated,

Φ(r,θ) = R(r)Θ(θ),

where R(r) is a function only of r and Θ(θ) is a function
only of θ .
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Substituting Φ(r,θ) = R(r)Θ(θ) and dividing through by RΘ,

1
R

d

dr

(
r2 dR

dr

)
+

1
Θsinθ

d

dθ

(
sinθ

dΘ

dθ

)
= 0,

where now we use total rather than partial derivatives.

• The second term is independent of r so the first term must
also be independent of r.

• Thus we write the separated equations as two ODEs

1
R

d

dr

(
r2dR

dr

)
= k (R equation)

1
Θsinθ

d

dθ

(
sinθ

dΘ

dθ

)
=−k (Θ equation)

where the constants are k = −k, since the sum of the two

equations must be zero.

• Consider first the R equation. Multiplying both sides by R

and carrying out the leftmost d/dr operation gives

r2 d 2R

dr2 +2r
dR

dr
− kR = 0,

which has a solution

R = Arn+
B

rn+1 ,

that requires n and k to be related by,

n(n+1) = k.

when inserted into the differential equation.
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Now consider the Θ equation. Multiplying by Θsinθ , it may
be written

d

dθ

(
sinθ

dΘ

dθ

)
+n(n+1)sinθ Θ = 0

• This is a famous equation but it isn’t in its standard form.

• To recognize it, let’s change variables by letting µ =
cosθ .

• By the chain rule, for any function f (µ) of µ ,

d f

dθ
=

d f

dµ

dµ

dθ
=−sinθ

d f

dµ
=−

√
1−µ2 d f

dµ

where we have used dµ/dθ =−sinθ and 1−µ2 = sin2 θ .

• Then,

d

dµ

[
(1−µ2)

dΘ

dµ

]
+n(n+1)Θ= 0 (Legendre’s equation).

• This is Legendre’s equation and its solutions are

• polynomials in cosθ called Legendre polynomials, desig-
nated by Pn(cosθ), where n is the order of the polynomial.

• Normalized Legendre polynomials are typically defined by

Pn(cosθ) =
1

2nn!
∂ n

∂ (cosθ)n
(cos2 θ −1)n.
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• A general solution of Laplace’s equation in spherical co-

ordinates assuming axial symmetry is then given by

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ)

• These functions are a complete set, so arbitrary boundary
conditions with axial symmetry can be satisfied.

• Furthermore, the Legendre polynomials satisfy the or-

thogonality condition

∫ +1

−1
Pm(cosθ)Pn(cosθ)d(cosθ) =





2
2n+1

( if m = n),

0 (if m 6= n),

• which is important in evaluating the coefficients in the
equation above for Φ(r,θ).
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z

Figure 3.11: Conducting ball of radius a in an external electric field EEE0 directed
along the zzz axis. Assume axial symmetry around the left-right axis.

Example: Consider the conducting ball of radius a in an electric field

illustrated in Fig. 3.11.

• Inside the ball the field will be zero.

• Far outside it will be the undisturbed field EEE0.

• Near the ball the field will be distorted by polarization.

• Let’s solve the Laplace equation for the outside field in 2D by
separation of variables in spherical coordinates, assuming axial
symmetry.

• We take as boundary conditions

Φ = 0 (r = a)

Φ =−E0r cosθ (r = ∞)

• At r = a (radius of ball),

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ) = 0.
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• The coefficients An and Bn may be evaluated using the orthogo-

nality of the Legendre polynomials.

• Multiply

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ) = 0.

by Pm(cosθ) and integrate over d(cosθ ) using

∫ +1

−1
Pm(cosθ)Pn(cosθ)d(cosθ) =





2
2n+1

( if m = n),

0 (if m 6= n),

• The only non-vanishing terms are those for which n = m. Thus,

0 = Anan
∫ +1

−1
P2

n (cosθ)d(cosθ)+Bna−(n+1)
∫ +1

−1
P2

n (cosθ)d(cosθ)

= Anan

(
2

2n+1

)
+Bna−(n+1)

(
2

2n+1

)
,

• from which the coefficients are related by

Bn =−Ana2n+1.

• Therefore,

Φ(r,θ) =
∞

∑
n=0

An

(
rn− a2n+1

rn+1

)
Pn(cosθ).

Now as r → ∞ the second term in parentheses in the above equa-
tion becomes negligible compared with the first, and the bound-
ary condition

Φ =−E0r cosθ ( as r → ∞)
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requires that

−E0r cosθ =−E0rP1(cosθ) =
∞

∑
n=0

AnrnPn(cosθ).

• Thus, the only non-zero term on the right side is n = 1, implying
that

A1 =−E0,

with all other An = 0.

• Then all the Bn = 0 except for

B1 =−A1a3 = E0a3.
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• Thus the potential at any point (r,θ) is given by

Φ(r,θ) =−E0r cosθ +E0
a3 cosθ

r2

=−E0

(
1− a3

r3

)
r cosθ ,

• where the first term comes from the applied field E0 and

• the second term is the induced polarization potential.

• The electric field components follow by taking the gradient,

Er =−∂Φ

∂ r
= E0

(
1+

2a3

r3

)
cosθ ,

Eθ =−1
r

∂Φ

∂θ
=−E0

(
1− a3

r3

)
sinθ .

• At the surface of the conductor, we know that Er|r=a = σ
ε0

, so
solving for σ gives

σ = 3ε0E0 cosθ ,

for the induced charge density.

z
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Figure 3.12: Geometry for the Legendre polynomials and the spherical harmonics.

3.12 Multipole Expansions

The 3D volume charge density ρ(xxx),

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d3x′,

describes a charge localized in some finite volume V .

• In many situations we are interested in the potential Φ(xxx)
at large distances such that |xxx| ≫ |xxx′|.

• Then a series expansion of 1/ |xxx− xxx′| is suggested.

• Two types of expansions are common in the literature:

1. A Taylor series in the cartesian coordinates (x,y.z).

2. An expansion in terms of spherical harmonics de-
pending on spherical coordinates (r,θ ,φ).

We will primarily discuss the multipole expansion
in spherical harmonics or Legendre polynomials.
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A potential due to a unit point charge at xxx′ can be expanded as

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ),

where Pl(cosθ) is a Legendre polynomial, r< is the smaller and
r> the larger of |xxx| and |xxx′|, and θ is the angle between xxx and xxx′

(see figure above).

This is termed a multipole expansion. In this expression

• the l = 0 term is called the monopole term,

• the l = 1 term is called the dipole term,

• the l = 2 term is called the quadrupole term, and so on.

The reason for this terminology is suggested by the
point-charge distributions discussed in the follow-
ing.
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Figure 3.13: Point charge distributions for a (a) dipole, and (b) linear quadrupole.

What is the potential generated at P in Fig. 3.13?

• Dipole Potential: For the dipole at P in Fig. (a), the po-
tential is given by

Φ =
q

4πε0

(
1

r+
− 1

r−

)
.

• From the law of cosines the distances are

r2
± = r2+

(
d

2

)2

∓ rd cosθ

= r2
(

1∓ d

r
cosθ +

d2

4r2

)
≃ r2

(
1∓ d

r
cosθ

)
,

where r = |rrr| and the term d2/4r2 was dropped since we
assume that r ≫ d.

• Thus,

1
r±

≃ 1
r

(
1∓ d

r
cosθ

)−1/2

≃ 1
r

(
1± d

2r
cosθ

)
,

where a 4binomial expansion was used in the last step.
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• Therefore,

Φdipole =
q

4πε0

(
1

r+
− 1

r−

)

=
q

4πε0

d cosθ

r2

=

(
qd

4πε0

)
P1(cosθ)

r2 (r ≫ d),

and the electric dipole potential is proportional to the Leg-
endre polynomial P1(cosθ) and falls off at large distance
as 1/r2.
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• Quadrupole Potential: Carrying out a similar analysis
for the linear quadrupole in Fig. (b) above, the linear
quadrupole potential is given by

Φquadrupole =

(
2Qd2

4πε0

)
P2(cosθ)

r3 (r ≫ d),

which is proportional to P2(cosθ) and varies as 1/r3.

• Comparison of these expressions with the terms in

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ),

using that

r> = r r< = d (since r ≫ d)

suggests why this equation is called a multipole expan-

sion:

– the l = 1 term is of the dipole form P1(cosθ)/r2 and

– the l = 2 term is of the quadrupole form P2(cosθ)/r3

– (and the l = 0 term is 1/r, which is termed the
monopole term.)
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The multipole expansion

Φdipole =
q

4πε0

(
1

r+
− 1

r−

)

=
q

4πε0

d cosθ

r2 =

(
qd

4πε0

)
P1(cosθ)

r2 (r ≫ d),

can be expressed in terms of spherical harmonics using the
spherical harmonic addition theorem

Pl(cosγ) =
4π

2l +1

l

∑
m=−l

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ),

• where Pl(cosθ) is a Legendre polynomial,

• Ylm(θ ,φ) is a spherical harmonic,

• xxx has the spherical coordinates (r,θ ,φ),

• xxx′ has the spherical coordinates (r′,θ ′,φ ′),

where

cosγ = cosθ cosθ ′+ sinθ sinθ ′ cos(φ −φ ′).

is the angle γ between the vectors xxx and xxx′.



140 CHAPTER 3. ELECTROSTATIC BOUNDARY VALUE PROBLEMS
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The spherical harmonic addition theorem

Pl(cosγ) =
4π

2l +1

l

∑
m=−l

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ),

may then be used to express the expansion

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ),

of the potential at xxx due to a unit charge at xxx′ as

1
|xxx− xxx′| = 4π

m

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗
lm(θ

′,φ ′Ylm(θ ,φ),

where angles are defined in the figure above.

This expression gives the potential completely fac-

torized in the coordinates xxx and xxx′.
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If the localized distribution of charge ρ(xxx′) is assumed to vanish
outside of a small sphere of radius R centered on the origin,

• the potential generated by that charge outside the radius R

can be expanded in spherical harmonics as

Φ(xxx) =
1

4πε0

∞

∑
l=0

l

∑
m=−l

4π

2l +1
qlm

Ylm(θ ,φ)

rl+1

• The expansion coefficients qlm are given by

qlm =
∫

Y ∗
lm(θ

′,φ ′)(r′)lρ(xxx′)d3x′

and are called multipole moments.

• If we define

1. a total charge Q (monopole moment),

2. an electric dipole moment vector by

ppp ≡
∫

xxx′ρ(xxx′)d3x′,

3. and a quadrupole moment tensor Qi j by

Qi j ≡
∫
(3x′ix

′
j − r′2δi j)ρ(xxx′)d3x′,
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the multipole moments qlm in

qlm =
∫

Y ∗
lm(θ

′,φ ′)(r′)lρ(xxx′)d3x′

may be written explicitly in cartesian coordinates as

q00 =
1√
4π

∫
ρ(xxx′)d3x′ =

1√
4π

Q,

q11 =−
√

3
8π

∫
(x′− iy′)ρ(xxx′)d3x′ =−

√
3

8π
(px − ipy),

q10 =

√
3

4π

∫
z′ρ(xxx′)d3x′ =

√
3

4π
pz,

q22 =
1
4

√
15
2π

∫
(x′− iy′)2 ρ(xxx′)d3x′

=
1

12

√
15
2π

(Q11 −2iQ12−Q22),

q21 =−
√

15
8π

∫
z′(x′− iy′)ρ(xxx′)d3x′ =−1

3

√
15
8π

(Q13 − iQ23),

q20 =
1
2

√
5

4π

∫
(3z′2− r′2)ρ(xxx′)d3x′ =

1
2

√
5

4π
Q33,

where corresponding moments with m < 0 may be obtained
using ql−m = (−1)mq∗lm.
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An expansion of Φ(xxx) in cartesian coordinates may be obtained
by a direct Taylor series expansion of 1/ |xxx− xxx′|. We quote the
result without proof,

Φ(xxx) =
1

4πε0

[
Q

r
+

ppp · xxx
r3 +

1
2 ∑

i, j

Qi j
xix j

r5 + · · ·
]

The utility of a multipole expansion like

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ),

or like

Φ(xxx) =
1

4πε0

∞

∑
l=0

l

∑
m=−l

4π

2l +1
qlm

Ylm(θ ,φ)

rl+1

is that at large distance from the source-charge distribution,

• the potential may be well approximated by retaining only
the first few terms in the multipole expansion, since

• the terms fall off with distance r as r−(l+1).
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Example 3.5

Consider a localized charge density

ρ(rrr) =
1

64π
r2e−r sin2 θ .

Let’s make a multipole expansion of the potential associated with
this charge density and determine all the non-vanishing multipole mo-

ments.
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The charge distribution is axially symmetric, so only Ylm with m = 0
are non-zero. The moments may be written

qlm =
∫

Y ∗
l0(θ ,φ)r

lρ(xxx)d3x

=
∫

Y ∗
l0(θ ,φ)r

lρ(r,θ)r2dr dφ d(cosθ)

= 2π

√
2l+1

4π

∫
Pl(cosθ)rlρ(r,θ)r2dr d(cosθ)

=
2π

64π

√
2l +1

4π

∫ ∞

0
rl+4e−rdr

∫ +1

−1
Pl(cosθ)sin2 θd(cosθ)

=
2π

64π

2
3

√
2l +1

4π

∫ ∞

0
rl+4e−rdr

∫ +1

−1
Pl(cosθ) [P0(cosθ)−P2(cosθ)]d(cosθ)

=
1

48

√
2l +1

4π
Γ(l +5)

(
2δl0−

2
5

δl2

)
.

where we have used in the third line,

Yl0(θ ,φ) =

√
2l+1

4π
Pl(cosθ)

and used in the fifth line,

sin2 θ = 1− cos2 θ =
2
3
[P0(cosθ)−P2(cosθ)]

and used in the last step

∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn,

and the radial integral was evaluated using the tabulated definite in-
tegral ∫ ∞

0
rn−1e−(a+1)rdr =

Γ(n)

(a+1)n
.
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Thus the multipole moments are

qlm =
1
48

√
2l+1

4π
Γ(l +5)

(
2δl0−

2
5

δl2

)

and the delta functions allow reading off the only non-vanishing mul-

tipole moments as

q00 =

√
1

4π
Q q20 =−6

√
5

4π
Q33.
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Figure 3.14: Example 3.6: A spherical conducting surface has a uniform surface
charge of density σ = Q/4πR2, except for a spherical cap at the north pole defined
by a cone with opening θ = α where σ = 0.

Example 3.6

A spherical conducting surface of radius R has a uniform surface

charge of density σ =Q/4πR2, except for a spherical cap at the north

pole defined by a cone with opening θ =α where σ = 0, as illustrated
in Fig. 3.14. Use the jump condition at a charge layer for the electric
field

Eout
r |r=R = E in

r |r=R +
σ

ε0
,

to show that the potential inside the spherical surface can be ex-
pressed as

Φ =
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
rl

Rl+1 Pl(cosθ).

What is the potential outside the sphere?
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• The surface charge density specifies a jump condition on the nor-
mal component of the electric field (see Section 3.4),

Eout
r |r=R = E in

r |r=R +
σ

ε0
,

which allows us to solve for the potential Φ(r,θ).

• Because of the azimuthal symmetry about the z axis (no depen-
dence on φ ) we may expand the potential in Legendre polyno-

mials,

Φin =
∞

∑
l=0

Al

( r

R

)l

Pl(cosθ) Φout =
∞

∑
l=0

Al

(
R

r

)l

Pl(cosθ),

where the expansion coefficients Al are the same for Φin and Φout

because we require Φ to be continuous at the surface r = R.

• The radial components of the interior and exterior electric fields

follow from Er =−∂Φ/∂ r,

E in
r =−

∞

∑
l=0

lAl

R

( r

R

)l−1
Pl(cosθ),

Eout
r =

∞

∑
l=0

(l +1)Al

R

(
R

r

)l+2

Pl(cosθ).

• Substituting this into the jump condition

Eout
r |r=R = E in

r |r=R +
σ

ε0
,

given above for Er leads to

σ(cosθ) = ε0 [E
out
r −E in

r ]r=R =
∞

∑
l=0

(2l +1)ε0Al

R
Pl(cosθ).
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• Multiply both sides of

σ(cosθ) = ε0 [E
out
r −E in

r ]r=R =
∞

∑
l=0

(2l +1)ε0Al

R
Pl(cosθ).

by Pk(cosθ),

• integrate over d(cosθ), and use
∫ +1

−1
Pn(x)Pm(x)dx =

2
2n+1

δnm,

to give

(2l +1)ε0Al

R
=

2l +1
2

∫ +1

−1
σ(cosθ)Pl(cosθ)d(cosθ),

and solving for Al,

Al =
R

2ε0

∫ +1

−1
σ(cosθ)Pl(cosθ)d(cosθ).

• Then using that the surface is covered uniformly with charge

except within the cone,

σ(cosθ) =





Q

4πR2 (cosθ < cosα),

0 (cosθ > cosα),

leads to

Al =
Q

8πε0R

∫ cos α

−1
Pl(cosθ)d(cosθ).
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• The expresssion

Al =
Q

8πε0R

∫ cos α

−1
Pl(cosθ)d(cosθ).

can be integrated by inserting (primes indicate derivatives),

Pl(x) =
1

2l +1

[
P′

l+1(x)−P′
l−1(x)

]

• which gives

Al =
Q

8πε0R

∫ cos α

−1
Pl(cosθ)d(cosθ)

=
Q

8πε0R

1
2l+1

∫ cosα

−1

[
dPl+1(cosθ)

d(cosθ)
− dPl−1(cosθ)

d(cosθ)

]
d(cosθ)

=
Q

8πε0R

1
2l+1

∫ cosα

−1
[dPl+1(cosθ)−dPl−1(cosθ)]

=
Q

8πε0R

1
2l+1

[Pl+1(cosθ)−Pl−1(cosθ)]cosα
−1

=
Q

8πε0R

1
2l+1

[Pl+1(cosα)−Pl−1(cosα)] ,

where in the last step Pl(−1) = (−1)l was used.

• Substituting in the original expansions, for the inside solution,

Φin =
∞

∑
l=0

Al

( r

R

)l

Pl(cosθ)

=
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
rl

Rl+1 Pl(cosθ).

• and for the outside solution,

Φout =
∞

∑
l=0

Al

(
R

r

)l

Pl(cosθ)

=
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
Rl−1

rl
Pl(cosθ).
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3.12.1 Multipole Components of the Electric Field

We have expanded the potential in multipole moments so the
corresponding electric fields can be expanded in a similar way.

• It is easiest to express the components of the electric field
EEE =−∇∇∇Φ in spherical coordinates.

• For a term in

Φ(xxx) =
1

4πε0

∞

∑
l=0

l

∑
m=−l

4π

2l +1
qlm

Ylm(θ ,φ)

rl+1

with definite (l,m) the spherical electric field components

are

Er =
l +1

(2l +1)ε0
qlm

1
rl+2 Ylm(θ ,φ),

Eθ =− 1
(2l +1)ε0

qlm

1
rl+2

∂

∂θ
Ylm(θ ,φ),

Eφ =
1

(2l +1)ε0
qlm

1
rl+2

im

sinθ
Ylm(θ ,φ),

with qlm the multipole moments.

Example 3.7

For a dipole ppp oriented along the z axis, one finds

Er =
2pcosθ

4πε0r3 Eθ =
psinθ

4πε0r3 Eφ = 0,

for the electric-field components.
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3.12.2 Energy of a Charge Distribution in an External Field

If a localized charge distribution ρ(xxx) is subject to an external

potential Φ(xxx), the electrostatic energy is

W =
∫

ρ(xxx)Φ(xxx)d3x.

If the potential varies slowly over the extent of ρ(xxx), it can be
expanded in a Taylor series,

Φ(xxx) = Φ(0)+ xxx ·∇∇∇Φ(0)+
1
2 ∑

i
∑

j

xix j
∂ 2Φ

∂xi∂x j
(0)+ · · ·

= Φ(0)− xxx ·EEE(0)− 1
2 ∑

i
∑

j

xix j
∂E j

∂xi
(0)+ · · ·

= Φ(0)− xxx ·EEE(0)− 1
6 ∑

i
∑

j

(
3xix j − r2δi j

) ∂E j

∂xi
(0)+ · · · ,

where in line 2 the definition of the electric field EEE =−∇∇∇Φ was
used.

Inserting the expansion in the first equation, the energy takes
the form

W = qΦ(0)− ppp ·EEE(0)− 1
6 ∑

i
∑

j

Qi j
∂E j

∂xi
(0)+ · · · ,

where q is the total charge, the dipole moment ppp is

ppp ≡
∫

xxx′ρ(xxx′)d3x′,

and the quadrupole moment Qi j is

Qi j ≡
∫
(3x′ix

′
j − r′2δi j)ρ(xxx′)d3x′.
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Example 3.8

Many atomic nuclei have charge distributions exhibiting a quadrupole

deformation.

• Such nuclei will have an energy contribution from the quadrupole

term in the expansion if they are subject to an external electric

field.

• Such an “external” field can be provided by

– the electrons of the atom containing the nucleus, or by

– a crystal lattice in which the nucleus is embedded, and

• coupling to these external field leads to small energy shifts and

breaking of degeneracies for nuclear states that can be detected
experimentally.

• (The energy shifts are small and radiofrequency measurements

are typically required.)

• Such methods allow the quadrupole moments of nuclei to be

measured, which are important clues to the details of nuclear
structure and interactions.

• In collisions between heavy ions at nuclear accelerators, the elec-
tric field of one nucleus can cause excited states to be populated
in the other nucleus, in a process called Coulomb excitation.

• The study of the rates at which those excited states are populated

(for example by detecting the de-excitation by emission of γ-
rays) are another way in which nuclear quadrupole deformations
can be measured.
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The multipole expansion manifests the characteristic way in which
various multipoles of a charge distribution interact with an external

electric field:

W = qΦ(0)− ppp ·EEE(0)− 1
6 ∑

i
∑

j

Qi j

∂E j

∂xi
(0)+ · · · ,

1. the charge interacts with the potential in the first term,

2. the dipole moment interacts with the electric field in the second
term,

3. the quadrupole moment interacts with the gradient of the electric

field in the third term, and so on, . . .

Thus multipole expansions serve a pedagogical as well as practical

purpose in understanding electrostatic interactions.



Chapter 4

Electrostatics in Matter

To this point we have considered electrostatics in vacuum,

• but many applications of electromagnetic theory involve
interactions in matter.

• Therefore, in this chapter we begin to address how the
properties of matter influence the equations of electrostat-
ics.

• The influence of matter on electrostatics will in most cases
require some amount of averaging over the detailed and

complex microscopic interactions in the matter.

• One important concept will be to compute the average

electric field in some volume of matter.

• We will find that electric fields in matter are largely dipole

fields.

155



156 CHAPTER 4. ELECTROSTATICS IN MATTER

The net dipole moment induced in matter has two basic

sources:

1. An electric field polarizes matter, even if the atoms or
molecules have no significant dipole moment in the ab-
sence of the applied field. This polarization effect is char-
acterized by a quantity called the atomic polarizability.

2. Some molecules have an intrinsic dipole moment, and the
external field exerts a torque that partially aligns those mo-
ments.

In either case the polarization of the material my be quantified
in terms of a

• polarization density P and

• an electric susceptibility, which is proportional to the ratio
of P to the electric field.

• The net effect of the polarization density is to create a sur-

face charge density in dielectric material.

• A considerable amount can be learned about the nature of
dielectrics by examining the effect of this induced surface

charge density on capacitors.

• A capacitor with dielectric material between the metal
plates has increased capacitance because of this induced

surface charge.



157

Capacitors and Dielectrics

The simplest capacitor has two separated parallel metal plates
with nothing in between, as illustrated in Fig. (a) below.

s

(a) No dielectric (b) With dielectric

Dielectric

A A
s

C = 
ε
0

A

s
C > 

ε
0

A

s

• Inserting a dielectric between the plates of the capacitor as
in Fig. (b) increases the capacitance.

• This is because the induced surface charge on the dielec-

tric produced by the electric field between the plates par-
tially cancels the opposite charge on the adjacent plate.

Understanding this mechanism leads to fundamental insight
into the role that an electric field plays in a dielectric.
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4.1 Dielectrics

Let us investigate in more depth the effect of a dielectric on
a parallel plate capacitor. A parallel-plate capacitor with no

material between the plates has a capacitance C defined by

C =
Q

Φ12
=

ε0A

s
,

• Q is the magnitude of the charge on the plates,

• Φ12 is the difference in potential between the two plates,

• A is the surface area of a plate, and

• s is the separation of the plates.

4.1.1 Capacitors and Dielectrics

Now suppose that a layer of dielectric material is placed be-
tween the capacitor plates.

• One will generally find that the capacitance can still be de-
fined by the ratio of charge to potential difference between
the plates, C = Q/Φ12, but

• the actual value of C will be increased over that found
with no dielectric between the plates.

This implies that the presence of the dielectric

between the plates allows more charge Q on the

plates for the same potential difference, plate area,
and separation of the plates.
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+ + + + + + + + + + +

- - - - - - - - - - -

E s

R
Φ12

Q0
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Dialectric

Figure 4.1: Increase of capacitance by insertion of a dielectric between the plates.
(a) No dielectric. (b) With dielectric.

Qualitatively, this influence of the dielectric on the capacitance
is easily understood.

• The material of the dielectric consists of atoms or
molecules with negatively charged electrons and posi-
tively charged nuclei.

• The electrical field between the plates polarizes the charge

distribution of the dielectric.

• If we assume the upper plate to have positive charge and
the lower plate negative charge, negative charges will be

pulled upward and positive charges pushed down.

• This is illustrated in Fig. 4.1,
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• This has the effect of exposing a layer of uncompensated

negative charge near the top of the dielectric and a layer

of uncompensated positive charge near the bottom.

• The charge Q on the upper plate will increase because of
the induced top layer of negative charge below it.

• We shall show later that Q must increase until the alge-
braic sum of Q and the induced charge layer is equal to
the total charge on the top plate Q0 before the dialectric
layer was inserted.

• Thus, the total charge Q in the top layer is larger than the

charge Q0 of the top plate in Fig. (a) before the dielectric
was inserted.

• Thus, the charge is the Q appearing in the dielectric equa-
tion, and is, in the above circuit the charge supplied by the

battery while the switch is in the right (charging) position.
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• If the switch in the above figure were flipped
to the left to discharge the capacitor though
the resistance R after the capacitor is fully
charged, the charge Q would be dissipated.

• Notably, the induced charge layer is not part

of Q, and the induced charge would be ab-
sorbed back into the normal structure of the
dielectric in the absence of an electric field.
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Table 4.1: Dialectric constants κ of some substances
Substance Conditions κ
Vacuum 1.00000
Air gas, 0◦ C, 1 atm 1.00059
Water vapor gas, 110◦ C, 1 atm 1.0126
Liquid water liquid, 20◦ C 80.4
Silicon solid 20◦ C 11.7
Polyethelene solid, 20◦ C 2.25−2.3
Porcelain solid 20◦ C 6.0−8.0

4.1.2 Dielectric Constants

Different dielectric materials would be expected to have differ-
ent efficiencies for increasing the charge capacity of a capaci-
tor, according to the ease with which electrons can be displaced
with respect to the atomic nuclei by the applied electric field.

• The factor Q/Q0 by which the charge and capacitance is
increased is called the dielectric constant κ .

Q = κQ0 ↔ C = κC0.

• Dielectric constants are dimensionless; a few are given in
Table 4.1 for some representative substances.

• Note that the dielectric constant of the vacuum is κ =
1.0000 (by definition),

• typical gases have κ slightly larger than one,

• and liquids and solids can have dielectric constants vary-
ing widely in the range κ ∼ 1−100.

The reason for the remarkably large value κ = 80.4 for water
merits an explanation that will be given later.
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4.1.3 Bound Charge and Free Charge

In considering the effect of a dielectric on a capacitor, it is
useful to introduce some terminology distinguishing between

the charge associated with the dielectric itself and the mobile

charges that can charge the plates.

• Those charges associated with the dielectric are termed
bound charges.

• They are not mobile because they are attached to the

atoms and molecules making up the dielectric.

• They can be polarized through electric fields causing tiny

displacements, but

• if the capacitor is discharged the bound charges remain

with the dielectric, which becomes unpolarized as the
electric field vanishes.

• The bound charges are not part of the charge Q of the

capacitor plates.
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On the other hand, those charges that are not bound in di-

electrics are termed free charges.

• They are the charges that we have some agency over in an
experiment.

• (for example, through manipulation of the simple electri-
cal circuit using the switch to charge or discharge the ca-
pacitor).
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Figure 4.2: Diagram for calculation of the potential at point P of a molecular charge
distribution.

4.2 Moments of a Molecular Charge Distribution

Let’s consider the potential at a distant point P due to an
electrical charge distribution of a molecule, as illustrated in
Fig. 4.2. which will be of the form

ΦP =
1

4πε0

∫
ρ(xxx′)

R
dτ ′,

where the integral is over all of the charge distribution. From
the law of cosines the distance R is given by

R = (r2+ r′2−2rr′cosθ)1/2,

where we define r = |xxx| and r′ = |xxx′|, and the equation for the

potential becomes

ΦP =
1

4πε0

∫
(r2+ r′2−2rr′cosθ)−1/2ρ(xxx′)dτ ′.
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For a distant point P we have r ≫ r′ and we can expand to give

1
R
= (r2+ r′2−2rr′cosθ)−1/2 =

1
r

[
1+

r′

r
cosθ

+

(
r′

r

)2 3cos2 θ −1
2

+O

([
r′

r

]3
)]

Then from the preceding equations the potential can be written

as

ΦP =
1

4πε0

[
1
r

∫
ρdτ ′+

1
r2

∫
r′ cosθρdτ ′

+
1
r3

∫
r′2

3cos2 θ −1
2

ρ dτ ′+ · · ·
]
,

where r = |xxx| is a constant and has been brought outside the
integrals (the integration variable is xxx′).

• Now this is a power series in 1/r with coefficients that

are constants depending only on integrals over the charge
distribution and independent of the distance to P.

• Thus we can write the potential as a power series (multi-

pole expansion) with constant coefficients

ΦP =
1

4πε0

[
C0

r
+

C1

r2 +
C2

r3 + · · ·
]
,

where the coefficients Ci are the integrals over the internal

charge distribution in the preceding equation.



4.2. MOMENTS OF A MOLECULAR CHARGE DISTRIBUTION 167

The electric field then follows from EEE = −∇∇∇ΦP. This result is
valid only along the z axis, but the power series

ΦP =
1

4πε0

[
C0

r
+

C1

r2 +
C2

r3 + · · ·
]
,

illustrates the central point:

The behavior of the potential at large distance from
the source will be dominated by the first term in

the multipole expansion that has a non-zero coef-

ficient.



168 CHAPTER 4. ELECTROSTATICS IN MATTER

Let us look at the coefficients in

ΦP =
1

4πε0

[
C0

r
+

C1

r2 +
C2

r3 + · · ·
]
,

more closely.

• The monopole coefficient C0 =
∫

ρ(xxx′)dτ ′ is the total

charge.

• If we have a neutral atom or molecule, C0 = 0.

• If it is not neutral (ionized, for example) so that ρ 6= 0, the
monopole will always dominate at large enough distance.

• If the atom or molecule is charge neutral so that ρ = 0, the
dipole term with C1 =

∫
r′ cosθρ(xxx′)dτ ′ will dominate.

• Furthermore, if the charge distribution is neutral the value

of C1 is independent of the choice of origin.

As we shall see, for our main task here of under-

standing the behavior of dielectrics only

• the monopole strength (the total charge) and

• the dipole strength of the molecular building
blocks of the dielectric

are important in determining its electric-field

properties.
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• Thus, for the properties of dielectrics we will find that
all multipole moments of the charge distribution of order

greater than the dipole can usually be ignored.

• A net dipole moment can come about because of induced

polarization by an electric field, or

• because of molecules that have a permanent dipole mo-

ment.

We address induced moments and permanent dipole moments
in the following sections.
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4.3 Induced Dipole Moments

The simplest atom is hydrogen, consisting of one nucleus and
one electron.

• The nucleus is so small compared with the electron cloud
that in hydrogen and in more complicated atoms and
molecules we can approximate the nuclei as point charges

and neglect them.

• Quantum mechanically the electron in hydrogen must be
viewed as a cloud of negative charge with smoothly vary-

ing density.

• The density falls off exponentially on the boundaries, so
it makes sense to view the charge clouds of atoms and

molecules as having approximate radii and shapes.

The electron cloud of the undisturbed hydrogen atom is spher-

ically symmetric but

• if it is placed in an electric field pointing upward along a
z-axis, the charge cloud of the atom will be distorted,

• with the negative electron charge cloud pulled down and

the nucleus pushed up.

• This distorted atom will have a net electric dipole moment

because the center of mass of the electron cloud will be
displaced a small amount ∆z from the nucleus,

• giving a net dipole moment ∼ e∆z, where e is the total
electron charge.
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We may make a very rough estimate of how much distortion

will be caused by a field of strength E by noting that

• a strong electric field already exists holding the unper-

turbed H atom together, which may be estimated as

E ≃ e

4πε0a2 ,

where a is a characteristic atomic length scale (for exam-
ple, some multiple of the Bohr radius).

• If we assume that a field of the same order of magnitude
would be required to produce significant distortion, we
may estimate the distortion at

∆z

a
≃ E

e/4πε0a2 .

• Inserting typical numbers suggests that 4πε0a2 ∼
1011 volts/m, which is enormous (thousands of times
larger than any field produced in a laboratory).

• Obviously the distortion of the atom will be tiny indeed.

• The corresponding induced dipole moment vector ppp will
point in the direction of EEE.

The factor relating ppp to EEE is the atomic polarizability α ,

ppp = αEEE.

It is common to report atomic polarizabilities as α/4πε0.
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Table 4.2: Atomic polarizabilities (α/4πε0) in units of 10−30 m3

Element: H He Li Be C Ne Na Ar K
0.66 0.21 12 9.3 1.5 0.4 27 1.6 34

Some atomic polarizabilities are given in Table 4.2. Elements
are listed there in order of increasing electron number. The
large variations in polarizability may be attributed to

• differences in electron number and to

• detailed valence electronic structure.

Let’s estimate the charge displacement induced by a typical
electric field.

From the polarizability of atomic hydrogen in Ta-
ble 4.2, the magnitude of the dipole moment in-
duced by an electric field of one megavolt / meter

is p < 10−34 coulomb-meters.
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Asymmetric Polarization

Molecules may be very asymmetric and can have different
polarizabilities along different axes. For example, the linear
molecule carbon dioxide (CO2) illustrated in the following fig-
ure

O OC

has a polarizability more than twice as large if the field is ap-
plied along its long axis than if it is applied perpendicular to
that. In the most general case of a highly asymmetric molecule
the simple relation ppp = αEEE must be replaced by a tensor equa-
tion that can be expressed as a matrix–vector multiply,

ppp =




px

py

pz


=




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz






Ex

Ey

Ez


 ,

which is equivalent to the simultaneous equations

px = αxxEx +αxyEy +αxzEz,

py = αyxEx +αyyEy +αyzEz,

pz = αzxEx +αzyEy +αzzEz.

Thus the scalar coefficient α has been replaced by a polarizabil-
ity tensor A that has the components

A =




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz


 ,

expressed as a matrix in the current basis.
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|p| = 3.43

Hydrogen chloride (HCl) Water (H2O) Ammonia (NH3)

|p| = 4.76|p| = 6.13

Figure 4.3: Approximate geometry of the electron cloud and the observed dipole
moment vector ppp for some polar molecules. Magnitudes of the dipole moment
vector are in units of 10−30 coulomb-meters

4.4 Permanent Dipole Moments

Some molecules have asymmetric shapes and permanent dipole
moments in their normal ground state, even in the absence of
an external field; a few examples are shown in Fig. 4.3.

• Molecules with a permanent dipole moment are termed
polar molecules.

• As a rule, intrinsic dipole moments (when they exist) are

much larger than induced dipole moments.
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|p| = 3.43

Hydrogen chloride (HCl) Water (H2O) Ammonia (NH3)

|p| = 4.76|p| = 6.13

As shown in the above figure,

• the magnitude of the (permanent) dipole moment for the
molecule HCl is

p = 3.43×10−30 coulomb-meters

• which is equivalent to shifting one electron by a distance
of 0.2 angstrom (0.2×10−8 cm).

• From an earlier example, the magnitude of the
dipole moment in hydrogen induced by an electric
field of magnitude one megavolt per meter is p <

10−34 coulomb-meters.

This result is representative and when they exist
permanent dipole moments are typically orders of

magnitude larger than those induced by laboratory

electric fields.
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Figure 4.4: Torque applied to a molecule with an intrinsic dipole moment in a
uniform electric field.

In a uniform electric field polar molecules will have their dipole
vectors partially aligned with the field.

• The net force on the dipole vanishes, because the force on
the negative end exactly cancels the force on the positive
end (see Fig. 4.4),

• but the torque NNN acting on the dipole is

NNN = ppp×EEE,

where ppp is the dipole moment vector.

• The direction of NNN is so as to align the dipole moment of

a polar molecule with the electric field.

Perturbations such as thermal fluctuations tend to

inhibit this alignment, so the typical physical out-
come is an equilbrium with the dipoles partially

aligned.
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4.5 Polarization

We have discussed two basic mechanism that lead to polariza-
tion of a dielectric:

1. distortion of the charge distribution by an electric field,
which induces many tiny dipoles pointing in the same di-
rection as the field if the dielectric substance consists of
atoms or non-polar molecules, and

2. alignment of the existing intrinsic dipole moments by an

electric field if the substance consists of polar molecules.

The net effect of either is to produce a set of dipoles aligned or
partially aligned with the electric field.

• At this point our primary interest is in the effect of this
polarization, without regard to the way it was formed.

• Therefore, a measure of how polarized the matter is can be
formed by asking how many dipoles N of average dipole
moment ppp there are in a unit volume, without regard to the
source of the dipoles.

• The total dipole strength of a volume element is then
pppNdτ and the polarization density PPP can be defined by

PPP ≡ pppN =
dipole moments

unit volume
,

which has units of C-m/m3 = C/m2.

Let’s now estimate the the potential produced by the polarized
dielectric material.
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Figure 4.5: (a) A column of polarized material with cross section da observed at a
distant point A produces the same field as two charges, one at each end of (b).

4.6 Field Outside Polarized Dielectric Matter

If the dielectric was assembled from neutral matter

• there is no net charge so there is no monopole term in the
multipole expansion

ΦP =
1

4πε0

[
C0

r
+

C1

r2 +
C2

r3 + · · ·
]
,

• Therefore to very good approximation only the dipole mo-

ments need be considered as sources of a field.

• Consider a thin vertical cylinder of dielectric matter in an
electric field, as illustrated in Fig. 4.5.

• The polarization density PPP is uniform and points in the
positive z direction, and we wish to calculate the electric
potential at the point A.
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An element of the cylinder of height dz in Fig. (a) has a dipole
moment

ppp = PPPdτ = PPPdadz,

and its contribution to the potential at point A is

dΦA =
P cosθdadz

4πε0r2 .
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Then the potential at A produced by the entire column of polar-
ized matter is obtained by integration,

ΦA =
Pda

4πε0

∫ z2

z1

dzcosθ

r2

=
−Pda

4πε0

∫ z2

z1

dr

r2

=
Pda

4πε0

(
1
r2

− 1
r1

)
.

But this is exactly the same result for the potential at A that
would be produced by

• a positive point charge of magnitude Pda at the top of the
column at a distance r2 from A and

• a negative point charge of the same magnitude placed at
the bottom of the column a distance r1 from A.
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A column of uniformly polarized matter

• produces the same potential and thus the
same electric field at an external point A

• as a dipole consisting of two concentrated
charges of magnitude Pda at the two ends of
the column.
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• Consider making the cylinder shown in Fig. 4.5(a) by
stacking on top of each other small cylinder segments
of height dz, with a charge of +Pda on its top face and
−Pda on its bottom face.

• But now within the column the + charge on the top of a
segment will be cancelled by the − charge on the bottom
of the next segment up,

• except for the top-most segment, which will have an un-
cancelled charge on its top face of +Pda, and

• except for the bottom-most segment, which will have an
uncancelled charge on its bottom face of −Pda.

Thus the column of tiny dipoles will seem to be
a single large dipole with end charges +Pda and
−Pda, separated by a distance z2− z1.
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• Note that nowhere in this derivation have we assumed that
A is particularly distant;

• we have assumed only that the distance to A is much larger
than the lengths of the individual microscopic dipoles and
much larger than the width of the column in Fig. 4.5(a),
both of which are very small.
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(a) Block of polarized dielectric (b) Two layers of surface charge

σ = +P

σ = −P

z

Figure 4.6: The external field due to (a) a block of dielectric polarized by an electric
field in the z direction is the same as would be produced by (b) two sheets of charge
±P at the positions of the top and bottom surfaces of the block.

We can take a slab of dielectric and

• divide it up infinitesimally into such columns to

• conclude that the electric field outside the slab is

• the same as if two sheets of surface charge located where
the top and bottom of the slab are located

• each carrying constant surface charge density σ =+P and
σ =−P, respectively.

See Fig. 4.6.
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4.7 Field Inside Polarized Dielectric Matter
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Outside the dielectric we are justified in assuming that the point
A in the above figure is at a large distance.

• Inside the dielectric we can hardly assume that a point is
at a much larger distance than the size of all the dipoles.

• Let us average over a region that is macroscopically small
but microscopically large.

That is, a region large enough to suppress statisti-
cal sampling fluctuations, but small enough that PPP

doesn’t vary substantially over the volume.
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The field inside polarized dielectric matter can be quite com-
plicated.

• The spatial average of EEE over a volume V inside the po-
larized matter is given by

〈EEE〉V =

∫
EEE dτ∫
dτ

=
1
V

∫
EEE dτ,

where the volume V =
∫

dτ .

• This average field 〈EEE〉V is a macroscopic quantity formed
from a spatial average of the microscopic quantity EEE(xxx)
appearing in the integrand of the above equation.
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Let us summarize some important properties of the macro-

scopic (that is, averaged) electric field.

1. The fundamental relation ∇∇∇×EEE = 0 that is obeyed by the
microscopic field remains valid for the macroscopic field.

2. This implies that the macroscopic electric field is still
derivable from a scalar potential in electrostatics through
EEE =−∇∇∇ΦΦΦ.
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If an electric field is applied to a medium consisting of a large
number of atoms or molecules.

• The dominant multipole mode response to the applied
field is the dipole, with an electric polarization

PPP(xxx) = ∑
i

Ni〈pppi〉,

• where pppi is the dipole moment of the ith species (atoms
or molecules), and the average 〈 〉 is taken over a small
volume centered on xxx and Ni is the average number per
unit volume of the ith species at xxx.

• We can build up the macroscopic potential or field by lin-
ear superposition of contributions from each macroscopi-
cally small volume element ∆V at the variable point xxx′.

• If there are no macroscopic multipole moments higher
than dipole, then from

Φ(xxx) =
1

4πε0

[
Q

r
+

ppp · xxx
r3 +

1
2 ∑

i, j

Qi j
xix j

r5 + · · ·
]

the macroscopically averaged potential is

∆Φ(xxx,xxx′) =
1

4πε0

[
ρ(xxx′)
|xxx− xxx′|∆V +

PPP(xxx′) · (xxx− xxx′)

|xxx− xxx′|3
∆V

]
,

assuming xxx to lie outside ∆V .
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Setting ∆V → d3x′ and integrating over all space gives

Φ(xxx) =
1

4πε0

∫
d3x′

[
ρ(xxx′)
|xxx− xxx′|+PPP(xxx′) ·∇∇∇′

(
1

|xxx− xxx′|

)]
,

where the prime on ∇∇∇′ indicates that the divergence acts on xxx′

instead of xxx. Integration by parts of the second term leads to

Φ(xxx) =
1

4πε0

∫
d3x′

1
|xxx− xxx′|

[
ρ(xxx′)−∇∇∇′ ·PPP(xxx′)

]
,

which is the usual expression for the potential generated by an
effective charge distribution ρ̃(xxx′) = ρ(xxx′)−∇∇∇′ ·PPP(xxx′).
Then the first Maxwell equation (Gauss’s law) reads

∇∇∇ ·EEE =
1
ε0

[
ρ −∇∇∇′ ·PPP(xxx′)

]
,

which reduces to
∇∇∇ ·EEE =

ρ

ε0
,

in the absence of polarization.

The second (divergence) term appears in the effec-
tive charge density

ρ̃ =
1
ε0
[ρ −∇∇∇′ ·PPP(xxx′)︸ ︷︷ ︸]

because for non-uniform polarization there can be
a net change in charge within any small volume.
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4.8 Displacement and Constituitive Relations

If we define the electric displacement DDD by

DDD ≡ ε0EEE +PPP,

then

∇∇∇ ·EEE =
1
ε0

[
ρ −∇∇∇′ ·PPP(xxx′)

]
,

can be written as
∇∇∇ ·DDD = ρ .

Solution for potentials or fields requires constituitive relations

that relate DDD and EEE.

1. A common assumption is that the response to the applied

field is linear, PPP ∝ EEE.

2. A second common assumption is that the medium is

isotropic, so that PPP is parallel to EEE and the coefficient of
proportionality has no angular dependence,

PPP = ε0χeEEE,

where χe is termed the electric susceptibility of the
medium.
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With these assumptions the displacement DDD and the electric
field EEE are related by

DDD = εEEE ε ≡ ε0(1+ χe) κ ≡ ε

ε0
= 1+ χe,

where ε is electric permittivity and κ is the dielectric constant.

If the dielectric medium is uniform in addition to isotropic, then
ε is independent of position and the divergence equation ∇∇∇ ·
DDD = ρ can be written

∇∇∇ ·EEE =
ρ

ε
.

For a medium fulfilling all conditions given above,

• electrostatics problems in that medium are re-
duced to vacuum solutions found previously,

• except that the electric fields must be reduced

by a factor ε0/ε .

Physically this results from polarized atoms pro-

ducing fields that oppose the applied field.

One consequence is that

• capacitance of a capacitor is increased by a factor ε/ε0

• if the empty space between the electrodes is filled with a

material having dielectric constant κ = ε/ε0

if fringing fields can be neglected.
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If different media are juxtaposed, boundary conditions must be
considered for DDD and EEE at interfaces between media.

• This will be addressed in Section 4.11.

• The results for electrostatics are that the normal compo-

nents of DDD and the tangential components of EEE on either
side of an interface between medium 1 and medium 2

• must satisfy the boundary conditions

(DDD2−DDD1) ·nnn = σ ,

(EEE2−EEE1)×nnn = 0,

where nnn is a unit normal to the surface pointing from
medium 1 to medium 2, and

• σ is the macroscopic surface-charge density on the bound-

ary surface,

• (which does not include the polarization charge discussed
in following sections).
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4.9 Surface and Volume Bound Charges

P

d

+q

−q

θ

r+

r-

r

• The potential created by a single dipole can be written

Φ(xxx) =
1

4πε0

ppp · r̂rr
r2 ,

where r = |rrr| and rrr = xxx− xxx′ and ppp is the dipole moment
vector.

• The total potential contributed by dipoles then follows by
integration,

Φ(xxx) =
1

4πε0

∫

V

PPP(xxx′) · r̂rr
r2 dτ ′,

where dτ ′ ≡ d3x′ and PPP is the dipole moment density. This
can be rewritten using

∇∇∇′
(

1
r

)
=

r̂rr

r2

in the form

Φ(xxx) =
1

4πε0

∫

V
PPP ·∇∇∇′

(
1
r

)
dτ ′.



194 CHAPTER 4. ELECTROSTATICS IN MATTER

Φ(xxx) =
1

4πε0

∫

V
PPP ·∇∇∇′

(
1
r

)
dτ ′.

can be integrated by parts using the product rule

∇∇∇′ · ( f AAA) = f (∇∇∇′ ·AAA)+AAA · (∇∇∇′
f ).

Setting f = 1/r and AAA = PPP, and integrating both sides over the

volume V , the product rule becomes
∫

V
∇∇∇′ ·
(

PPP

r

)
dτ ′ =

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′+

∫

V
(PPP ·∇∇∇′)

1
r

dτ ′

Now apply the divergence theorem

∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

to the term on the left side to give
∮

S

1
r

PPP ·daaa′ =
∫

V

1
r
(∇∇∇′ ·PPP)dτ ′+

∫

V
(PPP ·∇∇∇′)

1
r

dτ ′.

Multiply both sides by 1/4πε0 and rearrange to give

1
4πε0

∫

V
(PPP ·∇∇∇′)

1
r

dτ ′

︸ ︷︷ ︸
Φ(xxx)

=
1

4πε0

∮

S

1
r

PPP ·daaa′− 1
4πε0

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′,

and finally, comparing with the original expression,

Φ(xxx) =
1

4πε0

∫

V
PPP ·∇∇∇′

(
1
r

)
dτ ′,

this becomes

Φ(xxx) =
1

4πε0

∮

S

1
r

PPP ·daaa′− 1
4πε0

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′.
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Notice that in

Φ(xxx) =
1

4πε0

∮

S

1
r

PPP ·daaa′− 1
4πε0

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′.

1. The first term of looks like the potential generated by a
surface charge

σb ≡ PPP · n̂nn,
with n̂nn the unit vector normal to the surface and the
subscript “b” indicates that it originates in the bound

charges.

2. The second term looks like the potential generated by a
volume charge

ρb =−∇∇∇ ·PPP.
This equation can thus be written

Φ =
1

4πε0

∮

S

σb

r
da′+

1
4πε0

∫

V

ρb

r
dτ ′.

• The potential Φ and the field EEE of a polarized object is
equivalent to that produced by

– a volume charge density ρb =−∇∇∇ ·PPP, plus

– a surface charge density σb = PPP · n̂nn.

• Notice that the volume charge density ρb involves deriva-

tives of the polarization density PPP. Thus it contributes only

if the polarization is spatially non-uniform].
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Let’s use the result

Φ =
1

4πε0

∮

S

σb

r
da′+

1
4πε0

∫

V

ρb

r
dτ ′.

to determine the potential for a uniformly polarized sphere of

radius R. Since we assume uniform polarization,

• the second (volume-charge) term makes no contribution
(it is non-zero only if the derivative of the polarization
density is non-zero) and the potential is generated entirely

by the surface charge,

σb = PPP · n̂nn = Pcosθ ,

where the z-axis is chosen as the direction of polarization.

Thus, we need to evaluate the potential for a sphere with the

surface charge σb painted on it.

• This problem was already solved (homework),

Φ(r,θ) =





Pr

3ε0
cosθ (r ≤ R),

PR3

3ε0r2 cosθ (r ≥ R).

• The electric field is then given by EEE =−∇∇∇Φ.

• Since r cosθ = z, the field is uniform inside the sphere:

EEE =−∇∇∇Φ =− P

3ε0
ẑzz =− 1

3ε0
PPP (r < R).
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Figure 4.7: Electric field for uniformly polarized sphere.

Outside the sphere the field approximates a dipole form

Φ =
1

4πε0

ppp · r̂rr
r2 (r ≥ R),

where the dipole moment is equal to the total dipole moment of

the sphere

ppp =
4
3

πR3PPP.

The field lines for EEE of the uniformly polarized sphere are plot-
ted in Fig. 4.7.
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R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

Figure 4.8: Charge Q located a distance r′ from the center of a sphere of radius R.

4.10 Average Electric Fields in Matter

Let’s begin by considering a sphere containing a single point

charge Q located a distance r′ from the origin along the z-axis,
as illustrated in Fig. 4.8.

• By symmetry the average field over the entire volume
must be along the z-axis The average field is then

〈Ez〉=
∫

τ Ez dτ∫
τ dτ

=
1
τ

∫

τ
Ez dτ,

where τ is the volume of the sphere.

• It is convenient to separate the integral into two parts:

– one over the spherical shell from radii r′ to R (outside
the dashed circle in the above diagram) and

– one over the sphere of radius r′ (inside dashed circle).
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R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

The integral over the outer volume vanishes, by the following
qualitative argument.

• Consider the concentric shell at radius R with thickness
dr.

• The solid angle element intercepts the volume elements
dτ1 and dτ2 in the shaded shell of thickness dr.

• The value of Ez decreases quadratically with distance from
Q but dτ increases quadratically with distance, so their
product remains constant.

• But Ez is positive at dτ1 and negative at dτ2, so the two
contributions cancel.

• A similar argument can be make for all shells and the en-
tire outer shell with r > r′ contributes zero.
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R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

To calculate the integral over the inner volume (inside the
dashed circle), consider the point P in the above figure.

• The potential at P is

Φ =
1

4πε0

Q

r1
=

1
4πε0

Q

|xxx− xxx′|,

where from the figure r1 = |xxx− xxx′|.

• Thus, we may expand in the multipole expansion,

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ) =
∞

∑
l=0

rl

(r′)l+1 Pl(cosθ)

where we’ve used from the diagram that r < r′.
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R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

Writing this expansion out and substituting explicit values for
the Legendre polynomials,

Φ =
Q

4πε0

1
r′

[
1+

r

r′
cosθ +

1
2

r2

r′2
(3cos2 θ −1)

+
1
2

r3

r′3
(5cos3 θ −3cosθ + · · ·

]
.

The electric field is minus the gradient of the potential, so we
need to evaluate Ez =−∂Φ/∂ z. Utilizing

r cosθ = z
∂ r

∂ z
=

∂

∂ z
(x2 + y2+ z2)1/2 =

z

r
= cosθ

the preceding multipole expansion can be written in terms of z

and the derivative taken to give the expansion for the electric
field

Ez =− Q

4πε0r′2

[
1+

2z

r′
+

3
2r′2

(3z2− r2)+ · · ·
]
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R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

Then we may compute the average by integrating term by term
in this series.

• The first term gives

〈Ez〉1 =− Q

4πε0r′2

∫ π

0

∫ r′

0
2πr2 sinθ dr dθ =− Qr′

3ε0τ
.

• All of the higher-order terms give zero, so we obtain

〈Ez〉=− Qr′

3ε0τ
=−Qr′

3ε0

3
4πR3 =− Qr′

4πε0R3 =− p

4πε0R3 ,

where

– the volume is τ = 4
3πR3 and

– the dipole moment p of the charge Q is p = Qr′.
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R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

This result was for a single charge on the z-axis.

• For an arbitrary charge distribution the same result is ob-
tained (because of superposition), except that

〈Ez〉=− ptotal

4πε0R3 ,

• where ptotal is the total dipole moment of the arbitrary

charge distribution within the sphere of radius R.
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4.11 Boundary Conditions at Interfaces

We must often consider problems in which

• media with different properties are adjacent and

• boundary conditions at interfaces must be evaluated.

In a medium perhaps polarized by electric or magnetic fields,

• the vacuum Maxwell equations are modified to the
Maxwell equations in medium,

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law),

• where DDD and HHH are defined by

DDD ≡ ε0EEE +PPP HHH =
1
µ0

BBB−MMM,

with PPP the density of electric dipole moments and MMM the
density of magnetic dipole moments (see Ch. 6).

• Note: The vacuum Maxwell equations can be recovered

by substituting DDD = ε0EEE and HHH = BBB/µ0 into the above
in-medium equations, remembering that µ0ε0 = 1/c2.
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The in-medium Maxwell equations in differential form,

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law),

can be cast in integral form using

• the divergence theorem and

• Stokes’ theorem,

as we now demonstrate.
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Consider the differential form of Maxwell’s equations in

medium,

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law).

• Let V be a finite volume bounded by a closed surface S,

• let da be an area element of that surface, and

• let nnn be a unit normal at da, pointing out of the volume.

The divergence theorem
∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

applied to Gauss’s law ∇∇∇ ·DDD = ρ then yields
∮

S
DDD ·nnnda =

∫

V
ρ d3x,

This integral form of Gauss’s law requires that

• the total flux DDD out through the surface is

• equal to the charge contained in the volume.
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Likewise, applying the divergence theorem

∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

to the third Maxwell equation,

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law).

yields the third Maxwell equation in integral form,
∮

S
BBB ·nnnda = 0,

which is the magnetic analog of
∮

S
DDD ·nnnda =

∫

V
ρ d3x,

requiring no net flux of B through the closed surface because
magnetic charges do not exist.
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In a similar manner, suppose that

• C is a closed contour spanned by an open surface S′,

• dlll is a line element on C,

• da is an area element on S′, and

• nnn′ is a unit vector pointing in a direction given by the right-
hand rule.

Applying Stokes’ theorem,
∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

to the second Maxwell equation

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law).

gives ∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnn′da,

which is an integral form of Faraday’s law of magnetic induc-
tion.
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Likewise, applying Stokes’ theorem

∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

to the 4th Maxell equation

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law).

gives ∮

C
HHH ·dlll =

∮

S′

(
JJJ+

∂DDD

∂ t

)
·nnn′da,

which is an integral form of the Ampère–Maxwell law of mag-
netic fields.
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Summarizing:
∮

S
DDD ·nnnda =

∫

V
ρ d3x (Gauss’s law)

∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnn′da, (Faraday’s law)

∮

S
BBB ·nnnda = 0, (No magnetic charges)

∮

C
HHH ·dlll =

∮

S′

(
JJJ+

∂DDD

∂ t

)
·nnn′da (Ampère–Maxwell law)

define Maxwell’s equations, in medium, in integral form.
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Figure 4.9: Schematic illustration of a boundary surface between different media
that is assumed to carry surface charge σ and surface current density KKK. The in-
finitesimal cylinder of volume V is half in one medium and half in the other, with
the normal nnn to its surface pointing from medium 1 into medium 2. The infinitesi-
mal rectangular contour C is partly in one medium and partly in the other, with its
plane perpendicular to the surface so that its normal ttt (pointing out of the page) is
tangent to the surface.

Maxwell’s integral equations in medium may be used to deter-
mine the relationship of

• normal and tangential components of the fields on either

side of an interface between media having different elec-

tromagnetic properties.

• Consider Fig. 4.9, where there is a boundary between
medium 1 and medium 2, and

• we allow the possibility that there is a surface charge σ
and a current density KKK at the interface.
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n
V
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t
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To facilitate our analysis,

• an infinitesimal cylindrical Gaussian pillbox of volume V

straddles the surface between the two media.

• In addition, an infinitesimal rectangular contour C has
long sides on either side of the boundary and

• is oriented so that the normal ttt to the rectangular surface

points out of the page and is tangent to the interface.
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Let us first apply
∮

S
DDD ·nnnda =

∫

V
ρ d3x (Gauss’s law)

∮

S
BBB ·nnnda = 0, (No magnetic charges)

to the cylindrical pillbox in the above figure.

• In the limit that the pillbox is very shallow the side of the

cylinder does not contribute to the integrals on the left side
of these equations.

• If the top and bottom of the cylinder are parallel to the

interface and have area ∆a, then

• the integral on the left side of Gauss’s law is
∮

S
DDD ·nnnda = (DDD2−DDD1) ·nnn∆a.
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Applying a similar argument to the left side of
∮

S
BBB ·nnnda = 0 (No magnetic charges),

the integral is ∮

S
BBB ·nnnda = (BBB2 −BBB1) ·nnn∆a.

• If the charge density ρ produces an idealized surface

charge density σ , the integral on the right side of Gauss’s
law evaluates to ∫

V
ρ d3x = σ∆a,

and the normal components of DDD and BBB on the two sides

of the interface are related by

(DDD2−DDD1) ·nnn = σ ,

(BBB2−BBB1) ·nnn = 0.
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Thus, in words

(DDD2−DDD1) ·nnn = σ ,

(BBB2−BBB1) ·nnn = 0.

means that

1. the normal component of BBB is continuous across the inter-

face but

2. the discontinuity of the normal component of DDD at any
point is equal to the surface charge density σ at the point.
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In a similar manner, the infinitesimal rectangular contour C in
the figure above can be used with Stokes’ theorem

∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

to determine the discontinuities in the tangential components

of EEE and HHH.

• In the limit that the short sides of the rectangular loop may

be neglected and

• each long side is of length ∆l and parallel to the interface,

• the integral on the left side of
∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnn′da, (Faraday’s law)

is given by
∮

C
EEE ·dlll = (ttt ×nnn) · (EEE2 −EEE1)∆l.
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Likewise, the integral on the left side of
∮

C
HHH ·dlll =

∮

S′

(
JJJ+

∂DDD

∂ t

)
·nnn′da (Ampère–Maxwell law)

is ∮

C
HHH ·dlll = (ttt ×nnn) · (HHH2−HHH1)∆l.

The right side of
∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnn′da, (Faraday’s law)

vanishes because

• in the limit of vanishing length of the short side of the
rectangular contour, ∂BBB/∂ t is finite while ∆t → 0.
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n
V

Medium 1

Medium 2

E2, B2

D2, H2

E1, B1

D1, H1

C

t

σ, K

Because there is an idealized surface current density KKK flowing
exactly on the boundary, the integral on the right side of
∮

C
HHH ·dlll =

∮

S′

(
JJJ+

∂DDD

∂ t

)
·nnn′da (Ampère–Maxwell law)

is equal to ∮

S′

(
JJJ +

∂DDD

∂ t

)
· ttt da = KKK · ttt∆l,

where the second term vanishes by the same argument as for
the right side of

∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnn′da, (Faraday’s law)
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Therefore, the tangential components of EEE and HHH on either side

of the media interface are related by

(ttt ×nnn) · (EEE2−EEE1) = 0 (ttt ×nnn) · (HHH2−HHH1) = KKK · ttt,

and using the identity

AAA · (BBB×CCC) = BBB · (CCC×AAA),

this implies that

nnn× (EEE2−EEE1) = 0,

nnn× (HHH2−HHH1) = KKK,

where it is understood that the surface current KKK has only com-
ponents parallel to the interface at every point.
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Thus, the matching conditions are

nnn× (EEE2−EEE1) = 0,

nnn× (HHH2−HHH1) = KKK,

which implies that

1. the tangential component of EEE is continuous across an in-
terface, but

2. the tangential component of HHH is discontinuous across the
interface by an amount with magnitude equal to |KKK| and
direction given by the direction of KKK ×nnn.
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SUMMARY: The discontinuity equations are

(DDD2−DDD1) ·nnn = σ ,

(BBB2−BBB1) ·nnn = 0.

nnn× (EEE2−EEE1) = 0,

nnn× (HHH2−HHH1) = KKK,

for the fields BBB, EEE, DDD, and HHH.

• These allow solving the Maxwell equations in different re-

gions having potentially different electromagnetic proper-
ties, and

• then connecting the solutions to obtain the fields over all
of the space.
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Figure 4.10: Delectric ball of radius a and dielectric constant κ = ε/ε0 in an initially
uniform external electric field EEE0 directed along the zzz axis.

4.12 Dielectric Boundary Value Problems

The methods developed in previous chapters may be adapted

to handle the presence of dielectrics.

Example: Dielectric Ball in Uniform Electric Field

A dielectric ball with dielectric constant κ = ε/ε0 is placed in
an initially uniform electric field directed along the z axis, as
illustrated in Fig. 4.10.

Let’s determine the

• potential Φ and

• the electric field EEE

inside and outside the ball, assuming no free

charges inside or outside of the ball.

There are no free charges so the solution will involve solving

the Laplace equation with appropriate boundary conditions.
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• We assume axial symmetry about the z axis.

• Solving the Laplace equation in spherical coordinates by
separation of variables, general solutions are of the form,

Φ(r,θ) =
∞

∑
l=0

(Alr
l +Blr

−(l+1))Pl(cosθ).

• However, there are no charges at the origin and

• the requirement that Φ(r,θ) be finite there demands that
for the interior solution, Bl = 0, so

• the interior solution is of the form

Φin(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ),

• and the exterior solution is of the form

Φout(r,θ) =
∞

∑
l=0

(Blr
l +Clr

−(l+1))Pl(cosθ),

with the constants Al, Bl, and Cl to be determined by imposing

boundary conditions.
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• At infinity, we must have,

Φ(r → ∞) =−E0z =−E0r cosθ =−E0rP1(cosθ).

• This requires that

−E0rP1(cosθ)= [Blr
l+Clr

−(l+1)]Pl(cosθ)≃Blr
lPl(cosθ)

since the Cl term vanishes as r → ∞.

• Multiply both sides by P1(cosθ) and integrate,

−E0r

∫
P1(cosθ)P1(cosθ)d(cosθ)

= Blr
l
∫

P1(cosθ)Pl(cosθ)d(cosθ).

• Using the orthogonality relation
∫ +1

−1
Pk(cosθ)Pl(cosθ)d(cosθ) =

2
2l +1

δkl,

all terms vanish except for l = 1 and

• we obtain B1 =−E0, with all other Bl equal to zero.
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• Thus, the exterior solution becomes,

Φout(r,θ) =−E0rlP1(cosθ)+
∞

∑
l=0

Clr
−(l+1)Pl(cosθ),

• Now let’s use the boundary conditions at the edge of the

sphere to fix the other constants,

• by requiring the matching at the surface r = a for tangen-

tial and normal components of Φ,

−1
a

∂Φin

∂θ

∣∣∣∣
r=a

= −1
a

∂Φout

∂θ

∣∣∣∣
r=a

( tangential),

−ε
∂Φin

∂ r

∣∣∣∣
r=a

= −ε0
∂Φout

∂ r

∣∣∣∣
r=a

( normal).
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• Now substitute the expansions

Φin(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ),

Φout(r,θ) =−E0rlP1(cosθ)+
∞

∑
l=0

Clr
−(l+1)Pl(cosθ),

into these matching equations and solve to determine the
constants.

• First consider the tangential matching. Substituting the
above equations into

−1
a

∂Φin

∂θ

∣∣∣∣
r=a

= −1
a

∂Φout

∂θ

∣∣∣∣
r=a

leads to

−1
a

∂

∂θ

∞

∑
l=0

Alr
lPl(cosθ)

∣∣∣∣∣
r=a

=

− 1
a

∂

∂θ

[
−E0rlP1(cosθ)+

∞

∑
l=0

Clr
−(l+1)

]

r=a

Pl(cosθ),
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• which simplifies to

∞

∑
l=0

alAl

∂

∂θ
Pl(cosθ) =

−aE0
∂

∂θ
P1(cosθ)+

∞

∑
l=0

a−(l+1)Cl

∂

∂θ
Pl(cosθ).

• Let’s convert the derivatives of Legendre polynomials
Pn(x) to associated Legendre polynomials Pm

n (x) using the
general relationship,

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x),

• which upon specializing to m = 1 yields

dPn(x)

dx
= (1− x2)−1/2P1

n (x),

or letting x = cosθ ,

dPn(cosθ)

dθ
=−P1

n (cosθ),
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• Then

∞

∑
l=0

alAl

∂

∂θ
Pl(cosθ) =

−aE0
∂

∂θ
P1(cosθ)+

∞

∑
l=0

a−(l+1)Cl

∂

∂θ
Pl(cosθ).

becomes

−
∞

∑
l=0

alAlP
1
l (cosθ) =−aE0P1

1 (cosθ)+
∞

∑
l=0

a−(l+1)ClP
1
l (cosθ)

• We will now exploit the orthogonality properties of the

associated Legendre polynomials, which obey
∫ +1

−1
Pm

p (x)P
m
q (x)dx = Kqmδpq Kqm ≡ 2

2q+1
(q+m)!
(q−m)!

or in spherical coordinates

∫ π

0
Pm

p (cosθ)Pm
q (cosθ)sinθdθ = Kqm δpq

There are two solutions, a special solution for l = 1
and a general solution for all l 6= 1.
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To obtain the special solution let x = cosθ , multiply both sides
by P1

1 (x), and integrate.

−
∞

∑
l=0

alAl

∫
P1

1 (x)P
1
l (x)dx =

−aE0

∫
P1

1 (x)P
1
1 (x)dx+

∞

∑
l=0

a−(l+1)Cl

∫
P1

l (x)P
1
1 (x)dx

Utilizing
∫ +1

−1
Pm

p (x)P
m
q (x)dx = Kqmδpq Kqm ≡ 2

2q+1
(q+m)!
(q−m)!

this gives

−
∞

∑
l=0

alAlδ1l =−aE0+
∞

∑
l=0

a−(l+1)Clδ1l

and finally
aA1 =−aE0+a−2C1

or equivalently,

A1 =−E0+
C1

a3 .
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Now let’s find the general solution for l 6= 1.

• Let x = cosθ and multiply both sides of

−
∞

∑
l=0

alAlP
1
l (cosθ)

=−aE0P1
1 (cosθ)+

∞

∑
l=0

a−(l+1)ClP
1
l (cosθ)

by P1
k (x) and integrate,

−
∞

∑
l=0

alAl

∫
P1

k (x)P
1
l (x)dx =

−aE0

∫
P1

k (x)P
1
1 (x)dx+

∞

∑
l=0

a−(l+1)Cl

∫
P1

k (x)P
1
l (x)dx

• Utilizing the orthogonality relation
∫ +1

−1
Pm

p (x)P
m
q (x)dx = Kqmδpq Kqm ≡ 2

2q+1
(q+m)!
(q−m)!

this gives

alAl = a−(l+1)Cl → Al =
Cl

a2l+1
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We now have two relations among coefficients

A1 =−E0+
C1

a3 Al =
Cl

a2l+1 .

obtained from the tangential matching condition

−1
a

∂Φin

∂θ

∣∣∣∣
r=a

= −1
a

∂Φout

∂θ

∣∣∣∣
r=a

( tangential).

Now let’s use the normal matching condition

−ε
∂Φin

∂ r

∣∣∣∣
r=a

= −ε0
∂Φout

∂ r

∣∣∣∣
r=a

( normal).

to obtain additional constraints. Upon substituting

Φin(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ),

Φout(r,θ) =−E0rlP1(cosθ)+
∞

∑
l=0

Clr
−(l+1)Pl(cosθ),

we obtain

ε
∞

∑
l=0

lal−1AlPl(x) = ε0B1P1(x)+
∞

∑
l=0

−(l +1)Cla
−(l+2)Pl(x).
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As before, there are two solutions,

• a special solution when l = 1, and

• a general solution when l 6= 1.

Lets find the special solution by multiplying

ε
∞

∑
l=0

lal−1AlPl(x) = ε0B1P1(x)+
∞

∑
l=0

−(l +1)Cla
−(l+2)Pl(x).

by P1(x) and integrating.

• Upon exploiting the orthogonality properties

∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn,

the result is another relationship among coefficients:

ε

ε0
A1 =−E0−2

C1

a3 (l = 1).



4.12. DIELECTRIC BOUNDARY VALUE PROBLEMS 233

E0 E0

ε

ε0

r

θ
a

z

P

The general solution may be obtained by multiplying both sides
of

ε
∞

∑
l=0

lal−1AlPl(x) = ε0B1P1(x)+
∞

∑
l=0

−(l +1)Cla
−(l+2)Pl(x).

by Pk(x), integrating, and exploiting the orthogonality con-
straints ∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn,

The result is

ε

ε0
lAl =−(l +1)

Cl

a2l+1 (l 6= 1).
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• We now have four equations,

A1 =−E0 +
C1

a3

Al =
Cl

a2l+1

ε

ε0
A1 =−E0 −2

C1

a3

ε

ε0
lAl =−(l +1)

Cl

a2l+1

to solve simultaneously for the unknown coefficients.

• Eqs. 2 and 4 are satisfied only if Al =Cl = 0 for all l 6= 1,

• Solving Eqs. 1 and 3 simultaneously for l = 1 gives

A1 =−
(

3
ε/ε0+2

)
E0 C1 =

(
ε/ε0 −1
ε/ε0 +2

)
a3E0.

• Inserting these results into

Φin(r,θ) =
∞

∑
l=0

Alr
lPl(cosθ),

Φout(r,θ) =−E0rlP1(cosθ)+
∞

∑
l=0

Clr
−(l+1)Pl(cosθ),

gives for the interior and exterior potentials

Φin =−
(

3
2+ ε/ε0

)
E0 r cosθ =−

(
3

2+ ε/ε0

)
E0 z,

Φout =−E0 z+

(
ε/ε0 −1
ε/ε0 +2

)
E0 a3 cosθ

r2 .
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The electric fields then follow from EEE =−∇∇∇Φ. For the interior,

Ein =− ∂

∂ z

[( −3
ε/ε0 +2

)
E0 z

]
=

(
3

ε/ε0 +2

)
E0,

from which we conclude that

1. the interior field Ein is constant, proportional to the con-
stant exterior field,

2. if ε = ε0, then the interior field is equal to the exterior

field, Ein = E0, and

3. if ε > ε0, then the interior field is reduced relative to the
exterior field, Ein < E0.
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In the equation for the exterior potential,

Φout =−E0 z+

(
ε/ε0 −1
ε/ε0 +2

)
E0 a3 cosθ

r2 .

• it is clear that the first term is due to the unperturbed exte-

rior field EEE0 and

• the second term is a correction associated with the polar-

ized dielectric sphere.

• If the induced electric dipole moment ppp of the polarized
sphere is taken to have magnitude

p = 4πε0

(
ε/ε0−1
ε/ε0+2

)
a3E0,

then the exterior potential can be written

Φout =−E0 z+
p

4πε0

cosθ

r2 ,

• making clear that the external potential is

– the unperturbed external potential (1st term)

– modified by a potential from an induced electric

dipole associated with the polarized dielectric sphere
(2nd term).
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• From
PPP = ε0χeEEE κ ≡ ε

ε0
= 1+ χe

the polarization PPP is given by

PPP = (ε − ε0)EEE,

and from

PPP ≡ pppN =
dipole moments

unit volume
,

the polarization may also be defined as the density of

dipole moments.

• Then if the induced electric dipole moment ppp of the polar-

ized sphere is taken to have magnitude

p = 4πε0

(
ε/ε0−1
ε/ε0+2

)
a3E0,

the polarization of the dielectric sphere is given by

PPP = (ε − ε0)EEE =

(
dipole moments

unit volume

)

=
p

4
3πa3

= 3ε0

(
ε/ε0 −1
ε/ε0 +2

)
EEE0.
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(a) (b)

Figure 4.11: (a) Polarization of a dielectric ball by an external electric field EEE0.
(b) The polarization of charge induces a field EEE ind that opposes the applied field EEE0.

The results of this example are displayed in Fig. 4.11.

• As indicated in Fig. 4.11(a), the external field E0 aligned
in the z direction polarizes the dielectric sphere,

• with the polarization vector PPP oriented in the direction of

the external field.

• The polarization is the density of induced dipole moments.

• This corresponds to the polarization of charge illustrated
in Fig. 4.11(b) with positive charge accumulating on the
right side of the sphere and negative charge on the left
side.

• The polarization of charge indicated in Fig. 4.11(b) in-

duces an electric field EEE ind that opposes the applied field

EEE0 but does not completely cancel it as would happen for
a conducting filled sphere.

• The electric field EEE in inside the sphere is is constant.
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zz

(a) Dielectric filled sphere (a) Metal filled sphere

Figure 4.12: (a) Electric field lines for dielectric filled sphere in an external electric
field EEE0 directed along the zzz axis. (b) Electric field lines for a conducting ball in an
external electric field EEE0 directed along the zzz axis. Original calculation in Fig. 3.11.

• If ε > ε0 the electric field inside acts in the opposite di-

rection as the applied field and

• is reduced in strength by a factor 3/(ε/ε0 +2) relative to
the applied field.

This is indicated schematically in Fig. 4.12(a); notice that

1. The field inside EEE in is in the same direction as the applied

field EEE0, but

2. is reduced in strength by the induced field EEE ind acting
against the applied field.

3. This reduction in strength for the interior field is indicated
by the decreased density of field lines inside the sphere

relative to the outside.

4. There is a discontinuity of the electric field lines at the
boundary of the sphere

5. because of the surface charge that has accumulated there
as a consequence of polarization.
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zz

(a) Dielectric filled sphere (a) Metal filled sphere

As indicated by

p = 4πε0

(
ε/ε0−1
ε/ε0+2

)
a3E0,

Φout =−E0 z+
p

4πε0

cosθ

r2 ,
︸ ︷︷ ︸

polarization

• the external potential consists of the original potential

contributed by the external field plus

• a correction term that may be viewed as the potential gen-

erated by a set of electric dipoles centered on the sphere
because of the charge polarization.

• Far from the sphere the external potential is that of the
original applied field EEE0, but

• near the sphere the field lines in Fig. (a) above are dis-
torted by the increasing importance of the second term the
equation above for Φout,

– which scales as r−2 and therefore

– grows rapidly as the sphere is approached.



Chapter 5

Magnetostatics

• The basic goal of electrostatics is that we have some set

of discrete source charges {qi}, or a localized continuous

distribution of charge ρ(xxx),

• that are stationary, and

• we desire to calculate the electric field at arbitrary loca-
tions in space produced by those charges.

• This can be done using the principle of superposition:

– Calculate the contribution of each source charge qi

or infinitesimal piece of a continuous charge dρ(xxx) to
the electric field at some point, and

– sum them to get the total electric field at that point.

• We have developed a number of sophisticated ways to do

this beyond brute force summation or integration, but that
is the essential idea.

In this chapter we wish to expand upon this idea
by allowing the source charges to move.

241
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5.1 Introduction

The introduction of charges in motion (currents) may seem an

innocuous change on its surface, but

• it adds to the electric field associated with the stationary
source charges a new magnetic field associated with their
motion,

• and a host of associated phenomena (magnetism) having
a phenomenology that is often very different from that of
electrostatics.

As a consequence, it took centuries after electro-

static and magnetic phenomena were first identi-

fied to realize that

• they are not separate subjects but are in fact

• different manifestations of the same basic

physical principles.
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Magnetostatics is more subtle and complex than electrostatics.

• From Maxwell’s equations, a time-independent current

distribution jjj(xxx) is a source of a vector field BBB(xxx) called
the magnetic field that satisfies the differential equations

∇∇∇ ·BBB(xxx) = 0,

∇∇∇×BBB(xxx) = µ0 jjj(xxx).

These equations specify the divergence and the

curl of BBB(xxx). This should be sufficient to specify
BBB(xxx) uniquely by the Helmholtz theorem.

• Applying the divergence operation to both sides of

∇∇∇×BBB(xxx) = µ0 jjj(xxx)

using the vector identity ∇∇∇ · (∇∇∇×AAA) = 0 gives

∇∇∇ · (∇∇∇×BBB(xxx)) = 0 = µ0∇∇∇ · jjj(xxx).

• Thus, magnetostatic current densities satisfy ∇∇∇ · jjj(xxx) = 0.

• In electrostatics stationary charges produce electric fields

constant in time.

• In magnetostatics stationary (unchanging) currents pro-
duce magnetic fields that are constant in time.
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The more complex nature of magnetostatics relative to electro-
statics arises in part because

• magnetostatics involves a vector current density and

• the force law (below) involves a cross product of vectors,

• From a physics perspective magnetism is also complicated
by there being two fundamentally different types of cur-

rents that can produce magnetic effects:

1. currents that results from moving charges, and

2. currents that result from the quantum spins of point-
like particles (magnetization currents ), which have
no suitable classical analogs.

– Quantum orbital angular momentum can be viewed
semiclassically as charge in motion on a classical or-
bit, but

– quantum spin angular momentum has no correspond-
ing classical analog.

• It follows that magnetizable matter exhibits much greater
variety than polarizable matter.

For example, permanent magnetism (ferromag-

netism) is much more common than than the di-
electric counterpart of ferroelectricity.



5.1. INTRODUCTION 245

From the static Maxwell equations (all time derivatives set to
zero),

• the basic equations governing electrostatics are

∇∇∇×EEE(xxx) = 0

∇∇∇ ·EEE(xxx) = ρ(xxx)

ε0
.

• Comparing with the basic equations governing magneto-

statics,

∇∇∇ ·BBB(xxx) = 0,

∇∇∇×BBB(xxx) = µ0 jjj(xxx).

we see that the formal roles of the divergence and curl op-

erators are interchanged between electrostatics and mag-
netostatics.

As a purely practical matter, this leads to meth-
ods and corresponding results for magnetostatics
that are quite different from the methods and cor-
responding results in electrostatics.
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Finally, though, let us note that from a fundamental point of
view special relativity tells us that (despite the differences de-
scribed above)

• the distinction between electric EEE fields and magnetic BBB

fields is only a choice of observer reference frame:

– what looks like an electric field from one inertial
frame

– looks like a magnetic field from a different inertial
frame,

and vice versa

• We shall take that up in later chapters when we discuss

– the special theory of relativity,

– Lorentz transformations, and

– formulation of the Maxwell equations in a manifestly

Lorentz-covariant manner.

• For now we note that in our low-energy world

• there is some pragmatic utility in using our present for-
malism that distinguishes clearly between electric and

magnetic phenomena

• through the use of equations that are (secretly) actually

Lorentz covariant, but are not manifestly so.
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5.2 Magnetic Forces

A magnetic field BBB generated by source charges in motion and
the electric field EEE associated with those charges

• lead to a force FFF that is found to act on a test charge q

having relative velocity v according to the Lorentz force

law,
FFF = q(EEE + vvv×BBB).

• As we will find, the very different phenomenology of
magnetic effects relative to electrostatic effects

• is partially due to the nature of this force law, which mixes
the effect of the electric field and magnetic field in a non-
trivial way.

Characteristic cyclotron motion of a charged par-
ticle in a magnetic field is circular with the cen-
tripetal acceleration provided by the magnetic
force.
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How much work can be done by the Lorentz force?

• Previously we found that the work done if a test charge is

moved in an electric field is the product of the charge and
the difference in electric potential over the path.

• If we repeat that calculation using the Lorentz force with
BBB = 0 the same result is obtained (reassuring!).

• On the other hand, let’s set EEE = 0 and calculate the work

done by the magnetic part of the Lorentz force on a test
charge.

If a charge Q moves a distance dLLL = vvvdt, then the
work done by the magnetic field is

dW = FFF ·dLLL = Q(v×BBB) · vvvdt = 0.

• The magnetic field does no work.

• This obviously is because the cross product

vvv×BBB is perpendicular to the velocity vvv,

• so the scalar product (v×BBB) · vvv vanishes.

As seen in the cyclotron motion discussed below,

• magnetic forces can alter the direction of charged-particle

motion, but

• they cannot change the speed (magnitude of the velocity).
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Figure 5.1: (a) Cyclotron motion caused by magnetic field BBB pointing into the page
along the z axis (not shown) acting on a charge q with a velocity vvv. (b) An electric
field EEE perpendicular to the magnetic field converts circular cyclotron motion into
spiral motion because of the Lorentz force law.

Cyclotron Motion

As shown in Fig. 5.1(a), the field BBB, oriented into the page,

• produces through the qvvv × BBB component of the Lorentz

force a centripetal force

• that is directed toward the center of the circle for a particle
of charge q and velocity vvv,

• causing the particle to be deflected in a circular path.

The motion becomes more complex if an EEE field is present also.

• For an EEE perpendicular to BBB,

• the circular cyclotron motion due to the magnetic field

• is converted into a the spiral motion depicted in
Fig. 5.1(b) by the qEEE component of the Lorentz force.
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The Hall Effect

A scientifically important consequence of the Lorentz force is
exemplified by the classical Hall effect.

− − − −− − − −

+ + + ++ + + +

jx(d)

VL

VH

jx

jx

jx

(a)

(b)

(c) Ey

Ex

Ex

Magnetic

field Bz

x

z
y

w

L

(a) For a 2D sample an electric field Ex causes a current den-

sity jx in the x direction.

(b) A uniform magnetic field BBB placed on the sample in the

+z direction deflects electrons in the −y direction.

(c) Negative charge accumulates on one edge and a positive
charge excess on the other edge,

– producing a transverse electric field Ey (Hall field)

– that just cancels the magnetic field force;

thus in equilibrium current flows only in the x direction.

(d) Typically the longitudinal voltage VL and the transverse

Hall voltage VH are measured.
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The Hall resistance RH

• which is inferred from RH =VH/w jx,

• depends on the sign and density of charge carriers.

• Thus the classical Hall effect is important as a diagnostic

for charge carriers in materials samples.

At very high magnetic fields, quantum effects become signifi-

cant.

• These quantum Hall effects are of even greater impor-
tance, since they

• first revealed topological effects that were the harbingers
of the modern topological matter revolution in condensed
matter and materials science.
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|x - L|

θ

θ
dB

x-L

x = zz

>

x

IdL

dL

R

(a) (b)

Figure 5.2: (a) Current loop carrying a steady current I. (b) Geometry for Biot–
Savart calculation of the magnetic field on the symmetry axis of a circular loop.

5.3 The Law of Biot and Savart

The magnetic field of a steady current is given by the Biot–

Savart law,

BBB(xxx) =
µ0

4π

∫
jjj(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′,

where the permeability of free space is

µ0 = 4π ×10−7 N/A2.

• When a steady current is flowing in a 1D wire the magni-

tude of the current I must be constant.

• If LLL is a vector that points to a line element dLLL of the wire
as in Fig. 5.2(a),

• substitution of IdLLL for jjjd3x in the equation above yields
the Biot–Savart law in the form

BBB(xxx) =
µ0I

4π

∫
dLLL× (xxx−LLL)

|xxx−LLL|3
.
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Example:

Let’s use the Biot–Savart law to calculate the magnetic field
produced by the circular current loop in (b) of the following
figure along the z axis.

|x - L|

θ

θ
dB

x-L

x = zz

>

x

IdL

dL

R

(a) (b)

• The components of dBBB perpendicular to the z symmetry
axis cancel when the entire loop is traversed but

• the z components add with the same magnitude for each
dLLL, giving

BBB(z) = ẑzz
µ0

4π

cosθ

R2+ z2

∮
dL = ẑzz

µ0I

2
R2

(R2 + z2)3/2
.

• This non-zero value of BBB on the symmetry axis contrasts

with the value of zero for the electric field EEE found for a

uniformly charged ring.

• The difference follows from the cross product in the Biot–

Savart formula. This causes contributions to BBB(z = 0)
from opposite sides of the ring to

– add for the magnetic field, but to

– subtract and cancel for the electric field.
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This example is one illustration of the basic differences be-
tween

• the way that stationary charges produce electric fields and

• the way that charges in motion produce magnetic fields.

• The Biot–Savart law may be viewed as the starting point

for magnetostatics,

• just as Coulomb’s law may be viewed as the starting point

for electrostatics.

• Both exhibit a one over the square of the distance depen-

dence, but

• they otherwise differ substantially because of the vector

nature of the magnetic law.

Both Coulomb’s law and the Biot–Savart law are

empirical, with each tailored to account for the
corresponding data.
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5.4 Differential Form of the Biot–Savart Law

The Biot–Savart law in integral form,

BBB(xxx) =
µ0

4π

∫
JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′,

contains (in principle) a complete description of magnetostat-

ics.

• but is not always the most convenient form for solving
problems.

• In many situations a differential equation is more conve-
nient to use.

• Let us find a form of the Biot–Savart law expressed as a
differential equation. From the identity,

xxx− xxx′

|xxx− xxx′|3
=−∇∇∇

(
1

|xxx− xxx′|

)
= ∇∇∇′

(
1

|xxx− xxx′|

)
,

• which allows converting the Biot–Savart equation into

BBB(xxx) =
µ0

4π

∫
JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′

=
µ0

4π
∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d3x′,

where ∇∇∇ has been pulled out of the integral because it op-
erates on xxx but not xxx′.

BSdiff1.0
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Remember that in these manipulations

• the integrations are over the primed coordinates, but

• applied gradient, divergence, and curl operations (∇∇∇, ∇∇∇·,
and ∇∇∇×, without primes) are taken with respect to the un-

primed coordinates.

• This is made explicit in the notation exemplified in the
Appendix,

• where ∇∇∇ ≡ ∇∇∇x operates on the xxx coordinates while ∇∇∇′ ≡
∇∇∇x′ operates on the xxx′ coordinates.

• Now take the divergence of

BBB(xxx) =
µ0

4π
∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d3x′,

to give

∇∇∇ ·BBB =
µ0

4π
∇∇∇ ·∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d3x′.

• But we have the identity ∇∇∇ · (∇∇∇×AAA) = 0 so

∇∇∇ ·BBB = 0,

which may be termed the first law of magnetostatics

• and is the third Maxwell equation, corresponding to the
absence of magnetic charges.
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Next, take the curl of BBB,

∇∇∇×BBB =
µ0

4π
∇∇∇×∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d3x′.

Using the vector identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA, this

may be written as

∇∇∇×BBB =
µ0

4π
∇∇∇

∫
JJJ(xxx′) ·∇∇∇

(
1

|xxx− xxx′|

)
d3x′

− µ0

4π

∫
JJJ(xxx)∇∇∇2

(
1

|xxx− xxx′|

)
d3x′

=−µ0

4π
∇∇∇

∫
JJJ(xxx′) ·∇∇∇′

(
1

|xxx− xxx′|

)
d3x′+µ0JJJ(xxx),

where we have used the identities,

∇∇∇

(
1

|xxx− xxx′|

)
=−∇∇∇′

(
1

|xxx− xxx′|

)
∇∇∇2
(

1
|xxx− xxx′|

)
=−4πδ (xxx−xxx′)

(where ∇∇∇ operates on xxx and ∇∇∇′ operates on xxx′) in the last step.
Integrating the remaining integral by parts then gives

∇∇∇×BBB = µ0JJJ+
µ0

4π
∇∇∇

∫
∇∇∇′ · JJJ(xxx′)
|xxx− xxx′| d3x′.

But for steady-state magnetism ∇∇∇ · JJJ = 0 and we obtain finally

∇∇∇×BBB = µ0JJJ,

which may be termed the second law of magnetostatics [and is
the fourth Maxwell equation if electric fields don’t depend on
time (Ampère’s law)].
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n

S

C
dl

da

Figure 5.3: Surface S and contour C bounding the surface for Stokes’ theorem.
An infinitesimal line element on C is indicated by dl and an infinitesimal surface
element on S is indicated by da, with the normal to da indicated by nnn. The path in
the line integration is traversed in a right-hand screw sense relative to nnn, as indicated
by arrows.

The integral equivalent of Ampère’s law may be obtained from
Stokes’ theorem,

∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

for the vector field AAA where S is an arbitrary open surface
bounded by a closed curve C and where nnn is the normal to S.
Figure 5.3 illustrates. Applying Stokes’ theorem to,

∇∇∇×BBB = µ0JJJ,

gives
∫

S
(∇∇∇×BBB) ·nnnda =

∮

C
BBB ·dlll = µ0

∫

S
JJJ ·nnnda

and therefore ∮

C
BBB ·dlll = µ0

∫

S
JJJ ·nnnda.
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Using that the total current I passing through the closed curve

C is given by the surface integral on the right side of
∮

C
BBB ·dlll = µ0

∫

S
JJJ ·nnnda.

the current is
I =

∫

S
JJJ ·nnnda,

we finally write Ampère’s law in integral form

∮

C
BBB ·dlll = µ0I,

We found in our study of electrostatics that

• Gauss’s law can often be used to find the
electric field in highly symmetric cases.

• Ampére’s law can be employed in an anal-
ogous way for magnetostatic problems with
high symmetry.

The following example illustrates.
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a

b

2 1

I

I

R

n coils per

unit length L

Figure 5.4: Analysis of a long, tightly wound solenoid using Ampère’s law. Two
rectangular loops are shown, number 1 outside the solenoid and number 2 overlap-
ping the solenoid.

Example:

Let’s determine the magnetic field for the long solenoid illustrated in
Fig. 5.4, with n closely wound turns per unit length on a cylinder of
radius R and carrying a steady current I.

• Because the solenoid is tightly wound, we assume that each coil

is perpendicular to the cylinder symmetry axis.

• We expect then on symmetry and general grounds that the mag-

netic field field is oriented along the cylinder axis, and that it
drops to zero at large distance from the solenoid.

• Let’s apply Ampère’s law
∮

C
BBB ·dlll = µ0I,

to the two rectangular loops shown in the diagram.
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a

b

2 1

I

I

R

n coils per

unit length L

• Loop 1 is completely outside the solenoid and encloses no cur-

rent, Ienc = 0, with its left side a distance a and its right side a
distance b from the central axis of the cylinder.

• Applying Ampère’s law to it
∮

BBB ·dl = [B(a)−B(b)]L = µ0Ienc = 0,

where B = |BBB|.

• So B(a) = B(b) and the magnetic field outside is independent of
the distance from the solenoid.

• But the boundary conditions require that B = 0 at infinity, so the
magnetic field must vanish everywhere outside the solenoid.

• Loop 2 is halfway inside the solenoid and Ampère’s law gives
∮

BBB ·dl = BL = µ0Ienc = µ0nIL,

where B is the field inside the solenoid (there is no contribution
from the half rectangle outside the cylinder since B = 0 there).
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• Thus inside the solenoid the field is uniform, BBB = µ0nIẑzz, where
ẑzz is a unit vector along the cylinder axis, and

• outside the solenoid the magnetic field vanishes.

Like Gauss’s law,

• Ampère’s law is generally valid (for steady
currents), but

• it is useful only if a problem has sufficient
symmetry to permit

• B to be pulled out of the integral
∮

BBB · dlll, al-
lowing ∮

C
BBB ·dlll = µ0I,

to be solved easily for the magnetic field.
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5.5 The Vector Potential and Gauge Invariance

We have seen in the preceding section that the basic laws of

magnetostatics are defined in differential form through

∇∇∇×BBB = µ0JJJ,

∇∇∇ ·BBB = 0,

which require knowledge of the magnetic field BBB for their use.

• In electrostatics we found that the electric potential Φ was
an extremely useful quantity because

• the electric field can be derived from it by taking the gra-
dient, EEE =−∇∇∇Φ.

• The electric potential Φ is a scalar quantity, and it is often
termed the scalar potential.

• For the special case that current density is zero in a region,

• it is possible to define a magnetic scalar potential ΦM such
that the magnetic field is given by BBB =−∇∇∇ΦM.

• Then ∇∇∇ × BBB = µ0JJJ, with JJJ = 0 reduces to the Laplace

equation for ΦM.

• Therefore, the methods for solving Laplace’s equation de-
veloped for electrostatics become applicable.

However, this method has limited applicability be-
cause it is valid only if current density vanishes.
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An approach with more general applicability may be developed
by exploiting the second magnetostatic equation, ∇∇∇ ·BBB = 0.

• This will allow defining a vector potential AAA, from which

• the magnetic field BBB is derived by taking the curl of AAA.

• We begin by noting that if ∇∇∇ ·BBB = 0 is to hold everywhere,

• then BBB must be the curl of some vector field AAA (the vector
potential),

BBB(xxx) = ∇∇∇×AAA(xxx),

since then

• the identity ∇∇∇ · (∇∇∇×AAA) = 0 ensures that the divergence of

BBB vanishes identically under all conditions.

• In fact, BBB was already written in this form earlier,

BBB(xxx) =
µ0

4π
∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d3x′,

• and upon comparing the previous two equations, an AAA

consistent with the phenomenology of magnetism is

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d3x′+∇∇∇ψ(xxx),

• where the addition of the arbitrary scalar function ψ(xxx)

has no effect on ∇∇∇ ·BBB = 0

• because of the identity ∇∇∇ × (∇∇∇ f ) = 0 for an arbitrary
scalar function f .
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Since ψ(xxx) is an arbitrary scalar function of xxx, the vector po-
tential AAA can be transformed freely according to

AAA → AAA+∇∇∇ψ ,

• which has no effect on ∇∇∇ ·BBB = 0,

• because of the identity ∇∇∇ · (∇∇∇×∇∇∇χ) = 0.

Gauge Transformations:

• Adding the gradient of an arbitrary scalar ψ to a vector
potential AAA → AAA+∇∇∇ψ is called a gauge transformation,
and

• the invariance of the laws of electromagnetism under this
transformation is called gauge invariance.

• The gauge symmetry associated with this invariance has
large implications for classical electromagnetism and
quantum electrodynamics, and

• a generalization of this gauge symmetry is of fundamen-
tal importance in relativistic quantum field theories, par-
ticularly for the Standard Model of elementary particle
physics.
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From the Helmholtz theorem,

• a vector field with suitable boundary conditions is speci-

fied uniquely by its curl and divergence.

• From the preceding, specifying the magnetic field requires
only the curl of AAA.

• Thus we are free to make gauge transformations on the
vector potential such that ∇∇∇ ·AAA has any convenient func-

tional form

• without affecting the magnetic field and thus without al-

tering the physics of electromagnetism.

• Substituting BBB = ∇∇∇×AAA into ∇∇∇×BBB = µ0JJJ, gives

∇∇∇× (∇∇∇×AAA) = µ0JJJ,

which becomes

∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA = µ0JJJ,

upon invoking the identity

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA.
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Now we exploit the freedom to make a gauge transformation

on
∇∇∇(∇∇∇ ·AAA)−∇∇∇2

AAA = µ0JJJ,

• by choosing a gauge where

∇∇∇ ·AAA = 0. (Coulomb gauge condition),

which defines the Coulomb gauge (also called the radia-

tion gauge or the transverse gauge).

• In Coulomb gauge, ∇∇∇ ·AAA = 0 and

∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA = µ0JJJ,

is transformed into the Poisson equation,

∇∇∇2
AAA =−µ0JJJ (Coulomb gauge).

• From application of the Poisson equation in electrostatics
we expect that

The solution for AAA in Coulomb gauge is

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d3x′.

Gauge transformations will be discussed further in Ch. 7.
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distribution

P

x'

J(x')

x

Figure 5.5: A localized current density JJJ(xxx′) that produces a vector potential AAA(xxx)
and corresponding magnetic field BBB(xxx) at the point xxx, with xxx ≫ xxx′.

5.6 Magnetic Fields of Localized Current Distributions

We now consider a current distribution that is localized in

space.

• Figure 5.5 illustrates.

• A full treatment of this problem by analogy with electric
multipole expansions is possible using vector spherical

harmonics, which are described briefly below.
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Vector Spherical Harmonics

Vector spherical harmonics are an extension of regular (scalar)

spherical harmonics designed for use with vector fields.

• Components of vector spherical harmonics are complex-

valued functions of spherical basis vectors.

• Three vector spherical harmonics may be defined,

YYY lm = Ylmr̂rr ΨΨΨlm = r∇∇∇Ylm ΦΦΦlm = rrr×∇∇∇Ylm,

where rrr is the radial vector in spherical coordinates.

The radial factors ensure that the vector spherical harmonics

• have the same dimensions as ordinary Ylm, and that

• they do not depend on the radial coordinate.

• These new vector fields facilitate separation of radial from

angular coordinates,

• permitting (for example) a multipole expansion of the
electric field,

EEE =
∞

∑
l=0

+l

∑
m=−l

(
Er

lm(r)YYY lm+E
(1)
lm

(r)ΨΨΨlm+E
(2)
lm

(r)ΦΦΦlm

)
,

where the component labels indicate that

• Er
lm(r) is the radial component, and

• E
(1)
lm (r) and E

(2)
lm (r), are transverse components of the vec-

tor field (with respect to the vector rrr).



270 CHAPTER 5. MAGNETOSTATICS

Current

distribution

P

x'
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x

We shall not use vector spherical harmonics and
confine ourselves to lowest-order expansions.

• Let us assume that xxx ≫ xxx′ and expand the denominator of

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d3x′

in powers of xxx′ relative to a suitable origin located in the
current distribution in the above figure,

1
|xxx− xxx′| =

1
|xxx|+

xxx · xxx′

|xxx|2
+ · · · .

• Thus the ith components of the vector potential AAA(xxx) has
the expansion

Ai(xxx) =
µ0

4π

[
1
|xxx|

∫
Ji(xxx

′)d3x′+
xxx

|xxx|2
·
∫

Ji(xxx
′)xxx′d3x′+ · · ·

]
.
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That the current JJJ(xxx′) is localized and has zero divergence per-
mits simplification of the expansion,

Ai(xxx) =
µ0

4π




1
|xxx|

∫
Ji(xxx

′)d3x′

︸ ︷︷ ︸
No magnetic monopoles

+
xxx

|xxx|2
·
∫

Ji(xxx
′)xxx′d3x′

︸ ︷︷ ︸
Magnetic dipole

+ · · ·


 .

• The first term vanishes because the integral of the current
vector over all orientations will average to zero.

• (This argument is intuitive; a more formal proof that the
first term vanishes is given in Jackson, Section 5.6.)

• This reflects the fact that the first term in the multipole

expansion is the monopole term, but

• there are no magnetic monopoles because there is no mag-

netic charge consistent with the Maxwell equations, since
∇∇∇ ·BBB = 0.

The integral in the second term can be manipulated into

xxx ·
∫

xxx′Ji(xxx
′)d3x′ = ∑

i

xi

∫
x′jJi d

3x′

=−1
2 ∑

i

xi

∫
(x′iJi − x′jJi)d3x′

=−1
2 ∑

j,k

εi jk x j

∫
(xxx′× JJJ)k d3x′

=−1
2

[
xxx×

∫
(xxx′× JJJ)d3x

]

i

.
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The magnetic moment density or magnetization is defined by

MMM(xxx) =
1
2
[xxx× JJJ(xxx)] ,

and the magnetic moment mmm is defined by

mmm =
1
2

∫
xxx′× JJJ(xxx′)d3x′.

Then the multipole expansion

Ai(xxx) =
µ0

4π




1
|xxx|

∫
Ji(xxx

′)d3x′

︸ ︷︷ ︸
monopole = 0

+
xxx

|xxx|2
·
∫

Ji(xxx
′)xxx′d3x′

︸ ︷︷ ︸
dipole

+ · · ·



.

can be written as

AAA(xxx) =
µ0

4π

mmm× xxx

|xxx|3
+ · · · .
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This first non-vanishing term in the multipole expansion

AAA(xxx) =
µ0

4π

mmm× xxx

|xxx|3
+ · · · .

for a steady-state current distribution

• has the form of a magnetic dipole.

• At large distances from the current source the higher order

terms may be ignored and

• the magnetic field corresponds to the curl of the dipole

term, which gives

BBB(xxx) =
µ0

4π

(
3nnn(nnn ·mmm)−mmm

|xxx|3

)
,

where nnn is a unit vector in the direction of xxx.

Because the dipole term typically dominates
the magnetic multipole expansion, the magnetic

dipole moment is commonly called the magnetic

moment.
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If the current as assumed to correspond to an arbitrary closed

loop confined to a plane

• the magnitude of the magnetic moment takes a simple
form that is independent of the loop shape,

|mmm|= I ×A,

where A is the enclosed area of the planar current loop.

• If the current distribution is due to charged particles with

charges qi, masses Mi, and velocities vvvi,

• the current density is

JJJ = ∑
i

qivvviδ (xxx− xxxi),

where xxxi is the position of the ith particle, and

• the magnetic moment is

mmm =
1
2 ∑

i

qi(xxxi × vvvi).

• But the orbital angular momentum of particle i is LLLi =
Mi(xxxi × vvvi) and the magnetic moment becomes

mmm = ∑
i

qi

2Mi
LLLi.
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If all the particles have the same charge-to-mass ratio qi/Mi =
e/M,

mmm =
e

2M
∑

i

LLLi =
e

2M
LLL,

where LLL is the total orbital angular momentum.

• This is the well-known classical connection between an-

gular momentum and magnetic moment.

• It holds for orbital angular momentum even on the atomic
scale,

• but fails for intrinsic moments arising from particle spin.

This is an intrinsically quantum effect that is be-
yond the scope of our present discussion of classi-
cal electromagnetism.
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Chapter 6

Magnetic Fields in Matter

Electric fields polarize matter; magnetic fields magnetize mat-

ter.

• In classical electromagnetism all magnetic phenomena
have their origin in the motion of electrical charges.

• At the microscopic level, we may view magnetism as be-
ing produced by small current loops.

For example, electrons in orbits around nuclei in
atoms that act as tiny magnetic dipoles.

Ordinarily the effects of these dipoles cancel out because of
random orientation of atoms, but if a magnetic field is applied,

• it can cause a net alignment of the dipoles so that the mat-
ter becomes magnetically polarized (magnetized).

• For the electric polarization of matter described in Ch. 4,
the polarization is usually in the direction of the EEE field.

• Magnetic polarization of matter is more complex and var-

ied than electric polarization of matter.

277
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For example,

1. paramagnetic materials acquire a magnetization in the
same direction as the applied field BBB, while

2. the magnetization of diamagnetic materials is in the di-
rection opposite the applied field, and

3. ferromagnetic materials

• retain their magnetization after the polarizing field
has been removed, with

• the retained magnetization depending on the entire

magnetic history of the material.
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6.1 Ampère’s Law in Magnetically Polarized Matter

In the previous chapter we have dealt with steady-state mag-
netic fields in a microscopic manner, assuming the current den-

sity JJJ to be a known function of position.

• In macroscopic problems dealing with magnetic effects in
materials, this will often not be true.

• The atomic currents in matter give rise to rapidly fluctuat-

ing current densities on a microscopic scale.

• Just as for electric fields in matter, only averages over

macroscopic volumes are known

• and only these enter into the classical equations of electro-
magnetism.
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6.1.1 Macroscopic Averaging

The first step in introducing averaging in matter for electric

fields in Section 4.7 was to note that

• the averaging procedure preserves the crucial relation

∇∇∇×EEE = 0,

• which ensures that the macroscopic electric field is still
derivable from a scalar potential: EEE =−∇∇∇Φ.

In a similar manner, for magnetic fields

• the macroscopic averaging procedure leads to the same

equation ∇∇∇ ·BBB = 0 that we found in vacuum.

• Thus, the averaging procedure preserves the notion of a

vector potential AAA(xxx),

• from which we can derive the macroscopic magnetic field

by taking the curl, BBB = ∇∇∇×AAA.

Magnetization establishes currents within a material and on its

surface that produce the field due to magnetization.

• The average macroscopic magnetization or magnetic

(dipole) moment density is

MMM(xxx) = ∑
i

Ni〈mmmi〉,

• where 〈mmmi〉 is the magnetic moment averaged over a small

volume around the point xxx.
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In addition to the bulk magnetization we may assume that there
is a macroscopic current density JJJ(xxx) produced by the flow of

free charge in the medium.

• Then the vector potential averaged over a small volume
∆V around xxx′ will take the form

∆AAA(xxx) =
µ0

4π




JJJ(xxx′)
|xxx− xxx′|︸ ︷︷ ︸

free charge

+
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3︸ ︷︷ ︸
medium dipoles




∆V,

• where the first term represents the contribution of the flow

of free charge and

• the second term represents the contribution from the mag-

netic dipoles in the medium described by

Ai(xxx)=
µ0

4π

[
1
|xxx|

∫
Ji(xxx

′)d3x′+
xxx

|xxx|2
·
∫

Ji(xxx
′)xxx′d3x′+ · · ·

]
.

• Letting ∆V → d3x′, the total vector potential at xxx is given
by an integral over all space,

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)
|xxx− xxx′|+

MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
]

d3x′.
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The second (magnetization) term in

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)
|xxx− xxx′|+

MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
]

d3x′.

can be cast in another form by utilizing the identity

xxx− xxx′

|xxx− xxx′|3
=−∇∇∇

(
1

|xxx− xxx′|

)
= ∇∇∇′

(
1

|xxx− xxx′|

)
,

to write∫
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′ =

∫
MMM(xxx′)×∇∇∇′

(
1

|xxx− xxx′|

)
d3x′.

Integration by parts then allows

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d3x′+

µ0

4π

∫
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′

︸ ︷︷ ︸
integrate by parts

to be written

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)+∇∇∇′×MMM(xxx′)

]

|xxx− xxx′| d3x′,

where a surface term has been discarded by assuming MMM(xxx′) to
be localized and well behaved.
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6.1.2 The Auxiliary Field HHH and Constituitive Relations

From the results in the preceding section we see that

• the magnetization contributes an effective current density

JJJM = ∇∇∇×MMM.

• Then JJJ + JJJM plays the role of the effective current such
that

∇∇∇×BBB = µ0(JJJ + JJJM) = µ0(JJJ +∇∇∇×MMM).

• It is then convenient to define a new macroscopic field

HHH ≡ 1
µ0

BBB−MMM.
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We have routinely termed BBB the magnetic field.

• Some authors instead call HHH the magnetic field, which re-
quires finding another name for BBB.

• For example, Jackson calls HHH the magnetic field and BBB the
magnetic induction.

This is a question of terminology, not physics.

• Because the fundamental fields are EEE and BBB, and

• the auxiliary fields DDD and HHH are derived quantities,

• we have adopted the convention of calling BBB the magnetic

field, with no specific name for HHH.

• Likewise EEE is termed the electric field and DDD the displace-

ment field.
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The introduction of HHH in the presence of magnetically polarized

materials is a matter of convenience.

• It is analogous to the introduction of DDD to account for elec-

trically polarized materials in electrostatics.

The fundamental fields in classical electromag-
netism are the electric field EEE and the magnetic

field BBB.

This is a classical statement. As we shall discuss briefly later,
in quantum mechanics one finds that

• the scalar potential Φ and the vector potential AAA should
be viewed as more fundamental than the electric and mag-

netic fields.

• There are two basic reasons:

1. Some experiments where probes that never see the

magnetic field are influenced by the vector potential
(the Aharonov–Bohm effect), and

2. the fundamental coupling of electromagnetism to

charged particles is through the vector and scalar po-
tentials (the minimal coupling prescription).
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The derived fields DDD and HHH are

• introduced as a convenient way to take into account the
average contributions to

– the charge density and

– the current

of the atomic-level charges and currents.

• Then the macroscopic fields in medium that replace the
microscopic fields are

∇∇∇×HHH = JJJ,

∇∇∇ ·BBB = 0,

• which are analogous to the macroscopic fields in medium

for electrostatics,
∇∇∇×EEE = 0,

∇∇∇ ·DDD = ρ ,

that were derived in earlier chapters.
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Just as for electrostatics, the description of macroscopic mag-

netostatics requires constituitive relationships.

• For magnetic effects , they are between the fundamental

field BBB and the derived field HHH.

• For paramagnetic and diamagnetic materials that are
isotropic, the relationship may be assumed linear,

BBB = µHHH,

where the constant µ is characteristic of the medium and
is called the magnetic permeability. Generally,

– µ > 1 for paramagnetic materials and

– µ < 1 for diamagnetic materials,

• with µ/µ0 differing from unity by a part in ∼ 105 for ei-
ther case.

In diamagnetic and paramagnetic materials the
deviation of µ from µ0 is typically small.
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The physical reasons for paramagnetism and diamagnetism are
discussed in the following.

Diamagnetism and Paramagnetism

Materials characterized by small magnetic susceptibilities
|χ | ≪ 1 are called paramagnetic if χ > 0, and diamagnetic if
χ < 0. Magnetization in diamagnetic and paramagnetic media
typically depends linearly on the applied magnetic field.

Physical Origin of Diamagnetism

In diamagnetic media an external field HHH creates a magnetiza-
tion MMM that opposes HHH, so χ < 0. Physically, external fields
induce currents associated with orbital motion in the diamag-
netic material.

The external field also interacts with electron
spins, but this is a much smaller effect than the
interaction with orbital currents.

The field created by the moving charges opposes the applied
field HHH (Lenz’s law). Thus, the magnetic field is decreased in-
side the material and magnetic lines of force are expelled from
the medium. This diamagnetic effect is particularly dramatic
in superconductors, where the magnetic field is expelled com-
pletely (Meissner effect), except for a thin surface layer where
the magnetic field decays exponentially over a distance called
the London penetration depth).
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Diamagnetic effects are greatly amplified in a superconductor
because the induced currents flow without resistance. It may
be shown in quantum field theory that the (normally massless)
photon gains an effective mass through interaction with the di-
electric medium, which causes it to penetrate the superconduc-
tor with exponentially decaying probability. This acquisition
of effective mass by photons is a non-relativistic model of the
Higgs mechanism, whereby a massless gauge boson (the pho-
ton) acquires a mass. As we shall discuss further in Ch. 9, this
Higgs mode of spontaneous symmetry breaking is fundamental
for the Standard Model of elementary particle physics.
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Physical Origin of Paramagnetism

Some materials have magnetic dipoles associated with intrinsic
spins (a quantum-mechanical effect). Application of an exter-
nal field HHH then partially aligns the dipoles with the applied
field, thereby enhancing the internal field. (This ordering is
opposed by thermal fluctuations, so the fraction of alignment
is temperature dependent.) Such materials are called param-

agnetic. The net effect is that the lines of magnetic force are
“drawn in” to paramagnetic material.

Magnetic Field Lines for Diamagnets and Paramagnets

The contrasting behavior of diamagnetic and paramagnetic
matter in magnetic fields can be characterized by their mag-
netic field lines, as in the following figure.

The diamagnetic matter in (a) expels the magnetic field but the
paramagnetic matter in (b) enhances the density of field lines
within the sample.
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H

B

Figure 6.1: Schematic illustration of hysteresis.

The case of ferromagnetic materials is more consequential and
more complex,

• leading to a constituitive relationship

BBB = FFF [HHH],

where FFF [HHH] is a non-linear function of HHH.

• Ferromagnets may exhibit hysteresis, where

• the magnetic field BBB is not a single-valued function of HHH,
and

• the state of the system may depend on its preparation his-

tory; Fig. 6.1 illustrates.

• Clearly the complex relationship of BBB and HHH in ferromag-
netic materials means that

• magnetic boundary-value problems are more difficult to
deal with than corresponding problems in electrostatics.
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6.1.3 Magnetic Boundary-Value Conditions

The boundary conditions for BBB and HHH at the interfaces between
media were considered earlier.

• The normal components of BBB and tangential components

of HHH on opposite sides of a boundary separating medium
1 and medium 2 are related by

(BBB2 −BBB1) ·nnn = 0,

nnn× (HHH2−HHH1) = KKK,

– where nnn is the unit normal vector pointing from region

1 into region 2, and

– KKK is the idealized surface current density.

• If the media satisfy a linear constituitive relation and have
finite conductivities so that JJJ = σEEE and KKK = 0,

– the boundary conditions can be expressed as,

BBB2 ·nnn = BBB1 ·nnn BBB2 ×nnn =
µ2

µ1
BBB1×nnn,

– or as

HHH2 ·nnn =
µ1

µ2
HHH1 ·nnn HHH2 ×nnn = HHH1×nnn.
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6.2 Solving Magnetostatic Boundary-Value Problems

If µ1 ≫ µ2

• the boundary conditions on HHH for highly-permeable mate-
rial are

• essentially the same as for the electric field at the surface
of a conductor,

• which permits electrostatic potential theory to be applied
to magnetic field problems.

Magnetostatic boundary value problems require solving for

• the charge density and

• the current

of the atomic-level charges and currents.

Then the macroscopic fields in medium that replace the micro-
scopic fields are

∇∇∇×HHH = JJJ ∇∇∇ ·BBB = 0,

subject to constituitive relations

BBB = µHHH (linear) or BBB = FFF [HHH] (non-linear),
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Especially because of the varied constituitive relations a variety
of situations are possible and a survey of possible approaches

is useful. We summarize some approaches following the pre-
sentation in Jackson.

6.2.1 Method of the Vector Potential

Because ∇∇∇ ·BBB = 0,

It is always possible to introduce a vector potential

AAA(xxx) such that BBB = ∇∇∇×AAA, so that

∇∇∇ ·BBB = ∇∇∇ · (∇∇∇×AAA) = 0.

• If we have a non-linear constituitive relation BBB = FFF [HHH],
the resulting differential equation

∇∇∇×HHH[∇∇∇×AAA] = JJJ

is generally very difficult to solve.

• However, if the constituitive relation is linear, BBB = µHHH,
the preceding equation becomes

∇∇∇×
(

1
µ

∇∇∇×AAA

)
= JJJ.
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For a region of space in which µ is constant,

• the vector identity

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA

may be used to write

∇∇∇×
(

1
µ

∇∇∇×AAA

)
= JJJ.

as
∇∇∇(∇∇∇ ·AAA)−∇∇∇2

AAA = µJJJ.

• Invoking the Coulomb gauge condition ∇∇∇ ·AAA = 0, we ob-
tain the Poisson equation

∇∇∇2
AAA =−µJJJ.

• Comparing with
∇∇∇2

AAA =−µ0JJJ

in vacuum,

• this is seen to be a Poisson equation with a current density

modified by the medium (µ 6= µ0),

• which is similar to a Poisson equation for uniform dielec-

tric media with an effective charge density (ε/ε0).
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Matching of solutions for

∇∇∇2
AAA =−µJJJ.

across interfaces between different (linear) media can be im-
plemented using the boundary conditions described earlier,

BBB2 ·nnn = BBB1 ·nnn BBB2×nnn =
µ2

µ1
BBB1×nnn,

or
HHH2 ·nnn =

µ1

µ2
HHH1 ·nnn HHH2×nnn = HHH1×nnn.



6.2. SOLVING MAGNETOSTATIC BOUNDARY-VALUE PROBLEMS 297

6.2.2 Using a Magnetic Scalar Potential if JJJ === 000

As mentioned earlier, for the special case JJJ = 0 where the cur-
rent density vanishes in a region of interest,

• ∇∇∇×HHH = JJJ −→ ∇∇∇×HHH = 0,

• which suggests introducing a magnetic scalar potential

ΦM such that
HHH =−∇∇∇ΦM.

Recall that the electric field can be derived from
EEE =−∇∇∇Φ because ∇∇∇×EEE = 0.

• If the medium is linear and µ is constant,

• the magnetic scalar potential satisfies the Laplace equa-

tion

∇∇∇2ΦM = 0,

for which the boundary conditions

HHH2 ·nnn =
µ1

µ2
HHH1 ·nnn HHH2×nnn = HHH1×nnn.

are appropriate.

• This method can be used only if JJJ = 0.

– One use case is the magnetic field external to a closed

loop of current.

– Another is the hard ferromagnet that will be consid-
ered below.
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6.2.3 Hard Ferromagnets

A hard ferromagnet has

• a magnetization independent of applied field for moderate
field strengths.

• This suggests an approximation where a hard ferromagnet
can be treated as if it has a specified fixed magnetization

MMM(xxx) and JJJ = 0,

• using either magnetic scalar potential methods or vector

potential methods.
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Solve Using the Magnetic Scalar Potential

Since JJJ = 0 for a hard ferromagnetic, the magnetic scalar po-

tential method is applicable. Then ∇∇∇ ·BBB = 0 becomes

∇∇∇ ·BBB = µ0∇∇∇ · (HHH +MMM) = 0,

where

HHH ≡ 1
µ0

BBB−MMM.

was used, and since HHH =−∇∇∇ΦM, this becomes a magnetic Pois-

son equation,
∇∇∇2ΦM = ∇∇∇ ·MMM =−ρM,

where an effective magnetic-charge density

ρM ≡−∇∇∇ ·MMM

has been introduced. By analogy with the second term of

Φ(xxx) =
1

4πε0

∫
d3x′

1
|xxx− xxx′|

[
ρ(xxx′)−∇∇∇′ ·PPP(xxx′)

]
,

for electrostatics in electrically polarized matter, if there are no
boundary surfaces the solution is expected to be

ΦM(xxx) =− 1
4π

∫
∇∇∇′ ·MMM(xxx′)
|xxx− xxx′| d3x =− 1

4π
∇∇∇ ·
∫

MMM(xxx′)
|xxx− xxx′| d3x,

where the second form results from an integration by parts and

xxx− xxx′

|xxx− xxx′|3
=−∇∇∇

(
1

|xxx− xxx′|

)
= ∇∇∇′

(
1

|xxx− xxx′|

)
,

which is justified if MMM is localized and well behaved.
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Physical magnetization distributions generally don’t have dis-
continuities.

• However, it is sometimes useful to idealize a problem and
treat MMM(xxx) as if it is discontinuous.

• We can then model a hard ferromagnet as having a volume
V and a surface S, with MMM(xxx) finite inside but falling to
zero at the surface S.

• Application of the divergence theorem to the surface indi-
cates that in this idealization there is an effective magnetic

surface-charge density given by

σM = nnn ·MMM,

where nnn is the outward normal at the surface.

• Then the first form of the potential (6.2.3) is modified to

ΦM(xxx) =− 1
4π

∫

V

∇∇∇′ ·MMM(xxx′)
|xxx− xxx′| d3x+

1
4π

∮

S

nnn′ ·MMM(xxx′)
|xxx− xxx′| da′.
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6.2.4 Solve Using the Vector Potential

An important special case is for uniform magnetization of the

volume.

• Then JJJ′ = 0 inside the volume the first term of

ΦM(xxx) =− 1
4π

∫

V

∇∇∇′ ·MMM(xxx′)
|xxx− xxx′| d3x

︸ ︷︷ ︸
=0

+
1

4π

∮

S

nnn′ ·MMM(xxx′)
|xxx− xxx′| da′.

vanishes and

ΦM(xxx) =
1

4π

∮

S

nnn′ ·MMM(xxx′)
|xxx− xxx′| da′ =

1
4π

∮

S

σ(xxx′)
|xxx− xxx′| da′,

where σM = nnn ·MMM, was used in the last step.

Thus, introduction of a sharp boundary for the vol-

ume of a uniformly magnetized object induces a
surface charge on the boundary given by σM.
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If we choose to satisfy ∇∇∇ · BBB automatically by introducing a
vector potential AAA and defining BBB ≡ ∇∇∇×AAA,

• then ∇∇∇×HHH = JJJ becomes

∇∇∇×HHH = ∇∇∇×
(

1
µ0

BBB−MMM

)

︸ ︷︷ ︸
HHH

= 0,

• which becomes upon introduction of BBB = ∇∇∇×AAA,

1
µ0

(∇∇∇×∇∇∇×AAA) = ∇∇∇×MMM,

and upon using the identity

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA

on the left side and

JJJM ≡ ∇∇∇×MMM.

on the right side,

∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA = µ0JJJM,

where JJJM is the effective magnetic current density.



6.2. SOLVING MAGNETOSTATIC BOUNDARY-VALUE PROBLEMS 303

• Transforming

∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA = µ0JJJM,

to Coulomb gauge by setting ∇∇∇ · AAA = 0 then leads to a
Poisson equation for the vector potential,

∇∇∇2
AAA =−µ0JJJM.

• If there are no bounding surfaces, the solution is

AAA(xxx) =
µ0

4π

∫
∇∇∇′×MMM(xxx′)
|xxx− xxx′| d3x,

• which may be compared with

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)+∇∇∇′×MMM(xxx′)

]

|xxx− xxx′| d3x′,

with JJJ = 0.
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If the magnetization is discontinuous (as in a uniformly mag-
netized sphere with sharp surface)

• it is necessary to add a surface integral to

AAA(xxx) =
µ0

4π

∫
∇∇∇′×MMM(xxx′)
|xxx− xxx′| d3x.

• For the case of MMM falling to zero at the surface S bounding
the volume V , starting from

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d3x′+

µ0

4π

∫
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′,

• the proper generalization may be shown to be

AAA(xxx) =
µ0

4π

∫

V

∇∇∇′×MMM(xxx′)
|xxx− xxx′| d3x

︸ ︷︷ ︸
Volume

+
µ0

4π

∮

S

MMM(xxx′)×nnn′

|xxx− xxx′| da′

︸ ︷︷ ︸
Surface

.

• For the special case that the magnetization is constant over

the volume V , only the surface integral can contribute and

AAA(xxx) =
µ0

4π

∮

S

MMM(xxx′)×nnn′

|xxx− xxx′| da′.
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Figure 6.2: Uniformly magnetized sphere of radius a, with a sharp surface and
surface magnetic-charge density σM(θ) with MMM = MMM0ẑzz parallel to the z axis, so that
σM = nnn ·MMM = M0 cosθ .

6.2.5 Example: Uniformly Magnetized Sphere

As an example of solving boundary problems in magnetostatics
using the methods just discussed,

• let’s consider a sphere with uniform permanent magneti-

zation,

• with a sharp transition at the surface from magnetized to
non-magnetized matter.

Fig. 6.2 illustrates.
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Solution Using the Magnetic Scalar Potential

Since the sphere is uniformly magnetized,

• there are no volume currents and

• the scalar magnetic potential method is applicable.

There will be a surface charge σM = nnn ·MMM associated with the
sharp transition from magnetized to un-magnetized material.

• Assuming that MMM = M0ẑzz so that σM = nnn ·MMM = MMM0 cosθ
using spherical coordinates,

• the scalar magnetic potential is

ΦM(r,θ) =
1

4π

∮

S

σ(xxx′)
|xxx− xxx′| da′ =

M0a2

4π

∫
cosθ

|xxx− xxx′| dΩ′.
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Inserting the multipole expansion

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ)

into

ΦM(r,θ) =
1

4π

∮

S

σ(xxx′)
|xxx− xxx′| da′ =

M0a2

4π

∫
cosθ

|xxx− xxx′| dΩ′.

and using that P1(cosθ) = cosθ gives

ΦM(r,θ) =
M0a2

4π

∫
P1(cosθ)

|xxx− xxx′| dΩ′

=
M0a2

4π

∞

∑
l=0

rl
<

rl+1
>

∫
Pl(cosθ)P1(cosθ)dΩ′

=
1
3

M0a2 r<

r2
>

P1(cosθ) =
1
3

M0a2 r<

r2
>

cosθ ,

• where the Legendre orthogonality condition has been used
to eliminate all terms in the sum except for l = 1, and

• (r<,r>) are the smaller and larger of r and a, respectively.



308 CHAPTER 6. MAGNETIC FIELDS IN MATTER

z

P

r

a

M = M0 z
^

Inside the sphere, r< = r and r> = a, so the magnetic scalar

potential is

Φin
M =

1
3

M0r cosθ =
1
3

M0z.

Then from HHH =−∇∇∇ΦM,

HHH in =−∇∇∇Φin
M =− ∂

∂ z

(
1
3

M0z

)
ẑzz =−1

3
M0ẑzz =−1

3
MMM,

and from HHH ≡ 1
µ0

BBB−MMM,

BBBin = µ0(HHH in +MMM) = µ0

(
−1

3
MMM+MMM

)
=

2µ0

3
MMM.

Therefore, the interior solution is

Φin
M =

1
3

M0z HHH in =−1
3

MMM BBBin =
2µ0

3
MMM,

where we see that the fields are constant inside the sphere, with

• BBB parallel to MMM and

• HHH antiparallel to MMM.
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For the exterior solution, r< = a and r> = r, which gives from

ΦM(r,θ) =
1
3

M0a2 r<

r2
>

cosθ ,

for the exterior potential,

Φout
M =

1
3

M0a3 cosθ

r2 ,

which is a dipole potential with a dipole moment

mmm =
4πa3

3
MMM.

Then, proceeding as above

HHHout =−∇∇∇Φout
M =−1

3
a3

r3 MMM,

BBBout = µ0(HHH +MMM) =

(
3r3−a3

3r3

)
µ0 MMM.
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Figure 6.3: Lines of BBB and HHH for a uniformly magnetized sphere having a sharp
boundary.

The BBB and HHH fields are plotted in Fig. 6.3
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Solution Using the Vector Potential

Alternatively, the vector potential

AAA(xxx) =
µ0

4π

∫

V

∇∇∇′×MMM(xxx′)
|xxx− xxx′| d3x+

µ0

4π

∮

S

MMM(xxx′)×nnn′

|xxx− xxx′| da′,

can be used to obtain the solution for the problem posed in
above figure.

• The magnetization is assumed uniform so the volume cur-
rent JJJM = 0 and

• the first (volume) term make no contribution.

• However, there is a surface charge due to the sharp bound-
ary on magnetization so the second term will be non-zero

and

AAA(xxx) =
µ0

4π

∮

S

MMM(xxx′)×nnn′

|xxx− xxx′| da′.
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Using the notation (εεε1,εεε2,εεε3) = (x̂xx, ŷyy, ẑzz) for cartesian basis
vectors and (εεεr,εεεθ ,εεεφ ) = (r̂rr, θ̂θθ , φ̂φφ) for spherical basis vectors,

• since MMM = M0εεε3 we have

MMM(xxx′)×nnn′ = M0 sinθ ′εεεφ

= M0 sinθ ′(−sinφεεε1+ cosφ ′εεε2).

• The problem has azimuthal (φ ) symmetry about the z-axis.

• If the observing point P is chosen to lie in the x-y plane,

• then only the y component of MMM × nnn survives integration
over the azimuth so

−sinφ ′εεε1 + cosφ ′εεε2 −→ cosφ ′εεε2,

• which gives an azimuthal component of AAA,

Aφ =
µ0

4π
M0a2

∫
sinθ ′ cosφ ′

|xxx− xxx′| dΩ′,

where the components of xxx′ are (r′ = a,θ ′,φ ′), with r′ = a

confining the integration to the surface of the sphere.
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Since

Y11(θ
′,φ ′)=−

√
3

8π
sinθ ′eiφ ′

=−
√

3
8π

sinθ ′(cosφ ′+ isinφ ′),

we may write

sinθ ′ cosφ ′ =−
√

8π

3
Re [Y11(θ

′,φ ′)]

where Re(x) denotes the real part of x. Thus,

Aφ =−
√

3
8π

µ0

4π
M0a2

∫
Re [Y11(θ

′,φ ′)]
|xxx− xxx′| dΩ′.

Then if the denominator is expanded using ,

1
|xxx− xxx′| = 4π

∞

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ),
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the spherical harmonic orthogonality relation,
∫ 2π

0
dφ
∫ π

0
Y ∗

l′m′(θ ,φ)Ylm(θ ,φ)sin θdθ = δl′lδm′m,

ensures that only the l = 1,m = 1 term survives the summation

and the vector potential is

Aφ (xxx) =
µ0

3
M0a2

(
r<

r2
>

)
sinθ .

For the inside solution, r< = r and r> = a, so

Ain
φ (xxx) =

µ0

3
M0r sinθ

You are asked to calculate the corresponding BBB and HHH fields for
the interior of the sphere in a problem.
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By placing a shell of permeable matter in a magnetic field, it
is possible to shield the interior of the shell from the magnetic
field. The following example illustrates.
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a b
B0=µH0

Figure 6.4: A shell of material with permeability µ is placed in a previously uniform
magnetic field BBB0 = µ0HHH0. If the shell contains highly permeable material the cavity
inside the shell is shielded strongly from the magnetic field.

Shell of Permeable Material

Consider Fig. 6.4 (shell with permeability µ).

• Let us find the fields BBB and HHH for this arrangement.

• There are no currents so the magnetic scalar potential

method is applicable and

HHH =−∇∇∇ΦM,

and since BBB = µHHH,

• ∇∇∇ ·BBB = 0 −→ ∇∇∇ ·HHH = 0 in all regions.

• Therefore, ∇∇∇ · (∇∇∇ΦM) = ∇∇∇ ·HHH = 0

and ΦM satisfies the Laplace equation

∇∇∇2ΦM = 0.

• The problem reduces to solving the Laplace equation sub-
ject to the proper boundary conditions at r = a and r = b.
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a b
B0=µH0

• If r > b (outside the shell), the potential is of the form

ΦM =−H0r cosθ +

∞

∑
l=0

αl

rl+1Pl(cosθ) (r > b),

which gives a uniform field ΦM = HHH0 at large distance.

• Likewise, in the interior regions (r < b) the potential must
take the form

ΦM =

∞

∑
l=0

(
βlr

l + γl

1
rl+1

)
Pl(cosθ) (a < r < b),

ΦM =

∞

∑
l=0

δlr
lPl(cosθ) (r < a).
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a b
B0=µH0

The boundary conditions at r = a and r = b

• require the components Hθ and Br be continuous,

• which requires that

∂ΦM

∂θ
(b+) =

∂ΦM

∂θ
(b−)

∂ΦM

∂θ
(a+) =

∂ΦM

∂θ
(a−),

µ0
∂ΦM

∂ r
(b+) = µ

∂ΦM

∂ r
(b−) µ

∂ΦM

∂ r
(a+) = µ0

∂ΦM

∂ r
(a−),

• where the notation b+ means the limit r → b approached
from r > b and

• the notation b− means means the limit r → b approached
from r < b,

• with a similar convention for a±.
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The four conditions

∂ΦM

∂θ
(b+) =

∂ΦM

∂θ
(b−)

∂ΦM

∂θ
(a+) =

∂ΦM

∂θ
(a−),

µ0
∂ΦM

∂ r
(b+) = µ

∂ΦM

∂ r
(b−) µ

∂ΦM

∂ r
(a+) = µ0

∂ΦM

∂ r
(a−),

determine the unknown constants in

ΦM =−H0r cosθ +

∞

∑
l=0

αl

rl+1Pl(cosθ) (r > b),

ΦM =

∞

∑
l=0

(
βlr

l + γl

1
rl+1

)
Pl(cosθ) (a < r < b),

ΦM =

∞

∑
l=0

δlr
lPl(cosθ) (r < a).
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a b
B0=µH0

One finds that

• all coefficients with l 6= 1 vanish and

• the l = 1 coefficients satisfy the simultaneous equations

α1 −b3β1− γ1 = b3H0,

2α1+µ ′b3β1−2µ ′γ1 =−b3H0,

a3β1+ γ1−a3δ1 = 0,

µ ′a3β1−2µ ′γ1 −a3δ1 = 0,

where µ ′ ≡ µ/µ0.
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The solutions for α1 and δ1 are,

α1 =




(2µ ′+1)(µ ′−1)

(2µ ′+1)(µ ′+2)−2
a3

b3 (µ
′−1)2


(b3−a3)H0,

δ1 =−




9µ ′

(2µ ′+1)(µ ′+2)−2
a3

b3 (µ
′−1)2


H0.
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Figure 6.5: The magnetic shielding effect of a shell of highly permeable material.
Lines for the magnetic field BBB are shown. Note the absence of field lines in the
cavity inside the shell.

The corresponding magnetic field lines are shown in Fig. 6.5.

• For this solution the potential outside the shell corre-
sponds to the original uniform field HHH0

• plus a dipole field with dipole moment α1 parallel to HHH0.

• In the cavity inside the shell there is a uniform field paral-

lel to HHH0 and equal in magnitude to −δ1.

• If µ ≫ µ0, the dipole moment α1 and the inner field −δ1

tend to

α1 → b3H0 −δ1 →
9µ0

2µ(1−a3/b3)
H0.
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• Thus the field in the inner cavity is proportional to µ−1

and

• a shield made of highly permeable material causes a large

reduction of the field inside.

Even thin shells of material

• with µ/µ0 ∼ 103−106

• can greatly reduce the interior field,

as is clear from the figure above.
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6.3 Faraday and the Law of Induction

We have considered primarily

• static charges (no relative motion) as sources of electric
fields and

• steady-state (no change in time) charge currents as the
source of magnetic fields to this point.

However, many important electromagnetic phenomena involve
the motion of charges and/or non-steady electrical currents.

• Michael Faraday (1831) performed quantitative experi-
ments on time-dependent electric and magnetic fields.

• Faraday’s essential observations:

1. a transient current is produced in a test circuit if a
steady current is turned off in a nearby circuit;

2. a transient current is also produced in a test circuit if a
nearby circuit with a steady current is moved relative
to the first circuit;

3. a transient current is produced in a test circuit if a
permanent magnet is moved into or out of the circuit.
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SUMMARY: a current flows in the test circuit

• if a the current in a nearby circuit changes in

time, or

• if the two circuits move with respect to each

other, or

• a nearby magnet is moved.

Faraday interpreted these results as

• originating in a changing magnetic flux that

• produced an electric field around the test circuit, which
leads to an

• electromotive force E (EMF) that drives a current in the

test circuit governed by Ohm’s law (see below).

Thus, with Faraday’s results and interpretation be-
gins the unification of electricity and magnetism

in a single theory of electromagnetism.
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Ohm’s Law

To make a current flow some force

• must push on the charges (continuously if, as is usual,
there is any resistance to the charge flow).

• For most materials the current density JJJ is proportional to
the force per unit charge fff ,

JJJ = σ fff ,

where the conductivity σ depends on the medium.

Often the reciprocal of the conductivity, ρ = σ−1,
which is called the resistivity, is used instead.

• If the force is electromagnetic (Lorentz force),

JJJ = σ(EEE + vvv×BBB),

where

– EEE is the electric field,

– BBB is the magnetic field, and

– vvv is the velocity.
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Except for special circumstances such as in some plasmas,

• the velocity is small (compared with c) and

• the vvv×BBB term can be neglected, leaving

JJJ = σEEE.

• This is called Ohm’s law.

Ohm’s law is not a true “law” in the same sense
as say the law of gravity.

• It is a “rule of thumb” that is often (but not
always) obeyed.

• Conductors that obey Ohm’s law are called
ohmic conductors.
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Example:

For a cylindrical wire of cross-sectional area A and conductiv-

ity σ ,

• if the potential difference between the ends is V ,

• the electric field EEE and current density JJJ are uniform and
the total current is

I ≡ JAσEA =
σA

V
.

• In this example the total current flow in the wire from one
point to another is proportional to the potential difference
between the points,

V = IR,

where the constant of proportionality R is called the resis-

tance.

• This is the most familiar form of Ohm’s law.

• The resistance depends on the geometry and the conduc-

tivity of the medium;

• in the example given above R = L/σA, where L is the
length.
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C

n

da
S

B

Figure 6.6: Magnetic flux through a circuit C bounding a surface S with a unit nor-
mal to the surface nnn and surface element da. The magnetic field in the neighborhood
of the circuit is BBB.

Let us express Faraday’s observations mathematically.

• Consider Fig. 6.6;

• the magnetic flux linking the circuit is

F =

∫

S
BBB ·nnnda

• and the electromotive force around the circuit is

E =
∮

C
EEE ′ ·dlll,

• where EEE ′ is the electric field at element dlll of the circuit C.
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Faraday’s observations are summarized by the relationship

E =−k
dF

dt
.

• between the rate of change of the magnetic flux dF/dt

and the EMF E ,

• where k is a constant of proportionality.

• The constant k can be determined by requiring Galilean
invariance at low velocities

As we shall see in Ch. 9,

• the Maxwell equations are invariant under

Lorentz transformations, not Galilean trans-
formations.

• But Lorentz transformations reduce to

Galilean transformations in the limit v ≪ c.

Thus requiring Galilean invariance for low veloci-
ties is a legitimate way to determine k.
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This indicates that

• k = 1 in SI units (and k = c−1 in Gaussian units).

• Therefore, in SI units

E =−dF

dt
,

where the sign is specified by Lenz’s law.

Lenz’s law: The induced current and magnetic

field are in a direction so as to oppose changing

the flux through the circuit.
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Combining

E =−dF

dt
F =

∫

S
BBB ·nnnda E =

∮

C
EEE ′ ·dlll, ,

leads to
∮

C
EEE ′ ·dlll =− d

dt

∫

S
BBB ·nnnda (Faraday’s law)

indicating that the induced EMF is proportional to the total time

derivative of the flux.

The flux can be changed by changing

• the magnetic field, or

• the shape, position, or orientation of the cir-
cuit.

• The total time derivative accounts for all such
possibilities.

Note that EEE ′ is the electric field at dlll in the coor-

dinate system where dlll is at rest.
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The equation
∮

C
EEE ′ ·dlll =− d

dt

∫

S
BBB ·nnnda (Faraday’s law)

represents a form of Faraday’s law with broad implications.

• If we view C as a geometrical closed path not necessarily
coincident with an electrical circuit,

• this equation may be viewed as a relationship among the

fields BBB and EEE ′.

• If the circuit C is moving with some velocity, the total time
derivative must take that motion into account, since the
flux through the circuit can change for two reasons:

1. the flux is changing with time at a given point, or

2. translation of the circuit changes location of the cir-

cuit in an external field.
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This can be taken into account with the convective derivative,

d

dt
=

∂

∂ t
+ vvv ·∇∇∇,

• where vvv is the velocity and

• the partial derivative in the first term on the right side has
the usual meaning that

• it is the derivative with respect to a variable (time in this
case) with all other variables held constant.

• Then the total time derivative of the moving circuit is,

d

dt

∫

S

BBB ·nnnda =

∫

S

∂BBB

∂ t
·nnnda+

∮

C

(BBB× vvv) ·dlll,

• which can be used to write Faraday’s law in the form
∮

C

[
EEE ′− (vvv×BBB)

]
·dlll =−

∫

S

∂BBB

∂ t
·nnnda.

• This is Faraday’s law applied to the moving circuit C, but

• if we think of the circuit C and surface S being instanta-

neously at a certain point, then

• application of Faraday’s law to that circuit at fixed loca-

tion gives, ∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnnda,

where EEE is now the electric field in the laboratory frame.
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Galilean invariance (valid at low velocities) then requires that

• the left sides of the following equations are equivalent
∮

C

[
EEE ′− (vvv×BBB)

]
·dlll =−

∫

S

∂BBB

∂ t
·nnnda.

∮

C
EEE ·dlll =−

∫

S

∂BBB

∂ t
·nnnda,

If the circuit is held fixed in a reference frame so that the elec-

tric and magnetic fields are defined in the same frame,

• Faraday’s law in integral form

∮

C
EEE ′ ·dlll =− d

dt

∫

S
BBB ·nnnda (Faraday’s law)

can be transformed into a differential equation using
Stoke’s theorem,

∮

C
EEE ′ ·dlll =

∫

S
(∇∇∇×EEE ′) ·nnnda.

• Then the integral form of Faraday’s law may be written as
∫

S

(
∇∇∇×EEE +

∂BBB

∂ t

)
·nnnda = 0.

• But the circuit C and surface S are arbitrary, so

• the integrand must vanish identically, giving

∇∇∇×EEE +
∂BBB

∂ t
= 0,

which is Faraday’s law in differential form.
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Faraday’s law in differential form,

∇∇∇×EEE +
∂BBB

∂ t
= 0,

is the time-dependent generalization of the equation ∇∇∇×EEE = 0
from electrostatics.



Chapter 7

Maxwell’s Equations

Preceding chapters have provided a systematic understanding
and validation of the various pieces of electromagnetic theory

that are synthesized into the four concise Maxwell equations.

• Up to this point we have treated electricity and magnetism
largely as separate subjects.

• As Faraday’s discovery of induction that was discussed
earlier makes clear,

• this distinction begins to fail for time-dependent phenom-
ena, and

• we will now begin to address a unified picture of electro-
magnetism.

• In this chapter we take the Maxwell equations to be the
basis for all classical understanding of electromagnetism
and

• address systematically their broader scientific and techni-
cal implications.

337
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7.1 The Almost-but-Not-Quite Maxwell’s Equations

The basic equations of electricity and magnetism that we have
studied in Chs. 1-6 can be summarized (in medium, in differ-
ential form) as

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH = JJJ (Ampère’s law),

• In modern notation, these were the fundamental equations
of electromagnetism as they stood in the mid-1800s

• when James Clerk Maxwell set about his synthesis of elec-
tromagnetic understanding.

• A comparison shows that these are almost, but not quite,

the Maxwell equations (in medium, in differential form).

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH−∂DDD

∂ t
= JJJ (Ampère–Maxwell law),

The difference lies in the fourth equation (Am-

père’s law), where a term −∂DDD/∂ t is missing.
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7.1.1 Ampère’s Law and the Displacement Current

It is important to recognize that

• all but Faraday’s law were derived from data taken under
steady-state conditions, so

• we should expect that modifications might be required in
the face of data for time-dependent fields.

Maxwell first realized that the fundamental equations of elec-
tromagnetism in his time were inconsistent as they then stood.

• Since the divergence of a curl vanishes by a basic vector-
calculus identity, ∇∇∇ · (((∇∇∇×BBB) = 0,

• it follows from Ampère’s law

∇∇∇×HHH = JJJ

for steady currents that

∇∇∇ · JJJ = ∇∇∇ · (∇∇∇×HHH) = 0.

• But from the continuity equation ensuring conservation of
charge gives,

∂ρ

∂ t
=−∇∇∇ · JJJ,

so ∇∇∇ · JJJ = 0 can hold only if the charge density doesn’t

change with time.
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Maxwell modified Ampère’s law to accomodate a time depen-
dence by introducing a displacement current term ∂DDD/∂ t,

∇∇∇×HHH = JJJ −→ ∇∇∇×HHH = JJJ+
∂DDD

∂ t
,

thus leading to what we now call the Maxwell equations (in
medium, in differential form),

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law),

where the last equation is now called the Ampère–Maxwell law.

• It still is the same law as before when applied to steady-
state phenomena,

• but addition of the displacement current term means that a
changing electric field can generate a magnetic field, even
if there is no current.

• Thus, it is the converse of Faraday’s law, where a chang-
ing magnetic field can produce an electric field.
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These (Maxwell) equations are now consistent with the conti-

nuity equation.

• Taking the divergence of both sides of the Ampère–

Maxwell law,

∇∇∇×HHH = JJJ+
∂ (∇∇∇ ·DDD)

∂ t
→ ∇∇∇ · (∇∇∇×HHH) = ∇∇∇ · JJJ+ ∂ (∇∇∇ ·DDD)

∂ t
,

and using ∇∇∇ · DDD = ρ from Gauss’s law and the identity

∇∇∇ · (∇∇∇×BBB) = 0,

• this becomes
∂ρ

∂ t
+∇∇∇ · jjj = 0,

which is the continuity equation.
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Local conservation of charge: Physically the continuity equa-
tion requires that

• changes in electrical charge in some arbitrary volume are
caused by flow of charge through the surface bounding
that volume.

• This requires conservation of charge within a volume of
space that can be arbitrarily small,

• which implies that charge is conserved locally.

A charge that disappears from one point in space
and instantly reappears at another point is consis-
tent with global charge conservation, but not with
local charge conservation.

• The reason requires relativistic quantum field theory for
its full explanation:

• destroying a charge at one point and simultaneously cre-
ating it at another would require

• instantaneous propagation of a signal between the two
points,

• which is inconsistent with special relativity.
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Maxwell’s equations

• supplemented by the Lorentz force law

FFF = q(EEE + vvv×BBB),

to describe electromagnetic forces, and

• Newton’s laws of motion to translate force into particle
motion

are thought to describe all of classical electromagnetism.
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7.1.2 Implications of the Ampère–Maxwell Law

Maxwell’s seemingly small change in the Ampère law turns
out to have enormous implications for both our classical and
quantum understanding of electromagnetism.

• Maxwell’s addition of ∂DDD/∂ t to Ampère’s law (and Fara-
day’s induction experiments) effectively brought together
the previously separate subjects of electricity and mag-
netism.

• Ampère’s law is only about magnetism, but both the po-
larized electric field DDD and the polarized magnetic field HHH

appear in the Ampère–Maxwell law,

• while EEE and BBB both appear in Faraday’s law.

• Changing electric fields produce magnetic fields and

changing magnetic fields produce electric fields, and we
may now speak of the unified subject of electromagnetism.

• The fundamental equations of electromagnetism are now
consistent with (local) conservation of electrical charge.

• This modification will lead eventually to the greatest tri-
umph of the classical Maxwell equations:

– the realization that the Maxwell equations have a

wave solution, and that

– the resulting electromagnetic waves may be inter-

preted as light,

– thus unifying electricity and magnetism with optics.
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• That Maxwell’s equations obey the continuity equation
and thus conserve charge locally will lead to the idea of
classical electromagnetic gauge invariance,

• which will underlie a quantum field theory of electromag-
netism (quantum electrodynamics or QED).

• Electromagnetic gauge invariance will eventually be gen-
eralized to more sophisticated local gauge invariance in
the weak and strong interactions,

• resulting in the relativistic quantum field theory that we
term the Standard Model of elementary particle physics.

Some of these topics are beyond the scope of clas-
sical electromagnetism, but have their historical
and scientific antecedents in that discipline.
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7.2 Vector and Scalar Potentials

In our discussions of electrostatics and magnetostatics we in-
troduced the scalar potential Φ and the vector potential AAA.

• Maxwell’s equations are a set of coupled first-order dif-
ferential equations relating the components of the electric
and magnetic fields.

• To solve those coupled differential equations it is often

• convenient to introduce the potentials AAA and Φ,

• which satisfy some of the Maxwell equations identically

and

• leave a smaller number of second-order differential equa-
tions to solve.
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Consider the two homogeneous equations (the ones equal to
zero on the right side) in the Maxwell equations.

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law),

• Since ∇∇∇ ·BBB = 0, the magnetic field BBB can be described as
the curl of a vector potential AAA,

BBB = ∇∇∇×AAA.

Recall the reason:

• if BBB = ∇∇∇×AAA,

• then by taking the divergence of both sides
∇∇∇ ·BBB = ∇∇∇ · (∇∇∇×AAA) = 0.

Thus the condition ∇∇∇ · BBB = 0 is guaranteed if BBB

derives from the curl of a vector potential.
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Then Faraday’s law may be written as,

∇∇∇×
(

EEE +
∂AAA

∂ t

)
= 0.

• Since the curl of EEE +∂AAA/∂ t vanishes,

• it can be written as the gradient of a scalar function; let’s
choose it to be minus the scalar potential Φ,

EEE +
∂AAA

∂ t
=−∇∇∇Φ,

• which rearranges to

EEE =−∇∇∇Φ− ∂AAA

∂ t
.
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Introducing the substitutions

BBB = ∇∇∇×AAA EEE =−∇∇∇Φ−∂AAA/∂ t

into the Maxwell equations, we find using using the identities

∇∇∇ · (∇∇∇×BBB) = 0 ∇∇∇×∇∇∇Φ = 0

that the homogeneous equations

∇∇∇×EEE +
∂BBB

∂ t
= 0 (Faraday’s law),

∇∇∇ ·BBB = 0 (No magnetic charges),

are satisfied identically, while the inhomogeneous equations

∇∇∇ ·DDD = ρ (Gauss’s law),

∇∇∇×HHH − ∂DDD

∂ t
= JJJ (Ampère–Maxwell law),

are transformed into the coupled second-order differential
equations,

∇∇∇2Φ+
∂

∂ t
(∇∇∇ ·AAA) =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

1
c2

∂Φ

∂ t

)
=−µ0JJJ,

where ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA has been used.

• Thus the problem has been converted into solving two cou-

pled second-order differential equations.

• Let us now show that these equations can be decoupled by

a suitable gauge transformation.
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7.2.1 Exploiting Gauge Symmetry

Earlier we showed that

• the magnetic field is invariant under a gauge transforma-
tion on the vector potential,

AAA → AAA′ = AAA+∇∇∇χ ,

where χ is an arbitrary scalar function.

• If the electric field to be unaltered under this transforma-
tion the scalar potential must be changed at the same time
according to

Φ → Φ′ = Φ− ∂ χ

∂ t
.

• Thus, a classical gauge transformation on the electromag-
netic field is defined by the simultaneous transformations

AAA → AAA+∇∇∇χ Φ → Φ− ∂ χ

∂ t
,

on the vector potential AAA and the scalar potential Φ, for an
arbitrary scalar function χ .

Suppose that we now exploit the invariance of electromag-
netism under such gauge transformations and choose a set of
potentials {Φ,AAA} that satisfy the Lorenz condition

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0.
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A constraint like

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0.

• is termed a gauge-fixing condition and

• imposing such a constraint is termed fixing the gauge.

• The gauge choice implied by the equation above is called
the Lorenz gauge.

The Lorenz gauge (named for Ludvig Lorenz) is
often mistakenly called the Lorentz gauge (after
the more famous Hendrik Lorentz).
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• If the Lorenz gauge condition

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0.

is inserted into the coupled Maxwell equations

∇∇∇2Φ+
∂

∂ t
(∇∇∇ ·AAA) =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

1
c2

∂Φ

∂ t

)
=−µ0JJJ,

• the equations decouple and

• solving the Maxwell equations has now been reduced to
solving two second-order differential equations,

∇∇∇2Φ− 1
c2

∂ 2Φ

∂ t2 =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJ,

which are uncoupled:

• solution of the first equation gives the scalar potential Φ

independent of the vector potential AAA,

• while solution of the second equation gives the vector po-
tential, independent of the scalar potential.
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It is always possible to find potentials {Φ,AAA} that satisfy the
Lorenz condition.

• Suppose that we have a solution with gauge potentials that
satisfies the Maxwell equations, but does not satisfy the
gauge condition.

• Then, make a gauge transformation to new potentials
{Φ′,AAA′} and require the new potentials to satisfy the
Lorentz condition

∇∇∇ ·AAA′+
1
c2

∂Φ′

∂ t
= 0 = ∇∇∇ ·AAA+

1
c2

∂Φ

∂ t
+∇∇∇2χ − 1

c2

∂ 2χ

∂ t2 .

Thus, if a gauge scalar function χ can be found that satisfies

∇∇∇2χ − 1
c2

∂ 2χ

∂ t2 =−
(

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t

)
,

the new potentials will satisfy the Lorenz gauge conditions and
the simultaneous Maxwell equations.
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The Lorenz condition

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0.

• does not exhaust the gauge degrees of freedom in Lorenz
gauge.

• The restricted gauge transformation

AAA → AAA+∇∇∇χ Φ → Φ− ∂ χ

∂ t
,

where the scalar function χ satisfies

∇∇∇2χ − 1
c2

∂ 2χ

∂ t2 = 0,

preserves the Lorenz condition if {AAA,Φ} satisfies it to be-
gin with.



7.2. VECTOR AND SCALAR POTENTIALS 355

Thus the Lorenz gauge corresponds to an entire family of of
gauge conditions. The Lorenz gauge is often used for two rea-
sons:

1. It leads to the decoupled Maxwell equations that treat Φ

and AAA on an equal footing.

2. As will be elaborated in Ch. 8, the Lorenz gauge condi-
tion is invariant under Lorentz transformations, which fits
naturally into special relativity.

Notice: the equations are in (Ludvig) Lorenz

gauge, but we shall see that they are invariant un-
der (Hendrik) Lorentz transformations.
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There are infinitely many valid gauge transformations that can
be made using

AAA → AAA+∇∇∇χ Φ → Φ− ∂ χ

∂ t
,

with different choices for the scalar function χ .

• However, only some prove to be useful.

• One of use is the transformation to Lorenz gauge described
in this section.

• Another that we have already encountered in Section 5.5
is the transformation to Coulomb gauge.
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7.2.2 Coulomb Gauge

We have already introduced the Coulomb gauge condition

∇∇∇ ·AAA = 0 (Coulomb gauge).

From

∇∇∇2Φ+
∂

∂ t
(∇∇∇ ·AAA) =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

1
c2

∂Φ

∂ t

)
=−µ0JJJ,

in Coulomb gauge the scalar potential obeys a Poisson equa-

tion

∇∇∇2Φ =− ρ

ε0
,

which has a solution

Φ(xxx,t) =
1

4πε0

∫
ρ(xxx′,t)
|xxx− xxx′| d3x′.

This is the instantaneous Coulomb potential

caused by the charge density ρ(xxx), which is the
source of the name Coulomb gauge.
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Causality and Coulomb and Gravitational Potentials

The Coulomb potential

Φ(xxx,t) =
1

4πε0

∫
ρ(xxx′,t)
|xxx− xxx′| d3x′.

• suggests instantaneous transmission of information in a
universe where

• lightspeed c is the speed limit.

Causality (that cause precedes effects) is a fun-
damental principle underlying all of modern sci-
ence. The Coulomb potential appears to violate

that principle.

Causality and the Coulomb Potential

The Coulomb potential is said to be “instantaneous” because

• the associated force acts without delay at any xxx corre-
sponding a distance |xxx− xxx′| from the source.

• This is inconsistent with special relativity and relativistic
quantum field theory,

• which require that a force be transmitted by a virtual par-
ticle (the photon in this case)

• communicated at a speed less than or equal to the speed
of light c.
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Causality and the Newtonian Gravitation Potential

The Newtonianian gravitational potential

• has the form of a Coulomb potential with masses playing

the role of charges, and

• has the same causality problem:

it implies that the gravitational force acts instanta-
neously over any distance.

• The solution of this problem in gravitational physics is
replacement of Newtonian gravity with general relativity,

• which generalizes special relativity and requires that the
transmission speed of the gravitational force be equal to
the speed of light.

This prediction of general relativity has been confirmed by ob-
servations, as we now describe.
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The Speed of Light and the Speed of Gravity

In 2017 the ground-based Ligo–Virgo detectors observed grav-
itational wave GW170817. But there was more to come:

• 1.7 seconds later the Fermi Gamma-ray Space Telescope
(Fermi) and International Gamma-Ray Astrophysics Lab-
oratory (INTEGRAL) in orbit around Earth

• detected a gamma-ray burst from the same portion of the
sky as the source of the gravitational wave.

• Detailed observations of the afterglow of the gamma-ray
burst at many wavelengths, and

• comprehensive analysis of the gravitational and electro-
magnetic data sets,

• concluded that the gravitational wave and the gamma-ray
burst were caused by a binary neutron star merger in the
galaxy NGC 4993,

• at a distance of 40 megaparsecs (130 million lightyears).
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• That the gravitational and electromagnetic signals arrived
within 1.7 seconds of each other after traveling 40 mega-

parsecs implied that

• the speed of gravity (for the gravitational waves) and the
speed of light c (for the gamma-rays) differ by at most 3

parts in 1015.

• Thus the speed of gravity is c, just as predicted by the
general theory of relativity.

We will discuss briefly the description of gravita-
tional waves in linearized gravity and the similar-
ity with the Maxwell equations in Ch. 8.
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In Coulomb gauge the vector potential obeys

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJ+
1
c2

∂Φ

∂ t
.

• As guaranteed by the Helmholtz theorem for any vector
(see Box 3.1),

• the current density can be decomposed as a sum of two

terms

JJJ = JJJL + JJJT,

• where the terms have the following properties:

1. The component JJJL has vanishing curl, ∇∇∇× JJJL = 0; it
is called the longitudinal current or the irrotational

current.

2. The component JJJT has vanishing divergence, ∇∇∇ ·JJJT =
0; it is called the transverse current or the solenoidal

current.
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The longitudinal current and transverse current are explicitly

JJJL =− 1
4π

∇∇∇

∫
∇∇∇′ · JJJ(xxx′,t)
|xxx− xxx′| d3x′,

JJJT =
1

4π
∇∇∇×∇∇∇×

∫
JJJ(xxx′,t)
|xxx− xxx′| d3x′.

Combining the expression for the scalar potential,

Φ(xxx,t) =
1

4πε0

∫
ρ(xxx′,t)
|xxx− xxx′| d3x′.

with the continuity equation, ∂ρ/∂ t +∇∇∇ · jjj = 0 leads to

1
c2 ∇∇∇

∂Φ

∂ t
= µ0JJJT,

which gives when inserted into

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

1
c2

∂Φ

∂ t

)
=−µ0JJJ,

and using the identity ∇∇∇(∇∇∇ ·AAA) = 0 and JJJ = JJJL + JJJT,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJT.

Thus, in Coulomb gauge the source for the AAA equa-
tion can be expressed entirely in terms of the trans-

verse current JJJT.
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• Because the vector potential is determined entirely by
the transverse current, the Coulomb gauge is sometimes
termed the transverse gauge.

• The Coulomb gauge is also sometimes called the radia-

tion gauge,

• because one finds in quantum electrodynamics that only
the vector potential (which is determined by the transverse
components) need be quantized.

Notice that

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJT.

has the form of a wave equation with the speed of the wave

equal to c.

• This is the behavior expected for electromagnetic waves.

• However, the discussion above implies that for the scalar

potential the propagation speed is infinite.

The resolution of this seeming paradox requires relativistic

quantum field theory, but in essence

• the propagating classical field has only transverse compo-

nents and one finds that

• in QED only the vector potential (and thus only the trans-

verse components ) need be quantized.
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As we will see in Ch. 8,

• Lorentz covariance requires the 3-vector potential AAA and
the scalar potential Φ

• to be combined into a spacetime 4-vector Aµ with the
components of the 4-vector given by

Aµ = (A0,A1,A2,A3) = (Φ,AAA) = (Φ,A1,A2,A3),

where Φ is the scalar potential and AAA is the 3-vector po-
tential with components Ai(i = 1,2,3).

• In the 4-vector the first component A0 is called the timelike

component and

• the other three components (A1,A2,A3) are called the
spacelike components of the 4-vector.
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A small terminology problem now enters our discussion.

• We have been calling AAA the vector potential, but

• relativistically it will be more convenient to work with the
4-vector potential Aµ ,

• which makes more obvious the requirement of relativity
that space and time enter on an equal footing.

• Thus beginning in the next chapter we will be calling the
4-vector Aµ the vector potential.

We adopt a policy that

• where it is clear that we are working non-relativistically
we will call AAA the vector potential, while

• if it is clear that we are working in a relativistic context
we will call Aµ the vector potential.

• If there is any chance for confusion we use the explicit
names “3-vector potential” for AAA and “4-vector poten-

tial” for Aµ .
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We have asserted above that only the two transverse compo-

nents or polarizations of the vector are required to describe
propagating EM waves.

• But a 3-vector like AAA normally has three components, and

• a 4-vector like Aµ has four components.

So how can a propagating photon have only two rather than

three or four degrees of freedom?

• Relativistic quantum field theory for electrons and photons
(QED) is beyond our present scope in these lectures.

• However, the answer is that for QED in a covariant gauge

like Lorenz gauge there are four states of polarization,

• but the contributions from timelike and longitudinal polar-
izations have equal magnitudes but opposite signs and

• exactly cancel each other,

• leaving only the transverse polarizations for a free propa-
gating photon. (This is called the Gupta–Bleuler mecha-

nism in QED.)

• A massive vector field would have three spatial polariza-

tion components.

• As we will see, the reduction to two spatial polarizations

is because the photon is identically massless:

Massless vector fields have two rather than three

states of polarization.
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7.3 Retarded Green Function

From the Maxwell equations in Lorenz gauge,

∇∇∇2Φ− 1
c2

∂ 2Φ

∂ t2 =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJ,

it is clear that the key to solving Maxwell’s equations in Lorenz
gauge is to be able to solve the wave equation with a source f ,

✷ψ =− f ,

where we now introduce for convenience the d’Alembertian op-

erator ✷ with

✷≡− 1
c2

∂ 2

∂ t2 +∇∇∇2.

The d’Alembertian operator ✷ is

• a Lorentz-invariant combination of the sec-
ond derivatives with respect to space and time

• that will play a significant role in discussing
the relationship of the Maxwell equations to

special relativity in Ch. 8.
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Since we are assuming Lorenz gauge, we must also satisfy

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0 (Lorenz gauge condition)

• But the retarded solutions of

∇∇∇2Φ− 1
c2

∂ 2Φ

∂ t2 =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJ,

with sources that we will find shortly will in fact

• satisfy the Lorenz gauge condition automatically, pro-
vided that they decrease rapidly enough at infinity.

Generalizing the electrostatics case, a Green function

G(t,xxx; t ′xxx′) can be defined by

✷G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t − t ′),

• where the derivative operators in ✷ are understood to op-

erate on the unprimed variables,

• the Green function depends on (t ′,xxx′) and (t,xxx) and

• there is a delta function in t ′− t as well as in xxx− xxx′.

If we can obtain a Green function, a solution ψ of
✷ψ =− f is given by

ψ(t,xxx) =
∫

G(t,xxx;t ′xxx′) f (t ′,xxx′)d3x′dt ′,

if the integral converges.
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Let us seek a solution of

✷G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t − t ′),

using Fourier transforms.

• For an integrable function F : R → R, define its Fourier
transform F̂ as

F̂(k) =
1√
2π

∫ +∞

−∞
F(x)e−ikxdx.

• Fourier transforms can be extended to distributions such
as the Dirac delta function.

• For example, the Fourier transform of a delta function is,

δ̂x0 =
1√
2π

eilx0.

Assuming a smooth function falling off fast enough at infinity,

• the original function F(x) can be recovered by the inverse

Fourier transform,

F(x) =
1√
2π

∫ +∞

−∞
F̂(k)e+ikxdk.

• This formula applies also to distributions and the inverse

Fourier transform for a delta function is

δx0(x) =
1√
2π

∫ +∞

−∞
δ̂x0(k)e

+ikxdk =
1

2π

∫ +∞

−∞
e−ikx0e+ikx dk.
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An important property of Fourier transforms is that

• differentiation in real space corresponds to multiplication
by ik in Fourier transform space.

• For example, as you are asked to show in a problem,

d̂F

dx
(k) = ikF̂(k),

for the Fourier transform of dF(x)/dt.

Thus any partial differential equation with con-
stant coefficients in real space can be converted to
an algebraic equation in Fourier transform space.
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Now let’s try to solve

✷G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t − t ′),

for G using Fourier transforms.

• To simplify notation we temporarily set x′ = t ′ = 0 and
c = 1, and

• define the 4D Fourier transform of G as

Ĝ(ω ,kkk) =
1

(2π)2

∫ +∞

−∞
G(t,xxx)e+iωte−ikkk·xxxdt d3x.

Note: By convention the time Fourier transform is
defined by

• integrating with e+iωt rather than with e−iωt

• for compatibility with the 4-momentum vec-
tor kµ = (ω/c,kkk) of special relativity (Ch. 8).
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Taking the Fourier transform of

✷G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t − t ′),

with respect to t and xxx, using

δ̂x0 =
1√
2π

eilx0.

with x0 = 0, and using

d̂F

dx
(k) = ikF̂(k),

yields

(ω2− k2)Ĝ(ω ,kkk) =− 1
4π2 ,

where k ≡ |k|. Naively, this suggest the solution

Ĝ(ω ,kkk) =− 1
4π2

1
(ω2 − k2)

=− 1
4π2

1
(ω + k)(ω − k)

,

but division by (ω2− k2) is illegal since ω could be equal to k.
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To see the difficulty clearly,

• let’s attempt to take the inverse transform of Ĝ with re-
spect to ω (but not kkk).

• This is a Fourier transform with respect to space but not
time; denoting it as G̃,

G̃(t,kkk) =
1√
2π

∫ +∞

−∞
Ĝ(ω ,kkk)e−iωt dω .

=− 1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k)(ω − k)
dω ,

where

Ĝ(ω ,kkk) =− 1
4π2

1
(ω2 − k2)

=− 1
4π2

1
(ω + k)(ω − k)

,

was used.

This has logarithmic diverges of the integral if ω → k.

The simplest logarithmic divergence occurs in an
integral of the form

f (x) =

∫ x

x0

1
Λ

dΛ.

Such an integral diverges as x → ∞, but rather
mildly as f (x)∼ log(x).

Thus it is ill-defined.
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The basic reason for the ambiguity in

G̃(t,kkk) =− 1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k)(ω − k)
dω ,

is that

• many different Green functions satisfy

✷G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t − t ′),

so we cannot expect to solve for G

• without providing further information to identify the
Green function that we are after.

To proceed it is necessary to regularize the integration in such
a way that

1. (ω2 − k2)Ĝ(ω ,kkk) =− 1
4π2 remains valid, and

2. the right side of

G̃(t,kkk) =− 1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k)(ω − k)
dω ,

becomes well defined.
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One way to do this is to

• displace the poles at ω =±k into the complex ω plane

• and evaluate the resulting contour integral.

There is more than one way to do this, each leading to a differ-
ent Green function.

• The Green function that we seek is the retarded Green

function,

• which will be appropriate for the situation where there is
only outgoing radiation from a source.

• To get the retarded Green function the poles should be
displaced into the lower half of the complex ω-plane;

• thus we define the retarded Green function by

G̃(t,kkk)ret =− 1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k+ iε)(ω − k+ iε)
dω ,

where ε is positive and the limit ε → 0 is to be taken after
the integral is evaluated.
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Viewing the integral

G̃(t,kkk)ret =− 1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k+ iε)(ω − k+ iε)
dω ,

as a contour integral in the complex ω-plane,

• if t < 0 the exponential is damped in the upper half-plane
of ω and

• the countour integral can be closed in the upper half plane.

• Since the poles are in the negative half-plane, the contour
does not enclose them and

• by the Cauchy theorem,

G̃(t,kkk)ret = 0 (t < 0).

• This vanishing of the Green function before t = 0

• is characteristic of the retarded solution and corresponds
to a solution with no incoming radiation.

• This solution is physically relevant when there is no initial

radiation when the source is turned on.
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By similar reasoning,

• for t > 0 the contour can be closed in the lower half-plane.

• Now the contour encloses poles at ω =±k− iε and

• by the Cauchy theorem the integral evaluates to 2π i times

a sum of residues at the poles.

The residue res [ f (a)] of a function f (z) at a pole
z = a is given by

res [ f (a)] =
1

(m−1)!
lim
z→0

(
dm−1

dzm−1(z−a)m f (z)

)
,

where m is the order of the pole and a is the loca-
tion of the pole (a 6= ∞)

Then from

G̃(t,kkk)ret =− 1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k+ iε)(ω − k+ iε)
dω ,

we obtain

G̃(t,kkk)ret =
2π i

4π2
√

2π

(
e−ikt

2k
− e+ikt

2k

)

=
1

2π
√

2π

sinkt

k
(t > 0).
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The retarded Green function in real (position) space then results
from taking the inverse transform of this result, which yields
(homework problem),

G(t,xxx)ret =
δ (t −|xxx|)

4π |xxx| (t > 0).

Restoring t ′, xxx′, and c, this result becomes

G(t,xxx;t ′,xxx′)ret =





0 (t < t ′),

δ (t − t ′−|xxx− xxx′|/c)

4π |xxx− xxx′| (t > t ′).

This propagator now has the expected causal behavior.

• Using special relativity language, it is nonvanishing only
on the future lightcone of the source point (t ′,xxx′),

• meaning that it is non-vanishing only if |xxx− xxx′|= c(t−t ′).

• That is, if a field satisfying the wave equation ✷ψ = − f ,
vanishes at early times, and

• a δ -function source is placed at (t ′,xxx′),

• the resulting disturbance of the field will propagate away

from the source at exactly the speed of light.
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The retarded solution of ✷ψ =− f is the solution obtained us-
ing the retarded Green function in,

ψ(t,xxx) =
∫

G(t,xxx;t ′xxx′) f (t ′,xxx′)d3x′ dt ′,

which gives

ψ(t,xxx) =
1

4π

∫
f (t −|xxx− xxx′|/c,xxx′)

|xxx− xxx′| d3x′.

This can also be written more compactly as

ψ(t,xxx) =
1

4π

∫
f (t ′,xxx′)ret

|xxx− xxx′| d3x′,

where the notation means that f (t ′,xxx′) is to be evaluated at the

retarded time

t ′ = t − |xxx− xxx′|
c

,

and where t ′ isn’t independent but rather is a function of t, xxx,
and xxx′.
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In the equation

ψ(t,xxx) =
1

4π

∫
f (t ′,xxx′)ret

|xxx− xxx′| d3x′,

• the integration is not over all of space at an instant of time
(as the notation might suggest).

• Rather is restricted to the past lightcone of the spacetime

point (t,xxx),

• since only points on the past lightcone can be causally

connected to (t,xxx) by a signal traveling at lightspeed.

Timelike

Timelike

Spacelike

Spacelike

F
u

tu
re

P
a

s
t

ct

x

y
Observer

(t, x)

Source

(t', x')

v = c
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Written in the form

ψ(t,xxx) =
1

4π

∫
f (t ′,xxx′)ret

|xxx− xxx′| d3x′,

• the retarded solution looks like a solution of the Poisson

equation, but

• evaluated at the retarded time

t ′ = t − |xxx− xxx′|
c

,



7.3. RETARDED GREEN FUNCTION 383

The Maxwell equations

∇∇∇2Φ− 1
c2

∂ 2Φ

∂ t2 =− ρ

ε0
,

∇∇∇2
AAA− 1

c2

∂ 2AAA

∂ t2 =−µ0JJJ,

for the scalar and vector potentials are of the form,

✷ψ =− f ,

so we can write immediately the corresponding retarded solu-
tions,

Φ(t,xxx) =
1

4πε0

∫
[ρ(t ′,xxx′]ret

|xxx− xxx′| d3x′,

AAA(t,xxx) =
µ0

4π

∫
[JJJ(t ′,xxx′]ret

|xxx− xxx′| d3x′.

for the scalar and vector potentials.
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Finally, substitution of the solutions

Φ(t,xxx) =
1

4πε0

∫
[ρ(t ′,xxx′]ret

|xxx− xxx′| d3x′,

AAA(t,xxx) =
µ0

4π

∫
[JJJ(t ′,xxx′]ret

|xxx− xxx′| d3x′.

in the Lorenz gauge condition,

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0 (Lorenz gauge condition)

and some manipulation indicates that these solutions are indeed
consistent with the Lorenz gauge condition. Therefore,

• we may conclude that the solution of the Maxwell equa-

tions for a charge density ρ and a current density JJJ,

• with initial conditions of no incoming radiation,

• is given by

Φ(t,xxx) =
1

4πε0

∫
[ρ(t ′,xxx′]ret

|xxx− xxx′| d3x′,

AAA(t,xxx) =
µ0

4π

∫
[JJJ(t ′,xxx′]ret

|xxx− xxx′| d3x′.

This has been shown here in Lorenz gauge, but
the Maxwell equations are invariant under gauge

transformations so this solution may be taken to
be valid generally.



Chapter 8

Minkowski Spacetime

These lectures concern graduate-level classical electromag-

netism.

• The distinction between classical and modern physics

generally turns on whether dynamics are described by

– quantum mechanics and quantum field theory or clas-

sical mechanics and classical field theory,

– and by non-relativistic mechanics or relativistic me-

chanics.

• Traditionally classical electromagnetism excludes quan-

tum mechanics (except for a few quantum concepts nec-
essary for electromagnetism interacting with the micro-
scopic structure of matter).

• but traditionally special relativity has been part of the dis-
cussion of classical electromagnetism.

385
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If strong gravity is important, as it would be in var-
ious electromagnetic phenomena in astrophysics
(for example, black hole accretion disks),

• one must extend the description of charged-
particle motion to curved spacetime.

• This requires use of the general theory of rel-

ativity.

Here we will consider only relativistic electrody-
namics in flat spacetime, so special but not general

relativity will be necessary.

Accordingly, in this chapter we shall introduce special relativ-

ity and the Lorentz transformations on which it is based.

• Then we will demonstrate explicitly the Lorentz invari-

ance of Maxwell’s equations and therefore,

• their consistency with special relativity.
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8.1 Maxwell’s Equations and Special Relativity

The reasons for the affinity of Maxwell’s equations with special
relativity are both scientific and historical. Scientifically,

• electrical charges may be approximated as classical ob-

jects (positions and momenta simultaneously well de-
fined)

• so that quantum mechanics isn’t required,

• but the motion of these classical charges could be de-
scribed by

– Newtonian mechanics at low velocities, or by

– special relativity at velocities that are significant frac-
tions of the speed of light c.

Historically, classical electromagnetism and special relativity
have been intertwined because

• Einstein was influenced strongly by the beauty and sym-

metry of Maxwell’s equations in formulating the special
theory of relativity.

• In particular he was motivated by comparing

– the Lorentz invariance of Maxwell’s equations with

– the Galilean invariance of classical mechanics.
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This led Einstein to the conclusion that

• classical mechanics, not electromagnetism, required revi-
sion

• if one wanted the laws of electromagnetism and of classi-
cal particle motion to be mutually consistent.

This led him to propose the radical notion that

• the speed of light is constant in all inertial frames,

• which is consistent with Maxwell’s equations but not with

Newtonian mechanics, and

• which forms the basis of special relativity.

Accordingly, let us turn to an understanding of the special the-

ory of relativity.
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8.2 Minkowski Spacetime and Spacetime Tensors

The most elegant formulation of special relativity is in terms of

• a 4D spacetime manifold called Minkowski space, and in
terms of

• spacetime tensors that are a consequence of the differen-

tial geometry of that manifold.

To begin, we must consider manifolds (loosely “spaces” to a
physicist) and transformations within that manifold.
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8.3 Coordinate Systems and Transformations

A physical system has a symmetry under some operation if the
system after the operation is observationally indistinguishable

from the system before the operation.

Example: A perfectly uniform sphere has a sym-
metry under rotation about any axis because after
the rotation the sphere looks the same as before the
rotation.
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The theory of relativity may be viewed as a symmetry under

coordinate transformations.

• Two observers, referencing their measurements of the
same physical phenomena to two different coordinate sys-
tems

• should deduce the same laws of physics from their obser-
vations.

• In special relativity one requires a symmetry under only
a subset of possible coordinate transformations (between
systems that are not accelerated with respect to each
other).

• General relativity requires that the laws of physics be
invariant under the most general coordinate transforma-

tions.

To understand special and general relativity, we
must begin by examining the transformations that

are possible between different coordinate systems.
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8.4 Minkowski Space

The surface traced out by allowing coordinates (x0,x1,x2,x3)=
(ct,x,y,z) to range over all possible values

• defines the manifold of 4-dimensional spacetime.

• The resulting space is called Minkowski spacetime,

• or more briefly Minkowski space or just spacetime.

• In Minkowski space the square of the infinitesimal dis-

tance ds2 between two points

(ct,x,y,z) and (ct + cdt,x+dx,y+dy,z+dz)

is given by

ds2 = ∑
µν

ηµνdxµdxν =−c2dt2 +dx2+dy2+dz2,

=−(dx0)2 +(dx1)2+(dx2)2 +(dx3)2,

• which is called the line element of the Minkowski space.

In this notation

• ds2 means the square of ds [that is, (ds)2],

• and dx2 means (dx)2, but

• in (x0,x1,x2,x3) the superscripts are indices
and not powers.
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The quantity ηµν appearing in the line element

ds2 = ∑
µν

ηµνdxµdxν =−(dx0)2+(dx1)2 +(dx2)2+(dx3)2,

• may be expressed as the diagonal matrix

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

• and is termed the metric tensor of the Minkowski space.

• The line element ds2 or the metric tensor ηνµ determine

the geometry of Minkowski space because

– they specify distances,

– distances can be used to define angles,

– and that is geometry.
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The pattern of signs on the diagonal of

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

• defines the signature of the metric.

• The Minkowski space signature is (− + ++).

• A metric such as that of Minkowski space in which the
signs in the sign pattern are not all the same is termed an
indefinite metric.

• Some authors use instead the signature (+ − −−) for the
sign pattern in ηµν .

• The important point is that for Minkowski spacetime

– the last three terms have the same sign and

– the sign of the first term is different from that of the
other three.

Assuming the modern convention of placing the
timelike coordinate in the first position and the
spacelike coordinates in the following positions.
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The geometry of 4D Minkowski space differs from that of 4D

Euclidean space:

• 4D Minkowski spacetime is not “just like ordinary space
but with more dimensions”.

• The difference is encoded in the signature of the metric,

• which for 4D euclidean space is (+ + ++),

• compared with the signature (−+++) for the Minkowski

metric.

• That is, the metric tensor of 4D euclidean space is just the
4×4 unit matrix.

• That change in sign for the first entry makes all the differ-
ence.

• Most of the unusual features of special relativity

– space contraction,

– time dilation,

– relativity of simultaneity,

– the twin “paradox”, . . .

follow from this difference in geometry between 4D
Minkowski spacetime and 4D euclidean space that is en-
coded in that sign difference.
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8.4.1 Coordinate Systems in Euclidean Space

Our goal is to describe transformations between coordinates in
a possibly curved space having

• three space-like coordinates and

• one timelike coordinate.

However, to introduce these concepts we shall begin with the
simpler and more familiar case of vector fields in 2D and 3D
euclidean space.

• Assume a 3D euclidean (flat) space having a cartesian co-

ordinate system (x,y,z), and an associated set of mutually
orthogonal unit vectors (iii, jjj,kkk) .

• Assume that there is an alternative coordinate system

(u,v,w), not necessarily cartesian, with the (x,y,z) coor-
dinates related to the (u,v,w) coordinates by

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

• Assume that the transformation is invertible so that we
can solve for (u,v,w) in terms of (x,y,z).
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Example:

Take the (u,v,w) system to be the spherical coordinates (r,θ ,φ), in
which case

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

takes the familiar form

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ ,

with the ranges of values r ≥ 0 and 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π .
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• The equations

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

can be combined into a vector equation that gives a po-

sition vector rrr for a point in the space in terms of the
(u,v,w) coordinates:

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk.

• For example, in terms of the spherical coordinates

(r,θ ,φ),

rrr = (r sinθ cosφ) iii+(r sinθ sinφ) jjj+(r cosθ)))kkk.

• The second coordinate system in these examples generally
is not cartesian but the space is assumed to be euclidean.

• In transforming from the (x,y,z) coordinates to the
(r,θ ,φ) coordinates, we are just using a different scheme
to label points in a flat space.

• This distinction is important because shortly we shall con-
sider general coordinate transformations in spaces that
may not obey euclidean geometry (curved spaces).
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8.4.2 Basis Vectors

At any point P(u0,v0,w0) defined for specified coordinates
(u0,v0,w0), three surfaces pass. They are defined by u = u0,
v = v0, and w = w0, respectively.

• Any two of these surfaces meet in curves.

• From

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk.

we may obtain general parametric equations for coordi-
nate surfaces or curves by setting one or two of the vari-
ables (u,v,w) equal to constants.

• For example, if we set v and w to constant values, v = v0

and w = w0, we obtain a parametric equation for a curve
given by the intersection of v = v0 and w = w0,

rrr(u) = x(u,v0,w0) iii+ y(u,v0,w0) jjj+ z(u,v0,w0)kkk,

• This is a parametric equation in which u plays the role
of a coordinate along the curve defined by the constraints
v = v0 and w = w0.



400 CHAPTER 8. MINKOWSKI SPACETIME

(a) 3D space 

parameterized 

by (x, y, z)

y

x

z
θ = constant ,

r = constant curve

φ

P (x0, y0, z0)

x

y

z

1D surface defined by 
intersection of 

z = z0 and x = x0

2D surfaces
2D surface 

defined
by z = z0

2D surface 
defined

by x = x0

(b) 3D space 

parameterized 

by (r, θ, φ)

y

θ = constant 

(cone) 

φ = constant  

(half-plane) 

r = constant 

(sphere) 

P

Figure 8.1: Examples of surfaces and curves arising from constraints. (a) In 3D
euclidean space parameterized by cartesian coordinates (x,y,z), the constraints x =
x0 and z = z0 define 2D planes and the intersection of these planes defines a 1D
surface parameterized by the variable y. (b) In 3D space described in spherical
coordinates (r,θ ,φ), the constraint r = constant defines a 2D sphere, the constraint
θ = constant defines a cone, and the constraint φ = constant defines a half-plane.
The intersection of any two of these surfaces defines a curve parameterized by the
variable not being held constant.

Fig. 8.1(b) illustrates for spherical coordinates (r,θ ,φ):

• The surface corresponding to r = constant is a sphere pa-
rameterized by the variables θ and φ .

• The constraint θ = constant corresponds to a cone param-
eterized by the variables r and φ .

• Setting both r and θ to constants defines a curve that is the
intersection of the sphere and the cone, which is parame-
terized by the variable φ .
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• Partial differentiation of

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk,

with respect to u, v, and w, respectively, gives tangents to

the coordinate curves passing though the point P.

• These may be used to define a set of basis vectors eeei

through

eeeu ≡
∂ rrr

∂u
eeev ≡

∂ rrr

∂v
eeew ≡ ∂ rrr

∂w
,

with all partial derivatives evaluated at the point P =

(u0,v0,w0).

• This basis, generated by the tangents to the coordinate
curves, is sometimes termed the natural basis. The fol-
lowing example illustrates for a spherical coordinate sys-
tem.
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Example:

Consider the spherical coordinate system defined through

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ .

The position vector rrr is

rrr = (r sinθ cosφ) iii+(r sinθ sinφ) jjj+(r cosθ)))kkk,

and the natural basis is obtained from

eee1 ≡ eeer =
∂ rrr

∂ r
= (sinθ cosφ) iii+(sinθ sinφ) jjj+(cosθ)kkk

eee2 ≡ eeeθ =
∂ rrr

∂θ
= (r cosθ cosφ) iii+(r cosθ sinφ) jjj− (r sinθ)kkk

eee3 ≡ eeeφ =
∂ rrr

∂φ
=−(r sinθ sinφ) iii+(r sinθ cosφ) jjj.

These basis vectors are mutually orthogonal because

eee1 · eee2 = eee2 · eee3 = eee3 · eee1 = 0

For example,

eee1 · eee2 = r sinθ cosθ cos2 φ + r sinθ cosθ sin2 φ − r cosθ sinθ

= r sinθ cosθ (cos2 φ + sin2 φ)︸ ︷︷ ︸
=1

−r cosθ sinθ = 0.
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φ = constant

half-plane

x

y

z

r = constant

surface

θ = constant ,

r = constant curve

φ

er

eφ

eθ

P

Figure 8.2: Basis vectors for the natural basis in spherical coordinates.

From the scalar products of the basis vectors with themselves, their
lengths are

|eee1|= 1 |eee2|= r |eee3|= r sinθ

and we can use these to define a normalized basis,

êee1 ≡
eee1

|eee1|
= (sinθ cosφ) iii+(sinθ sinφ) jjj+(cosθ)kkk

êee2 ≡
eee2

|eee2|
= (cosθ cosφ) iii+(cosθ sinφ) jjj− (sinθ)kkk

êee3 ≡
eee3

|eee3|
=−(sinφ) iii+(cosφ) jjj.

These basis vectors are now

• mutually orthogonal and

• of unit length.

They are illustrated in the figure shown above.
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• In many applications it is usual to assume that the coordi-
nate system is orthogonal so that the basis vectors

eeeu ≡
∂ rrr

∂u
eeev ≡

∂ rrr

∂v
eeew ≡ ∂ rrr

∂w
,

are mutually orthogonal, and to normalize these basis vec-
tors to unit length.

• In the more general applications that will interest us, the
natural basis defined by the partial derivatives in the pre-
ceding equation need not be orthogonal or normalized to
unit length

However, in the simple examples shown so far the
natural basis is in fact orthogonal.
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8.4.3 Dual Basis

It is also valid to construct a basis at P by using normals to the

coordinate surfaces rather than the tangents to curves.

• We assume that

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

is invertible so we may solve for

u = u(x,y,z) v = v(x,y,z) w = w(x,y,z),

• The gradients

∇∇∇u =
∂u

∂x
iii+

∂u

∂y
jjj+

∂u

∂ z
kkk

∇∇∇v =
∂v

∂x
iii+

∂v

∂y
jjj+

∂v

∂ z
kkk

∇∇∇w =
∂w

∂x
iii+

∂w

∂y
jjj+

∂w

∂ z
kkk

are normal to the three surfaces through P defined by u =
u0, v = v0, and w = w0, respectively.

• Therefore, we may choose as an alternative to the natural

basis

eeeu ≡
∂ rrr

∂u
eeev ≡

∂ rrr

∂v
eeew ≡ ∂ rrr

∂w
,

the dual basis

eeeu ≡ ∇∇∇u eeev ≡ ∇∇∇v eeew ≡ ∇∇∇w.



406 CHAPTER 8. MINKOWSKI SPACETIME

• This basis (eeeu,eeev,eeew), defined in terms of normals, is said
to be the dual of the normal basis, defined in terms of
tangents.

• Notice that we have chosen to distinguish the basis

eeeu ≡ ∇∇∇u eeev ≡ ∇∇∇v eeew ≡ ∇∇∇w.

from the basis

eeeu ≡
∂ rrr

∂u
eeev ≡

∂ rrr

∂v
eeew ≡ ∂ rrr

∂w
,

by using superscript indices and subscript indices, respec-
tively.

These two bases are equally valid.

• For orthogonal coordinate systems the set of normals to
the planes corresponds to the set of tangents to the curves
in orientation, differing possibly only in length.

• If the basis vectors are normalized, the normal basis and
the dual basis for orthogonal coordinates are equivalent
and our preceding distinction is not significant.

• However, for non-orthogonal coordinate systems the two
bases generally are not equivalent and the distinction be-
tween upper and lower indices is relevant.

The following example illustrates.
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Example:

Define a coordinate system (u,v,w) in terms of cartesian coordinates
(x,y,z) through

x = u+ v y = u− v z = 2uv+w.

The position vector for a point rrr is then

rrr = x iii+ y jjj+ zkkk = (u+ v) iii+(u− v) jjj+(2uv+w)kkk

The natural basis is

eee1 ≡ eeeu =
∂ rrr

∂u
= iii+ jjj+2vkkk

eee2 ≡ eeev =
∂ rrr

∂v
= iii− jjj+2ukkk

eee3 ≡ eeew =
∂ rrr

∂w
= kkk.

Solving the original equations for (u,v,w),

u = 1
2(x+ y) v = 1

2(x− y) w = z− 1
2(x

2 − y2),

and thus the dual basis is

eee1 ≡ eeeu = ∇∇∇u =
∂u

∂x
iii+

∂u

∂y
jjj+

∂u

∂ z
kkk = 1

2(iii+ jjj)

eee2 ≡ eeev = ∇∇∇ν =
∂v

∂x
iii+

∂v

∂y
jjj+

∂v

∂ z
kkk = 1

2(iii− jjj)

eee3 ≡ eeew = ∇∇∇w =
∂w

∂x
iii+

∂w

∂y
jjj+

∂w

∂ z
kkk =−(u+ v) iii+(u− v) jjj+ kkk.

• What about orthogonality? We can check by taking scalar prod-

ucts. For example,

eee1 · eee2 = (iii+ jjj+2vkkk) · (iii− jjj+2ukkk)

= iii2− jjj2+4uv = 4uv,
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where the orthonormality of the basis (iii, jjj,kkk) has been used. For
the natural basis we find in general

eee1 · eee2 = 4uv eee2 · eee3 = 2u eee3 · eee1 = 2v.

Thus the normal basis is non-orthogonal.

• Taking the scalar products of the natural basis vectors with them-
selves gives

eee1 · eee1 = 2+4v2 eee2 · eee2 = 2+4u2 eee3 · eee3 = 1,

so the natural basis is also not normalized to unit length.

• It is also clear from the above expressions that generally eeei is
not parallel to eeei, so in this non-orthogonal case we see that the

normal basis and the dual basis are distinct.
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The preceding example illustrates that for the general case of
coordinate systems that are not orthogonal,

eeeu ≡ ∇∇∇u eeev ≡ ∇∇∇v eeew ≡ ∇∇∇w (dual basis)

and

eeeu ≡
∂ rrr

∂u
eeev ≡

∂ rrr

∂v
eeew ≡ ∂ rrr

∂w
(natural basis)

define different but equally valid bases, and the placement of
indices in upper or lower positions is important.

Henceforth the reader should assume that the up-

per or lower placement of indices in equations is

significant.
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8.4.4 Expansion of Vectors

An arbitrary vector VVV may be expanded in terms of the tangent
basis {eeei} and an arbitrary dual vector ωωω may be expanded in
terms of the dual basis {eeei}:

VVV =V 1eee1 +V 2eee2+V 3eee3 =
3

∑
i=1

V ieeei ≡V ieeei (natural basis)

ωωω = ω1eee1+ω2eee2+ω3eee3 =
3

∑
i=1

ωieee
i ≡ ωieee

i (dual basis)

where we have introduced in the last step of each equation the
Einstein summation convention:

• An index appearing twice on one side of an equation, once
as a lower index and once as an upper index, implies a
summation on that index.

• The summation index is termed a dummy index; summa-
tion on a dummy index on one side of an equation implies
that it does not appear on the other side of the equation.

• If an index appears more than twice on the same side of
an equation, it probably indicates a mistake.

• Since the dummy (repeated) index is summed over, it
doesn’t matter what the repeated index is, as long as it
is not equivalent to another index in the equation.

From this point onward, we shall usually assume

the Einstein summation convention.
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8.4.5 Scalar Product of Vectors and the Metric Tensor

• The upper-index coefficients V i of the basis vectors eeei in

VVV=V 1eee1+V 2eee2+V 3eee3

are termed the components of the vector in the basis eeei =
{eee1,eee2,eee3}.

• The lower-index coefficients ωi of the basis vectors eeei in

ωωω=ω1eee1+ω2eee2 +ω3eee3

are termed the components of the dual vector in the basis
eeei = {eee1,eee2,eee3}.

• Remember: Components of vectors and dual vectors gen-

erally are distinct for non-orthogonal coordinate systems.

However,

• Vector and dual vector spaces are related fundamentally.

• This permits vector components V i and dual vector com-
ponents ωi to be treated as if they were different compo-
nents of the same vector.

The first step in establishing this relationship is to
introduce a scalar product and a metric.
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8.4.6 Vector Scalar Product and the Metric Tensor

Utilizing the expansions in a vector basis:

• We can write the scalar product of two vectors AAA and BBB as

AAA ·BBB = (Aieeei) · (B jeee j) = eeei · eee j AiB j = gi jA
iB j,

where the metric tensor component gi j is defined by

gi j ≡ eeei · eee j.

• Likewise, for the scalar product of dual vectors ααα and βββ

ααα ·βββ = αieee
i ·β jeee

j = gi jαiβ j,

where metric tensor components with upper indices are

gi j ≡ eeei · eee j,

and the scalar product of dual vectors and vectors is

ααα ·BBB = αieee
i ·B jeee j = gi

jαiB
j,

where the metric tensor component with mixed indices is

gi
j ≡ eeei · eee j.

General properties of the metric tensor will be dis-
cussed below but first we use it to establish a re-
lationship called duality between vector and dual
vector spaces.
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8.4.7 Relationship of Vectors and Dual vectors

There is little practical difference between vectors and dual vec-
tors in euclidean space with cartesian coordinates.

• However, in a curved space and/or with non-cartesian co-

ordinates the situation is more complex.

• The essential issue is how to define a vector or dual vector

in a curved space, and what that implies.

The essential mathematics will be discussed in more depth
later, but the salient points are that

1. Vectors are not specified directly in a curved space, but
instead are defined in a euclidean vector space attached to
the manifold at each point called the tangent space.

2. Likewise, dual vectors are defined in a euclidean vector

space attached to the manifold at each spacetime point

that is called the cotangent space.

3. The tangent space of vectors and the cotangent space of
dual vectors at a point P are different but dual to each

other in a manner that will be made precise below.

4. This duality allows objects in the two different spaces to
be treated as effectively the same kinds of objects.

As will be discussed further later, vectors and dual
vectors are special cases of tensors, and this per-
mits an abstract definition in terms of mappings
from vectors and dual vectors to real numbers.



414 CHAPTER 8. MINKOWSKI SPACETIME

To be specific,

• Dual vectors ωωω are linear maps of vectors VVV to the real
numbers: ωωω(VVV ) = ωiV

i ∈ R.

• Vectors VVV are linear maps of dual vectors ωωω to the real
numbers: VVV (ωωω) =V iωi ∈ R.

Expressions like ωωω(VVV ) = ωiV
i ∈ R can be read as

• “Dual vectors ωωω act linearly on vectors VVV to produce
ωiV

i ≡ ∑i ωiV
i, which are elements of the real numbers,”

• or “Dual vectors ωωω are functions (maps) that take vectors
VVV as arguments and yield ωiV

i, which are real numbers”,

Linearity of the mapping means, for example,

ωωω(αAAA+β BBB) = αωωω(AAA)+β ωωω(BBB),

where ωωω is a dual vector, α and β are arbitrary real numbers,
and AAA and BBB are arbitrary vectors.

• It is easy to show that the space of vectors and the space
of dual vectors are both linear vector spaces.

• The vector space of vectors and corresponding vector
space of dual vectors are said to be dual to each other

because they are related by

ωωω(VVV ) =VVV (ωωω) =V iωi ∈ R.
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Notice further that AAA ·BBB = gi jA
iB j

• Defines a linear map from vectors to real numbers, since
it takes two vectors AAA and BBB as arguments and returns the
scalar product, which is a real number.

• Thus one may write

AAA(BBB) = AAA ·BBB ≡ AiB
i = gi jA

iB j.

• But since in AiB
i = gi jA

iB j the vector B is arbitrary,

Ai = gi jA
j,

• This specifies a correspondence between a vector with
components Ai in the tangent space and a dual vector with
components Ai in the cotangent space.

• Likewise, the above expression can be inverted using that
the inverse of gi j is gi j to give

Ai = gi jA j.

• Hence, using the metric tensor to raise and lower indices
by summing over a repeated index (contraction),

• we see that vector and dual vector components are related

through contraction with the metric tensor.

• This is the precise sense in which the tangent and cotan-
gent spaces are dual: they are different, but closely related

through the metric tensor.
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The duality of the vector and dual vector spaces may be incor-
porated concisely by

• Requiring that for the basis vectors {eeei} and basis dual
vectors {eeei} satisfy

eeei(eee j) = eeei · eee j = δ i
j,

where the Kronecker delta is defined by

δ i
j =

{
1 i = j

0 i 6= j
.

• This implies that the basis vectors can be used to project
out the components of a vector VVV by taking the scalar
product with the vector,

V i = eeei ·VVV Vi = eeei ·VVV .
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A lot of important mathematics has transpired in the last few
equations, so let’s take stock.

• For a space with metric tensor, vectors and dual vectors
are in a one-to-one relationship that permits them to be
manipulated effectively as if a dual vector were just a vec-
tor with a lower index.

• Indices on vectors can be raised or lowered as desired by
contraction with the metric tensor.

Since all spaces of interest here have metrics, this
reduces the practical implications of the distinc-
tion between vectors and dual vectors to keeping
proper track of upper and lower positions for in-
dices.
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8.4.8 Properties of the Metric Tensor

• Because it may be defined through scalar products of basis
vectors, the metric tensor must be symmetric in its indices:

gi j = g ji gi j = g ji.

• Since

gi ja
ib j = gi jb

jai = aibi gi jaib j = gi jb jai = aib
i

are valid for arbitrary vector components, it follows that

gi jb
j = bi gi jb j = bi.

That is,

Contraction with the metric tensor may be used to
raise or lower an index on a vector.

• Thus the scalar product of two vectors may be written in
any of the following equivalent ways,

aaa ·bbb ≡ aibi ≡ aib
i = gi ja

ib j = gi jaib j = gi
jaib

j.
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• From the preceding expressions

bi = gi jb j = gi j g jkbk

︸ ︷︷ ︸
b j

bi = δ i
kbk,

and since this is valid for arbitrary components bi,

gi jg jk = gk jg
ji = δ i

k.

• Viewing gi j as the elements of a matrix G and gi j as the
elements of a matrix G̃, the equations

gi j = g ji gi j = g ji.

are equivalent to the matrix equations

G = GT G̃ = G̃T,

where T denotes the transpose. The Kronecker delta is
just the 3×3 unit matrix I, implying that

gi jg jk = gk jg
ji = δ i

k

may be written as the matrix equations

G̃G = GG̃ = I.

The matrix corresponding to the covariant com-
ponents of the metric tensor is the inverse of the
matrix corresponding to the contravariant compo-
nents of the metric tensor: one may be obtained

from the other by matrix inversion.
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The metric tensor for 3-dimensional euclidean space

Components: gi j ≡ eeei · eee j gi j ≡ eeei · eee j gi
j ≡ eeei · eee j = δ i

j

Scalar product: AAA ·BBB = gi jA
iB j = gi jAiB j = gi

jAiB
j = AiBi = AiB

i

Symmetry: gi j = g ji gi j = g ji

Contractions: gi jA
j = Ai gi jA j = Ai

Orthogonality: gi jg jk = gk jg
ji = δ i

k

Matrix properties : G̃G = GG̃ = I G ≡ [gi j] G̃ ≡ [gi j]

Some basic properties of the metric tensor are summarized in
the box above.
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8.4.9 Line Elements and Distances

• Consider coordinates u1(t), u2(t), and u3(t) parameterized
by t.

• As the parameter t varies, the points characterized by the
specific values of the coordinates

u1 = u1(t) u2 = u2(t) u3 = u3(t)

will trace out a curve in the three-dimensional space.

• The position vector for these points as a function of t is

rrr(t) = x(u1(t),u2(t),u3(t)) iii+ y(u1(t),u2(t),u3(t)) jjj

+z(u1(t),u2(t),u3(t))kkk,

• By the chain rule

drrr

dt
=

∂ rrr

∂u1

du1

dt
+

∂ rrr

∂u2

du2

dt
+

∂ rrr

∂u3

du3

dt

ṙrr = u̇1eee1+ u̇2eee2+ u̇3eee3,

where the definitions

ṙrr ≡ drrr

dt
eeei ≡

∂ rrr

∂ui
u̇i ≡ dui

dt

have been used.
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• In summation convention the equation

ṙrr = u̇1eee1+ u̇2eee2+ u̇3eee3,

is ṙrr = u̇ieeei.

• This may be expressed in differential form as drrr = duieeei.

• Thus the squared infinitesimal distance along the curve is

ds2 = drrr ·drrr = duieeei ·du jeee j

= eeei · eee j duidu j

= gi j duidu j,

where gi j ≡ eeei · eee j has been used.
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• Notice that in expressing the line element

ds2 = gi j duidu j

we use the usual convention that dα2 ≡ (dα)2.

• That is, dα2 means the square of dα , not the differential
of α2.

• Thus ds2 = gi j duidu j is the infinitesimal line element for
the space described by the metric gi j.

• The length d of a finite segment between points a and b is
obtained from the integral

d =

∫ b

a
ds=

∫ b

a

(
gi j duidu j

)1/2
=

∫ b

a

(
gi j

dui

dt

du j

dt

)1/2

dt,

where t parameterizes the position along the segment.

a

b

ds

t
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For example:

• The line element for two-dimensional euclidean space in
cartesian coordinates (x,y) is given by

ds2 = dx2+dy2,

which is just the Pythagorean theorem for right triangles
having infinitesimal sides.

• The corresponding line element expressed in plane polar
coordinates (r,φ) is then the familiar

ds2 = dr2+ r2dφ2.
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Example:

For plane polar coordinates (r,φ) we have

x = r cosφ y = r sinφ ,

so the position vector may be expressed as

rrr = (r cosφ) iii+(r sinφ) jjj.

Then the basis vectors in the natural basis are

eee1 =
∂ rrr

∂ r
= (cosφ)iii+(sinφ) jjj eee2 =

∂ rrr

∂φ
=−r(sinφ) iii+ r(cosφ) jjj.

The elements of the metric tensor then follow from gi j ≡ eeei · eee j:

g11 = cos2 φ + sin2 φ = 1 g22 = r2(cos2 φ + sin2 φ) = r2

and g12 = g21 = 0, or in matrix form

gi j =

(
1 0
0 r2

)
.

Then the line element is

ds2 = gi j dxidu j = g11(du1)2 +g22(du2)2 = dr2+ r2dφ2,

where u1 = r and u2 = φ .

This can be expressed as the matrix equation

ds2 = (dr dφ)

(
1 0
0 r2

)(
dr

dφ

)

= (dr dφ)

(
dr

r2dφ

)
= dr2+ r2dφ2.
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The line elements expressed in cartesian and polar coordinates
in the preceding two examples

• Correspond to the same space, parameterized in terms of
different coordinates.

• The form of the line element is different in the two param-
eterizations, but

• for any two nearby points the distance between them is
given by ds, independent of the coordinate system.

• Thus, the line element ds is invariant under coordinate

transformations.

• Since the distance between any two points that are not
nearby can be obtained by integrating ds, we conclude that
generally

The distance between any two points is invari-

ant under coordinate transformations for metric
spaces.



8.4. MINKOWSKI SPACE 427

The line element, which is specified in terms of the metric ten-
sor, characterizes the geometry of the space because

• integrals of the line element define distances and

• angles can be defined in terms of ratios of distances.

Indeed, we could verify all the axioms of euclidean geometry
starting from the line elements if we chose to do so.
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8.5 Integration

Integration enters into physical theories in various ways, for
example in the formulation of conservation laws.

• It is important to understand how the volume element for
integrals behaves under change of coordinate systems.

• Trivial in euclidean space with orthonormal coordinates.

• Non-trivial in curved spaces, or even in flat spaces param-
eterized in non-cartesian coordinates.

We illustrate in flat 2D space with coordinates (x1,x2) and basis
vectors (eee1,eee2), assuming an angle θ between the basis vectors.

• The 2D volume (area) element is in this case

dA =
√

detgdx1dx2,

where detg is the determinant of the metric tensor gi j.

• For orthonormal coordinates gi j is a unit matrix so
(detg)1/2 = 1.

• But in the general case the (detg)1/2 factor is not unity
and its presence is essential to making integration invari-
ant under change of coordinates.

As we will show later, this 2D example generalizes easily to
define invariant integration in 4D spacetime.
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8.6 Differentiation

Taking derivatives of vectors in spaces defined by position-

dependent metrics will be crucial in general relativity.

• First consider the simpler case of taking the derivative of
a vector in a euclidean space, but one parameterized with

a vector basis that may depend on the coordinates.

• We may expand a vector VVV in a convenient basis eeei,

VVV =V ieeei.

• By the usual product rule, the partial derivative is given by
a sum of two terms,

∂VVV

∂x j
=

∂V i

∂x j
eeei

︸ ︷︷ ︸
component

+ V i ∂eeei

∂x j︸ ︷︷ ︸
basis

,

1. The first term represents the change in the component

V i.

2. The second term represents the change in the basis

vectors eeei.

• For the situation where we can choose a basis that is in-
dependent of coordinates, the second term is zero and we
recover the expected formula.

• However, if the basis depends on the coordinates the sec-
ond term will generally not be zero.
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In the second term of

∂VVV

∂x j
=

∂V i

∂x j
eeei

︸ ︷︷ ︸
component

+ V i ∂eeei

∂x j︸ ︷︷ ︸
basis

,

• The factor ∂eeei/∂x j resulting from the action of the deriva-
tive operator on the basis vectors is itself a vector and can
be expanded in the vector basis,

∂eeei

∂x j
= Γk

i jeeek.

• The expansion coefficients Γk
i j may be interpreted as spec-

ifying the projection on the k axis of the rate of change in
the j direction of a basis vector pointing in the i direction.
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• The coefficients Γk
i j are called connection coefficients or

Christoffel symbols.

• Their generalization to 4-dimensional spacetime will be
discussed more extensively later.

• There we shall see that the connection coefficients are cen-
tral to

1. The definition of derivatives

2. A prescription for parallel transport of vectors in
curved spacetime.
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8.7 Transformations

It often proves useful to express physical quantities in more
than one coordinate system.

• It therefore becomes necessary to understand how to trans-
form between coordinate systems.

• This issue becomes particularly important in general rela-
tivity where it is essential to ensure that the laws of physics
are not altered by the most general transformation be-
tween coordinate systems.

Let’s consider two simple examples.
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e1

e2

φ

x

x1

x2

e1'

e2'

'x1x2'

φ

Figure 8.3: Rotation of coordinate system for a vector xxx.

8.7.1 Rotational Symmetries

Consider the familiar example of the description of a vector
under rotation of a coordinate system about the z axis by an
angle φ , as illustrated in Fig. 8.3.

• In terms of the original basis vectors {eeei} the vector xxx has
the components x1 and x2.

• After rotation of the coordinate system by the angle φ to
give the new basis vectors {eee′i}, the vector xxx has the com-
ponents x′1 and x′2 in the new coordinate system.

• The vector xxx can be expanded in terms of the components
for either of these bases:

xxx = xieeei = x′ieee′i,
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e1

e2

φ

x

x1

x2

e1'

e2'

'x1x2'

φ

• We may use the geometry of the above figure to find that
the components in the two bases are related by the trans-
formation




x′1

x′2

x′3


=




cosφ sinφ 0
−sinφ cosφ 0

0 0 1






x1

x2

x3


 ,

which may also be expressed as

x′i = Ri
jx

j,

where the Ri
j are the elements of the matrix in the preced-

ing equation.

• This transformation law holds for any vector. (We may, in
fact, define a vector in the x–y plane to be a quantity that
obeys this transformation law.)
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8.7.2 Galilean Transformations

Another simple example of a transformation is that between
inertial frames in classical mechanics.

• Transformations between inertial frames with the same
orientation are called boosts.

• In Newtonian physics time is considered an absolute quan-
tity and boosts take the Galilean form

xxx′ = xxx′(xxx,t) = xxx− vvvt t ′ = t ′(xxx,t) = t.

• The Newtonian version of relativity asserts that the laws of
physics are invariant under such Galilean transformations.

• Although the laws of mechanics at low velocity are invari-
ant under Galilean transformations,

• the laws of electromagnetism (Maxwell’s equations) are

not.

• Indeed, the failure of Galilean invariance for the Maxwell
equations was a large motivation in Einstein’s eventual
demonstration that the laws of mechanics are not invariant

with respect to Galilean transformations at high velocity.
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8.8 Spacetime Tensors and Covariance

The term covariance implies a formalism in which the laws of

physics maintain the same form under a specified set of trans-
formations.

EXAMPLE: Lorentz covariance implies equations that are con-
structed in such a way that they do not change their form under

Lorentz transformations (three boosts between inertial systems
and three rotations).a

aAn inertial system is a frame of reference in which Newton’s first law of
motion holds. Thus, for example, rotating frames and accelerated frames are
not inertial. An inertial system is therefore in uniform translational motion
with respect to any other inertial frame.
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8.8.1 Spacetime Coordinates and Transformations

We will be concerned with spacetime, which is an example of
what mathematicians call a manifold.

• An n-dimensional manifold is

– a set that can be parameterized continuously by

– n independent real coordinates for each point (mem-
ber of the set).

• We will assume the manifold to be differentiable at each
point. Then we have a differentiable manifold.

• A coordinate system

– associates n real parameters (labels) uniquely with
each point of an n-dimensional manifold M

– through a one-to-one mapping from R
n (cartesian

product of n copies of the real numbers R) to M.

A cartesian product X ×Y of two sets X and Y is
the set of all possible ordered pairs (x,y) with x an
element of X and y an element of Y .
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• Generally, more than one overlapping set of coordinates

is required to parameterize an entire manifold uniquely.

– For example, at least 2 overlapping sets of coordi-
nates are required to parameterize a 2D sphere.

– A set of coordinates covering one region of the man-
ifold is called a chart and

– a collection of charts sufficient to parameterize a
manifold is called an atlas.

Our concern here will be with flat spacetime and
we won’t have to worry about charts and atlases.

• Subsets of points within a manifold define

– curves and

– surfaces,

which represent submanifolds of the full manifold.

• The manifolds that will interest us will be endowed with
additional structure: specifically, a geometry specified by
a quadratic metric called Riemannian geometry).

We will sometimes use loose physics language and
refer to manifolds simply as spaces.
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Because relativity implies that space and time enter descrip-
tions of nature on comparable footings,

• it will be useful to unify them into a 4-dimensional con-
tinuum termed spacetime.

• Spacetime is an example of a differentiable manifold.

• In spacetime points will be defined by coordinates having

four components,

– the first labeling the time multiplied by the speed of
light c,

– the other three labeling the spatial coordinates:

x ≡ xµ = (x0,x1,x2,x3) = (ct,xxx),

where xxx denotes a vector with three components
(x1,x2,x3) labeling the spatial position.

• The first component x0 is termed timelike and the last three
components (x1,x2,x3) are termed spacelike.

• As for the earlier discussion, the placement of indices in

upper or lower positions is meaningful.

• Bold symbols will be used to denote (ordinary) vectors
defined in the three spatial degrees of freedom,

• with 4-component vectors in spacetime denoted in non-
bold symbols.

• For spacetime the modern convention is to number the in-

dices beginning with zero rather than one.
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The coordinate systems of interest will be assumed to be quite
general, subject only to the requirement that

• they assign a coordinate uniquely to every point of space-
time, and that they be

• differentiable to sufficient order for the task at hand at ev-
ery spacetime point.
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8.8.2 Covariance and Tensor Notation

• We shall be concerned generically with a transformation
between one set of spacetime coordinates, denoted by

x ≡ xµ = (x0,x1,x2,x3)

and a new set

x′µ = x′µ(x) µ = 0,1,2,3

where x = xµ denotes the original coordinates.

• This notation is an economical form of

x′µ = ξ µ(x1,x2,x3,x4) (µ = 1,2, . . .)

• where the single-valued, continuously differentiable func-
tions ξ µ

• assign a new (primed) coordinate (x′1,x′2,x′3,x′4) to a
point of the manifold with old coordinates (x1,x2,x3,x4).

This transformation may be abbreviated to x′µ =
ξ µ(x) and, even more tersely, to x′µ = x′µ(x).

• Coordinates are just labels, so laws of physics cannot de-
pend on them. Hence the system x′µ is not privileged and
this transformation should be invertible.

• Notice carefully that we are talking about the same point

described in two different coordinate systems.
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As introduced in Chapter 2, we shall generally use the Einstein
summation convention for 4D spacetime:

• An index that is repeated, once as a superscript and once
as a subscript, implies a summation over that index.

• Such an index is a dummy index that is removed by the
summation and should not appear on the other side of the
equation.

• A repeated (dummy) index may be replaced by any
other index not already in use without altering equation:
AαBα = Aβ Bβ .

• A superscript (subscript) in a denominator counts as a sub-
script (superscript) in a numerator.

• Greek indices (α,β , . . .) denote the full set of spacetime
indices running over 0, 1, 2, 3.

• Roman indices (i, j, . . .) denote the indices 1, 2, 3 running
only over the spatial coordinates.

• Placement of indices matters: generally xα and xα will be
different quantities.

At all stages of manipulating equations, the indices
on the two sides of an equation (including their up
or down placement) must match.
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As a minimum, we must consider the transformations of

• Fields

• Derivatives of fields

• Integrals of fields.

The first two are necessary to formulate equations of motion,

and the latter enter into various conservation laws.

To facilitate this, we shall introduce a set of math-
ematical quantities called tensors that are a gener-
alization of the idea of scalars and vectors to more
components.

As a starting point, we must look more carefully at how to de-

fine vectors in a non-Euclidean (possibly curved) space.
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(a)

(b)

Manifold 
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Tangent

spaces

Point P'

Point P

Manifold

S2
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space

at P Tangent 

space

at P'

Figure 8.4: Tangent spaces in curved manifolds, illustrated (a) for the manifold S1

and (b) for the manifold S2. As illustrated for S2, vectors (indicated by arrows) are
defined in the tangent spaces at each point, not in the curved manifold. Embedding
the 1D tangent-space manifold in 2D euclidean space and the 2D tangent space
in 3D euclidean space is for visualization purposes only; the tangent space has a
specification that is intrinsic to the manifold.

Spacetime is characterized by a manifold that is not euclidean

[does not obey the rules of high school (Euclidean) geometry].

• Two reasons: (1) The manifold may be curved, and (2) it
has a non-euclidean metric, even if it is flat.

• In euclidean space we are used to representing vectors as
directed line segments of finite length.

• This fails in curved spacetime, which is not globally eu-

clidean, so extended straight lines have no meaning.

• Thus the first question is how to define a vector at some
spacetime point in a way that is valid for euclidean and

non-euclidean manifolds.

• Answer: Vectors live, not in the manifold, but rather in a
tangent space that may be visualized as a plane tangent to
the point P on the curved surface, as illustrated in Fig. 8.4.
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at P Tangent 

space

at P'

• The idea conveyed by the above figure in which planes
tangent to a 2D surface are shown embedded in a 3D space
is useful conceptually but it is potentially misleading.

• Defining the tangent space at each point is an intrinsic

process with respect to a manifold and does not require
embedding it in a higher-dimensional manifold, as will be
shown later.
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8.8.3 Tangent and Cotangent Spaces

An n-dimensional Riemannian manifold has at each point P

• An n-dimensional euclidean vector space TP with a basis

defined by the directional derivatives evaluated at P for
coordinate curves passing through P.

• This is termed the tangent space and vectors at P are de-
fined within that space.

• An intrinsically-defined n-dimensional euclidean vector
space with a basis defined by viewing the coordinate
curves as scalar fields and evaluating their gradients at

P.

• This is termed the cotangent space T ∗
P and dual vectors P

are defined within this space.

• The tangent space TP and the cotangent space T ∗
P are dual

to each other.

The definitions given above make clear that

• Vectors and dual vectors are local to a point.

• The tangent and cotangent spaces in which they are de-
fined may be constructed from the properties of the mani-

fold alone.

Thus the tangent space and cotangent space at each
point of a manifold have an intrinsic meaning, in-
dependent of embedding in higher dimensions.
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8.8.4 Coordinates in Spacetime

A universal coordinate system can be chosen in flat space,

• Basis vectors can be chosen that are mutually orthogonal

and constant.

• Furthermore, these constant basis vectors can be normal-

ized to unit length once and for all.

• Much of ordinary physics is conveniently described using
such orthonormal bases.

• The situation is more complicated in curved manifolds (or
in flat manifolds expressed in non-cartesian coordinates).

• Because of the position-dependent metric of curved space-
time it is most convenient in general relativity to choose
basis vectors that

– depend on position and that

– need not be orthogonal.

• Since such basis vectors are position-dependent, it usually
is not useful to normalize them.
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8.8.5 Coordinate and Non-Coordinate Bases

The standard conception of a vector as a directed line segment

is ill-defined in a curved manifold.

• The key to specifying vectors in curved space is to sepa-

rate the “directed” part from the “line segment” part of
the usual definition.

• This is because the direction for vectors of infinitesimal
length can be defined consistently in curved or flat spaces
using directional derivatives.

• The book-formatted version of these lec-
tures explains position-dependent coordi-

nates based on directional derivatives, which
are valid in curved or flat spacetime.

• Here in the presentation version I will skip
that, since we are going to need only special

relativity in flat spacetime.
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8.8.6 Tensors and Coordinate Transformations

In formulating special or general relativity we are interested in
how quantities that enter the physical description of the Uni-
verse change when the spacetime coordinates are transformed.

• This requires understanding the transformations of

– fields,

– their derivatives, and

– their integrals,

• To facilitate this task, it is useful to introduce a set of
mathematical objects called tensors.

– These have a fundamental definition without refer-

ence to specific coordinate systems (linear maps from
vectors and dual vectors to the real numbers).

– However, for physical applications it often proves
convenient to view tensors as components expressed

in a basis that transform in a precise way if the coor-
dinate system is changed.

• These two approaches were introduced in the earlier dis-
cussion of euclidean space.

• The book-formatted version of these lectures describes
both approaches in the spacetime manifold.

• Here in the lecture formatted version we will skip the ap-
proach in terms of linear maps and treat tensors as compo-

nents in a basis defined by transformation laws.
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The rank of a tensor may be given a more fundamental defini-
tion, but practically it is the total number of indices required to
specify its components in some basis.

• Thus scalars are rank-0 tensors and vectors or dual vec-

tors are rank-1 tensors.

• This may be generalized to tensors carrying more than one
index.

• As for vectors and dual vectors, the indices may either be
upper (contravariant) or lower (covariant).

– Tensors carrying only lower indices are termed co-

variant tensors.

– Tensors carrying only upper indices are termed con-

travariant tensors.

– Tensors carrying both lower and upper indices are
termed mixed tensors.

• It is convenient to indicate the type of a tensor by the or-
dered pair (p,q), where when evaluated in a basis

– p is the number of contravariant (upper) indices,

– q is the number of covariant (lower) indices,

and the rank of the tensor is p+q.

Thus a dual vector is a rank-1 tensor of type (0,1)
having one covariant index.
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Not all quantities with indices are tensor components; it is
their mathematical properties that mark objects as tensors, not
merely that they carry indices when evaluated in a basis.
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8.8.7 Tensors Specified by Transformation Laws

In the book-formatted version of these lectures, tensors are in-
troduced at a fundamental level through linear maps from vec-

tors and dual vectors to the real numbers.

• However, it is shown there also that

– when tensors are expressed in an arbitrary basis,

– their components obey well-defined transformation

laws under change of coordinates.

• This view of tensors as groups of quantities obeying par-

ticular transformation laws is often the most practical for
physical applications because

– It is less abstract and requires less new mathematics.

– A physical interpretation often requires expression of
the problem in a well-chosen basis anyway.

– The component index formalism has a handy built-in
error checking mechanism:

Failure of indices to balance on the two sides of an
equation is a sure sign of an error.

• The next sections will summarize the use of tensors to for-
mulate invariant equations by exploiting the transforma-
tion properties of their components.
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Scalar Transformation Law

Tensors may be viewed as generalizing the idea of scalars and

vectors, so let’s begin with these more familiar quantities.

Simplest possibility: A field has a single component (magni-
tude) at each point that is unchanged by the transformation

φ ′(x′) = φ(x).

Quantities such as φ(x) that are unchanged under the coordi-

nate transformation are called scalars.

EXAMPLE: Value of the temperature at different
points on the surface of the Earth.
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Vectors and Dual Vectors

Recall also that we can classify tensors by a notation (n, m),
where

• n is the number of upper indices and

• m is the number of lower indices

when evaluated in a basis.

• Thus a scalar is a tensor of type (0, 0), since it carries no
indices.

• The sum of n and m is the rank of the tensor. A scalar is a
tensor of rank zero.

There are two kinds of rank-1 tensors, having the index pattern
(0, 1) and (1, 0), respectively. The first is called a dual vector,
covariant vector, or 1-form:
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DUAL VECTOR:

The gradient of a scalar field φ(x) = ∂φ(x)/∂x transforms un-
der change of coordinates x → x′ as

(
∂φ(x)

∂x′µ

)
=

∂xν

∂x′µ

(
∂φ(x)

∂xν

)
.

Remember in such expressions:

• the Einstein summation convention, and

• that all partial derivatives are understood implicitly to be
evaluated at some point P = x.

A tensor having a transformation law that mimics that of the

scalar field gradient,

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) (dual vector)

is of type (0, 1) and is termed a dual vector (also 1-form, co-

variant vector, or covector).
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ECONOMY OF NOTATION: The preceding equation

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) (dual vector)

really means four equations:

A′
µ =

∂x0

∂x′µ
A0+

∂x1

∂x′µ
A1+

∂x2

∂x′µ
A2+

∂x3

∂x′µ
A3 (µ = 0,1,2,3)

each containing four terms. It is equivalent to the matrix equa-

tion




A′
0

A′
1

A′
2

A′
3




=




∂x0

∂x′0
∂x1

∂x′0
∂x2

∂x′0
∂x3

∂x′0

∂x0

∂x′1
∂x1

∂x′1
∂x2

∂x′1
∂x3

∂x′1

∂x0

∂x′2
∂x1

∂x′2
∂x2

∂x′2
∂x3

∂x′2

∂x0

∂x′3
∂x1

∂x′3
∂x2

∂x′3
∂x3

∂x′3







A0

A1

A2

A3




.
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VECTORS: A differential dx transforms like

dx′µ =
∂x′µ

∂xν
dxν ,

which suggests a second rank-1 transformation rule

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

A tensor that behaves in this way is of type (1, 0) and is termed
a vector or contravariant vector.

Notice carefully the difference between the transformation laws
for a vector and a dual vector,

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) (dual vector),

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

The transformation rules are similar, differing only in

• the vertical placement of the old coordinates x and new
coordinates x′ in the partial derivatives, and

• the corresponding vertical placement of indices required
for consistency in the summation convention.
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The dual vector and vector transformation laws,

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) (dual vector)

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

may be viewed as matrix equations,

A′
µ(x

′) = Ûν
µ Aν(x) A′µ(x′) =U

µ
ν Aν(x),

with the matrices defined by

U ≡ ∂x′

∂x
Û ≡ ∂x

∂x′
ÛU = I,

where I is the 4×4 unit matrix. In these transformations

• the matrix U is called the Jacobian matrix and

• the matrix Û is called the inverse Jacobian matrix.
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Summarizing, we expect the possibility of two rank-1 tensors:

1. Dual vectors (also called one-forms, covariant vectors, or
covectors),

• which carry a lower index and

• transform like the gradient of a scalar:

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) (dual vector).

2. Vectors (also called contravariant vectors),

• which carry an upper index and

• transform like the coordinate differential:

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

In the general case they must be distinguished (by

placement—upper or lower—of their indices).
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Scalar Product

Covariant and contravariant indices on vectors permit a scalar
product to be defined as

A ·B ≡ AµBµ = AµBµ .

This transforms as a scalar because from

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) A′µ(x′) =

∂x′µ

∂xν
Aν(x)

we have that

A′ ·B′ = A′
µB′µ =

∂xν

∂x′µ
Aν

∂x′µ

∂xα
Bα =

∂xν

∂x′µ
∂x′µ

∂xα
AνBα

=
∂xν

∂xα
AνBα = δ ν

α AνBα

= AαBα = A ·B,

where the Kronecker delta is given by

δ
µ
ν =

∂x′µ

∂x′ν
=

∂xµ

∂xν
=

{
1 (µ = ν)
0 (µ 6= ν)

.

Thus A′ ·B′ = A ·B and the scalar product is invariant.

Eliminating indices by summing over repeated
ones is called contraction. The scalar product has
no tensor indices left so it is fully contracted.
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Rank-2 Tensors

Three kinds of rank-2 tensors transform as

T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ ,

T ′ν
µ =

∂xα

∂x′µ
∂x′ν

∂xβ
T

β
α ,

T ′µν
=

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ .

This pattern may be generalized to tensors of any rank.

• Covariant Tensors: carry only lower indices,

• Contravariant Tensors: carry only upper indices,

• Mixed Tensors: carry both upper and lower indices.

EXAMPLE: the Kronecker delta δ ν
µ is a rank-2 mixed tensor.

Handy to recall:

• Upper index µ on left side requires right-side
“factor” ∂x′µ/∂xν (prime in numerator).

• Lower index ν on left side requires right-side
“factor” ∂xµ/∂x′ν (prime in denominator).

• “Vertical position of index on left = vertical
position of primed coordinate on right”
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Not all quantities carrying indices are tensors! It is

• the transformation laws for components in a basis, or

• that they provide linear maps to the real numbers

that define tensors.

NOTE: We often employ a standard shorthand by
using

• “a tensor Tµν” to mean

• “a tensor with components Tµν” when evalu-
ated in a basis.
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8.8.8 Symmetric and Antisymmetric Tensors

The symmetry of tensors under exchanging pairs of indices is
often important.

• An arbitrary rank-2 tensor can always be decomposed into
a symmetric part and an antisymmetric part:

Tαβ = 1
2(Tαβ +Tβα)+

1
2(Tαβ −Tβα),

where the

– first term is symmetric and the

– second term antisymmetric

under exchange of indices.

• For completely symmetric and completely antisymmetric
rank-2 tensors we have

Tαβ =±Tβα T αβ =±T βα T
β

α =±T
β
α
,

where the plus sign holds if the tensor is symmetric and
the minus sign if it is antisymmetric.

• More generally, we say that a tensor of rank ≥ 2 is

– Symmetric in any two of its indices if exchanging
those indices leaves the tensor invariant and

– Antisymmetric (sometimes termed skew-symmetric)
in any two indices if it changes sign upon switching
those indices.
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Metric Tensor

A rank-2 tensor of particular importance is the metric tensor

gµν because it is associated with the line element

ds2 = gµνdxµdxν

that defines distances in metric spaces. It is symmetric (gµν =

gνµ) and satisfies the usual rank-2 transformation rule

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ .

The contravariant components of the metric tensor gµν are de-
fined by

gµαgαν = δ ν
µ .

(That is, gµν and gµν are matrix inverses.)
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Contractions with the metric tensor may be used to raise and

lower (any number of) tensor indices; for example,

Aµ = gµνAν Aµ = gµνAν

T
µ
ν = gναT µα T α

βγ = gαµgγεT
ε

µβ
.

Thus, the scalar product of vectors may also be expressed

A ·B = gµνAµBν ≡ AνBν .

In mixed-tensor expressions as above the relative horizontal or-

der of upper and lower indices can be important.

• For example, in

T
µ
ν = gναT µα

the notation indicates that the mixed tensor on the left side
of the equation was obtained by lowering the rightmost
index of T µα on the right side.

• This distinction is immaterial if the tensor is symmetric

under exchange of indices (see following pages).

• However, which index is lowered or raised matters for ten-
sors that are antisymmetric under index exchange:

T
µ
ν = gναT µα T

µ
ν = gναT αµ

are equivalent if T is symmetric, but different if T is anti-
symmetric.
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Vectors and dual vectors are distinct entities that are defined in
different spaces.

• However, the preceding discussion make it clear that for
the special case of a manifold with metric,

• indices on any tensor may be raised or lowered at will by
contraction with the metric tensor.

Defining a metric establishes a relationship that
permits vectors and dual vectors to be treated as
if they were (in effect) different representations of
the same vector.

• Our discussion will usually proceed as if Aµ and Aµ are
different forms of the same vector that are related by con-
traction with the metric tensor,

• But secretly we will remember that they really are differ-
ent, and that it is only for metric spaces that this conflation
is not likely to land us in trouble.
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8.8.9 Summary of Algebraic Tensor Operations

Various algebraic operations are permitted for tensors:

• Multiplication by a scalar: For example,

aAµν = Bµν ,

where a is a scalar and Aµν and Bµν are rank-2 tensors.

• Addition or subtraction: Two tensors of the same type
may be added or subtracted (meaning that their compo-
nents are added or subtracted) to produce a new tensor of
the same type. For example,

Aµ −Bµ =Cµ ,

where Aµ , Bµ , and Cµ are vectors.

• Multiplication: Tensors may be multiplied by forming
products of components. The rank of the resultant tensor
will be the sum of the ranks of the factors. Example:

Aµν =UµVν ,

• Contraction: For a tensor of type (n,m), a tensor of co-
variant rank n− 1 and contravariant rank m− 1 may be
formed by setting one upper and one lower index equal
and taking the implied sum. For example,

A = A
µ

µ ,

where A is a scalar and A
µ

ν is a mixed rank-2 tensor.
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8.8.10 Tensor Calculus in Spacetime

To formulate physical theories in terms of tensors requires the
ability to manipulate tensors mathematically.

• In addition to the algebraic rules for tensors described in
preceding sections, we must formulate

– a prescription to integrate tensor equations and

– a prescription to differentiate them.

• Tensor calculus is mostly an obvious generalization of
normal calculus but complications arise for two reasons:

– It must be ensured that integration and differentiation
preserve any physical symmetries.

– It must be ensured that operations on tensor equations
preserve the tensor structure.

• We will see that

– tensor integration requires a simple modification of
the standard integration rules, but

– derivatives of tensors require a less-simple modifica-

tion with far-reaching mathematical and physical im-
plications.

In spacetime, a new covariant derivative must
be defined. But for flat spacetime, the covariant
derivative is just the ordinary partial derivative.

• Thus we will omit discussion of the covariant derivative in
these lectures. (It is described in the book-format version.)
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Invariant Integration

Change of volume elements for spacetime integration:

d4x = det

(
∂x

∂x′

)
d4x′,

where det(∂ (x)/∂ (x′)) is the Jacobian determinant of the trans-
formation between the coordinates.

• The metric tensor transforms as

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (triple matrix product).

• Therefore, since:

determinant of a product = product of determinants,

• the determinant of the metric tensor g ≡ detgµν trans-
forms as

g′ = det

(
∂x

∂x′

)
det

(
∂x

∂x′

)
g → det

(
∂x

∂x′

)
=

√
|g′|√
|g|

,

which gives when inserted into the first equation

√
|g|d4x =

√
|g′|d4x′,

(|g| because g can be negative in 4-D spacetime).



470 CHAPTER 8. MINKOWSKI SPACETIME

Therefore, in integrals we shall employ

dV =
√

|g|d4x,

as an invariant volume element.
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Example: The metric for a 2-dimensional spherical manifold

(2-sphere) is specified by the line element

ds2 = gi jdxidx j,

which is explicitly in spherical coordinates

dℓ2 = R2dθ 2+R2 sin2 θdφ2.

This may be written as the matrix equation

dℓ2 = (dθ dφ)

(
R2 0
0 R2 sin2 θ

)

︸ ︷︷ ︸
gi j

(
dθ

dφ

)
.

The area of the 2-sphere may then be expressed as the “invari-

ant volume integration”

A =
∫ √

|g|d2x =
∫ 2π

0
dφ
∫ π

0

√
detgi j dθ

=
∫ 2π

0
dφ
∫ π

0
R2 sinθdθ = 4πR2.

where the metric tensor gi j is the 2×2 matrix in the preceding
equation for the line element.

In this 2-dimensional example the sign of the de-
terminant is positive, so no absolute value is re-
quired under the radical.
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8.8.11 Invariant Equations

The properties of tensors elaborated above ensure that

Any equation will be invariant under general co-

ordinate transformations provided that it equates
tensors of the same type (equates components hav-

ing the same upper and lower indices when ex-
pressed in a basis).

EXAMPLES:

• If A
µ

ν and B
µ

ν each transform as mixed rank-2 tensors
and A

µ
ν = B

µ
ν in the x coordinate system, then in the x′

coordinate system A′µ
ν = B′µ

ν .

• Likewise, an equation that equates any tensor to zero (that
is, sets all its components to zero) in some coordinate sys-
tem is covariant under general coordinate transformations,
implying that the tensor is equal to zero in all coordinate

systems.

• However, equations such as Aν
µ = 10 or Aµ = Bµ might

hold in particular coordinate systems but generally not in

all coordinate systems because they equate tensors of dif-
ferent kinds:

– a mixed rank-2 tensor with a scalar in the first case;

– a dual vector with a vector in the second.



8.8. SPACETIME TENSORS AND COVARIANCE 473

The preceding discussion suggests that invariance of a theory
under general coordinate transformations will be guaranteed by
carrying out the following steps.

1. Formulate all quantities in terms of tensors,

• with tensor types matching on the two sides of any
equation, and

• with all algebraic manipulations corresponding to
valid tensor operations (addition, multiplication, con-
traction, . . . ).

2. Redefine any integration to be invariant integration.

3. Replace all partial derivatives with covariant derivatives.

4. Take care to remember that a covariant differentiation

generally does not commute with a second covariant dif-
ferentiation.

As will be demonstrated in subsequent chapters,
this prescription in terms of tensors will provide a
powerful formalism for dealing with mathematical
relations that would be much more formidable in
standard notation
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Chapter 9

Special Relativity

To go beyond Newtonian gravitation we must consider, with
Einstein, the intimate relationship between the curvature of

space and the gravitational field.

• Mathematically, this extension is bound inextricably to the
geometry of spacetime, and in particular to the aspect of
geometry that permits quantitative measurement of dis-
tances.

• Let us first consider these ideas within the 4-dimensional
spacetime termed Minkowski space.

As we shall see, requiring covariance within

Minkowski space will lead us to the special theory

of relativity.

475
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9.1 The Indefinite Metric of Spacetime

A manifold equipped with a prescription for measuring dis-
tances is termed a metric space and the mathematical function
that specifies distances is termed the metric for the space.

• Familiar examples of metrics were introduced earlier.

• In this section those ideas are applied to flat 4-dimensional

spacetime, which is commonly termed Minkowski space.

• Although many concepts will be similar to those intro-
duced earlier, fundamentally new features will enter.

Many of these new features are associated with the indefinite

metric of Minkowski space.

• Minkowski space is flat but it is not euclidean, for it does
not possess a euclidean metric.

• Many metrics employed in earlier chapters (e.g. for eu-
clidean space) could be put into a diagonal form in which
the signs of the diagonal entries were all positive.

• Such a metric is termed positive definite.

• In contrast, we will see that the Minkowski metric

– can be put into diagonal form but

– it is an essential property of Minkowski space that the
diagonal entries cannot all be chosen positive.

Such a metric is termed indefinite, and it leads to properties
differing fundamentally from those of euclidean spaces.
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9.2 Minkowski Space

In a particular inertial frame, introduce unit vectors e0, e1, e2,
and e3 that point along the t, x, y, and z axes. Any 4-vector A

may be expressed in the form,

A = A0e0+A1e1+A2e2+A3e3.

and the scalar product of 4-vectors is given by

A ·B = B ·A = (Aµeµ) · (Bνeν) = eµ · eνAµBν .

Note that generally we shall use

• non-bold symbols to denote 4-vectors

• bold symbols for 3-vectors.

We sometimes use a notation such as bµ to stand
generically for all components of a 4-vector.

Defining the metric tensor ηµν in Minkowski space,

ηµν ≡ eµ · eν ,

(it is conventional to denote the metric by ηµν rather than gµν

in Minkowski space) the scalar product may be expressed as

A ·B = ηµνAµBν ,
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and the Minkowski-space line element is

ds2 =−c2dt2+dx2+dy2+dz2 = ηµνdxµdxν ,

where the metric tensor of flat spacetime may be expressed as

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


= diag(−1,1,1,1).

Thus ds2 = ηµνdxµdxν corresponds to the matrix equation

ds2 = (cdt dx dy dz)




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







cdt

dx

dy

dz


 ,

where ds2 is the spacetime interval between x and x+dx with

x = (x0,x1,x2,x3) = (ct,x1,x2,x3) = (ct,xxx).

• The Minkowski metric is indefinite and is
sometimes termed pseudo-euclidean.

• Such metrics are also said to have a
Lorentzian signature.
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Example:

Given a Minkowski vector with components

Aµ = (A0,A1,A2,A3),

what are the components of the corresponding dual vector? Using
ηµν for the metric tensor, the indices may be lowered through the
contraction

Aµ = ηµνAν .

Therefore, using the Minkowski metric tensor

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




the elements of the dual vector corresponding to the vector Aµ are

Aµ = (η00A0, η11A1, η22A2, η33A3, )

= (−1×A0, 1×A2, 1×A3, 1×A3)

= (−A0,A1,A2,A3).

This illustrates explicitly that

• vectors and dual vectors generally are not equivalent in non-
euclidean manifolds, but that

• they are in one-to-one correspondence though contraction with
the metric tensor.
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The Minkowski-space metric

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




is diagonal, with relative sign of the diagonal terms (−+++).

• This sign pattern is termed the signature of the metric.

• (Some authors instead define the signature to be an integer

equal to the difference of the number of positive signs and
number of negative signs.)

• It is also common in the literature to see the opposite sig-
nature, corresponding to the pattern (+ − −−) that re-
sults from multiplying the metric above by −1.

• This choice is conventional (no physics depends on it).
Metrics with the signature (− + ++) or (+ − −−) are
sometimes said to be Lorentzian.

• However, it is an essential property of Minkowski space

that it is not possible to have the same sign for all terms in
the signature of the metric.

The Minkowski metric is indefinite, in contrast to
the positive definite metric of euclidean spaces.
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9.2.1 Invariance of the Spacetime Interval

Special relativity follows from two assumptions:

• The speed of light is constant for all observers.

• The laws of physics can’t depend on coordinates.

The postulate that the speed of light is a constant is equivalent
to a statement that

The spacetime interval ds2 is an invariant that
is unchanged by transformations between inertial

systems (the Lorentz transformations; see below).

• This invariance does not hold for the euclidean spatial in-
terval dx2 +dy2+dz2,

• nor does it hold for the time interval c2dt2.

• Only the particular combination of spatial and time inter-
vals defined by

ds2 =

not invariant︷ ︸︸ ︷
−c2dt2

not invariant︷ ︸︸ ︷
+dx2 +dy2+dz2

︸ ︷︷ ︸
invariant

is (Lorentz) invariant.

Because of this invariance, Minkowski space is the

natural manifold for special relativity.
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Example:

Let’s use the metric to determine the relationship between the time
coordinate t and the proper time τ , with τ2 ≡−s2/c2. From

ds2 =−c2dt2+dx2+dy2+dz2,

we may write

dτ2 =
−ds2

c2 =
1
c2(c

2dt2 −dx2−dy2−dz2)

= dt2





1− 1
c2

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

︸ ︷︷ ︸
v2





=

(
1− v2

c2

)
dt2.

where v is the magnitude of the ordinary 3-velocity. Therefore, the
proper time τ that elapses between coordinate times t1 and t2 is

τ12 =

∫ t2

t1

(
1− v2

c2

)1/2

dt.

The proper time interval τ12 is shorter than the coordinate time in-

terval t2 − t1 because the square root is always less than one. If the
velocity is constant, this reduces to

∆τ =

(
1− v2

c2

)1/2

∆t,

which is the usual statement of time dilation in special relativity.
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Table 9.1: Rank 0, 1, and 2 tensor transformation laws

Tensor Transformation law

Scalar φ ′ = φ

Covariant vector A′
µ =

∂xν

∂x′µ
Aν

Contravariant vector A′µ =
∂x′µ

∂xν
Aν

Covariant rank-2 T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ

Contravariant rank-2 T ′µν =
∂x′µ

∂xα

∂x′ν

∂xβ
T αβ

Mixed rank-2 T ′ν
µ =

∂xα

∂x′µ
∂x′ν

∂xβ
T

β
α

9.2.2 Tensors in Minkowski Space

In Minkowski space transformations between coordinate sys-

tems are independent of spacetime. Thus derivatives appearing
in the general definitions of Table 9.1 for tensors are constants
and for flat spacetime we have the simplified tensor transfor-
mation laws

φ ′ = φ Scalar

A′µ = Λ
µ

νAν Contravariant vector

A′
µ = Λ

ν
µ Aν Covariant vector

T ′µν = Λ
µ

γΛν
δ T γδ Contravariant rank-2 tensor

T ′
µν = Λ

γ
µ Λ δ

ν Tγδ Covariant rank-2 tensor

T ′µ
ν = Λ

µ
γΛ δ

ν T
γ
δ

Mixed rank-2 tensor

where the Λ
µ

ν contain partial derivative factors that don’t de-

pend on the spacetime coordinates.
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In addition, for flat spacetime we may use a coordinate sys-
tem for which covariant derivatives are equivalent to partial

derivatives.

In the Minkowski transformation laws the Λ
µ

ν are
elements of Lorentz transformations, to which we
now turn our attention.
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9.3 Lorentz Transformations

In 3D euclidean space:

Rotations are a particularly important class of
transformations because they change the direction

for a 3-vector but preserve its length.

• We wish to generalize this idea to investigate abstract ro-

tations in the 4D Minkowski space that change the direc-

tion but not the length of 4-vectors.

• Such Minkowski-space rotations are termed Lorentz

transformations.
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e1

e2

φ

x

x1

x2

e1'

e2'

'x1x2'

φ

Consider rotation of a 2D euclidean coordinate system (above)

• The length of an arbitrary vector xxx will be unchanged by
this transformation if we require that xxx · xxx = xxx′ · xxx′.

• Since xxx · xxx ≡ gi jx
ix j, this requires that the transformation

matrix R implementing the rotation x′i = Ri
jx

j act on the
metric tensor gi j in the following way

Rgi jR
T = gi j,

where RT is the transpose of R (switch rows and columns).

• For euclidean space the metric tensor is just the unit matrix
so the above requirement reduces to RRT = 1, which is the
condition that R be an orthogonal matrix.

• Thus, we obtain by this somewhat pedantic route the well-
known result that

Rotations in euclidean space are implemented by

orthogonal matrices.
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• But the requirement Rgi jR
T = gi j is valid generally, not

just for euclidean spaces.

• Thus, let’s use it as guidance to constructing generalized

rotations in Minkowski space.

• By analogy with the above discussion of rotations in eu-
clidean space, we seek a set of transformations that leave

the length of a 4-vector invariant in the Minkowski space.

• We write the coordinate transformation in matrix form,

dx′µ = Λ
µ

νdxν ,

where we expect the transformation matrix Λ
µ

ν to satisfy
the analog of Rgi jR

T = gi j for the Minkowski metric ηµν ,

ΛηµνΛT = ηµν ,

or explicitly in terms of matrix components,

Λ
ρ

µ Λσ
νηρσ = ηµν .

• Let us now use this property to construct the elements of

the transformation matrix Λ
µ

ν . These will include

– rotations about the spatial axes (corresponding to ro-
tations within an inertial system) and

– transformations between inertial systems moving at
different constant velocities (Lorentz boosts).

We consider first rotations about the z axis.
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9.3.1 Rotations

For rotations about the z axis

(
x′1

x′2

)
= R

(
x1

x2

)
=

(
a b

c d

)(
x1

x2

)
,

where a, b, c, and d parameterize the transformation matrix.

• Rotations about a single axis are a 2D problem with eu-

clidean metric, so the condition Rgi jR
T = gi j is

(
a b

c d

)

︸ ︷︷ ︸
R

(
1 0
0 1

)

︸ ︷︷ ︸
gi j

(
a c

b d

)

︸ ︷︷ ︸
RT

=

(
1 0
0 1

)

︸ ︷︷ ︸
gi j

,

• Carrying out the matrix multiplications gives
(

a2+b2 ac+bd

ac+bd c2+d2

)
=

(
1 0
0 1

)
,

and comparing the two sides of the equation implies that

a2+b2 = 1 c2+d2 = 1 ac+bd = 0.

• These requirements are satisfied by the choices

a = cosφ b = sinφ c =−sinφ d = cosφ ,

and we obtain the expected result for an ordinary rotation,
(

x′1

x′2

)
= R

(
x1

x2

)
=

(
cosφ sinφ
−sinφ cosφ

)(
x1

x2

)
.
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v

x' x

Figure 9.1: A Lorentz boost along the positive x axis.

Now, let’s apply this same technique to determine
the elements of a Lorentz boost transformation.

9.3.2 Lorentz Boosts

Consider a boost from one inertial system to a 2nd one moving
at uniform velocity along the x axis ( Fig. 9.1).

• The y and z coordinates are unaffected, so this also is ef-
fectively a 2D transformation on t and x,

(
cdt ′

dx′

)
=

(
a b

c d

)(
cdt

dx

)

• We can write the condition ΛηµνΛT = ηµν out as
(

a b

c d

)

︸ ︷︷ ︸
Λ

(
−1 0
0 1

)

︸ ︷︷ ︸
ηµν

(
a c

b d

)

︸ ︷︷ ︸
ΛT

=

(
−1 0
0 1

)

︸ ︷︷ ︸
ηµν

,

(identical to rotations, except for the indefinite metric).
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• Multiplying the matrices on the left side and comparing
with the matrix on the right side in

(
a b

c d

) (
−1 0
0 1

) (
a c

b d

)
=

(
−1 0
0 1

)
,

gives the conditions

a2−b2 = 1 − c2+d2 = 1 −ac+bd = 0,

• These are satisfied if we choose

a = coshξ b = sinhξ c = sinhξ d = coshξ ,

where ξ is a hyperbolic variable with −∞ ≤ ξ ≤ ∞.

• Therefore, the boost transformation may be written as
(

cdt ′

dx′

)
=

(
coshξ sinhξ
sinhξ coshξ

)(
cdt

dx

)
(Lorentz boost).

Which may be compared with the rotational result
(

x′1

x′2

)
=

(
cosφ sinφ

−sinφ cosφ

)(
x1

x2

)
(Spatial rotation).
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The respective derivations make clear that

• the appearance of hyperbolic functions in the boosts,
rather than the trigonometric functions as in rotations,
traces to the role of the indefinite metric

gµν = diag (−1,1)

in the boosts.

• The hyperbolic functions suggest that the boost transfor-
mations are “rotations”in Minkowski space.

• But these rotations

– mix space and time, and

– will have unusual properties since they correspond to
rotations through imaginary angles.

• These unusual properties follow from the metric:

– The conserved invariant interval is not the length of
spatial vectors or time intervals separately.

– Rather it is the specific mixture of time and space in-

tervals implied by the Minkowski line element with
indefinite metric:

ds2 = (cdt dx dy dz)




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







cdt

dx

dy

dz


 .
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v/c

+1-1

=  - tanh
−1 v

c
 
 

 
 ξ

Figure 9.2: Dependence of the Lorentz parameter ξ on β = v/c.

We can put the Lorentz boost transformation into a more famil-

iar form by relating the boost parameter ξ to the boost velocity.

• Let’s work with finite space and time intervals by replac-
ing dt → t and dx → x in the preceding equations.

• The velocity of the boosted system is v = x/t. From
(

ct ′

x′

)
=

(
coshξ sinhξ
sinhξ coshξ

)(
ct

x

)
,

the origin (x′ = 0) of the boosted system is

x′ = ct sinhξ + xcoshξ = 0 → xcoshξ =−ct sinhξ .

• Therefore, x/t =−csinhξ/coshξ , so

β ≡ v

c
=

x

ct
=− sinhξ

coshξ
=− tanhξ .

• This relationship between ξ and β is plotted in Fig. 9.2.
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• Using the identity 1= cosh2 ξ −sinh2 ξ , and the definition

γ ≡
(

1− v2

c2

)−1/2

=
1√

1− v2/c2

of the Lorentz γ factor, we may write

coshξ =

√
cosh2 ξ

1
=

√
cosh2 ξ

cosh2 ξ − sinh2 ξ

=

√
1

1− sinh2 ξ/cosh2 ξ
=

1√
1−β 2

=
1√

1− v2/c2
= γ,

• From this result and

β =− sinhξ

coshξ

we obtain
sinhξ =−β coshξ =−β γ.

• Thus, inserting coshξ = γ and sinhξ = −β γ in the
Lorentz transformation for finite intervals gives

(
ct ′

x′

)
=

(
coshξ sinhξ

sinhξ coshξ

)(
ct

x

)

=

(
γ −γβ

−γβ γ

)(
ct

x

)

== γ

(
1 −β

−β 1

)(
ct

x

)
.
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• Writing the matrix expression
(

ct ′

x′

)
= γ

(
1 −β
−β 1

)(
ct

x

)
.

out explicitly for finite intervals gives the Lorentz boost

equations (for the specific case of a positive boost along
the x axis) in standard textbook form,

t ′ = γ
(

t − vx

c2

)

x′ = γ(x− vt)

y′ = y z′ = z.

• The inverse transformation corresponds to the replace-
ment v →−v.

• Clearly these reduce to the Galilean boost equations

xxx′ = xxx′(xxx,t) = xxx− vvvt t ′ = t ′(xxx,t) = t.

in the limit that v/c vanishes (so γ → 1), as we would
expect.

It is easily verified that Lorentz transformations

leave invariant the spacetime interval ds2.
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Figure 9.3: The lightcone diagram for two space and one time dimensions.

9.3.3 Lightcone Diagrams

By virtue of the line element (which defines a cone)

ds2 =−c2dt2+dx2+dy2+dz2,

the Minkowski spacetime may be classified according to the
lightcone diagram exhibited in Fig. 9.3.

The lightcone is a 3D surface in 4D spacetime and
events and intervals may be classified according to
whether they lie

• inside of,

• outside of,

• or on

the lightcone.
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The standard terminology [assuming our (−1,1,1,1) metric

signature]:

• If ds2 < 0 the interval is termed timelike.

• If ds2 > 0 the interval is termed spacelike.

• If ds2 = 0 the interval is called lightlike (or null).
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The lightcone clarifies the distinction between Minkowski
spacetime and a 4D euclidean space:

• Two points in Minkowski space are separated by ds with

ds2 =−c2dt2 +dx2+dy2+dz2.

This interval could be

– positive,

– negative, or

– zero,

which embodies impossibilities for a euclidean space.

• Lightlike particles have worldlines on the lightcone and

The square of the separation of any two points on

a lightlike worldline is ZERO.
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Example:

The Minkowski line element in one space and one time dimension
[often termed (1+ 1) dimensions] is ds2 = −c2dt2 + dx2. Thus, if
ds2 = 0

−c2dt2 +dx2 = 0 −→
(

dx

dt

)2

︸ ︷︷ ︸
v2

= c2 −→ v =±c.

We can generalize this result easily to the full 4D spacetime and we
conclude that

• Minkowski events separated by a null interval (ds2 = 0) are con-
nected by signals moving at light velocity, v = c.

• If the time (ct) and space axes have the same scales, the world-
line of a freely propagating photon (or any massless particle)
always make ±45◦ angles in the lightcone diagram.

• Events at timelike separations (inside the lightcone) are con-
nected by signals with v < c, and

• Those with spacelike separations (outside the lightcone) could
be connected only by signals with v > c (which would violate

causality).
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ct

y

x

Figure 9.4: Each spacetime point has its own lightcone.

We have placed the lightcone in the earlier illustration at the
origin of our coordinate system, but we must imagine a light-

cone attached to each point in the spacetime, as illustrated in
Fig. 9.4.

Lightcones are defined locally and each point of

spacetime has a local lightcone.
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World line of

massive 

particle
World line 

of massless

photon

ct

y

x

ct

y

x

(a) (b)

Figure 9.5: Worldlines for (a) massive particles and for (b) massless particles.

A tangent to the worldline of any particle defines the local

velocity of the particle and constant velocity implies straight

worldlines. Therefore, as illustrated in Fig. 9.5,

• In Minkowski space light always travels in straight lines
(not true in in curved space!), and always on the lightcone,
since v = c = constant.

• Thus photons have constant local velocities equal to c.

• Worldlines for any massive particle lie inside the local
lightcone since v ≤ c (timelike trajectory, since always
within the lightcone).

• The worldline for the massive particle in this particular
example is curved (acceleration).

• For non-accelerated massive particles the worldline would
be straight, but always within the lightcone.
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Invariance and Simultaneity

• In Galilean relativity, an event picks out a hyperplane of

simultaneity in the spacetime diagram consisting of all
events occurring at the same time as the event.

• All observers agree on what constitutes this set of simulta-
neous events because the Galilean concept of simultaneity

is independent of the observer.

• This is because in Galilean invariance all observers share

the same time coordinate.

• In Einstein’s relativity, simultaneity depends on the ob-

server and hyperplanes of constant coordinate time have
no invariant meaning.

• However, all observers agree on the classification of
events relative to local lightcones, because the speed of

light is invariant for all observers.

• As we shall now discuss,

The local lightcones define an invariant spacetime

structure that may be used to classify events.
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Figure 9.6: The lightcone diagram for two space and one time dimensions.

9.3.4 Causal Structure of Spacetime

The causal properties of Minkowski spacetime are encoded in

its light cone structure, which requires that v ≤ c for all signals.

• Each point in spacetime may be viewed as lying at the
apex of a lightcone (“Now”).

• An event at the origin of a lightcone may influence any
event in its forward lightcone (the “Future”).

• The event at the origin of the lightcone may be influenced
by events in its backward lightcone (the “Past”).

• Events at spacelike separations are causally disconnected

from the event at the origin.

• Events on the lightcone are connected by v = c signals.
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The lightcone is a surface separating the knowable

from the unknowable for an observer at the apex of
the lightcone.

This lightcone structure of spacetime ensures that all velocities

obey locally the constraint v ≤ c.

• Velocities are defined and measured locally.

• Hence covariant field theories in either flat or curved space
are guaranteed to respect the speed limit v ≤ c.

• This is true irrespective of whether globally velocities ap-
pear to exceed c.

EXAMPLE: In the Hubble expansion of the Uni-
verse,

• Galaxies beyond a certain distance (the hori-
zon) would appear to recede from us at ve-
locities in excess of c.

• However, all local measurements in that ex-
panding, possibly curved, space would deter-
mine the velocity of light to be c.
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9.3.5 Time Machines and Causality Paradoxes

When time travel comes up it is usually about going backward

in time.

• Traveling forward in time requires no special talent.

• It is easy to arrange various scenarios consistent with rel-
ativity where a person could travel into a future time even
faster than normal.

• For example, in the twin paradox it is possible to arrange
for a traveler to arrive back at Earth centuries in the future
relative to clocks that remain on Earth.

• Similar options exist using the gravitational time dilation

of general relativity.

However, the real question is, could you go back in time to
explore your earlier history?

• No! Not according to current understanding.

• To bend a forward-going timelike worldline continuously
into a backward-going one requires going outside the lo-

cal lightcone, requiring that v > c.

• If closed timelike loops were permitted, travel to earlier
times might be possible.

• However, they are forbidden if energy densities are never
negative and the Universe has the topology in evidence.
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Thus, the determined time traveler has two options:

• Find some negative energy, or

• Find structures with an exotic spacetime topology allow-
ing closed timelike loops.

Unfortunately for the aspiring time traveler,

• negative energy is probably forbidden in classical gravity
and

• there is no evidence at present for exotic spacetime topolo-
gies with closed timelike loops.

• These statements are based entirely on clas-

sical gravity considerations;

• it is unknown at present whether they could
be modified by some future understanding of
quantum gravity.
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From the preceding discussion we may conclude that

• the axioms of special relativity are fundamentally at odds
with the Newtonian concept of absolute simultaneity,
since

• the demand that light have the same speed for all ob-

servers necessarily means that

• the apparent temporal order of two events depends upon

the observer.

However, the abolishment of absolute simultaneity

• introduces no causal ambiguity because

• all observers agree on the lightcone structure of spacetime.

• Thus, for example, all observers will agree that

Event A can cause event B only if A lies in the past

lightcone of B.
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Figure 9.7: Lorentz boost transformation in a spacetime diagram.

9.3.6 Lorentz Transformations in Spacetime Diagrams

It is instructive to look at the action of Lorentz transformations
in the spacetime (lightcone) diagram. If we consider boosts
only in the x direction, the relevant part of the spacetime dia-
gram in some inertial frame corresponds to a plot with axes ct

and x, as in the figure above.
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x

ct

x'

ct'
β =

 1

ct = x β

c
t =

 x
β

-1

φ = tan-1(v/c)

−φ

Let’s ask what happens to these axes under the Lorentz boost

ct ′ = cγ
(

t − vx

c2

)
x′ = γ(x− vt).

• t ′ axis corresponds to x′ = 0. From Eq. 2 with x′ = 0

x = vt −→ x/c = (v/c)t = β t,

so the equation for the t ′ axis is ct = xβ−1, with β = v/c.

• Likewise, the x′ axis corresponds to t ′ = 0, which implies
from the 1st equation that ct = (v/c)x = xβ .

• Thus, the equations of the x′ and t ′ axes [in the (x,ct) co-
ordinate system] are ct = xβ and ct = xβ−1, respectively.

• The x′ and t ′ axes for the boosted system are also shown
in the figure for a positive value of β .

• Time and space axes rotated by same angle, but in oppo-

site directions (Cause: the indefinite Minkowski metric).

• The rotation angle is given by tanφ = v/c.
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Ordinary rotations: the two axes rotate by the same angle in
the same direction

e1

e2

φ

x

x1

x2

e1'

e2'

'x1x2'

φ

Lorentz boost “rotations”: the two axes execute “scissors mo-

tion”, rotating by the same angle but in opposite directions

x

ct

x'

ct'
β =

 1

ct = x β

c
t =

 x
β

-1

φ = tan-1(v/c)

−φ
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Figure 9.8: Comparison of events in boosted and unboosted frames.

Most of special relativity follows from this diagram.

• For example, relativity of simultaneity is illustrated above.

• Points A and B lie on the same t ′ line, so they are simulta-

neous in the boosted frame.

• But from the dashed projections on the ct axis, event A

occurs before event B in the unboosted frame.

• Likewise, points C and D lie at the same value of x′ in the
boosted frame and so are spatially congruent, but in the
unboosted frame xC 6= xD.

Relativistic time dilation and space contraction

follow rather directly from these observations.
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Space Contraction

Consider a rod of proper length L0, as measured in its own rest
frame (ct,x), that is oriented along the x axis.

x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

Note: “Proper” in relativity denotes a quantity measured in the

rest frame of an object (proper time, proper length, . . . ).

What is the length of the rod L as observed in
the boosted (ct ′,x′) frame? Fundamental measure-

ment issues:

• Distances must be measured between space-
time points at the same time.

• Elapsed times must be measured between
spacetime points at the same place.

Example: Length of an arrow in flight is not given
by the difference between the location of its tip at
one time and its tail at a different time. The mea-
surements must be made at the same time.
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• The frame (ct ′,x′) is boosted by a velocity v along the
positive x axis relative to the (ct,x) frame.

• Therefore, in the primed frame the rod will have a velocity
v in the negative x′ direction.

• Determining the length L observed in the primed frame re-
quires that the positions of the ends of the rod be measured
simultaneously in that frame.

• The axis labeled x′ has constant t ′ (bottom figure), so the
distance L (top figure) is the length in the primed frame.
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• The distance L seems longer than L0, but this is deceiving
because the diagram is in Minkowski spacetime but our
brain has a euclidean-space bias.

• We are familiar with perceived distances being different
from actual distances from flat map projections.

Mercator

(preserves angles,

distorts sizes)

Map Projections

Source: http://www.culturaldetective.com/worldmaps.html
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• A Mercator projection of the globe onto a euclidean
sheet of paper gives misleading distance information—
Greenland isn’t really larger than Brazil, for example,

TRUST THE METRIC,

NOT YOUR LYING EYES!
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• From the Minkowski indefinite-metric line element

ds2 =−c2dt2 +dx2.

and from the triangle (Minkowski Pythagorean theorem),

L2 = L2
0 − (c∆t)2 (Minus: indefinite metric)

• But c∆t = (v/c)L0 (because from the diagram tanφ =

c∆t/L0 and tanφ = v/c). Therefore,

L = (L2
0 − (c∆t)2)1/2

=

(
L2

0 −
(v

c
L0

)2
)1/2

= L0

(
1− v2

c2

)1/2

(SR Length contraction)

• L is shorter than L0, even though it seems longer in the
figure. TRUST THE METRIC, NOT YOUR LYING EYES!

Special relativistic length-contraction is just the
Pythagorean theorem for Minkowski space.
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Figure 9.9: (a) Timelike, lightlike (null), and spacelike separations. (b) Lorentz
transformation that brings the timelike separated points A and C of (a) into spatial
congruence (they lie along a line of constant x′ in the primed system). (c) Lorentz
transformation that brings the spacelike separated points A and B of (a) into coin-
cidence in time (they lie along a line of constant t ′ in the primed system.

As we have seen, the spacetime separation between any two
events (spacetime interval) may be classified in a relativisti-
cally invariant way as

1. timelike,

2. lightlike, or

3. spacelike

by constructing the lightcone at one of the points, as illustrated
in Fig. 9.9(a).
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The geometry of the above figures suggests another important
distinction between points at spacelike separations [the line AB
in Fig. (a)] and timelike separations [the line AC in Fig. (a)]:

• If two events have timelike separation, a Lorentz transfor-
mation can bring them into spatial congruence.

• Figure (b) illustrates a coordinate system (ct ′,x′).

– in which A and C have the same coordinate x′.

– It is related to the original system by an x-axis Lorentz
boost by v/c = tanφ1,
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On the other hand

• If two events have a spacelike separation, a Lorentz trans-
formation exists that can synchronize the two points.

• Figure (c) illustrates an x-axis Lorentz boost by v/c =

tanφ2 to a system in which A and B have the same time

t ′.
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Notice that the maximum values of φ1 and φ2 are limited by the

v = c line.

• Thus, the Lorentz transformation to bring point A into
spatial congruence with point C

– exists only if point C lies to the left of the v = c line

– and thus is separated by a timelike interval from point
A.

• Likewise, the Lorentz transformation to synchronize point
A with point B

– exists only if B lies to the right of the v = c line,

– meaning that it is separated by a spacelike interval

from A.
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9.4 Lorentz Invariance of Maxwell’s Equations

We conclude this chapter by examining the Lorentz invariance
of the Maxwell equations that describe classical electromag-
netism. There are several motivations.

• It provides a nice example of how useful Lorentz invari-
ance and Lorentz tensors can be.

• The properties of the Maxwell equations influenced Ein-
stein strongly in his development of the special theory of
relativity.

• There are many useful parallels between general relativ-
ity and the Maxwell theory, particularly for weak gravity
where the Einstein field equations may be linearized.

Understanding covariance of the Maxwell equa-
tions proves particularly important in discussing
gravitational waves.
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9.4.1 Maxwell Equations in Non-covariant Form

In free space, using Heaviside–Lorentz, c = 1 units, the
Maxwell equations may be written as

∇∇∇ ·EEE = ρ ,

∂BBB

∂ t
+∇∇∇×EEE = 0,

∇∇∇ ·BBB = 0,

∇∇∇×BBB− ∂EEE

∂ t
= jjj,

where EEE is the electric field, BBB is the magnetic field, with the
charge density ρ and current vector jjj required to satisfy the
equation of continuity

∂ρ

∂ t
+∇∇∇ · jjj = 0.

Maxwell’s equations are consistent with special relativity.

• However, in the above form this covariance is not mani-

fest, since these equations are formulated in terms of 3-
vectors and separate derivatives with respect to space and
time, not Minkowski tensors.

• It proves useful to reformulate the Maxwell equations
in a manner that is manifestly covariant with respect to
Lorentz transformations.

The usual route to accomplishing this begins by replacing the
electric and magnetic fields by new variables.
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9.4.2 Scalar and Vector Potentials

The electric and magnetic fields may be eliminated in favor
of a vector potential AAA and a scalar potential φ through the
definitions

BBB ≡ ∇∇∇×AAA EEE ≡−∇∇∇φ − ∂AAA

∂ t
.

The vector identities

∇∇∇ · (∇∇∇×BBB) = 0 ∇∇∇×∇∇∇φ = 0,

may then be used to show that the second and third Maxwell
equations are satisfied identically, and the identity

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2
AAA,

may be used to write the remaining two Maxwell equations as
the coupled second-order equations

∇∇∇2φ +
∂

∂ t
∇∇∇ ·AAA = −ρ

∇∇∇2
AAA− ∂ 2AAA

∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

∂φ

∂ t

)
= − jjj.

These equations may then be decoupled by ex-
ploiting a fundamental symmetry of electromag-
netism termed gauge invariance.
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9.4.3 Gauge Transformations

Because of the identity ∇∇∇×∇∇∇φ = 0, the simultaneous transfor-
mations

AAA → AAA+∇∇∇χ φ → φ − ∂ χ

∂ t

for an arbitrary scalar function χ do not change the EEE and BBB

fields; thus, they leave the Maxwell equations invariant.

• These are termed (classical) gauge transformations.

• This freedom of gauge transformation may be used to de-
couple the Maxwell equations.

• For example, if a set of potentials (AAA,φ) that satisfy

∇∇∇ ·AAA+
∂φ

∂ t
= 0,

is chosen, the equations decouple to yield

∇∇∇2φ − ∂ 2φ

∂ t2 =−ρ ∇∇∇2
AAA− ∂ 2AAA

∂ t2 =− jjj,

which may be solved independently for AAA and φ .

• Such a constraint is called a gauge condition and imposing
the constraint is termed fixing the gauge.

The particular choice of gauge in the above exam-
ple is termed the Lorenz gauge.
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Another common gauge is the Coulomb gauge, with a gauge-
fixing condition

∇∇∇ ·AAA = 0,

which leads to the decoupled Maxwell equations

∇∇∇2φ =−ρ ∇∇∇2
AAA− ∂ 2AAA

∂ 2t
= ∇∇∇

∂φ

∂ t
− jjj.
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Let’s utilize the shorthand for derivatives introduced earlier:

∂ µ ≡ ∂

∂xµ
= (∂ 0,∂ 1,∂ 2,∂ 3) =

(
− ∂

∂x0 , ∇∇∇

)
,

∂µ ≡ ∂

∂xµ
= (∂0,∂1,∂2,∂3) =

(
∂

∂x0 , ∇∇∇

)
,

where, for example, ∂1 = ∂/∂x1 and the 3-divergence is

∇∇∇ ≡ (∂ 1,∂ 2,∂ 3).

A covariant formalism then results from introducing

• the 4-vector potential Aµ ,

• the 4-current jµ , and

• the d’Alembertian operator ✷

through the definitions

Aµ ≡ (φ ,AAA) = (A0,AAA) jµ ≡ (ρ , jjj) ✷≡ ∂µ∂ µ .

Then a gauge transformation takes the form

Aµ → Aµ −∂ µ χ ≡ A′µ

and the preceding examples of gauge-fixing constraints become

∂µAµ = 0 (Lorenz gauge) ∇∇∇ ·AAA = 0 (Coulomb gauge).

The Lorenz condition is covariant (formulated in
terms of 4-vectors); the Coulomb gauge condition

is not covariant (formulated in terms of 3-vectors).
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The operator ✷ is Lorentz invariant since

✷
′ = ∂ ′

µ∂ ′µ = Λν
µΛ

µ
λ ∂ν∂ λ = ∂µ∂ µ = ✷.

Thus, the Lorenz-gauge wave equation may be expressed in the
manifestly covariant form

✷Aµ = jµ

and the continuity equation becomes

∂µ jµ = 0.

The Maxwell wave equations in Lorenz gauge are manifestly

covariant.

• This, coupled with the gauge invariance of electromag-

netism, ensures that the Maxwell equations are covariant
in all gauges.

• However—as was seen in the example of the Coulomb
gauge—the covariance may not be manifest for a particu-
lar choice of gauge.

Let’s now see how to formulate the Maxwell equa-
tions in a manifestly covariant form.
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9.4.4 Maxwell Equations in Manifestly Covariant Form

The Maxwell equations may be cast in a manifestly covariant
form by constructing the components of the electric and mag-
netic fields in terms of the potentials (Problems).

• Proceeding in this manner, we find that the six indepen-
dent components of the 3-vectors EEE and BBB are elements of
an antisymmetric rank-2 electromagnetic field tensor

Fµν =−Fνµ = ∂ µAν −∂ νAµ ,

which may be expressed in matrix form as

Fµν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 .

• That is, the electric field EEE and the magnetic field BBB

– are vectors in 3D euclidean space but

– their six components together form an antisymmetric
rank-2 tensor in Minkowski space.
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Now let’s employ the Levi–Civita symbol εαβγδ , where

• εαβγδ has the value +1 for αβ γδ = 0123 and cyclic per-
mutations,

• −1 for odd permutations, and

• zero if any two indices are equal,

• and use it to define the dual field tensor F µν by

F
µν ≡ 1

2εµνγδ Fγδ =




0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


 .

• Then two of the four Maxwell equations may be written
(homework)

∂µFµν = jν ,

• and the other two Maxwell equations may be written as
(homework)

∂µF
µν = 0.

The Maxwell equations in this form are mani-

festly covariant (under Lorentz transformations)
because they are formulated exclusively in terms

of Lorentz tensors.


