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Preface

The material contained in these lecture notes represents an introduction to classical elec-
tromagnetism, written approximately at the level of classical texts such as Jackson [15]. It
is suitable for a graduate course in classical electrodynamics and assumes students to have
a basic familiarity with the material summarized in Appendix A, which would typically
be covered in advanced undergraduate courses in electromagnetism (for example, the book
by Griffiths [8]). These lectures are a work in progress, so please do not distribute them
without notifying me.

Mike Guidry
Knoxville, Tennessee
April 25, 2024



1 Overview

The first inkling of the properties that we now understand of electricity and magnetism
traces to the distant past when humans began to realize and remark upon the behavior
of naturally occurring electricity in amber, and the properties of naturally occurring mag-
netism in lodestones. Although these properties were known qualitatively to the ancient
Greeks, the modern quantitative understanding of electricity and magnetism emerged over
a period of only about a century, beginning in the late 1700s.

1.1 The Synthesis of Classical Electromagnetism

The explosion in knowledge of electricity and magnetism, and the forging of that knowl-
edge into a theoretically and mathematically coherent understanding, was highlighted by

1. Cavendish’s pioneering experiments in electrostatics in the early 1770s,

2. the publication of Coulomb’s work beginning in 1785,

3. Faraday’s study of time-varying currents and magnetic fields in the mid-1800s,

4. Maxwell’s famous 1865 paper (read to the Royal Society in 1864) synthesizing in equa-
tions a dynamical theory of the electromagnetic field [22],

5. Heaviside’s reformulation of Maxwell’s equations in their more modern vector calculus
form in the late 1800s, and

6. Herz’s publication in 1888 of data showing that transverse electromagnetic waves prop-
agated at the speed of light, putting Maxwell’s theory on a firm experimental footing.

Thus, by the late 19th century the basic understanding of classical electromagnetic theory
was in place, and could be summarized concisely in the Maxwell equations, which may be
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2 Overview

written in free space using SI units (see Section 2.1) and modern notation1 as

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law), (1.1a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (1.1b)

∇∇∇ ·BBB = 0 (No magnetic charges), (1.1c)

∇∇∇×BBB− 1
c2

∂EEE
∂ t

= µ0JJJ (Ampère’s law, as modified by Maxwell), (1.1d)

where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, JJJ is the current
vector, ε0 is the permittivity of free space [defined for SI units in Eq. (2.3)], and µ0 is the
permeability of free space

µ0 = 4π ×10−7 N A−2, (1.2)

(with µ0ε0 = 1/c2, where c is the speed of light), with the charge density ρ and the current
vector JJJ satisfying the continuity equation

∂ρ

∂ t
+∇∇∇ · JJJ = 0, (1.3)

which ensures conservation of charge by requiring that electrical charge variation in some
arbitrary volume is caused by flow of electrical current through the surface of that volume.
An important property of the Maxwell equations is that they obey a set of symmetries that
we expect physical laws to obey, as summarized in Box 1.2.2

The four Maxwell equations of Eqs. (1.1), supplemented by boundary conditions,3 may
be solved (in principle) for the fields EEE and BBB, if the charge density ρ and current JJJ are
known. However, these equations make no reference to forces, which are often the con-
nection to experimental results. This is remedied by introducing the Lorentz force law,

FFF = q(EEE + vvv×BBB) (Lorentz force), (1.4)

which implies that the force on a particle with charge q and velocity vvv at the point xxx is de-
termined completely by the instantaneous values of the fields EEE and BBB at xxx. Then Newton’s

1 Maxwell’s original formulation was in terms of the vector and scalar potentials, required 20 equations, and did
not use modern vector calculus notation, which was invented later by Oliver Heaviside and independently by
J. Willard Gibbs. Heaviside reduced Maxwell’s 20 equations to the four in Eqs. (1.1) by writing them entirely
in terms of the electric and magnetic fields in his new vector calculus notation (see Ref. [14] for a concise
history).

2 The Maxwell equations written in the form (1.1) are Lorentz covariant (their validity is unchanged under
Lorentz transformations) and thus are consistent with special relativity. However, in the form (1.1) this isn’t
obvious because in special relativity space and time must enter on an equal footing and the use in Eqs. (1.1) of
3-vectors instead of 4-vectors, and of separate derivatives for space and time, obscures whether this condition
is satisfied. Later we will show that the Maxwell equations can be expressed in a covariant notation that makes
their Lorentz covariance manifest.

3 We will have more to say about this later but loosely physically acceptable boundary conditions in static
problems require fields to vanish rapidly enough at infinity, and in dynamical problems that they represent
outgoing solutions so that there is no flow of energy from infinity into regions of interest.



3 The Synthesis of Classical Electromagnetism

Box 1.1 Maxwell’s Modification of Ampère’s law

Ampère’s original law was valid only for stationary charge densities because it
lacked the ∂EEE/∂ t term of Eq. (1.1d). Maxwell realized that for time-dependent den-
sities Ampère’s law in its original form was incompatible with the continuity equation
(1.3). As discussed in Section 7.1.1, Maxwell then added the ∂EEE/∂ t term (which
is called the displacement current) to Ampère’s law in Eq. (1.1d); this brought the
full set of equations (1.1) into harmony with Eq. (1.3), and effectively brought to-
gether the previously separate subjects of electricity and magnetism. As a result,
Eq. (1.1d) is also called the Ampère–Maxwell law. The addition of the displacement
current to Eq. (1.1d) has a number of far-reaching implications. (1) We may now
speak of the unified subject of electromagnetism. (2) The fundamental equations
of electromagnetism are now consistent with charge conservation. (3) This modi-
fication will lead eventually to the interpretation of electromagnetic waves as light.
(4) That Maxwell’s equation obey the continuity equation and thus conserve charge
will lead to the idea of classical electromagnetic gauge invariance, which will under-
lie a quantum field theory of electromagnetism (quantum electrodynamics or QED).
(5) Electromagnetic gauge invariance will eventually be generalized to more com-
plex gauge invariance in the weak and strong interactions, resulting in the quantum
field theory that we term the Standard Model of elementary particle physics.

second law,
d ppp
dt

= FFF , (1.5)

allows calculating the complete motion of charges in the electromagnetic field.
Then the understanding of classical electromagnetic theory could be summarized in a

succinct admonition:

Solve Maxwell’s equations with appropriate boundary conditions for the electric
and magnetic fields, and use those to compute observables for the problem at
hand.

While this admonition is not wrong, it is in danger of leaving two things at loose ends.

1. The solution of Maxwell’s equations with appropriate boundary conditions can be highly
non-trivial, often requiring considerable mathematical and computational prowess.

2. Although classical electromagnetism itself has changed little since the late 1800s, the
context in which we view classical electromagnetism has changed dramatically because
of modern advances in quantum field theory (often inspired and guided by the theoreti-
cal understanding of classical electrodynamics).



4 Overview

Box 1.2 Symmetries of the Maxwell Equations

Symmetry plays a fundamental role in physics [12]. The Maxwell equations (1.1)
exhibit some symmetries that we expect to be valid for physical systems.

1. Invariance under Space and Time Translations: Invariance under translations
in the spatial and time axes is associated with conservation of momentum and
energy. That the Maxwell equations satisfy this invariance automatically implies
that we can assign energy and momentum to the electromagnetic field.

2. Invariance under Rotations: The formulation of the Maxwell equations as vector
equations ensures rotational invariance (isotropy of space), which in turn implies
conservation of angular momentum by the electromagnetic field.

The association of invariance under space translations, time translations,
and rotations with conservation of linear momentum, energy, and angular
momentum, respectively, is a general consequence of Noether’s theo-
rem: For every continuous symmetry of a field theory Lagrangian there
is a corresponding conserved quantity. See Section 16.2 of Ref. [12].

3. Symmetry under Space Inversion (Parity) P: In the presence of rotational invari-
ance, parity is equivalent to mirror reflection. Under inversion EEE →−EEE, which is
the transformation law for a polar vector (normal 3-vector), but under inversion
BBB → BBB, which is the transformation law for a pseudovector or axial vector.

4. Symmetry under Time Reversal (T): A motion picture of electromagnetic events
would look the same if run backwards or forward.

5. Lorentz Invariance: Electromagnetism differs fundamentally from Newtonian par-
ticle mechanics in that it is not galilean invariant but is Lorentz invariant (consis-
tent with special relativity), while Newtonian mechanics is galilean invariant but
not Lorentz invariant. Einstein was strongly influenced by this property of elec-
tromagnetism in formulating the special theory of relativity.

6. Gauge Invariance (Charge Conservation): That the Maxwell equations are con-
sistent with the continuity equation (1.3) implies that charge is conserved locally.
This conservation law is associated with local gauge invariance for the electro-
magnetic field. We shall have a great deal to say about the local gauge symmetry
of electromagnetism and its far-reaching implications in later chapters.

7. Electric and Magnetic Field Asymmetry: The Maxwell equations in CGS units
[Eqs. (B.3) of Appendix B] exhibit a large asymmetry between the roles of electric
and magnetic fields. If the zero on the right side of Eq. (B.3c) were replaced by a
magnetic charge 4πρm and a magnetic current term (4π/c)JJJm were added to the
right side of Eq. (B.3b), the Maxwell equations would become highly symmetric
under a transformation EEE → BBB and BBB →−EEE. However, no magnetic charges (no
magnetic monopoles) have ever been observed.



5 Electromagnetism in Modern Physics

The following chapters of these notes will address the first point at a practical level, by pro-
viding a variety of mathematical and computational tools to facilitate solution of Maxwell’s
equations in various physically important contexts. The remainder of the current chapter
will address the second point at a more philosophical level, by setting electromagnetism in
the context of modern theoretical physics.

1.2 Electromagnetism in Modern Physics

One of the remarkable findings of modern physics is that the already beautiful edifice
of Maxwell’s equations for electromagnetism that we shall elaborate on hides within it a
deceptively powerful symmetry called (local) gauge invariance—in essence a symmetry
under local phase transformations—that, with suitable exposition, explains the origin of
both classical and quantum theories of electromagnetism. But that is not all! The local
gauge symmetry describing electromagnetism can be generalized mathematically into a
more powerful theory that can partially unify the electromagnetic and weak nuclear forces
into a single electroweak interaction, and this can be generalized into the Standard Model
(of elementary particle physics) that partially unifies the electromagnetic, weak, and strong
interactions in a single non-abelian gauge theory.4

1.2.1 Quantization of Electrical Charge

The basic unit of electrical charge is given by the magnitude of the charge on an electron,
which is measured to be

|qe|= 1.60217733×10−19 C (in SI or MKS units). (1.6)

The charges on protons, and all presently known particles or systems of particles, are found
to be integral multiples of this unit (with positive or negative signs for non-zero charges).
It is known experimentally that the ratios of charges between different particles are inte-
gers to one part in 1020. Indeed, the stability of the atomic matter all around us would be
compromised by even a tiny difference in the absolute values of the electron and proton
charges. There is presently no convincing explanation for this quantization of charge.5

4 In quantum filed theory local gauge symmetries are generated by a set of quantum operators. If the quantum
operators commute among themselves, the gauge symmetry is said to be abelian. If they do not all commute
among themselves, the gauge symmetry is said to be non-abelian. Because of the constraints arising from
non-zero commutators among operators, non-abelian gauge symmetries have the potential to engender more
complex behavior than abelian gauge symmetries. Electromagnetism corresponds to an abelian local gauge
symmetry (with the quantum version known as quantum electrodynamics or QED). The Standard Electroweak
Model and its generalization to the Standard Model incorporating the strong interactions (quantum chromo-
dynamics or QCD) generally correspond to more complex non-abelian local gauge symmetries. Non-abelian
models of elementary particles are also known as Yang–Mills field theories.

5 Dirac proposed long ago that, if magnetic monopoles existed, there could be a topological reason for charge
quantization. However, no reproducible observations of magnetic monopoles have ever been reported, so
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tFig. 1.1
Elementary particles of the Standard Model. Photons are labeled by γ and gluons by G.
Elementary particles of half-integer spin that don’t undergo strong interactions are called
leptons; electrons and electron neutrinos are examples. Particles made from quarks,
antiquarks, and gluons (and thus that undergo strong interactions) are called hadrons;
pions (pi mesons) and protons are examples. A subset of hadrons corresponding to more
massive particles containing three quarks are called baryons; protons and neutrons are
examples. The different types of neutrinos (νe,νµ , . . .) and the different types of quarks (u,
d, s, . . . ) are called flavors. For simplicity the largely parallel classification of antiparticles
has been omitted.

1.2.2 Particles in the Universe

Our modern view is that matter in the Universe consists of the fermions in the Standard
Model (of elementary particle physics). The elementary particles of the Standard Model
are summarized in Fig. 1.1. In the Standard Model matter is formed from fermions, while
interactions between elementary particles are mediated by the exchange of gauge bosons,
and masses for bare (that is, non-interacting) particles arise from interactions with the
Higgs boson. For reasons that are not yet understood, the fermions (matter fields) of the
Standard Model may be divided into three generations (or families), I, II, and III, with
the fermions of each generation being successively more massive than in the preceding
generation, and with many properties repeating themselves in successive generations. (For
example, the muon µ in generation II acts in many respects as if it were a heavier version
of the electron e in generation I.) Table 1.1 gives Standard Model quark quantum number
assignments for the six known quark flavors displayed in Fig. 1.1. As indicated in Table 1.1,

Dirac’s idea remains only conjecture. As we have noted in Box 1.2, if magnetic monopoles did exist, the
Maxwell equations (1.1) would become much more symmetric with respect to electric and magnetic fields.



7 Electromagnetism in Modern Physics

Table 1.1 Quantum number assignments for quarks [9]

Up Down Strange Charm Bottom Top

Symbol u d s c b t

Baryon number (B) 1
3

1
3

1
3

1
3

1
3

1
3

Spin 1
2

1
2

1
2

1
2

1
2

1
2

Charge (Q) 2
3 − 1

3 − 1
3

2
3 − 1

3
2
3

Isospin (T ) 1
2

1
2 0 0 0 0

Projection of isospin (T3) 1
2 − 1

2 0 0 0 0

Strangeness number (S) 0 0 −1 0 0 0

Charm number (c) 0 0 0 1 0 0

Bottom number (b) 0 0 0 0 −1 0

Top number (t) 0 0 0 0 0 1

The additive quantum numbers Q, T3, S, c, B, b, and t of the corresponding antiquarks are
the negative of those for quarks. The charge is given by Q = T3 +

1
2 (B+S+ c+b+ t).

the (electrical) charge Q of each quark is given by

Q = T3 +
1
2
(B+S+ c+b+ t), (1.7)

which leads to third-integer charges for all the quarks (row 4 of Table 1.1).

Example 1.1 From Eq. (1.7) and Table 1.1, the charge of the down quark d is

Qd = T3 +
1
2
(B+S+ c+b+ t)

=−1
2
+

1
2

(
1
3
+0+0+0+0

)
=−1

3

This quantization of charge in integer multiples of ± 1
3 of the charge of the electron is

characteristic of quarks, as may be seen from Table 1.1.

However, the non-abelian gauge field theory of the strong interactions (quantum chromo-
dynamics) predicts that quarks are confined and can never appear as free particles, and
indeed no free particles with 3rd-integer charges have ever been observed in experiments.
For example, a proton has a udu quark structure (two up quarks and one down quark) and
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from Table 1.1 the charge for a proton is

Qp = 2Qu +Qd = 2
(

2
3

)
+

1
3
=+1,

in terms of the fundamental charge unit |qe| given by Eq. (1.6), while a neutron has a udd
quark structure and

Qn = Qu +2Qd =
2
3
+2
(
−1

3

)
= 0,

and neutrons have zero net electrical charge.
Thus, even though modern high energy physics has found a variety of elementary parti-

cles, some of which have electrical charges that are fractions of the fundamental unit (1.6)
set by the charge on the electron, the physically observable particles entering into classi-
cal electromagnetism all appear to have electrical charges that are integer multiples of the
fundamental charge unit given by Eq. (1.6).

Background and Further Reading

The history of classical electromagnetism is summarized in various parts of Jackson [15]. A
view of classical electromagnetism with emphasis on the relationship of modern quantum
field theory to classical electromagnetism may be found in Wald [25]. Introductions to the
Standard Model of elementary particle physics and the origin of the particle and quantum
number assignments in Fig. 1.1 and Table 1.1 may be found in many places; for example,
in Refs. [9, 12].
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Problems

1.1 Prove that Maxwell’s equations (1.1) are consistent with the continuity equation
(1.3).



2 Electrostatics in Vacuum

The fundamental problem to be solved in electrodynamics is illustrated schematically in
Fig. 2.1(a). If we have a distribution of n distinct source charges q1, q2, q3, . . . qn, what net
force do they exert on a test charge Q? In the most general case both the source charges and
test charges may be in motion but we shall begin with the simpler case of electrostatics,
where the source charges are assumed to be fixed in spatial position (but the test charge
may move). We shall also assume initially that the source and test charges are embedded in
vacuum or a medium of negligible susceptibility, so that we do not initially need to worry
about the effects of a medium altering the interactions between charges (that will be the
subject of later chapters). Let us now consider a quantitative description of this idealized
problem, utilizing experimental data, mathematics, and physical intuition as our guides.

2.1 Coulomb’s Law

Consider first the force acting between two isolated charges at rest with respect to each
other, as illustrated in Fig. 2.1(b). The force exerted on a single charge q1 located at position
xxx1 by a single charge q2 located at position xxx2 may be measured experimentally and is
found to be given by Coulomb’s law,

FFF = kq1q2
xxx1 − xxx2

|xxx1 − xxx2|3
, (2.1)

Q

q1

q2

q3

q4

q5 q6

q7
q8

Source

charges
Test charge

(a) (b)
q1

q2

x1

x2tFig. 2.1 (a) The prototype electrostatics problem: interaction in vacuum of a test charge Q with a
set of stationary source charges qn. (b) Coulomb interaction between two isolated and
stationary test charges.
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11 The Electric Field

where the charges qn are algebraic quantities that may be positive or negative, the force
points along the line from q1 to q2 and is attractive if the signs of the changes are opposite
and repulsive if they are the same. The constant k depends on the system of units that is in
use. Two common ones are electrostatic units and the SI system.

1. In electrostatic units (esu; also termed Gaussian or CGS), k = 1 and unit charge is
chosen such that it exerts a force of one dyne on an equivalent point charge located one
centimeter away. In the esu system the unit charge is called a statcoulomb.

2. In the SI system of units,

k =
1

4πε0
, (2.2)

where the constant ε0 is called the permittivity of free space. In the SI system the unit
of force is the Newton (N), the unit of distance is the meter (m), the unit of charge is
the coulomb (C), and

ε0 ≃ 8.85×10−12 C2

N m2 = 8.85×10−12 F
m
, (2.3)

where the farad (F) is the derived SI unit of electrical capacitance.1 The constants µ0,
ε), and the speed of light c that may appear in SI units are related by

µ0ε0 =
1
c2 . (2.4)

Thus Coulomb’s law (2.1) expressed in SI units is

FFF =
q1q2

4πε0

xxx1 − xxx2

|xxx1 − xxx2|3
. (2.5)

Other systems of units such as Heaviside–Lorentz (where k = 1/4π) are favored in certain
areas of physics, but we shall primarily use the SI system of units.

The correctness of Eq. (2.5) has been explored in some depth by a variety of techniques
and over a range of distance scales. As discussed in Box 2.1, experimental limits suggest
that for classical electromagnetism we can assume the photon to be massless and the devi-
ation from Coulomb’s law to be negligible on all length scales investigated thus far.

2.2 The Electric Field

In experiments determining the interaction of charges one typically measures a force, as
implied by Eq. (2.1). However, much of the power of theoretical physics derives from
the ability to abstract broader implications from direct measurements. Perhaps no abstract
concept has been more powerful in the development of physics than that of a field, which is

1 The three constants that play a role in SI units, the permeability of free space µ0 defined in Eq. (1.2), the
permittivity of free space ε0 defined in Eq. (2.3), and the speed of light c, are related by µ0ε0c2 = 1. This has
the unfortunate implication that the form of equations written in SI units can be changed by using µ0ε0c2 = 1
to interchange constants appearing in them.



12 Electrostatics in Vacuum

Box 2.1 Deviations from the Inverse-Square Force Law

As established in the original experiments of Cavendish and Coulomb, the elec-
trostatic force between two charges in vacuum obeys an inverse square law (2.1).
Since the time of Cavendish and Coulomb, the precision of testing for possible de-
viations from the inverse square law has improved substantially. It is common to
report possible experimental deviation from the inverse square law in one of two
ways.

1. Assume that the electrostatic force has the dependence F ∼ 1/r2+ε and report
an upper experimental limit on ε .

2. Assume that the electrostatic potential has the Yukawa form

V ∼ r−1e−µr = r−1e−(mγ c/h̄)r
µ ≡

mγc
h̄

,

where mγ is the mass of the photon (which should be identically massless for an
inverse square force law). Then possible deviations from the inverse square law
are often reported as an upper limit on µ or an upper limit on mγ .

The original experiments of Cavendish using concentric spheres in 1772 estab-
lished an upper limit |ε| ≤ 0.02.

1. Greatly improved modern determinations based on Gauss’s law have pushed
this limit to ε = (2.7±3.1)×10−16 [26].

2. The best limits on the mass of the photon come from measuring planetary
magnetic fields. Such measurements place a limit on the photon mass of
mγ < 4×10−51 kg [7, 15, 18].

Hence the photon mass can be assumed to be zero for the entire regime of classical
electrodynamics, implying no significant deviation from the inverse square law.

simply an instance of something that is defined at every point of spacetime. Let us introduce
the concept of an electric field EEE acting on a test charge q by defining

FFF = qEEE. (2.6)

Thus the electric field may be interpreted as the force per unit test charge at a particular
point in spacetime. Since force is a vector and charge is a scalar, the electric field generated
by a charge is a vector field EEE(t,xxx) defined at each point of spacetime (t,xxx).2 Comparing
Eqs. (2.6) and (2.1), the electric field at a point P(xxx) produced by a point charge q1 at xxx1 is

EEE(xxx) = kq1
xxx− xxx1

|xxx− xxx1|3
, (2.7)

as illustrated in Fig. 2.2. The electric field is a function of position, but is independent of
2 In the present discussion of electrostatics we ignore time dependence so the electric field is assumed to be

defined at every point xxx of the spatial manifold, with no dependence on time.
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tFig. 2.2 The electric field vector EEE at a point P(xxx), generated by a charge q1 located at position xxx1.

whether there is a test charge located at P. (The field is generated by the source charges.)
The SI unit of charge is the coulomb (C) and the electric field EEE has units of volts per
meter in the SI system. The importance of the field concept in the development of modern
physics is elaborated in Box 2.2.

2.3 Principle of Superposition

Now let us address the more general case in Fig. 2.1(a) of the interaction of a test charge
with a set of n source charges. In principle this could be a quite complicated problem,
but it is an experimentally observed fact that as long as the interactions between charged
particles are not too large, and as long as we can ignore quantum effects at the microscopic
level, the interaction between any two charges is unaffected by the presence of all other
charges.3

Thus, the total force acting on the test charge Q in Fig. 2.1(a) can be obtained
to excellent approximation by summing the interactions of the charges pairwise,
while holding all other charges constant. This is termed the principle of linear
superposition (of forces). The ultimate source of this linearity may be viewed as
the linearity of the Maxwell equations (1.1) in the electric field EEE and magnetic
field BBB.

Since the principle of linear superposition applies to the forces computed from Eq. (2.1)

3 In the presence of strong electric fields such as those generated by powerful lasers, and in various vacuum
polarization phenomena observed in modern quantum field theory experiments, this linear superposition prin-
ciple may fail. However, we shall restrict ourselves explicitly in these notes to the classical linear regime,
where such effects may be neglected by hypothesis. It is fortunate for the development of the theory that the
formative experiments that laid the foundations of the classical theory of electricity and magnetism were all
performed under conditions where linear superposition holds very precisely, which greatly expedited their
original physical interpretation.



14 Electrostatics in Vacuum

Box 2.2 Significance of Fields in Electromagnetism

As suggested by Eq. (2.6), we generally measure forces and fields may be inferred
from that, suggesting a derivative role for fields. But modern physics places strong
emphasis directly on the fields. Indeed, Maxwell’s equations (1.1) are formulated
in terms of electric and magnetic fields, and the electromagnetic field is the central
concept of the theory of electromagnetism. The importance of fields is most obvious
in relativistic quantum field theory, which is not our subject here. However, the field
concept traces historically to the introduction of electric and magnetic fields in the
description of classical electromagnetism, which is our subject.

Action at a Distance
Originally it was believed that forces associated with charges, currents, and mag-
nets constituted action at a distance, meaning that the forces acted instantaneously
over any distance.a The modern view—shaped by experimental measurement and
the development of quantum field theory—is that fields are every bit as fundamental
as particles (arguably even more so). In this picture, forces are mediated by fields,
and the lightspeed limit set by special relativity means that no signal can transmit a
force faster than the speed of light, relegating action at a distance to the dustbin.

Actions Mediated by Fields
If, for example, a charge moves, the fields created by the charge change, but that
change isn’t felt immediately at every point (xxx, t) of spacetime. Maxwell’s equations
(1.1) describing electromagnetism require the change to be propagated through
changes in two vector fields, the electric field EEE(xxx, t) and the magnetic field BBB(xxx, t),
defined at each point of spacetime, and that those changes can propagate only at
a finite speed (less than or equal to the speed of light).

This abstract view was initially resisted by many, particularly because the fields
could exist in vacuum, and did not describe tangible matter. Modern physics is of
quite a different mind. Yes, the introduction of electric and magnetic fields allows
a simple and clean mathematical description of electromagnetic phenomena, but
the fields are not just mathematical abstractions; they are real physical entities (“as
real as a rinoceros” [6]). They carry concrete physical properties such as energy,
momentum, and angular momentum. This is most clear in quantum field theory,
where these physical attributes become properties of quanta of the field (photons)
and one views electromagnetic interactions as being mediated by exchange of vir-
tual photons. These photons associated with the electromagnetic field have ob-
servable consequences: at sufficiently high energy the collision of two photons can
produce matter in the form of an electron and positron pair; real as a rinoceros,
indeed! Quantum field theory implies that all non-gravitational fundamental inter-
actions (electromagnetic, strong, and weak) are mediated by the gauge bosons of
Fig. 1.1 that are the quanta of gauge fields generalizing the gauge symmetry of
photons. Such is the rich legacy of introducing the concept of fields in classical
electromagnetism.

a Similar statements apply to gravity, since Newton’s gravitational law implicitly assumes the force to be
applied instantly to a distant object. Replacement of Newtonian gravity with general relativity (a field
theory consistent with special relativity and the limiting speed of light) eliminated action at a distance
in gravitational physics.
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it applies also to the electric fields calculated from Eq. (2.7), by virtue of the linear rela-
tionship (2.6). Therefore, the electric field acting at position xxx in Fig. 2.1(a) is given by a
vector sum of contributions from all the source charges qi,

EEE(xxx) =
1

4πε0

n

∑
i=1

qi
xxx− xxxi

|xxx− xxxi|3
, (2.8)

where now to be definite we shall work in the SI system of units. In most practical problems
we will be able to assume that the charges are sufficiently small and numerous that they
can be approximated by a continuous charge density ρ(xxx′), such that the charge contained
in a small 3D volume element d3x′ ≡ dx′dy′dz′ centered at xxx′ is ∆q = ρ(xxx′)∆x∆y∆z. Then
the sum over discrete charges in Eq. (2.8) may be replaced by an integral over a continuous
charge distribution,

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3
d3x′. (2.9)

A discrete set of charges also can be described by a continuous charge distribution ρ(xxx)
if the Dirac delta function described in Appendix A.9 is used to pick out the locations of
each of the discrete charges,

ρ(xxx) =
n

∑
i=1

q1δ (xxx−XXX), (2.10)

since substitution of the charge density (2.10) in Eq. (2.9) and integrating using the proper-
ties of the delta function described in Appendix A.9 gives the sum over contributions from
discrete charges to the electric field in Eq. (2.8).

2.4 Gauss’s Law

The electric field for a continuous charge distribution may be calculated from Eq. (2.9).
However, evaluating the integral in this equation isn’t always the easiest solution for the
electric field. If a problem has some level of symmetry, often another integral result called
Gauss’s law can lead to an easier solution. In Fig. 2.3 we indicate a charge q enclosed by a
surface S. The normal component of EEE times a surface area element da is

EEE ·nnnda =
q

4πε0

cosθ

r2 da =
q

4πε0
dΩ, (2.11)

where in the last step we have used that cosθ da = r2 dΩ, with dΩ being the solid an-
gle subtended by da at the position of the charge. If the normal component of EEE is now
integrated over the entire surface,∮

S
EEE ·nnnda =

{
q/ε0 for q inside S,
0 for q outside S.

(2.12)
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tFig. 2.3 Closed surface S illustrating Gauss’s law. The electric field generated by the charge q is EEE,
the normal vector to the surface is nnn, and da is an element of surface area.

where
∮

S EEE ·nnnda is called the flux through the surface S. Equation (2.12) is Gauss’s law in
integral form for a single charge. For a set of discrete charges Gauss’s law takes the form,∮

S
EEE ·nnnda =

1
ε0

∑
i

qi, (2.13)

where the summation over i is restricted to charges qi that are inside the surface S. If the
charge distribution is continuous, Gauss’s law takes the form∮

S
EEE ·nnnda =

1
ε0

∫
V

ρ(xxx)d3x, (2.14)

where the integration is over the volume V contained within the surface S.4

Gauss’s law in Eqs. (2.12)-(2.14) may be viewed as integral formulations of the law of
electrostatics. Corresponding differential forms of Gauss’s law may be obtained using the
divergence theorem of Eq. (A.33).

Divergence theorem: For a vector field defined within a volume V that is en-
closed by a surface S, ∮

S
AAA ·nnnda =

∫
V

∇∇∇ ·AAAd3x, (2.15)

where the left side is the surface integral of the outwardly directed normal com-
ponent of the vector AAA and the right side is the volume integral of the divergence
of AAA.

4 Gauss’s law (2.14) is a consequence of (1) the forces between charges being of inverse square form, (2) the
central nature of the force, and (3) linear superposition of charges. Newtonian gravity obeys similar conditions,
so one can construct a Gauss’s law for Newtonian gravity, where the gravitational “charge” is mass and mass
density replaces charge density. Of course there is only one sign for the gravitational charge in Newtonian
gravity, since the gravitational force is always attractive. (In the absence of dark energy, which can effectively
turn gravity repulsive on cosmological scales.)
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Gaussian surfacetFig. 2.4 Examples of applying Gauss’s law to find the electric field. (a) A ball of uniformly
distributed charge with radius R, used in Example 2.1. (b) A cylinder carrying a charge
density proportional to the distance s from the cylindrical axis, used in Example 2.2.

The divergence theorem (2.15) allows Eq. (2.14) to be written in the form∫
V

(
∇∇∇ ·EEE − ρ

ε0

)
d3x = 0.

But this can be true generally only if the integrand vanishes, giving

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law), (2.16)

which is the differential form of Gauss’s law (2.14) for continuous charge distributions.
Thus, we have now obtained the first of Maxwell’s equations (1.1). Before proceeding,
let’s look at two examples of Gauss’s law in action [8].

Example 2.1 Figure 2.4(a) shows a charged solid 2-sphere (a ball)5 of radius R, for
which the total charge Q is assumed to be evenly distributed. What is the electric field
outside the ball? We may solve this easily using Gauss’s law in integral form. Imagine
surrounding the charged ball with a 2-sphere of radius r > R (this is called a Gaussian
surface). Applying Gauss’s law (2.13)∮

EEE ·nnnda =
1
ε0

Q.

Because of the spherical symmetry, EEE and nnnda point radially outward so that the scalar
product is trivial to evaluate: ∮

EEE ·nnnda =
∮

|EEE|da,

5 A 2-sphere is hollow when displayed in 3D space, consisting only of the 2D spherical surface. Mathematically,
a “solid 2-sphere”, which includes the interior of a 2-sphere, is called a ball (an open ball if the surface points
are not included and a closed ball if they are).
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and the magnitude |EEE| is constant over the surface by symmetry, so it can be pulled out of
the integral, ∮

|EEE|da = |EEE|
∮

da = 4πr2|EEE|.

Combining the preceding results,

4πr2|EEE|= 1
ε0

Q,

or finally,

EEE =
1

4πε0

Q
r2 r̂rr,

where r̂rr is a unit vector in the radial direction. Notice the well-known result that the field
external to the charge distribution is the same that would have been obtained by putting all
charge at the center of the ball.6

Example 2.2 Consider Fig. 2.4(b), where a long cylinder carries a charge density pro-
portional to the distance s′ from the axis of the cylinder, ρ = ks′, where k is a constant.
What is the electric field inside the cylinder? Let’s draw a Gaussian cylinder of radius s
and length L, as illustrated in Fig. 2.4(b). From Eq. (2.14), Gauss’s law for this surface is∮

EEE ·nnnda =
1
ε0

Q,

where Q is the total charge enclosed by the Gaussian surface, which is given by integrat-
ing the charge over the volume within the Gaussian surface using cylindrical coordinates
(Appendix A.7.2) with a cylindrical volume element dτ = sdsdφ dz

Q =
∫

ρdτ = k
∫ s

0
s′2ds′

∫ 2π

0
dφ

∫ L

0
dz

= 2πkL
∫ s

0
s′2ds′ =

2
3

πkLs3.

By symmetry EEE must point radially outward from the cylinder’s central axis, as indicated
in Fig. 2.4(b), so for the curved portion of the Gaussian cylinder∫

EEE ·nnnda =
∫

|EEE|da = |EEE|
∫

da = 2πsL |EEE|,

while the two ends contribute zero because EEE is perpendicular to nnnda. Thus, from Gauss’s
law,

2πsL |EEE|= 1
ε0

2
3

πkLs3

and the electric field is given by

EEE =
1

3ε0
ks2ŝss,

6 By similar arguments applied to Newtonian gravity, one finds that for a sphere containing gravitating matter
the gravitational field external to the sphere is the same as if all mass were concentrated at the center of the
sphere.
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QtFig. 2.5 Path for a line integral in an electric field generated by a charge Q at the origin.

where ŝss is a unit vector pointing radially from the central axis of the cylinder.

One sees generally from such examples that using Gauss’s theorem to determine the elec-
tric field is most useful when there is a high degree of symmetry that can be exploited to
evaluate integrals. Generally our goal with Gauss’s law is to simplify the integral on the
left side of Eqs. (2.13) or (2.14). Often this can be done if we can choose a gaussian surface
such that one or more of the following conditions holds.

1. The electric field is zero over the surface.

2. The electric field is constant over the surface, by symmetry arguments.

3. The integrand EEE ·nnnda reduces to the algebraic product |EEE|da because the vectors EEE and
nnn are parallel.

4. The integrand EEE ·nnnda is zero because the vectors EEE and nnn are orthogonal.

For example, we used the third condition in Example 2.1 and the third and fourth conditions
in Example 2.2 above. If none of these possibilities are fulfilled, Gauss’s law is still valid
but it may not be the easiest way to determine the electric field.

2.5 The Scalar Potential

Consider a line integral between two points A and B in a field generated by a single charge
at the origin, as illustrated in Fig. 2.5. In spherical coordinates (Appendix A.7.1) the electric
field EEE and line element dlll are

EEE =
1

4πε0

Q
r2 r̂rr dlll = dr r̂rr+ r dθθ̂θθ + r sinθdφ φ̂φφ , (2.17)
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where r̂rr, θ̂θθ , and φ̂φφ are unit vectors. Therefore, the line integral is∫ BBB

AAA
EEE ·dlll =

1
4πε0

∫ BBB

AAA

Q
r2 dr

=
−Q

4πε0r

∣∣∣∣RB

RA

=
1

4πε0

(
Q
RA

− Q
RB

)
. (2.18)

The integral around a closed path is then zero,∮
EEE ·dlll = 0, (2.19)

since Ra = Rb in that case. Now we may invoke Stokes’ theorem [Eq. (A.29)]:

Stokes’ theorem: If AAA is a vector field and S is an arbitrary open surface bounded
by a closed curve C, then ∫

S
(∇∇∇×AAA) ·nnnda =

∮
C

AAA ·dlll, (2.20)

where nnn is the normal to S, the line element on the curve C is dlll, and the path
in the line integration is traversed in a right-hand screw sense relative to nnn. A
geometrical interpretation of Stokes’ theorem is given in Box 2.3.

This implies that ∫
S
(∇∇∇×EEE) ·nnnda =

∮
P

EEE ·dlll = 0, (2.21)

and since this must be valid for any closed path, the integrand on the left side must vanish,

∇∇∇×EEE = 000. (2.22)

Thus, we have shown that the curl of an electric field EEE is zero.
Because of Eq. (2.22) and Stokes’ theorem, the line integral of the electric field around

any closed loop is zero, which implies that the line integral between points AAA and BBB in
Fig. 2.5 has the same value for all possible paths. Thus we can define a function Φ(xxx) by

Φ(xxx) =−
∫ xxx

O
EEE(xxx) ·dlll, (2.23)

where O is a chosen standard reference point. The function Φ(xxx) is called scalar potential
or the electric potential. The scalar potential associated with a point charge q at the origin
is given by

Φ(rrr) =
1

4πε0

(q
r

)
(2.24)
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Box 2.3 Geometrical Interpretation of Stokes’ Theorem [12]

For a 3D vector field AAA, Stokes’ theorem relates a surface integral of the curl vector
field ∇∇∇×AAA to a line integral around the (smooth) boundary of that surface:∮

C
AAA ·drrr =

∫
S
(∇∇∇×AAA) ·nnnds ≡

∫
S
(∇∇∇×AAA) ·dsss (Stokes’ theorem),

where S is the 2D surface enclosed by the 1D boundary C, the outward normal to
the surface is nnn, and the curl ∇∇∇×AAA is given in cartesian coordinates by

∇∇∇×AAA =

(
∂Az

∂y
− ∂Ay

∂ z

)
x̂xx+
(

∂Ax

∂ z
− ∂Az

∂x

)
ŷyy+
(

∂Ay

∂x
− ∂Ax

∂y

)
ẑzz.

The orientation of the surface nnn and the direction of the integration path around the
boundary are related by a right-hand rule:

Point the thumb of your right hand in the direction of a unit normal vector
near the edge of the surface and curl your fingers; the direction that your
fingers point indicates the integration direction around the boundary.

The physical content of Stokes’ theorem may be understood geometrically:

n

Cancel

in interior

(a)

(b) (c)

For the darker gray plaquettes in (b) of (a) the circulating currents cancel in the
interior, leaving only the contribution from the boundary (c). Generalizing to the
whole surface, as plaquette size tends to zero all interior contributions to the surface
integral may be expected to cancel, leaving only the boundary contributions.

where r is the separation between charge and point, and invoking superposition the poten-
tial generated by a collection of n charges is

Φ(rrr) =
1

4πε0

n

∑
i=1

qi

ri
. (2.25)
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For a continuous charge distribution the potential evaluates to

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′|

d3x′ (3D volume charge), (2.26a)

Φ(xxx) =
1

4πε0

∫
σ(xxx′)
|xxx− xxx′|

da′ (2D surface charge), (2.26b)

Φ(xxx) =
1

4πε0

∫
λ (xxx′)
|xxx− xxx′|

dl′ (1D line charge), (2.26c)

where ρ is a volume charge density, σ is a surface charge density, and λ is a line charge
density.

2.6 The Electric Field and the Scalar Potential

The electric field is special because it has vanishing curl. We shall now use this to reduce
finding the electric field (a vector problem) to a simpler scalar problem. The potential
difference between points AAA and BBB (see Fig. 2.5) is given by

Φ(BBB)−Φ(AAA) =−
∫ BBB

O
EEE ·dlll +

∫ AAA

O
EEE ·dlll

=−
∫ BBB

O
EEE ·dlll −

∫ O

AAA
EEE ·dlll

=−
∫ BBB

AAA
EEE ·dlll. (2.27)

Applying the fundamental theorem for gradients (A.27),

F(BBB)−F(AAA) =
∫ BBB

AAA
(∇∇∇F) ·dlll, (2.28)

to Eq. (2.27) then gives ∫ BBB

AAA
(∇∇∇Φ) ·dlll =−

∫ BBB

AAA
EEE ·dlll. (2.29)

But since Eq. (2.29) must be true for any points AAA and BBB, the integrands of the integrals on
the two sides of Eq. (2.29) must be equal and we obtain

EEE =−∇∇∇Φ, (2.30)

which is a differential version of Eq. (2.23).

The electric field vector EEE may be obtained by taking the (negative) gradient of
the scalar potential Φ.

In SI units force is measured in newtons and charge in coulombs, so electric fields EEE
have units of newtons per coulomb. The potential Φ has units then of newton-meters per
coulomb, or joules per coulomb, where a joule per coulomb is defined to be a volt.



23 Superposition of Scalar Potentials

A big advantage of the potential formulation is that if you know Φ you can obtain the
electric field simply by taking the gradient, as in Eq. (2.30). This is perhaps surprising
because Φ is a scalar with only one component, while EEE is a vector with three components.
The source of this seeming miracle is the restrictions placed on the components EEE by Eq.
(2.22), since expansion of ∇∇∇×EEE = 0 leads to the constraint equations (see Problem 2.5)

∂Ex

∂y
=

∂Ey

∂x
∂Ez

∂y
=

∂Ey

∂ z
∂Ex

∂ z
=

∂Ez

∂x
. (2.31)

There is an essential ambiguity in defining the potential Φ because of the arbitrary ref-
erence point O appearing in Eq. (2.23), since changing it shifts the potential by a constant
amount. Thus the potential itself has no clear physical meaning, but as long as we choose
the same reference O for all potentials,

1. differences between potentials (Φ(xxxi)−Φ(xxx j) are independent of the reference point
and

2. gradients of the potential ∇∇∇Φ are unaffected by shifting the reference point a constant
amount, since the derivative of a constant is zero,

so these have physical meaning. The selection of a reference point is in principle arbitrary,
but the most common choice in electrostatics is to take the reference point for potentials to
be an infinite distance away from the charges, where the potential drops to zero.7

2.7 Superposition of Scalar Potentials

An important property of the potential is that it obeys the superposition principle. We
introduced the principle of linear superposition in Section 2.3 with the hypothesis that the
forces acting on a test charge Q are the vector sum of contributions from each source charge
qi,

FFF = FFF1 +FFF2 +FFF3 + . . . (2.32)

and since FFF = QEEE, dividing the terms in Eq. (2.32) by Q implies linearity for the electric
fields EEE also,

EEE = EEE1 +EEE2 +EEE3 + . . . (2.33)

Likewise, from the preceding definitions the scalar potential Φ is expected to obey linear
superposition,

Φ = Φ1 +Φ2 +Φ3 + . . . (2.34)

meaning that the potential at a point xxx is the sum of the potentials due to all source charges
separately. However, there is a fundamental difference between linear superposition for
potentials and linear superposition for forces and electric fields.

7 This prescription requires more thought if a problem hypothesizes a charge distribution that extends to infinity.
In that case a different reference point O must be used. We won’t worry about that here, since real-world charge
distributions are typically bounded spatially.
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tFig. 2.6 (a) An electric dipole charge configuration used in Example 2.3. (b) Uniformly charged disk
of radius R and surface charge density σ used in Example 2.4.

Linear superposition of electrostatic forces and electric fields in Eqs. (2.32) and
(2.33) corresponds to vector sums, since FFF and EEE are vectors, but linear super-
position of potentials in Eq. (2.34) entails an ordinary arithmetic sum over scalar
quantities Φi, which is typically easier to deal with than a sum over vectors.

Examples 2.3 and 2.4 illustrate calculating the potential Φ of a charge distribution and then
taking its gradient to give the electric field.

Example 2.3 Let’s calculate the electric field for the electric dipole charge configuration
displayed in Fig. 2.6(a) at the point P, and also at a very large distance x ≫ a along the x
axis from the charges. At the point P the potential Φ is

Φ =
1

4πε0

(
q

x−a
+

−q
x+a

)
=

1
2πε0

(
qa

x2 −a2

)
.

The electric field is then oriented along the x axis and given by minus the gradient of the
potential

Ex =−∇∇∇Φ =−dΦ

dx
=

1
4πε0

(
aqx

(x2 −a2)2

)
.

The scalar potential and electric field may be approximated as

Φ ≃ 1
2πε0

(aq
x2

)
Ex ≃−dΦ

dx
=

1
πε0

(aq
x3

)
,

if x ≫ a, so that x2 −a2 ∼ x2.

Example 2.4 Let’s calculate the electric field at the point P along the x axis for the
charged disk of radius R and uniform surface charge density σ illustrated in Fig. 2.6(b).
For a ring of radius r and width dr the charge element at a distance (r2 + x2)1/2 from the
point P is dq = (2πrdr)σ . Then

dΦ =
1

2ε0

(
σrdr√
x2 + r2

)
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and the total Φ at the point P is obtained by integration over the disk,

Φ =
∫

dΦ =
∫ R

0

1
2ε0

(
σrdr√
x2 + r2

)
=

σ

2ε0

∫ R

0

r dr√
x2 + r2

=
σ

4ε0

∫ R

0

d(x2 + r2)√
x2 + r2

=
σ

2ε0

[√
x2 + r2

]R

0

=
σ

2ε0

(√
x2 +R2 − x

)
,

where we changed variables in the third line. Finally, the electric field at P is minus the
gradient of the potential,

Ex =−dΦ

dx
=

σ

2ε0

(
1− x√

x2 +R2

)
,

where by symmetry EEE has only x components.

For relatively simple charge distributions like those in Examples 2.3 and 2.4, we can work
out the potentials easily and then determine the electric field by taking the gradient of the
potential. However, for more complex situations we may need more powerful and system-
atic ways to determine potentials. In the next section we show that finding the potentials
can be cast in the form of solving a second-order partial differential equation. This ap-
proach may be preferred over the ones we have examined so far, particularly for problems
with complicated boundary conditions.

2.8 The Poisson and Laplace Equations

We already know from Eq. (2.22) that the curl of EEE vanishes. What is the divergence of the
electric field equal to? From Eq. (2.30) the divergence of EEE is

∇∇∇ ·EEE = ∇∇∇ · (−∇∇∇Φ) =−∇
2
Φ,

and comparing with Gauss’s law (2.16) gives Poisson’s equation,

∇
2
Φ =− ρ

ε0
(Poisson’s equation), (2.35)
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where in cartesian coordinates the Laplacian operator ∇2 is given by [see Eq. (A.19)]8

∇
2 =

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 , (2.36)

which operates on a scalar to return a scalar. For regions where there is no charge density
ρ = 0 and Poisson’s equation reduces to Laplace’s equation,

∇
2
Φ = 0 (Laplace’s equation). (2.37)

By construction, solving Poisson’s equation (or Laplace’s equation if ρ = 0) is equivalent
physically to solving for the potential Φ using Eq. (2.23), and once Φ has been determined
by either means the electric field can be calculated from Eq. (2.30).

Laplace’s equation (2.37) is linear: if each of a set of potentials {Φ1,Φ2,Φ3, . . . ,Φn}
satisfy it, then a linear combination of those solutions,

Φ ≡ a1Φ1 +a2Φ2 +a3Φ3,+ . . .+Φn,

where the ai are arbitrary constants, also satisfies it.

Example 2.5 Earlier it was asserted that Eq. (2.26a) gives the scalar potential Φ(xxx) for
a 3D continuous charge distribution. If correct, this Φ(xxx) should be a solution of the 3D
Poisson equation (2.35). Let’s check that it is. From Eq. (2.26a),

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′|

d3x′

and applying the Laplacian operator to both sides of this equation gives

∇
2
Φ(xxx) =

1
4πε0

∫
ρ(xxx′)∇2

(
1

|xxx− xxx′|

)
d3x′.

Evaluating the right side is potentially tricky in that the integrand is singular as xxx′ → xxx,
but this may be handled elegantly using that from Eq. (A.67) the Laplacian of |xxx− xxx′|−1 is
proportional to a Dirac delta function.

∇
2
(

1
|xxx− xxx′|

)
=−4πδ (xxx− xxx′),

giving immediately

∇
2
Φ(xxx) =− 1

ε0

∫
ρ(xxx′)δ (xxx− xxx′)d3x′ =−ρ(xxx)

ε0
,

which is Poisson’s equation (2.35). A longer solution that doesn’t invoke the Dirac δ -
function may be found in Ch. 1 of Jackson [15].

8 The Laplacian operator in spherical coordinates is given in Eq. (A.50) and in cylindrical coordinates in Eq.
(A.57). The Poisson and Laplace equations are partial differential equations, which are typically more difficult
to deal with than ordinary differential equations. We shall address method of solution for these equations
shortly.



27 Work and Energy in Electric Fields
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tFig. 2.7 Moving an electrical charge Q on a path between endpoints AAA and BBB in an electric field
generated by a set of source charges.

2.9 Work and Energy in Electric Fields

A question of fundamental importance in electrostatics is illustrated in Fig. 2.7: if we have
a stationary configuration of source charges and a test charge Q is moved along some path
between two points AAA and BBB, how much work will be done?

2.9.1 Work to Move a Test Charge

The electrical force exerted on the charge Q is the product of Q and the electric field EEE
generated by the source charges, FFF = QEEE. Thus a minimal force −QEEE must be exerted at
each point to move the charge along the path and the total work W done is given by the
line integral

W =
∫ BBB

AAA
FFF ·dlll =−Q

∫ BBB

AAA
EEE ·dlll = Q [Φ(BBB)−Φ(AAA)], (2.38)

where Eq. (2.27) has been used. Because the work was done against an electric field, it
is independent of path. Therefore the electrostatic force is conservative, meaning that it
depends only on the difference in potentials between the endpoints of the path and not on
the nature of the path followed. If we wish to move the charge from an infinite distance
away to a point BBB,

W = Q [Φ(BBB)−Φ(∞)], (2.39)

so if we make the standard choice that the reference point for the potential is Φ(∞) = 0,
the work done in moving a test charge from infinity to a point xxx ≡ BBB is

W = QΦ(xxx). (2.40)

Thus Φ(xxx) = W/Q and the scalar potential Φ(xxx) may be interpreted as the work per unit
charge required to move a test charge from infinity to the position xxx in an electric field. It
may also be interpreted as a potential energy stored in the fields of the assembled charge
configuration that could be released by moving all charges back to infinity. Example 2.6
illustrates using Eq. (2.40) to calculate the total work done in assembling a set of charges.
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Example 2.6 Let’s use Eq. (2.40) to calculate the total work done in assembling a set
of n charges qi, by bringing them from infinity to their final positions in a local assembly
of charges. The first charge costs nothing to move, since there are no assembled charges
and no electric field to fight against. Adding each additional charge will require the work
specified in Eq. (2.40) summed pairwise over contributions from all charges. Therefore the
total work to assemble the charge distribution is

W =
1
2

1
4πε0

n

∑
i=1

n

∑
j ̸=i

qiq j

ri j

=
1
2

n

∑
i=1

qi

(
n

∑
j ̸=i

1
4πε0

q j

ri j

)

=
1
2

n

∑
i=1

qi Φ(rrri), (2.41)

where ri j is the distance between charges i and j, the initial factor of 1
2 is to correct for

the double counting of pairs in the double summation, and the factor in parentheses on the
second line represents the potential Φ(rrri) at the position rrri of charge qi generated by all the
other charges [see Eq. (2.25)]. Equation (2.41) represents the work required to assemble
the n charges into some local configuration. Therefore, Eq. (2.41) also represents a total
(potential) energy stored in the electric fields of the final assembly of charges that could be
released by moving all charges back to infinity.

2.9.2 Energy of a Continuous Charge Distribution

We have seen in previous sections how to calculate the energy of a discrete set of charges.
Let’s now address the energy of a continuous distribution of charge. From Eq. (2.41) we
infer that assembling a continuous volume charge requires an amount of work

W =
1
2

∫
ρ Φdτ, (2.42)

where dτ is a volume element. This can be rewritten to eliminate the charge density ρ and
the scalar potential Φ in favor of the electric field EEE in the following way. Use Gauss’s law
ρ = ε0∇∇∇ ·EEE from Eq. (2.16) to express ρ in terms of EEE,

W =
ε0

2

∫
(∇∇∇ ·EEE)Φdτ, (2.43)

and integrate this by parts to give

W =
ε0

2

(
−
∫

V
EEE · (∇∇∇Φ)dτ +

∮
S

ΦEEE ·daaa,
)

(2.44)

where daaa ≡ nnnda. But from Eq. (2.30), ∇∇∇Φ =−EEE, so

W =
ε0

2

(∫
V

E2 dτ +
∮

S
ΦEEE ·daaa,

)
(2.45)
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where E ≡ |EEE|, and the integration volume V in the first term is large enough to enclose
all charge. If we let V → ∞ then the second (surface) term tends to zero relative to the first
term and we obtain

W =
ε0

2

∫
E2dτ, (2.46)

where it is understood that the integration is over all space. The use of Eq. (2.46) is illus-
trated in Example 2.7.

Example 2.7 Let’s calculate the energy of a uniformly charged spherical shell of total
charge Q and radius R. From the solution of Problem 2.4, inside the sphere EEE = 0 and
outside

EEE =
1

4πε0

Q
r2 r̂rr −→ E2 =

Q2

(4πε0)2r4 ,

where we work in spherical coordinates. Therefore, from Eq. (2.46),

W =
Q2

8πε0

∫
∞

R

dr
r2 =

1
8πε0

Q2

R
,

where all contributions to the energy have come from fields outside the sphere.

Background and Further Reading

Introductions to the material of this chapter may be found in Corson and Lorrain [4], Grif-
fiths [8], Kamberaj [17], Lorrain and Corson [21], and Purcell and Morin [23]. More ad-
vanced treatments may be found in Jackson [15], Garg [6], Chaichian et al [3], Zangwill
[27], and Wald [25].
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Problems

2.1 Find the electric field produced by an infinite plane that carries a uniform surface
charge σ .

2.2 Two infinite parallel planes have equal but opposite charge densities ±σ .

I II III

+σ −σ

Find the electric fields in regions I, II, and III.
2.3 An isolated good conductor in electrostatic equilibrium (no net motion of electrons)

has the following properties.

1. The interior electric field is zero.
2. Any excess charge resides on the surface.
3. The electric field just outside a charged conductor is perpendicular to the surface

with a magnitude σ/ε0, where σ is the surface charge density at that point.
4. If the conductor is of irregular shape, the surface charge density σ is greatest

where the surface has the largest local curvature (smallest radius of curvature).

Use Gauss’s law to prove each of these properties.
2.4 A thin spherical shell of radius a has a total charge of Q distributed uniformly over

its surface, as illustrated in the following figure.

a

r

ar

(a) (b)

Gaussian

surfaces

Find the electric field inside and outside the spherical shell using the Gaussian sur-
faces indicated by dashed circles.

2.5 P rove that the components of the electric field EEE satisfy the constraints of Eq. (2.31).



3 Electrostatic Boundary Value Problems

In the preceding chapter we introduced the Poisson equation in Eq. (2.35), with solutions
corresponding to scalar potentials Φ(xxx) in the presence of a charge density, and the Laplace
equation in Eq. (2.37) with solutions corresponding to scalar potentials Φ(xxx) in the absence
of a charge density. Those solutions result from solving the corresponding partial differen-
tial equations subject to boundary conditions, which can be a highly nontrivial matter. In
this chapter we address the nature of the solutions of the Poisson and Laplace equations,
and some actual means of obtaining solutions.

3.1 Properties of Conductors

There are a number of categories for the classification of matter in materials science. One
of the most fundamental distinctions is between1

1. insulators (often termed dielectrics in electromagnetism) which correspond to matter
with charge carriers tightly bound to atoms or molecules that do not transport electrical
charge well, and

2. conductors, which have many delocalized charge carriers that are free to transport elec-
trical charge. Conductors are also often called metals.

The charge carriers are typically electrons, electron holes, or ions, but for purposes of
discussion we shall normally assume electrons to be the charge carriers.

The free mobility of charge carriers in good conductors leads to many of their basic prop-
erties. A good conductor in electrostatic equilibrium is expected to exhibit the following
properties (see Problem 2.3)

1. The electric field inside a conductor vanishes, EEE = 0. Qualitatively this is because if
there were an electric field inside the conductor electrons would be accelerated, vio-
lating the assumption of electrostatic equilibrium. More precisely, consider Fig. 3.1(a)
where a conducting slab is immersed in an external electric field EEE. Initially the exter-
nal field will attract negative charges to the left side of the slab, leaving a net positive
charge on the right side of the slab. This polarization of charge will create an internal
electric field EEE ′ that opposes the external field (remember the convention: the electric
field vector points from positive to negative charge). This piling up of negative charges

1 There are also things in between such as semimetals or semiconductors that transport charge poorly, or only
under certain conditions. We will leave finer classification to materials science for now and concentrate on the
behavior of good (ideal) conductors and insulators

31
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E
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(b) (c)

Gaussian
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Gaussian
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Area = A
E

tFig. 3.1 (a) Conducting slab in a uniform electric field EEE. (b) Gaussian surface (dashed curve)
inside a conductor. (c) Cylindrical gaussian surface perpendicular to the surface of a
conductor.

on one side and positive charge on the right in response to an external field is called an
induced charge. Charge will continue to flow until the induced internal electric field EEE ′

exactly cancels the external field, leaving a net zero electric field inside the conductor.
Because this is a conductor the charge carriers are extremely mobile and the generation
of internal fields that cancel the external field typically occurs on a timescale so short
that it can be assumed to be instantaneous for most considerations.

2. Consider the gaussian surface shown in Fig. 3.1(b). From Gauss’s law with zero internal
electric field (point 1 above),∮

S
EEE ·nnnda =

∮
S

000 ·nnnda = 0 =
Q
ε0
,

where Q is the total enclosed charge. Hence the absence of an electric field means
necessarily that the charge density ρ = 0 in the interior of the conductor.

3. As a consequence of Gauss’s law, any excess charge in a conductor must reside at the
surface of the conductor (see Problem 2.3). This follows immediately from point 2
above. Since the gaussian surface (dashed curve) in Fig. 3.1(b) can be place arbitrarily
close to the surface, any excess charge can only exist at the surface.

4. Any electric field outside the conductor is generated by the surface charge and is per-
pendicular to the surface. Consider Fig. 3.1(c), where we construct a cylindrical gaus-
sian surface with the end faces parallel to the surface of the conductor that is partially
inside and partially outside the conductor. If at a point on the surface EEE had a component
tangent to the surface of the conductor, this would cause electrons to move along the
surface and disturb electrostatic equilibrium. Thus EEE is perpendicular the the surface
of the conductor and there is no flux through the curved part of the gaussian cylinder.
There is also no flux through the flat face of the cylinder inside the conductor, because
EEE is zero there (point 1 above). Hence the net flux is only through the flat face of the
gaussian cylinder outside the conductor. Applying Gauss’s law to this surface,∮

S
EEE ·nnnda =

∫
base

|EEE|da = EA =
Q
ε0

=
σ

ε0
,
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ε

A σ

tFig. 3.2 Discontinuous normal of EEE at surface of a conductor. The surface charge density is σ and
the top area of the rectangular gaussian surface is A.

where σ is the surface charge density and A is the area of the endplate of the cylin-
der. Thus any external electric field is proportional to the surface charge density and
perpendicular to the surface.

5. The potential Φ(xxx) has the same value at each point in the conductor (a conductor is an
equipotential), since for any two points in the conductor or on its surface,

Φ(AAA) = Φ(BBB) =−
∫ BBB

AAA
EEE ·dlll = 0,

because EEE = 0.
6. If the conductor is of irregular shape, the surface charge density σ is greatest where the

surface has the largest local curvature (smallest radius of curvature). Proof: Consider
an irregularly shaped conductor, as in Fig. 3.1(b), and partition the surface into small
elements of area dai subtending equal angles measured from the center of the conductor.
Points 1 and 3 above then require that σi dai be constant, and since dai depends on the
radius of curvature, the smaller the radius of curvature (the larger the curvature) the
larger the local surface charge density σ .

If conductors are present in a problem, these properties of conductors will often play a
significant role in determining boundary conditions and corresponding solutions.

3.2 Capacitance

By Coulomb’s law the electric field for an isolated conductor is proportional to the source
charge Q and therefore the potential Φ is also, so Q and Φ are proportional to each other.
The constant of proportionality is called the capacitance C. For an isolated conductor car-
rying a charge Q with potential Φ, the capacitance is

C =
Q
Φ
. (3.1)

In the SI system the charge is measured in coulombs, the potential in volts, and the capac-
itance in farads (F),2 with 1F ≡ 1coulomb/volt.

2 The farad is a very large unit for typical phenomena, so it is common to use microfarads (1 µF = 10−6 F) and
picofarads (1pF = 10−9 F) as units of capacitance in practical calculations.
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s
C = 

ε0A

s
Charge +Q

Charge -Q

Φ+

Φ-

Area = A

tFig. 3.3
A parallel-plate capacitor. Adapted from Ref. [23].

3.2.1 Parallel-Plate Capacitors

Capacitance is also a very useful concept in dealing with the change and potential asso-
ciated with two or more conductors. The generic example is the parallel-plate capacitor
illustrated in Fig. 3.3. For two conductors the capacitance is defined to be the charge on the
positive plate divided by the difference in potential between the two plates. If we define
the difference in potential for two conductors to be V ,

V ≡ Φ+−Φ−, (3.2)

the capacitance is given by

C =
Q
V

(two conductors). (3.3)

For the parallel-plate capacitor in Fig. 3.3 the capacitance depends only on the geometry,

C =
ε0A

s
(parallel-plate capacitor), (3.4)

where A is the surface area of a plate and s is the separation between the (assumed parallel)
plates.

As will be discussed in Section 4.1, the capacitance of a capacitor like that in Fig. 3.3
can be increased significantly by replacing the air gap between the electrodes with a layer
of insulating (dielectric) material such as teflon. As will be illustrated in Box 4.1, this is
a consequence of the electric field polarizing the charge distribution in the dielectric layer
between the plates.

3.2.2 Energy Stored in a Capacitor

Charging a capacitor (for example, by connecting the two plates in Fig. 3.3 to the poles
of a battery) stores energy in the electric field created between the oppositely-charged
electrodes of the device. We may determine how much energy by computing the work
done to charge the capacitor to a particular level. Consider the parallel-plate capacitor of
Fig. 3.3. If at some point in the charging process the charge on the positive plate is q, from
Eqs. (2.38) and (3.3) the work increment dW required to add the next charge increment dq
is given by

dW =
( q

C

)
dq, (3.5)
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implying that the total work that must be done to charge the plate from q = 0 to q = Q is

W =
∫

dW =
∫ Q

0

( q
C

)
dq =

Q2

2C
. (3.6)

Therefore, using Q =CV from Eq. (3.3), the work required to charge to a potential differ-
ence V between the electrodes is

W =
1
2

CV 2, (3.7)

for a capacitor having capacitance C. For a parallel-plate capacitor this takes the specific
form

W =
1
2

Aε0

d
V 2, (3.8)

where A is the area of a plate and d is the separation of the plates.

3.3 Electric Fields and Surface Charge Layers

The electric field exhibits a discontinuity if a surface charge layer is crossed. Consider
Fig. 3.2, which shows a small piece of a surface having a surface charge density σ . We
place a very thin rectangular gaussian box of height ε that extends vertically just below
and just above the surface. From Gauss’s law,∮

S
EEE ·daaa =

Q
ε0

=
σA
ε0

,

where Q = σA is the enclosed charge and daaa = nnna. In the limit that ε → 0 the sides of the
box contribute no flux. The electric fields due to the surface charge are perpendicular to the
local plane and parallel to nnn, so ∮

S
EEE ·daaa = E

∫
da = EA

and

EEE =
σ

2ε0
n̂nn, (3.9)

where n̂nn is a unit vector perpendicular to the surface and pointing away from it in Fig. 3.2.
Then the difference between electric fields above and below the plane is

EEEabove −EEEbelow =
σ

ε0
n̂nn, (3.10)

Thus, the electric field is discontinuous at the boundary, changing by a magnitude σ/ε0.
The scalar potential, on the other hand, is continuous across the boundary since if AAA is a

point just below the surface and BBB is a point just above it,

Φabove −Φbelow =−
∫ BBB

AAA
EEE ·dlll, (3.11)



36 Electrostatic Boundary Value Problems

which tends to zero as the distance between AAA and BBB is decreased. The gradient of Φ is
related to EEE by EEE =−∇∇∇Φ, so it inherits the discontinuity in EEE,

∇∇∇Φabove −∇∇∇Φbelow =− σ

ε0
n̂nn. (3.12)

This can also be rewritten as

∂Φabove

∂n
− ∂Φbelow

∂n
=− σ

ε0

∂Φ

∂n
= ∇∇∇Φ · n̂nn, (3.13)

where ∂Φ/∂n is the normal derivative (directional derivative evaluated in a direction per-
pendicular to the surface). These boundary conditions are valid only just above and just
below the surface, so the above equations are valid only in the limit that we approach the
surface in Fig. 3.2 very closely from the top or bottom.

3.4 Properties of Poisson and Laplace Solutions

Since the Poisson or Laplace equations can be difficult to solve with appropriate bound-
ary conditions for many real-world problems, it is useful to catalog those features that
are generic. Let us consider one-dimensional equations first before tackling 2D and 3D
versions.

3.4.1 One-Dimensional Laplace Equation

Laplace’s equation in one dimension is a function of a single variable, which we choose to
be x,

∇
2
Φ = 0 −→ ∂ 2Φ

∂x2 = 0 −→ d 2Φ

dx2 = 0, (3.14)

where we indicate explicitly in the last step that the usual partial differential equation
(PDE) reduces to an ordinary differential equation (ODE), if there is only one variable.
This ordinary differential equation (3.14) has a general solution

Φ(x) = ax+b, (3.15)

which graphs as a straight line parameterized by the constants a and b (there are two param-
eters because it is a solution to a second-order ordinary differential equation). The values of
the parameters are determined by imposing boundary conditions. In this case two bound-
ary conditions are required, since there are two undetermined parameters. In this example,
the boundary conditions could consist of specifying Φ(x) at two different values of x. The
boundary conditions in actual applications reflect the detailed physics of the system being
modeled by Eq. (3.14).

This solution of the 1D Laplace equation has two unique features (which will carry over
in suitable form to 2D and 3D).
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1. A solution Φ(x) is an average of Φ(x− c) and Φ(x+ c),

Φ(x) =
1
2
[Φ(x+ c)+Φ(x− c)] , (3.16)

for any c.
2. There can be no local maxima or minima for the solution as a function of the parameter

x, which actually follows from the first point. If there were a local maximum or mini-
mum of Φ at some value of x it could not be the average of points on either side of it,
contradicting feature 1.

Thus, maxima or minima can occur only at the endpoints of the plot.

3.4.2 2D and 3D Laplace Equations

Let us now move to more realistic 2D and 3D versions of Laplace’s equation, where we
must now solve equations of the form

∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 = 0
∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 +
∂ 2Φ

∂ z2 = 0 (3.17)

In general this introduces a higher level of difficulty than for the 1D case because solution
of PDE’s with boundary conditions are typically more complex than solution of ODEs. We
will illustrate for 3D.

The solutions of the Laplace and Poisson equations have two unique features that gen-
eralize those found in 1D.

1. The value of the solution Φ(xxx) at a point xxx is an average of values over a sphere centered
at xxx.

Φ(xxx) =
1

4πR2

∮
Φda, (3.18)

where the integral is over the surface of a sphere of radius R centered at xxx.
2. Because of point 1, the solution cannot have local minima or maxima and extrema must

occur on the boundaries.

Example 3.1 Let’s check point 1 for a single point charge q outside a sphere. For
Fig. 3.4 the law of cosines gives for the distance d from the charge q to the patch da,

d2 = r2 +R2 −2rRcosθ .

At a single point on the surface of the sphere the potential is (see Fig. 3.4),

Φ =
1

4πε0

q√
r2 +R2 −2rRcosθ

,
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d
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θ

q

tFig. 3.4 Averaging Φ over a sphere of radius R with a single point charge q external to the sphere.

and the average over the sphere is from Eq. (3.18)

Φavg =
1

4πR2
q

4πε0

∫
(r2 +R2 −2rRcosθ)−1/2R2 sinθ dθ dφ

=
q

4πε0

1
2rR

(r2 +R2 −2rRcosθ)1/2
∣∣∣π
0

=
q

4πε0

1
2rR

[(r+R)− (r−R)]

=
1

4πε0

q
r
,

which is the potential due to q at the center of the sphere.

3.5 Uniqueness Theorems

Use of the Poisson or Laplace equations to determine the potential Φ requires the solu-
tion of partial differential equations with boundary conditions. A simple example of such
a problem is illustrated in Fig. 3.5. For partial differential equations it is often not immedi-
ately obvious what constitutes appropriate boundary conditions (meaning that they allow a
solution and that it is physically well-behaved). The proof that a given set of boundary con-
ditions fits the bill is called a uniqueness theorem. Two categories of boundary conditions
are common in electrostatics problems.

1. Dirichlet boundary conditions correspond to specification of the potential on a closed
surface.

2. Neumann boundary conditions correspond to specification of the electric field at every
point on the surface (which is equivalent to specifying the normal derivative of the
potential, or the surface charge density, everywhere the surface).

This leads to two uniqueness theorems.



39 Uniqueness Theorems
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Φ=Φ
0

Φ=0
Φ=0

Φ=0

Φ=0

Φ=0tFig. 3.5 Generic example of an electrostatics problem formulated in a 3D volume V that is bounded
by a 2D surface S. In this case the (finite) volume V is surrounded by a rectangular
conducting box S with boundary conditions corresponding to five of the six conducting box
faces held at zero potential, Φ = 0, and one face at a finite potential, Φ = Φ0. Since the
potential is being specified on the bounding surface S, this is an example of Dirichlet
boundary conditions. The problem would typically be to solve for the electrostatic potential
Φ(x,y,z) in the volume V , subject to the boundary conditions on S. If the charge density
ρ(x,y,z) is zero in the volume V , this would correspond to solving the Laplace equation,
subject to the boundary conditions.

Uniqueness Theorem I: The solution of Poisson’s or Laplace’s equations in
some volume V is uniquely determined if Φ is specified everywhere on the
boundary surface S of the volume V .

The simplest way to set boundary conditions is to specify the value of the scalar field
Φ on all surfaces surrounding the region (Dirichlet boundary conditions). Then the first
uniqueness theorem applies. However, in some situations we may not know the potential
at the boundaries but we do know the total charge on conducting surfaces. This leads to a
second uniqueness theorem.

Uniqueness Theorem II:
If a volume V is surrounded by conductors of specified charge density ρ , the
electric field is uniquely determined if the total charge on each conductor is spec-
ified.

Thus the second uniqueness theorem is appropriate for Neumann boundary conditions. Let
us now turn to proof and a deeper look at these uniqueness theorems.
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3.6 Uniqueness Theorems by Green’s Methods

From a formal point of view, the solution of the Laplace or Poisson equation in a volume
V bounded by a surface S with either Dirichlet or Neumann boundary conditions on S (for
example, Fig. 3.5) can be obtained using Green’s function methods [15]. These may be
derived beginning with the divergence theorem,∮

S
AAA ·nnnda =

∫
V

∇∇∇ ·AAAd3x, (3.19)

which is valid for any well-behaved vector field AAA in a volume V bounded by the closed
surface S. Let AAA = φ∇∇∇ψ where φ and ψ are arbitrary scalar fields. Then

∇∇∇ · (φ∇∇∇ψ) = φ∇
2
ψ +∇∇∇φ ·∇∇∇ψ (3.20)

and

φ∇∇∇ψ ·nnn = φ
∂ψ

∂n
, (3.21)

where ∂/∂n is the normal derivative at the surface, directed from inside to outside the
volume V . Substitution of Eqs. (3.20) and (3.21) into the divergence theorem (3.19) then
gives Green’s first identity∫

V
(φ∇

2
ψ +∇∇∇φ ·∇∇∇ψ)d3x =

∮
S

∂ψ

∂n
da (Green’s first identity). (3.22)

If we then subtract from Eq. (3.22) the same expression but with φ and ψ interchanged,
the ∇∇∇φ ·∇∇∇ψ terms cancel and we obtain Green’s theorem (also termed Green’s second
identity)∫

V
(φ∇

2
ψ −ψ∇

2
φ)d3x =

∮
S

[
φ

∂ψ

∂n
−ψ

∂φ

∂n

]
da (Green’s theorem). (3.23)

Let us now choose a particular function for ψ ,

ψ ≡ 1
R
=

1
xxx− xxx′

,

where xxx is the observation point and xxx′ is the integration variable, set φ equal to the scalar
potential φ = Φ, use Poisson’s equation

∇
2
Φ =− ρ

ε0

and use that from Eq. (A.67)

∇
2
(

1
R

)
= 4πδ (xxx− xxx′)

so that Eq. (3.23) becomes∫
V

[
−4πΦ(xxx′)δ (xxx− xxx′)+

1
ε0R

ρ(xxx′)
]

d3x′ =
∮

S

[
Φ

∂

∂n′

(
1
R

)
− 1

R
∂Φ

∂n′
da′
]
. (3.24)
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Then, if xxx lies within the volume V , this becomes

Φ(xxx) =
1

4πε0

∫
V

ρ(xxx′)
R

d3x′+
1

4π

∮
S

[
1
R

∂Φ

∂n′
−Φ

∂

∂n′

(
1
R

)]
da′. (3.25)

Notice two important implications of this result.

1. If the surface S goes to infinity and the electric field on S falls off faster than R−1, the
surface term in Eq. (3.25) vanishes and we recover the usual result of Eq. (2.26a),

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′|

d3x′.

2. In the second (surface) term both the the scalar potential Φ and the normal derivative
of the scalar potential ∂Φ/∂n′ appear. The first is associated with Dirichlet bound-
ary conditions and the second with Neumann boundary conditions. Thus Eq. (3.25) is
overdetermined, since it isn’t permitted to impose both types of boundary conditions on
the same closed surface. Since it is overdetermined, Eq. (3.25) is not a valid solution.
In Section 3.7 we shall address how to correct this deficiency.

Let us now use Green’s first identity to show that the use of either (but not both) Dirichlet
or Neumann boundary conditions defines a unique potential problem. Assume that the
solution is not unique and that there are two potentials, Φ1 and Φ2 that satisfy the same
Poisson equation. Let

U = Φ2 −Φ1 (3.26)

Then ∇2U = 0 inside the volume V and on the boundary S either U = 0 (Dirichlet boundary
conditions) or ∂U/∂n= 0 (Neumann boundary conditions). From Eq. (3.22) with φ =ψ =

U , ∫
V
(U∇

2U +∇∇∇U ·∇∇∇U)d3x =
∮

S
U

∂U
∂n

da. (3.27)

with the specified properties of U and either type of boundary condition this reduces to∫
V
|∇∇∇U |2 d3x (3.28)

which implies that ∇∇∇U = 0. Thus, U is constant inside V . For Dirichlet boundary con-
ditions U = 0 on S, so U = Φ2 −Φ1 = 0 inside V and the solution is unique. Likewise,
for Neumann boundary conditions the solution is unique, apart from an arbitrary additive
constant.

Thus we have shown that for either Dirichlet or Neumann boundary conditions the solu-
tion of the Poisson equation is unique. By similar proofs the solution is unique if the closed
surface S has mixed boundary conditions (part with Dirichlet boundary conditions and part
with Neumann boundary conditions). However, since Dirichlet and Neumann boundary
conditions each define a unique solution, imposing both Dirichlet and Neumann condi-
tions on the same surface (Cauchy boundary conditions) will overdetermine the system
and no reliable solution will exist.

Let us summarize some general statements about Dirichlet and Neumann boundary con-
ditions in electrostatics problems gleaned from the preceding discussion.
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Box 3.1 The Helmholtz Theorem

Let FFF(rrr) be any continuous vector field with continuous first partial derivatives.
Then FFF(rrr) can be uniquely expressed in terms of the negative gradient of a scalar
potential Φ(rrr) and the curl of a vector potential AAA(rrr),

FFF(rrr) =−∇∇∇Φ(rrr)+∇∇∇×AAA(rrr).

This can also be written as the Helmholtz decomposition,

FFF(rrr) = FFFL(rrr)+FFFT(rrr),

where L denotes a longitudinal component and T a transverse component of a
vector field. The theorem is sometimes paraphrased as a uniqueness statement
that any vector field whose curl and divergence are known is uniquely determined.
To be precise:

A vector field whose curl and divergence are known everywhere is
uniquely determined, provided that the sources vanish at infinity, and that
the field vanishes at infinity at least as fast as r−2.

We will have more to say about this in later discussion of gauge invariance and
transverse and longitudinal components of the electromagnetic field.

1. One can specify either Dirichlet or Neumann constraints at each point on a boundary,
but not both. Since either Dirichlet or Neumann conditions are adequate, if both are
specified the system is overdetermined.3

2. It is legitimate to specify parts of a boundary using Dirichlet conditions and other parts
using Neumann conditions.

3. The uniqueness property means that a solution obtained by any method that we wish
is the correct solution if it satisfies the equations and implements the correct boundary
conditions.

Much of the uniqueness of solutions for the Poisson and Laplace equations follows from a
more general theorem called the Helmholtz Theorem that is described in Box 3.1.

3 If both Dirichlet and Neumann boundary conditions are specified for a given part of a bounding surface the
boundary condition is said to be Cauchy. Mathematically, an overdetermined system effectively has more
equation constraints than unknowns. Such a system is typically inconsistent (no set of values for parameters
satisfies all equations), and its equations can be manipulated to obtain contradictory results.
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3.7 Boundary-Value Problems by Green Functions

In obtaining the result of Eq. (3.25) (recall: it is not a valid solution, because the boundary
conditions are overdetermined) we chose the function ψ to be 1/|xxx− xxx′|, which satisfies4

∇∇∇
′2
(

1
|xxx− xxx′|

)
=−4πδ

3(xxx− xxx′). (3.29)

The function 1/|xxx−xxx′| is one of a class of functions called Green functions that satisfy Eq.
(3.29). Generally a Green function G(xxx,xxx′) satisfies

∇∇∇
′2G(xxx,xxx′) =−4πδ (xxx− xxx′) (3.30)

where we define

G(xxx,xxx′) =
1

|xxx− xxx′|
+F(xxx,xxx′), (3.31)

with the function F(xxx,xxx′) satisfying the Laplace equation inside the volume V ,

∇∇∇
′2F(xxx,xxx′) = 0. (3.32)

The first term on the right side of Eq. (3.31) is the simplest Green function and is called the
Green function of free space (physically it gives the response at a point xxx to a unit charge
placed at xxx′),

G0(xxx,xxx′) =
1

|xxx− xxx′|
. (3.33)

Recall that we derived Eq. (3.25) by substituting G0(xxx,xxx′) into Green’s theorem (3.23), but
Eq. (3.25) is not a valid solution because it mixes Dirichlet and Neumann boundary terms in
the surface integral. The additional term F(xxx,xxx′) in the generalized Green function (3.31)
raises the possibility that if we substitute Eq. (3.31) into Green’s theorem, the function
F(xxx,xxx′) can be chosen to eliminate from the resulting surface integral either the Dirichlet
or the Neumann terms, thus leaving a result with consistent boundary conditions.

Indeed, if we substitute φ = Φ, and ψ = G(xxx,xxx′) into Green’s theorem (3.23) and use
the properties (3.30), we obtain a generalization of Eq. (3.25),

Φ(xxx) =
1

4πε0

∫
V

ρ(xxx′)G(xxx,xxx′)d3x′

+
1

4π

∮
S

[
G(xxx,xxx′)

∂Φ

∂n′
−Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′. (3.34)

Now the freedom to choose F(xxx,xxx′) in the definition (3.31) of the Green function means
that we can make the surface integral depend on a chosen type of boundary condition.

1. If we desire Dirichlet boundary conditions we require that G(xxx,xxx′) = 0 for xxx′ on S.

4 The operator ∇∇∇
′2 is the Laplace operator ∇2 acting on xxx′ rather than xxx.
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Then the first term in the surface integral of Eq. (3.34) vanishes and the solution with
Dirichlet boundary conditions is

Φ(xxx) =
1

4πε0

∫
V

ρ(xxx′)G(xxx,xxx′)d3x′− 1
4π

∮
S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′. (3.35)

2. If instead we desire Neumann boundary conditions, we must be a little more careful.
The obvious choice ∂G(xxx,xxx′)/∂n′ = 0 for xxx′ on S indeed makes the second term in the
surface integral of Eq. (3.34) vanish. But application of Gauss’s theorem to Eq. (3.30)
indicates that ∮

S

∂G
∂n′

da′ =−4π, (3.36)

implying that the simplest allowable boundary condition is

∂G(xxx,xxx′)
∂n′

=−4π

Σ
for xxx′ on S, (3.37)

where Σ is the total area of the bounding surface S. Then the solution with Neumann
boundary conditions is

Φ(xxx) = ⟨Φ⟩S +
1

4πε0

∫
V

ρ(xxx′)G(xxx,xxx′)d3x′+
1

4π

∮
S

∂Φ

∂n′
Gda′, (3.38)

where ⟨Φ⟩S is the average of the potential over the entire surface.

Thus, we have shown formally how to impose consistent boundary conditions in an elec-
trostatic boundary-value problem.

3.8 Method of Images

In the method of images one replaces the actual Poisson or Laplace problem with a different
one (analog problem) that is easier to solve, but that is tailored to have boundary conditions
equivalent to those of the actual problem. Then, since the analog problem has the same
boundary conditions and is a solution of the Laplace or Poisson equation just as the actual
problem, Uniqueness Theorem I supports the validity of the solution.

In Fig. 3.6(a) we consider a charge q placed at a distance d above an infinite conducting
plane that is grounded (held at the potential Φ = 0). What is the potential in the region z >
0? The presence of the charge will polarize the infinite conducting plane, so the potential
will have a part associated with the charge q and a part generated by the polarized infinite
conducting plane.. How can we determine the field in the region above the conducting
plane when we don’t know beforehand the distribution of the polarized charge? One way
is to solve Poisson’s equation for z > 0 with the boundary conditions,

1. Φ = 0 at z = 0, since the conducting plane is grounded.
2. Φ → 0 at very large distances from the charge.



45 Method of Images

q

d

(a) (b)

Infinite

plane y

z

x

q

-q

d

d
y

z

xΦ=0tFig. 3.6 (a) Charge a distance d above an infinite conducting plane held at zero potential. (b) An
analogous image-charge configuration with the charge −q on the negative z axis, and no
infinite plane.

The first uniqueness theorem indicates that there can be only one independent solution of
the Poisson equation. Thus, if we can find by any means such a solution (including by
guessing), it must be the correct one.

Now consider the completely different problem illustrated in Fig. 3.6(b). This problem
has the original charge q at a distance d above the origin, but also has an additional charge
−q at a distance d below the origin, and there is no conducting plane. The problem in
Fig. 3.6(b) is simple and can be solved easily using Coulomb’s law,

Φ(x,y,z) =
1

4πε0

(
q√

x2 + y2 +(z−d)2
− q√

x2 + y2 +(z+d)2

)
, (3.39)

where the quantities in the denominators are distances between the charge and the point
P(x,y,z). But how does this help us? We want the solution for the problem of Fig. 3.6(a),
not Fig. 3.6(b). Well, notice that the boundary conditions are the same for the two prob-
lems: There is a single charge q in the region z > 0 (which is where we seek a solution),
and from Eq. (3.39),

1. the potential Φ is equal to zero in the x− y plane, and
2. at large distances from the charges, Φ → 0.

Thus, we conclude that the solution of our original problem in Fig. 3.6(a) is given by Eq.
(3.39), which is the solution of the problem Fig. 3.6(b). This approach is called the method
of images. It can be powerful, but is dependent on thinking up an analog problem that has
the same boundary conditions and is easy to solve. Notice that the image charges must in
general be put in a region that is not in the domain of the original problem. In the present
case we put the image charge in the region z < 0 but required a solution for z > 0.

Now that the potential has been found in Eq. (3.39) for the upper half plane we can
determine the induced charge in the conducting plane caused by the positive charge at
z = d. From Eq. (3.13) keeping the above contribution,

σ =−ε0
∂Φ

∂n
. (3.40)
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The normal derivative of Φ at the surface is in the z direction, so

σ = −ε0
∂Φ

∂ z

∣∣∣∣
z=0

, (3.41)

and the derivative may be evaluated from Eq. (3.39) as,

∂Φ

∂ z

∣∣∣∣
z=0

=
1

4πε0

(
−q(z−d)

[x2 + y2 +(z−d)2]3/2 +
q(z+d)

[x2 + y2 +(z+d)2]3/2

)∣∣∣∣
z=0

,

=
1

4πε0

(
qd

[x2 + y2 +d2]3/2 +
qd

[x2 + y2 +d2]3/2

)
=

1
2πε0

qd
[x2 + y2 +d2]3/2

and from Eq. (3.41)

σ =− ε0
∂Φ

∂n

∣∣∣∣
z=0

=− qd
2π[x2 + y2 +d2]3/2 . (3.42)

We can then obtain the total induced charge Q by integration. Using polar coordinates (r,φ)
with r2 = x2 + y2 and da = r dr dφ ,

Q =
∫ 2π

0

∫
∞

0

−qd
2π[x2 + y2 +d2]3/2 r dr dφ =

qd√
r2 +d2

∣∣∣∣∞
0
=−q. (3.43)

So the total induced charge in the infinite sheet has the same magnitude as the polarizing
charge q, but with the opposite sign.

Let us also calculate the force FFF on q produced by the induced charge. From the analog
problem displayed in Fig. 3.6(b), the force is, from Coulomb’s law,

FFF =− 1
4πε0

q2

(2d)2 ẑzz, (3.44)

where ẑzz is a unit vector in the z direction. Since the potential, electric field, and force acting
on q are expected to be the same in the analog and actual problem, we deduce that the force
given by Eq. (3.44) for the analog problem is also the force felt in the actual problem in
Fig. 3.6(a).

3.9 Green Function for the Conducting Sphere

As discussed in Section 3.7, solution of the Laplace or Poisson equations in a finite volume
V with either Dirichlet or Neumann boundary conditions on the bounding surface S of V
can be obtained using Green functions. For example, Eq. (3.35) solves for the potential Φ

in terms of a Green function with Dirichelet boundary conditions and Eq. (3.38) solves for
the potential in terms of a Green function with Neumann boundary conditions. However,
choosing an appropriate Green function for a given problem can be difficult. As discussed
by Jackson,5 for image problems like those described in Section 3.8, the potential due to a
5 See Section 1.10 of Jackson [15].
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tFig. 3.7 (a) Geometry of image charge method for a charge q outside a conducting sphere, with
image charge q′ inside the sphere. (b) Coordinates associated with the Green function
G(xxx,xxx′) for a conducting sphere.

unit source and its image(s), chosen to satisfy homogeneous boundary conditions is just the
Green function of Eqs. (3.35) (for Dirichlet boundary conditions) or (3.38) (for Neumann
boundary conditions).

For example, consider the problem of a charge outside a conducting sphere solved by the
image method in Problem 3.1 and illustrated in Fig. 3.7(a). In the Green function G(xxx,xxx′),
the variable xxx′ refers to the location of the unit source and the variable xxx is the point P
at which the potential is being evaluated. These coordinates and a sphere of radius a are
illustrated in Fig. 3.7(b). For Dirichlet boundary conditions on the sphere of radius a, the
Green function defined by Eq. (3.30),

∇∇∇
′2G(xxx,xxx′) =−4πδ (xxx− xxx′),

for a unit source and its image is given by [see Fig. 3.7(a)]

Φ(xxx) =
q/4πε0

|xxx− yyy|
+

q′/4πε0

|xxx− yyy′|
, (3.45)

with q′ and yyy′ chosen such that the potential vanishes on the surface of the sphere in
Fig. 3.7(a) (|xxx|= a), which requires that

q′ =−a
y

q y′ =
a2

y
, (3.46)

and that q be replaced by 4πε0 (to give unit source charge). With these changes the right
side of Eq. (3.45) is converted into the Green function

G(xxx,xxx′) =
1

|xxx− xxx′|
− a

x′ |xxx− (a2/x′2)xxx′|
, (3.47)

which can be expressed in spherical coordinates as

G(xxx,xxx′) =
1

(x2 + x′2 −2xx′ cosγ)1/2 − 1

(x2x′2/a2 +a2 −2xx′ cosγ)1/2 , (3.48)
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where γ is the angle between xxx and xxx′ that is illustrated in Fig. 3.7(b). For the solution
(3.35),

Φ(xxx) =
1

4πε0

∫
V

ρ(xxx′)G(xxx,xxx′)d3x′− 1
4π

∮
S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′,

of the Poisson equation with Dirichlet boundary conditions, the second term requires the
normal derivative ∂G/∂n′. Recall that nnn′ is the unit normal vector outward from the volume
of interest. Thus, for the solution outside the sphere in Fig. 3.7(a), it is inward along xxx′,
toward the origin and

∂G
∂n′

∣∣∣∣
x′=a

=− x2 −a2

a(x2 +a2 −2axcosγ)3/2 . (3.49)

Therefore, from Eq. (3.35) quoted above, if there is no charge distribution ρ(xxx′) in the prob-
lem, the solution outside the conducting sphere of the Laplace equation with the potential
specified on its surface (Dirichlet boundary conditions) is

Φ(xxx) =
1

4π

∫
Φ(a,θ ′,φ ′)

a(x2 −a2)

(x2 +a2 −2axcosγ)3/2 dΩ
′ (outside), (3.50)

where dΩ′ is the element of solid angle at the point (a,θ ′,φ ′), and

cosγ = cosθ cosθ
′+ sinθ sinθ

′ cos(φ −φ
′). (3.51)

If there is a charge distribution ρ(xxx′), then one must add to Eq. (3.51) the first term of Eq.
(3.35) with the associated Green function (3.48). For the solution interior to the sphere the
only thing that changes is that the normal derivative is radially outward, so the sign on the
right side of Eq. (3.49) changes. Thus the interior solution is

Φ(xxx) =
1

4π

∫
Φ(a,θ ′,φ ′)

a(a2 − x2)

(x2 +a2 −2axcosγ)3/2 dΩ
′ (inside). (3.52)

Example 3.2 Let’s illustrate use of the exterior solution (3.50) by considering a con-
ducting sphere of radius a, divided into two hemispherical shells separated by an insulating
ring, as illustrated in Fig. 3.8. From Eq. (3.50) the solution for Φ(x,θ ,φ) is

Φ(x,θ ,φ) =
V
4π

∫ 2π

0
dφ

′
(∫ 1

0
d(cosθ

′)−
∫ 0

−1
d(cosθ

′)

)
a(x2 −a2)

(x2 +a2 −2axcosγ)3/2 .

By a change of variables in the second integral

θ
′ → π −θ

′
φ
′ → φ

′+π,

this can be put in the form

Φ(x,θ ,φ) =
Va(x2 −a2)

4π

∫ 2π

0
dφ

′

×
∫ 1

0
d(cosθ

′)
[
(a2 + x2 −2ax cosγ)−3/2 − (a2 + x2 +2ax cosγ)−3/2

]
. (3.53)
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Φ = -VtFig. 3.8 Example 3.2: Two hemispheres of radius a separated by an insulating band lying in the
z = 0 plane, with the upper hemisphere kept at potential +V and the lower hemisphere
kept at potential −V .

Because of the complicated dependence among the angles in Eq. (3.51) this cannot be
integrated easily in closed form. If one restricts to the positive z axis the integrals can be
done, with the result [15]

Φ(z) =V
[

1− z2 −a2

z
√

z2 +a2

]
(valid on positive z axis), (3.54)

which correctly reduces to Φ = V at z = a. Of potentially more use is to expand the de-
nominator of Eq. (3.53) in a power series and integrate term by term, which yields

Φ(x,θ ,φ) =
3Va2

2x2

[
cosθ − 7a2

12x2

(
5
2

cos2
θ − 3

2
cosθ

)
+ · · ·

]
. (3.55)

This expansion has been shown to converge rapidly for large x/a, and agrees with the
special solution (3.54) for cosθ = 1 [15].

3.10 Solving the Poisson and Laplace Equations

For relatively simple electrostatics problems solutions may be found using Coulomb’s law
directly, Gauss’s theorem, or image methods, as we have shown in Ch. 2 and the initial
sections of this chapter. For more complicated problems these methods may be difficult to
apply and a more straightforward way to proceed may be to solve the Poisson or Laplace
differential equations directly. One method to do so is by separation of variables.
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tFig. 3.9 Grounded (Φ = 0) semi-infinite plane-parallel electrodes terminated by a planar electrode
at potential Φ0. The electrodes are assumed to extend infinitely to the right and to be
infinite in the direction perpendicular to the page. (Maintaining the difference in potential
between the plates at Φ = 0 and Φ = Φ0 requires a strip of insulator at the joints.)
Adapted from Ref. [4].

3.10.1 Separation of Variables in Cartesian Coordinates

A typical case to be solved is where the potential or the charge density is specified on the
boundaries of a region, and we wish to find the potential at arbitrary points in the interior.
A standard approach to such a problem is to solve Laplace’s equation by the separation of
variables method, which we consider initially in cartesian coordinates. The basic idea is to
assume that the solution can be written in the product form

Φ(x,y,z) = X(x)Y (y)Z(z), (3.56)

where X(x), Y (y), and Z(z) are functions only of x, y, and z, respectively. Let us illustrate
the method by considering the problem corresponding to Fig. 3.9 [4]. The problem is
independent of the z direction, and we assume that there is no charge density between the
plates. Therefore, we wish to solve the 2D Laplace equation in cartesian coordinates,

∂ 2Φ

∂x2 +
∂ 2Φ

∂y2 = 0, (3.57)

subject to the boundary conditions

Φ = 0 (y = 0, y = a), (3.58a)

Φ = Φ0 (x = 0), (3.58b)

Φ → 0 (x → ∞). (3.58c)

Inserting the 2D product function

Φ(x,y) = X(x)Y (y) (3.59)



51 Solving the Poisson and Laplace Equations

into Eq. (3.57) and dividing through by Φ = X(x)Y (y) gives

1
X

d 2X
dx2 +

1
Y

d 2Y
dy2 = 0, (3.60)

where we write the derivatives as ordinary derivatives since X(x) and Y (y) are functions of
a single variable. Now the second term of Eq. (3.60) is independent of x and the first term
is independent of y, and the two terms must always sum to zero. Thus each term must be
equal to a constant Cn,

1
X

d 2X
dx2 =C1

1
Y

d 2Y
dy2 =C2. (3.61)

Equation (3.60) then implies that C1 +C2 = 0, so for later convenience we introduce a
new constant k and set C1 = k2 and C2 =−k2. Therefore, the problem has been reduced to
solving two ordinary differential equations

d 2X
dx2 − k2X = 0 (3.62a)

d 2Y
dy2 + k2Y = 0. (3.62b)

As can be verified by substitution, the second equation (3.62b) has a solution

Y = Asin(ky)+Bcos(ky), (3.63)

where A and B are arbitrary constants. We may determine constants by imposing the bound-
ary conditions (3.58). From Eq. (3.58a), Φ = 0 at y = 0 requires that B = 0, and Φ = 0 at
y = a requires that

k =
nπ

a
(n = 1,2,3, · · ·). (3.64)

Therefore,

Y = Asin
(nπy

a

)
(n = 1,2,3, · · ·). (3.65)

The equation for X in Eq. (3.62a) now takes the form

d 2X
dx2 −

(nπ

a

)2
X = 0, (3.66)

which has a solution

X = Genπx/a +He−nπx/a, (3.67)

as may be verified by substitution. However, the boundary condition Φ → 0 as x → ∞ of
Eq. (3.58c) can be satisfied only if G = 0, so we discard the first term of Eq. (3.67) and
insert Eqs. (3.65) and (3.67) into Eq. (3.59) to give

Φ(x,y) =C sin
(nπy

b

)
e−nπx/a, (3.68)

with C another arbitrary constant.
The solution (3.68) satisfies the boundary conditions (3.58a) and (3.58c), but does not
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satisfy the boundary condition (3.58b). However, the Laplace equation is linear, meaning
that if {Φ1,Φ2,Φ3, · · · ,Φn} satisfy it, then the linear combination

Φ = a1Φ1 +a2Φ2 +a3Φ3 + · · ·+anΦn

where an are arbitrary constants, satisfies it also. Therefore, we take as a better approxima-
tion a linear combination of solutions (3.68) in the form

Φ(x,y) =
∞

∑
n=1

cn sin
(nπy

a

)
e−nπx/a, (3.69)

The boundary condition (3.58b) at x = 0 implies that

Φ(0,y) = Φ0 =
∞

∑
n=0

cn sin
(nπy

a

)
, (3.70)

which is a Fourier sine series, so we can exploit the corresponding orthogonality prop-
erties to evaluate the coefficients cn. Specifically, multiply both sides of Eq. (3.70) by
sin[(pxy)/a], where p is an integer, and integrate from y = 0 to y = a,∫ a

0
Φ0 sin

( pπy
a

)
dy =

∫ a

0

∞

∑
n=1

cn sin
(nπy

a

)
sin
( pπy

a

)
dy. (3.71)

For the integral on the left side of this equation

∫ a

0
Φ0 sin

( pπy
a

)
dy =


2aΦ0

pπ
( if p is odd),

0 (if p is even),
(3.72)

while for the integral on the right side,

∫ a

0
cn sin

(nπy
a

)
sin
( pπy

a

)
dy =

 0 ( if p ̸= n),
a
2

cn (if p = n),
(3.73)

Comparing Eqs. (3.72) and (3.73), we conclude that the expansion coefficients are given
by

cn =


4Φ0

nπ
( if n is odd),

0 (if n is even),
(3.74)

and the potential as a function of x and y is

Φ(x,y) =
4Φ0

nπ

∞

∑
n=1,3,5,···

1
n

sin
(nxy

a

)
e−nπx/a. (3.75)

This series should converge fairly rapidly because of the rapid decrease of the factor
e−nπx/a/n with n. The solution is plotted in Fig. 3.10. A convergent power series is a
perfectly adequate way to define a solution, but it happens that the series (3.75) can be
summed exactly, with the result [8],

Φ(x,y) =
2Φ0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)
, (3.76)



53 Solving the Poisson and Laplace Equations

0.8

0.6

0.4

0.2

0.0

0.1

0.3

0.5

0.7
0.8

0.6

0.4

0.2

0.0

Φ/Φ0

y
xtFig. 3.10 Solution for 2D Laplace equation by separation of variables.(Excuse quality; temporary
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atFig. 3.11 Grounded (Φ = 0) parallel-plane electrodes of width a and separated by a distance b are
terminated on two sides with plane electrodes at potentials Φ1 and Φ2. The electrodes are
assumed to be infinite in the direction perpendicular to the page. Adapted from Ref. [4].

in a more convenient closed form.

Example 3.3 Consider Fig. 3.11, where we wish to calculate the electrostatic potential
in the region between the parallel-plane electrodes [4]. There is no z dependence so again
let’s solve the 2D Laplace equation by the method of separation of variables. This problem
has much in common with the example from Fig. 3.9 just worked out, but the boundary
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conditions are different.

Φ = 0 (y = 0, y = b), (3.77a)

Φ = Φ1 (x = 0), (3.77b)

Φ = Φ2 (x = a), (3.77c)

The most general solution is of the form

Φ(x,y) =
∞

∑
n=1

(
Ane−nπx/b +Bnenπx/b

)
sin
(nπy

b

)
, (3.78)

where the constants An and Bn may be determined using the boundary conditions. From
Eq. (3.77b), at x = 0 we have

Φ1 =
∞

∑
n=1

(An +Bn)sin
(nπy

b

)
. (3.79)

Upon multiplying this by sin(pπy/b) and integrating from y = 0 to y = b, only the single
p = n term survives,

Φ1

∫ b

0
sin
(nπy

b

)
dy = (An +Bn)

b
2
, (3.80)

implying that

An +Bn =


4Φ1

nπ
( if n is odd),

0 (if n is even).
(3.81)

The boundary condition (3.77c) yields another relationhip between An and Bn:

Φ2 =
∞

∑
n=1

(Ane−nπa/b +Bnenπa/b)sin
(nπy

b

)
. (3.82)

Multiplying this expression by sin(pπy/b) and integrating from y = 0 to y = a yields

Ane−nπa/b +Bnenπa/b =


4Φ2

nπ
( if n is odd),

0 (if n is even).
(3.83)

Then from Eqs. (3.81) and (3.83),

An =
4

nπ

(
Φ1 −Φ2e−nπa/b

1− e−2nπa/b

)
Bn =

4e−nπa/b

nπ

(
Φ2 −Φ1e−nπa/b

1− e−2nπa/b

)
, (3.84)

where n= 1,3,5, · · · . This gives Φ(x,y) when inserted in Eq. (3.78). This solution is plotted
in Fig. 3.12.
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Φ

Φ0

tFig. 3.12 Solution for 2D Laplace equation by separation of variables.(Excuse quality; temporary
placeholder).

3.10.2 Separation of Variables in Spherical Coordinates

In the preceding examples of solving the Laplace equation by separation of variables the
geometry was rectangular and cartesian coordinates were appropriate. However, for some
problems other coordinate systems such as spherical or cylindrical may be more natural. In
this section we consider solution of Laplace’s equation in spherical coordinates. Laplaces
equation in spherical coordinates (r,θ ,φ) is

1
r2

∂

∂ r

(
r2 ∂Φ

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂Φ

∂θ

)
+

1
r2 sin2

θ

∂ 2Φ

∂φ 2 = 0, (3.85)

To illustrate we will consider problems having axial symmetry (no dependence on φ ), in
which case the Laplacian equation reduces to

∂

∂ r

(
r2 ∂Φ

∂ r

)
+

1
sinθ

∂

∂θ

(
sinθ

∂Φ

∂θ

)
= 0. (3.86)

Just as in the cartesian coordinate examples we seek product solutions in which the vari-
ables (r,θ) are separated,

Φ(r,θ) = R(r)Θ(θ), (3.87)

where R(r) is a function only of r and Θ(θ) is a function only of θ . Substituting Eq. (3.87)
into Eq. (3.86) and dividing through by RΘ gives,

1
R

d
dr

(
r2 dR

dr

)
+

1
Θsinθ

d
dθ

(
sinθ

dΘ

dθ

)
= 0, (3.88)

where now we use total derivatives rather than partial derivatives since the functions being
differentiated are functions of a single variable. By similar logic as in the cartesian case,
the second term in Eq. (3.88) is independent of r so the first term must also be independent
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of r. Thus we write the separated equations as two ordinary differential equations

1
R

d
dr

(
r2 dR

dr

)
= k (3.89a)

1
Θsinθ

d
dθ

(
sinθ

dΘ

dθ

)
=−k (3.89b)

where the constants are written as k and −k, since the sum of the two equations must be
zero.

Consider first the R equation in Eq. (3.89a). Multiplying both sides by R and carrying
out the leftmost d/dr operation gives

r2 d 2R
dr2 +2r

dR
dr

− kR = 0, (3.90)

which has a solution

R = Arn +
B

rn+1 , (3.91)

that when inserted in Eq. (3.89a) requires n and k to be related by,

n(n+1) = k. (3.92)

Now consider the Θ equation (3.89b). Multiplying by Θsinθ and using Eq. (3.92), it
may be written

d
dθ

(
sinθ

dΘ

dθ

)
+n(n+1)sinθ Θ = 0 (3.93)

It is convenient to change variables by letting µ = cosθ . By the chain rule, for any function
f (µ) of µ ,

d f
dθ

=
d f
dµ

dµ

dθ
=−sinθ

d f
dµ

=−
√

1−µ2 d f
dµ

(3.94)

where we have used dµ/dθ =−sinθ and 1−µ2 = sin2
θ . Then, Eq. (3.93) becomes

d
dµ

[
(1−µ

2)
dΘ

dµ

]
+n(n+1)Θ = 0 (Legendre’s equation). (3.95)

This is called Legendre’s equation and its solutions are polynomials in cosθ called Legen-
dre polynomials, designated by Pn(cosθ), where n is termed the order of the polynomial.
Normalized Legendre polynomials6 are typically defined by

Pn(cosθ) =
1

2nn!
∂ n

∂ (cosθ)n (cos2
θ −1)n. (3.96)

Some polynomials are tabulated in Table 3.1. A general solution of Laplace’s equation in
spherical coordinates assuming axial symmetry is then given by

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ) (3.97)

6 The normalization is chosen to make all Legendre polynomials equal to one at cosθ = 1.
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Table 3.1 Legendre polynomials Pn(cosθ)

n Pn(cosθ)

0 1

1 cosθ

2 1
2 (3cos2 θ −1)

3 1
2 (5cos3 θ −3cosθ)

4 1
8 (35cos4 θ −30cos2 θ +3)

5 1
8 (63cos5 θ −70cos3 θ +15cosθ)

These functions are a complete set, so arbitrary boundary conditions with axial symmetry
can be satisfied. Furthermore, the Legendre polynomials satisfy the orthogonality condition∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn, (3.98)

or explicitly in spherical coordinates,∫ +1

−1
Pm(cosθ)Pn(cosθ)d(cosθ) =

∫
π

0
Pm(cosθ)Pn(cosθ)sinθdθ

=


2

2n+1
( if m = n),

0 (if m ̸= n),
(3.99)

which is important in evaluating the coefficients in Eq. (3.97).

Example 3.4 Consider the conducting ball of radius a in an electric field illustrated in
Fig. 3.13. Inside the ball the field will be zero and far outside it will be the undisturbed
field EEE0. Near the ball the field will be distorted by polarization. Let’s solve the Laplace
equation for the outside field in 2D by separation of variables in spherical coordinates,
assuming axial symmetry. We take as boundary conditions

Φ = 0 (r = a) (3.100)

Φ =−E0r cosθ (r = ∞) (3.101)

At r = a (radius of ball), from Eqs. (3.97) and (3.100)

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ) = 0. (3.102)

The coefficients An and Bn in Eq. (3.102) may be evaluated using the orthogonality of the
Legendre polynomials. Multiply this expression by Pm(cosθ) and integrate over d(cosθ ).
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z

tFig. 3.13 Conducting ball of radius a in an external electric field EEE0 directed along the zzz axis.
Assume axial symmetry around the left-right axis.

From Eq. (3.99), the only non-vanishing terms are those for which n = m. Thus,

0 = Anan
∫ +1

−1
P2

n (cosθ)d(cosθ)+Bna−(n+1)
∫ +1

−1
P2

n (cosθ)d(cosθ)

= Anan
(

2
2n+1

)
+Bna−(n+1)

(
2

2n+1

)
,

from which the coefficients are related by

Bn =−Ana2n+1. (3.103)

Therefore, from Eqs. (3.102) and (3.103),

Φ(r,θ) =
∞

∑
n=0

An

(
rn − a2n+1

rn+1

)
Pn(cosθ). (3.104)

Now as r → ∞ the second term in parentheses in Eq. (3.104) becomes negligible compared
with the first and the boundary condition (3.101) requires that

−E0r cosθ =−E0rP1(cosθ) =
∞

∑
n=0

AnrnPn(cosθ). (3.105)

Thus, the only non-zero term on the right side is n = 1, implying that

A1 =−E0,

with all other An = 0. Then from Eq. (3.103) all the Bn are zero except for

B1 =−A1a3 = E0a3.

Thus the potential at any point (r,θ) is given by

Φ(r,θ) =−E0r cosθ +E0
a3 cosθ

r2

=−E0

(
1− a3

r3

)
r cosθ , (3.106)
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where the first term is the potential corresponding to the applied field E0 and the second
term is the induced polarization potential. The electric field components follow from Eq.
(3.106) by taking the gradient [see Eq. (A.47) for spherical coordinates],

Er =−∂Φ

∂ r
= E0

(
1+

2a3

r3

)
cosθ , (3.107)

Eθ =−1
r

∂Φ

∂θ
=−E0

(
1− a3

r3

)
sinθ . (3.108)

At the surface of the conductor we know that

Er|r=a =
σ

ε0
,

so solving for σ and using Eq. (3.107) with r = a gives

σ = 3ε0E0 cosθ , (3.109)

for the induced charge density.

The 3D volume charge density ρ(xxx) appearing in Eq. (2.26a),

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′|

d3x′, (3.110)

describes the distribution of charge localized in some finite volume V . In many situations
we are interested in the potential Φ(xxx) resulting from this charge at large distances from the
charge distribution such that |xxx| ≫ |xxx′|. Then a series expansion of 1/ |xxx− xxx′| is suggested.
Two types of expansions are common in the literature:

1. A Taylor series in the cartesian coordinates (x,y.z).
2. An expansion in terms of spherical harmonics, associated Legendre polynomials, or

Legendre polynomials depending on spherical coordinates (r,θ ,φ).

We will discuss here the multipole expansion in terms of Legendre polynomials or spheri-
cal harmonics.

3.10.3 Spherical Harmonic Expansions

A potential due to a unit point charge at xxx′ can be expanded as

1
|xxx− xxx′|

=

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ), (3.111)

where Pl(cosθ) is a Legendre polynomial [solution (3.96) of the Legendre equation (3.95)],
r< is the smaller and r> the larger of |xxx| and |xxx′|,7 and θ is the angle between xxx and xxx′ (see
Fig. 3.14). Equation (3.111) is termed a multipole expansion. In this expression

7 The factor rl
</rl+1

> in Eq. (3.111) allows the expansion to be made in terms of either r/r′ or r′/r, whichever is
smaller.
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tFig. 3.14 Geometry for the Legendre polynomials and the spherical harmonics in Eqs.
(3.111)-(3.114).

• the l = 0 term is called the monopole term,

• the l = 1 term is called the dipole term,

• the l = 2 term is called the quadrupole term, and so on.

The reason for this terminology is suggested by the point-charge distributions discussed
in Box 3.2. Comparison of these expressions with the terms in Eq. (3.111) using r> = r
and r< = d (since r ≫ d) suggests why Eq. (3.111) is called a multipole expansion: the
l = 1 term is of the dipole form P1(cosθ)/r2 and the l = 2 term is of the quadrupole form
P2(cosθ)/r3. (And the l = 0 term is 1/r, which is termed the monopole term.)

Equation (3.111) can be expressed in terms of spherical harmonics using the spherical
harmonic addition theorem

Pl(cosγ) =
4π

2l +1

l

∑
m=−l

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ), (3.112)

where Pl(cosθ) is a Legendre polynomial, Ylm(θ ,φ) is a spherical harmonic, xxx has the
spherical coordinates (r,θ ,φ), xxx′ has the spherical coordinates (r′,θ ′,φ ′), and the angle γ

between the vectors xxx and xxx′ is given by

cosγ = cosθ cosθ
′+ sinθ sinθ

′ cos(φ −φ
′). (3.113)

The spherical harmonic addition theorem (3.112) may then be used to express the expan-
sion (3.111) of the potential at xxx due to a unit charge at xxx′ as

1
|xxx− xxx′|

= 4π

∞

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ), (3.114)

where angles are defined in Fig. 3.14. This expression gives the potential completely fac-
torized in the coordinates xxx and xxx′.

If the localized distribution of charge ρ(xxx′) in Eq. (3.110) is assumed to vanish outside
of a small sphere of radius R centered on the origin, the potential generated by that charge
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Box 3.2 Multipole moments

What is the potential generated at P by the following charge distributions?

P

d

+q

−q

θ

r+

r-

r

P

d

d

+q

-2q

+q

θ

r

(a) Dipole

rb

ra
(b) Linear

quadrupole

(1) Dipole Potential
For the dipole at P in Fig. (a), the potential is given by

Φ =
q

4πε0

(
1
r+

− 1
r−

)
.

From the law of cosines (A.58) the distances are

r2
± = r2 +

(
d
2

)2

∓ rd cosθ = r2
(

1∓ d
r

cosθ +
d2

4r2

)
≃ r2

(
1∓ d

r
cosθ

)
,

where r = |rrr| and the term d2/4r2 was dropped since we assume that r ≫ d. Thus,

1
r±

≃ 1
r

(
1∓ d

r
cosθ

)−1/2

≃ 1
r

(
1± d

2r
cosθ

)
,

where a binomial expansion was used in the last step. Therefore,

Φdipole =
q

4πε0

(
1
r+

− 1
r−

)
=

q
4πε0

d cosθ

r2 =

(
qd

4πε0

)
P1(cosθ)

r2 (r ≫ d),

and the electric dipole potential is proportional to the Legendre polynomial P1(cosθ)

and falls off at large distance as 1/r2.

(b) Quadrupole Potential
Carrying out a similar analysis for the linear quadrupole in Fig. (b) above (see Prob-
lem 3.3), the linear quadrupole potential is given by

Φquadrupole =

(
2Qd2

4πε0

)
P2(cosθ)

r3 (r ≫ d),

which is proportional to P2(cosθ) and varies inversely as the cube of the distance.

outside the radius R can be expanded in spherical harmonics as

Φ(xxx) =
1

4πε0

∞

∑
l=0

l

∑
m=−l

4π

2l +1
qlm

Ylm(θ ,φ)

rl+1 (3.115)
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The expansion coefficients qlm are given by

qlm =
∫

Y ∗
lm(θ

′,φ ′)(r′)l
ρ(xxx′)d3x′ (3.116)

and are called multipole moments. Spherical harmonics are related to associated Legendre
polynomials Pm

l (cosθ) by

Ylm(θ ,φ) = (−1)m

√
2l +1

4π

(l −m)!
(l +m)!

Pm
l (cosθ)eimφ . (3.117)

They obey the orthogonality condition∫ 2π

0
dφ

∫
π

0
Y ∗

l′m′(θ ,φ)Ylm(θ ,φ)sinθdθ = δl′lδm′m, (3.118)

and completeness relation

∞

∑
l=0

l

∑
m=−l

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ) = δ (φ −φ
′)δ (cosθ − cosθ

′), (3.119)

and behave under complex conjugation as

Y ∗
lm(θ ,φ) = (−1)m Yl−m(θ ,φ). (3.120)

The utility of a multipole expansion like Eqs. (3.115) or (3.111) is that, at large distance
from the source-charge distribution, the potential may be approximated well by retaining
only the first few terms in the multipole expansion, since the terms fall off with distance r
as r−(l+1). If we define

1. a total charge Q (monopole moment),
2. the electric dipole moment vector ppp by

ppp ≡
∫

xxx′ρ(xxx′)d3x′, (3.121)

3. and the traceless quadrupole moment tensor Qi j by8

Qi j ≡
∫
(3x′ix

′
j − r′2δi j)ρ(xxx′)d3x′, (3.122)

where r′2 ≡ |xxx′|2,

the spherical multipole moments in Eq. (3.116) may be expressed in cartesian coordinates

8 With this definition Qi j is traceless (see Problem 3.7). A quadrupole moment definition without the trace-
lessness property Qi j =

1
2
∫

ρ (⃗x′)x′ix
′
j d3x′ is also sometimes encountered. (The traceless form arises naturally

in a spherical harmonic multipole expansion; the other form arises in a different multipole expansion.) The
quadrupole moment is a rank-2 tensor, which can be expressed as a 3×3 matrix, implying nine components.
However, it is symmetric in its indices, which reduces the independent components to six, and the traceless
constraint reduces the number of independent components to five.
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as [15]

q00 =
1√
4π

∫
ρ(xxx′)d3x′ =

1√
4π

Q, (3.123a)

q11 =−
√

3
8π

∫
(x′− iy′)ρ(xxx′)d3x′ =−

√
3

8π
(px − ipy), (3.123b)

q10 =

√
3

4π

∫
z′ ρ(xxx′)d3x′ =

√
3

4π
pz, (3.123c)

q22 =
1
4

√
15
2π

∫
(x′− iy′)2

ρ(xxx′)d3x′ =
1
12

√
15
2π

(Q11 −2iQ12 −Q22), (3.123d)

q21 =−
√

15
8π

∫
z′(x′− iy′)ρ(xxx′)d3x′ =−1

3

√
15
8π

(Q13 − iQ23), (3.123e)

q20 =
1
2

√
5

4π

∫
(3z′2 − r′2)ρ(xxx′)d3x′ =

1
2

√
5

4π
Q33, (3.123f)

where corresponding moments with m < 0 may be obtained using ql−m = (−1)mq∗lm. An
expansion of Φ(xxx) in cartesian coordinates may be obtained by a direct Taylor series ex-
pansion of 1/ |xxx− xxx′|. The result

Φ(xxx) =
1

4πε0

[
Q
r
+

ppp · xxx
r3 +

1
2 ∑

i, j
Qi j

xix j

r5 + · · ·

]
. (3.124)

is quoted without proof.9

Example 3.5 Consider a localized charge density

ρ(rrr) =
1

64π
r2e−r sin2

θ .

Let’s make a multipole expansion of the potential associated with this charge density and
determine all the non-vanishing multipole moments. The charge distribution is axially sym-

9 The spherical multipole moments like Eq. (3.116) and the corresponding cartesian multipole moments like
Eq. (3.121) generally differ in number of components for a given multipole order. For multipole order l there
are (l + 1)(l + 2)/2 cartesian components but only 2l + 1 spherical components, which differs for l > 1. At
a technical group-theoretical level the reason for this difference is that the spherical moments are irreducible
representations of the rotation group (they are said to transform as irreducible spherical tensors) while the
cartesian moments are reducible under rotational transformations. Physically this means that spherical mul-
tipole moments define components of definite angular momentum, while cartesian moments are mixtures of
components with different angular momenta. Another technical point is that the coefficients in a multipole
moment expansion may depend on choice of origin for the coefficients. In general it can be shown that the
value of qlm in Eq. (3.116) for the lowest-order non-vanishing multipole moment of a charge distribution is
independent of origin for the coordinates, but higher-order moments will generally depend on the location of
the origin for the coordinate system [15].
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metric, so only Ylm with m= 0 are non-zero. From Eq. (3.116), the moments may be written

qlm =
∫

Y ∗
l0(θ ,φ)r

l
ρ(xxx)d3x

=
∫

Y ∗
l0(θ ,φ)r

l
ρ(r,θ)r2dr dφ d(cosθ)

= 2π

√
2l +1

4π

∫
Pl(cosθ)rl

ρ(r,θ)r2dr d(cosθ)

=
2π

64π

√
2l +1

4π

∫
∞

0
rl+4e−rdr

∫ +1

−1
Pl(cosθ)sin2

θd(cosθ)

=
2π

64π

2
3

√
2l +1

4π

∫
∞

0
rl+4e−rdr

∫ +1

−1
Pl(cosθ) [P0(cosθ)−P2(cosθ)]d(cosθ)

=
1

48

√
2l +1

4π
Γ(l +5)

(
2δl0 −

2
5

δl2

)
.

where we have used in the third line,

Yl0(θ ,φ) =

√
2l +1

4π
Pl(cosθ)

and used in the fifth line,

sin2
θ = 1− cos2

θ =
2
3
[P0(cosθ)−P2(cosθ)]

and used in the last step ∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn,

and the radial integral was evaluated using the tabulated definite integral∫
∞

0
rn−1e−(a+1)rdr =

Γ(n)
(a+1)n .

Thus the multipole moments are

qlm =
1

48

√
2l +1

4π
Γ(l +5)

(
2δl0 −

2
5

δl2

)
and the delta functions allow reading off the only non-vanishing multipole moments as

q00 =

√
1

4π
Q q20 =−6

√
5

4π
Q33.

where the values were taken from Eq. (3.123).

Example 3.6 A spherical surface of radius R has a uniform surface charge of density
σ = Q/4πR2, except for a spherical cap at the north pole defined by a cone with opening
θ = α where σ = 0, as illustrated in Fig. 3.15. Use the jump condition at a charge layer of
Eq. (3.10) for the electric field

Eout
r |r=R = E in

r |r=R +
σ

ε0
,
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αR

σ=0

z

4πR2
Q

σ= 

tFig. 3.15 Example 3.6: A spherical surface has a uniform surface charge of density σ = Q/4πR2,
except for a spherical cap at the north pole defined by a cone with opening θ = α where
σ = 0.

to show that the potential inside the spherical surface can be expressed as

Φ =
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
rl

Rl+1 Pl(cosθ).

What is the potential outside the sphere?
The surface charge density specifies a jump condition on the normal component of the

electric field (see Section 3.3),

Eout
r |r=R = E in

r |r=R +
σ

ε0
,

which allows us to solve for the potential Φ(r,θ). Because of the axial symmetry about the
z axis we may expand the potential in Legendre polynomials according to Eqs. (3.110) and
(3.111),

Φin =

∞

∑
l=0

Al

( r
R

)l
Pl(cosθ) Φout =

∞

∑
l=0

Al

(
R
r

)l

Pl(cosθ),

where the expansion coefficients Al are the same for Φin and Φout because we require Φ

to be continuous at the surface r = R. The radial components of the interior and exterior
electric fields follow from Er =−∂Φ/∂ r,

E in
r =−

∞

∑
l=0

lAl

R

( r
R

)l−1
Pl(cosθ),

Eout
r =

∞

∑
l=0

(l +1)Al

R

(
R
r

)l+2

Pl(cosθ).

Substituting this into the jump condition given above for Er leads to

σ(cosθ) = ε0
[
Eout

r −E in
r
]

r=R =

∞

∑
l=0

(2l +1)ε0Al

R
Pl(cosθ).
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Multiply both sides by Pk(cosθ), integrate over d(cosθ), and use∫ +1

−1
Pn(x)Pm(x)dx =

2
2n+1

δnm

to give

(2l +1)ε0Al

R
=

2l +1
2

∫ +1

−1
σ(cosθ)Pl(cosθ)d(cosθ),

implying that

Al =
R

2ε0

∫ +1

−1
σ(cosθ)Pl(cosθ)d(cosθ).

Then using that the surface is covered uniformly with charge except within the cone,

σ(cosθ) =


Q

4πR2 (cosθ < cosα),

0 (cosθ > cosα),

leads to

Al =
Q

8πε0R

∫ cosα

−1
Pl(cosθ)d(cosθ).

This can be integrated by using [1]

Pl(x) =
1

2l +1
[
P′

l+1(x)−P′
l−1(x)

]
(where the primes indicate derivatives), which gives

Al =
Q

8πε0R

∫ cosα

−1
Pl(cosθ)d(cosθ)

=
Q

8πε0R
1

2l +1

∫ cosα

−1

[
dPl+1(cosθ)

d(cosθ)
− dPl−1(cosθ)

d(cosθ)

]
d(cosθ)

=
Q

8πε0R
1

2l +1

∫ cosα

−1
[dPl+1(cosθ)−dPl−1(cosθ)]

=
Q

8πε0R
1

2l +1
[Pl+1(cosθ)−Pl−1(cosθ)]cosα

−1

=
Q

8πε0R
1

2l +1
[Pl+1(cosα)−Pl−1(cosα)] ,

where in the last step Pl(−1) = (−1)l was used. Substituting in the original expansions,
for the inside solution,

Φin =
∞

∑
l=0

Al

( r
R

)l
Pl(cosθ)

=
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
rl

Rl+1 Pl(cosθ).
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and for the outside solution,

Φout =
∞

∑
l=0

Al

(
R
r

)l

Pl(cosθ)

=
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
Rl−1

rl Pl(cosθ).

3.10.4 Multipole Components of the Electric Field

We have expanded the potential in multipole moments so the corresponding electric fields
can be expanded in a similar way. It is easiest to express the components of the electric
field EEE =−∇∇∇Φ in spherical coordinates. For a term in Eq. (3.115) with definite (l,m) the
spherical electric field components are [15]

Er =
l +1

(2l +1)ε0
qlm

1
rl+2 Ylm(θ ,φ), (3.125a)

Eθ =− 1
(2l +1)ε0

qlm
1

rl+2
∂

∂θ
Ylm(θ ,φ), (3.125b)

Eφ =
1

(2l +1)ε0
qlm

1
rl+2

im
sinθ

Ylm(θ ,φ), (3.125c)

with the multipole moments qlm defined in Eq. (3.123).

Example 3.7 For a dipole ppp oriented along the z axis, one finds

Er =
2pcosθ

4πε0r3 Eθ =
psinθ

4πε0r3 Eφ = 0,

for the electric-field components (3.125).

3.10.5 Energy of a Charge Distribution in an External Field

If a localized charge distribution ρ(xxx) is subject to an external potential Φ(xxx),10 the elec-
trostatic energy is

W =
∫

ρ(xxx)Φ(xxx)d3x. (3.126)

10 For example, the charge distribution of an atomic nucleus subject to an external electric field generated by the
electrons of that atom, or the charge distribution of an atomic nucleus subject to the external electric field of
another nucleus in a collision between the two nuclei.
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If the potential varies slowly over the extent of ρ(xxx), it can be expanded in a Taylor series,

Φ(xxx) = Φ(0)+ xxx ·∇∇∇Φ(0)+
1
2 ∑

i
∑

j
xix j

∂ 2Φ

∂xi∂x j
(0)+ · · ·

= Φ(0)− xxx ·EEE(0)− 1
2 ∑

i
∑

j
xix j

∂E j

∂xi
(0)+ · · ·

= Φ(0)− xxx ·EEE(0)− 1
6 ∑

i
∑

j

(
3xix j − r2

δi j
) ∂E j

∂xi
(0)+ · · · , (3.127)

where in line 2 the definition of the electric field EEE = −∇∇∇Φ was used and in the last line
1
6 r2∇∇∇ ·EEE(0) was subtracted from the last term since ∇∇∇ ·EEE = 0 for the external field. Inserting
the expansion (3.127) in Eq. (3.126), the energy takes the form

W = qΦ(0)− ppp ·EEE(0)− 1
6 ∑

i
∑

j
Qi j

∂E j

∂xi
(0)+ · · · , (3.128)

where q is the total charge, the dipole moment ppp is defined in Eq. (3.121), and the quadrupole
moment Qi j is defined in Eq. (3.122).

Example 3.8 Many atomic nuclei have charge distributions exhibiting a quadrupole de-
formation. Such nuclei will have a contribution to the energy from the quadrupole term in
the expansion (3.128) if they are subject to an external electric field. Such an “external”
field can be provided by the electrons of the atom containing the nucleus, or by a crys-
tal lattice in which the nucleus is embedded, and coupling to these external field leads to
small energy shifts and breaking of degeneracies for nuclear states that can be detected
experimentally. (The energy shifts are small and radiofrequency measurements are typi-
cally used.) Such methods allow the quadrupole moments of nuclei to be measured, which
are important clues to the details of nuclear structure and interactions. In collisions be-
tween heavy ions at nuclear accelerators, the electric field of one nucleus can cause excited
states to be populated in the other nucleus, in a process called Coulomb excitation. The
study of the rates at which those excited states are populated (for example by detecting the
de-excitation by emission of γ-rays) are another way in which nuclear quadrupole defor-
mations can be measured by analyzing their response to an applied electric field.

The expansion (3.128) manifests the characteristic way in which various multipoles of a
charge distribution interact with an external electric field:

1. the charge interacts with the potential in the first term,
2. the dipole moment interacts with the electric field in the second term,
3. the quadrupole moment interacts with the gradient of the electric field in the third term,

and so on.

Thus multipole expansions serve a pedagogical as well as practical purpose in understand-
ing electrostatic interactions.
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Background and Further Reading

An introduction to the material of this chapter may be found in Griffiths [8] or Purcell and
Morin [23]. More advanced treatments may be found in Jackson [15], Garg [6], Chaichian
et al [3], and Zangwill [27].
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Problems

3.1 A charge q is placed outside a grounded (Φ = 0) conducting sphere. Use the method
of images described in Section 3.8 to find the scalar potential Φ in the space outside
the sphere, and calculate the force exerted by the sphere on the charge q.

3.2 Assuming that |xxx| ≫ |xxx′| in the following figure,

|x - x'
| P

dτ

Charge

distribution

θ
x

x'

prove that 1/ |xxx− xxx′| can be expanded in the power series

1
|xxx− xxx′|

=
1
r

(
1− 1

2
ε +

3
8

ε
2 − 5

16
ε

3 + · · ·
)
,

where r = |xxx| and r′ = |xxx′|, and

ε ≡ r′

r

(
r′

r
−2cosθ

)
,

and that this is a series expansion in terms of Legendre polynomials that is equivalent
to Eq. (3.114). Finally, show that

Φ(xxx) =
1

4πε0

∞

∑
l=0

r−(l+1)
∫
(r′)lPl(cosθ)ρ(xxx′)d3x′

is the scalar potential at the point P.
3.3 The following charge distribution is called a linear quadrupole.

P

d

d

+q

-2q

+q

θ

rb

ra

r

Linear

quadrupole

What is the potential generated at the point P assuming that r ≫ d?
3.4 For the following charge distribution,
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x

y

-Q

+Q -Q

+Q

0.1 m

0.1 m

calculate the components of the dipole moment vector ppp assuming that |Q|= 3 µC.
3.5 A surface charge density specified by a function σ(θ) is pasted onto an empty 3D

spherical shell of radius R. Assume axial symmetry and use separation of variables
in the Laplace equation to derive a general formula for the potential Φ as a function
of σ(θ) inside and outside the shell radius R.

3.6 A point dipole with dipole moment ppp is located at xxx0. Show that for calculations of
potential Φ or energy density W of a dipole in an external field, the dipole can be
described by an effective charge density

ρeff(xxx) =−ppp ·∇∇∇δ (xxx− xxx0),

where δ (xxx− xxx′) is the 3D Dirac delta function.
3.7 The quadrupole moment tensor is given by Eq. (3.122) as

Qi j ≡
∫
(3x′ix

′
j − r′2δi j)ρ(xxx′)d3x′,

where r′2 ≡ |xxx′|2. Evaluate Qi j for a discrete set of N static charges qi and show that
it is traceless.

3.8 For the discrete charge distribution displayed in Problem 3.4, calculate the nine
cartesian components Qi j = Qxx,Qxy, · · · of the quadruple moment tensor starting
from Eq. (3.122). Assume the origin of the coordinate system to be at the lower left
charge and that |Q|= 3 µC.



4 Electrostatics in Dielectric Matter

To this point we have considered electrostatics primarily in vacuum, except for the presence
of electrical charges, and of conducting matter in a few instances. But many important
applications of electromagnetic theory involve interactions in non-conducting (dielectric)
matter. There are two fundamental differences between conductors and dielectrics, and
their electrostatic behavior.

1. Conductors have available many electrons that are not bound to atoms or molecules,
and thus are very mobile. In constrast, ideal dielectrics have no free electrons.

2. Dielectrics typically can have electric fields in their interior, but conductors suppress
any internal electric fields.

Therefore, in this chapter we begin to address how the properties of dielectric matter in-
fluence the equations of electrostatics. We will find that electric fields in matter are largely
dipole fields, with the the net dipole moment having two basic sources:

1. Some molecules have an intrinsic dipole moment, and an external electric field exerts a
torque that tends to align those moments with the field.

2. An electric field produces dipoles by polarizing matter, even if the atoms or molecules
have no significant dipole moment in the absence of the applied field. This polarization
effect is characterized by a quantity called the atomic polarizability.

In either case the material my be characterized in terms of a polarization P and an electric
susceptibility, which is proportional to the ratio of P to the electric field. The primary
effect of the polarization is to create a surface charge density in dielectric material. A
considerable amount can be learned about the nature of dielectrics by examining the effect
of this induced surface charge density on capacitors.

4.1 Dielectrics

As illustrated in Box 4.1, a capacitor with dielectric material between the metal plates
has increased capacitance because of this induced surface charge (with the practical im-
plications of reducing the size of the capacitor, or increasing its working voltage). Let us
investigate in more depth the effect of a dielectric on a capacitor. A parallel-plate capacitor
with no material between the plates has a capacitance C defined by

C =
Q

Φ12
=

ε0A
s

, (4.1)

72
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Box 4.1 Capacitors and Dielectrics

The simplest parallel-plate capacitor has two separated parallel metal plates with
nothing in between, as illustrated in Fig. (a) below.

s

(a) No dielectric (b) With dielectric

Dielectric

A A

s

C = 
ε
0

A

s
C > 

ε
0

A

s

Inserting a dielectric between the plates of the capacitor as in Fig. (b) increases
the capacitance because the induced surface charge on the dielectric produced by
the electric field between the plates partially cancels the opposite charge on the
adjacent plate. Understanding this mechanism leads to fundamental insight into the
role that an electric field plays in a dielectric.

where Q is the magnitude of the charge on the plates (positive Q on one plate and negative
Q on the other), Φ12 is the difference in electrical potential between the two plates, A is the
surface area of a plate, and s is the separation of the plates.

4.1.1 Capacitors and Dielectrics

Now suppose that a layer of dielectric material is placed between the capacitor plates, as
illustrated in Box 4.1. One will generally find that the capacitance can still be defined by
the ratio of charge to potential difference between the plates, C = Q/Φ12, but the actual
value of C will be increased over that found with no dielectric between the plates.

This implies that the presence of the dielectric between the plates allows more
charge Q on the plates and therefore greater capacitance, for the same potential
difference, plate area, and separation of the plates.

Qualitatively, this influence of the dielectric on the capacitance is not difficult to under-
stand. The material of the dielectric consists of atoms or molecules with negatively charged
electrons and positively charged nuclei.

1. The electric field between the plates polarizes the charge distribution of the dielectric.
2. If we assume to be definite that the upper plate has a positive charge and the lower plate

a negative charge, negative charges in the dielectric will be pulled upward and positive
charges pushed down, as illustrated in Fig. 4.1.
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+ + + + + + + + + + +
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E s

R

Φ12

Q0
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E

R

Φ12

Q=κQ0

(a)

(b)

+ + + + + + + + + + +

- - - - - - - - - - -

Dialectric

tFig. 4.1 Increase of capacitance by insertion of a dielectric between the plates. (a) No dielectric.
(b) With dielectric. Adapted from Ref. [23].

3. This exposes a layer of uncompensated negative charge near the top of the dielectric
and a corresponding layer of uncompensated positive charge near the bottom of the
dielectric.1

4. The charge Q on the upper plate will increase because of the induced top layer of neg-
ative charge below it in the dielectric.

5. We shall show later that Q must increase until the algebraic sum of Q and the induced
charge layer is equal to the total charge on the top plate Q0 before the dielectric layer
was inserted.

6. Thus, the total charge Q in the top layer is larger than the charge Q0 of the top plate in
Fig. 4.1(a) before the dielectric was inserted.

7. Thus, the charge is the Q that appears in Eq. (4.1) and is, in the circuit of Fig. 4.1, the
charge supplied by the battery to charge the capacitor while the switch is in the right
(charging) position.

If the switch in the circuit of Fig. 4.1 were flipped to the left to discharge the
capacitor though the resistance R after the capacitor is fully charged, the charge
Q would be dissipated. Notably, the induced charge layer is not part of Q, and the
induced charge would be absorbed back into the normal structure of the dielectric
in the absence of an electric field.

1 As will be quantified shortly, this displacement of charge is very small. Remember that we are dealing with a
dielectric where the electrons are bound up in atoms and molecules. There is no significant population of free
charge carriers as would be the case with a metallic conductor.
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Table 4.1 dielectric constants κ of some substances

Substance Conditions κ

Vacuum 1.00000
Air gas, 0◦ C, 1 atm 1.00059
Water vapor gas, 110◦ C, 1 atm 1.0126
Liquid water liquid, 20◦ C 80.4
Silicon solid 20◦ C 11.7
Polyethelene solid, 20◦ C 2.25−2.3
Porcelain solid 20◦ C 6.0−8.0

4.1.2 Dielectric Constants

Different dielectric materials would be expected to have different efficiencies for increas-
ing the charge capacity of a capacitor, according to the ease with which electrons can be
displaced with respect to the atomic nuclei by the applied electric field. The factor Q/Q0

by which the charge and thus the capacitance is increased by inserting a particular material
between the capacitor plates is called the dielectric constant κ of the material

Q = κQ0 ↔ C = κC0. (4.2)

Dielectric constants are ratios of charges and thus are dimensionless; a few are given in
Table 4.1 for some representative substances. Note that the dielectric constant of the vac-
uum is κ = 1 exacly (by definition), typical gases have dielectric constants slightly larger
than one, and liquids and solids can have dielectric constants varying widely in the range
κ ∼ 1− 100. The reason for the remarkably large value κ = 80.4 for water merits an ex-
planation that will be given later.

4.1.3 Bound Charge and Free Charge

In considering the effect of a dielectric on a capacitor, it is useful to introduce some ter-
minology distinguishing between the charge associated with the dielectric itself and the
mobile charges that can charge the plates. Those charges associated with the dielectric are
termed bound charges. They are not mobile because they are attached to the atoms and
molecules making up the dielectric. They can be polarized through electric fields causing
tiny displacements, but if the capacitor is discharged the bound charges remain with the di-
electric, which becomes unpolarized as the electric field vanishes (assuming no permanent
dipole moment for the substance of the dielectric); they are not part of the charge Q on the
capacitor plates. On the other hand, those charges that are not bound in the dielectrics are
termed free charges. They are the charges that we have some agency over in an experiment
(for example, through manipulation of the simple electrical circuit in Fig. 4.1 using the
switch to charge or discharge the capacitor).
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zx

R
x'

θ

Molecule

x

y

P

dτ'

tFig. 4.2 Diagram for calculation of the potential at point P of a molecular charge distribution.

4.2 Moments of a Molecular Charge Distribution

Let’s consider the potential at a distant point P due to an electrical charge distribution of a
molecule, as illustrated in Fig. 4.2. which will be of the form

ΦP =
1

4πε0

∫
ρ(xxx′)

R
dτ

′, (4.3)

where the integral is over all of the charge distribution. From the law of cosines the distance
R is given by

R = (r2 + r′2 −2rr′ cosθ)1/2, (4.4)

where we define r = |xxx| and r′ = |xxx′|, and Eq. (4.3) becomes

ΦP =
1

4πε0

∫
(r2 + r′2 −2rr′ cosθ)−1/2

ρ(xxx′)dτ
′. (4.5)

For a distant point P we have r ≫ r′ and we can expand to give

1
R
= (r2 + r′2 −2rr′ cosθ)−1/2 =

1
r

[
1+

r′

r
cosθ

+

(
r′

r

)2 3cos2 θ −1
2

+O

([
r′

r

]3
)]

(4.6)

Then from Eqs. (4.3) and (4.6) the potential can be written as

ΦP =
1

4πε0

[
1
r

∫
ρdτ

′+
1
r2

∫
r′ cosθρdτ

′+
1
r3

∫
r′2

3cos2 θ −1
2

ρ dτ
′+ · · ·

]
, (4.7)

where r = |xxx| is a constant and has been brought outside the integrals (the integration vari-
able is xxx′). Now this is a power series in 1/r with coefficients that are constants depending
only on integrals over the charge distribution and independent of the distance to P. Thus we
can write the potential as a power series (multipole expansion) with constant coefficients

ΦP =
1

4πε0

[
C0

r
+

C1

r2 +
C2

r3 + · · ·
]
, (4.8)
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where the coefficients Ci are the integrals over the internal charge distribution in Eq. (4.7).
The electric field then follows from EEE =−∇∇∇ΦP. This result is valid only along the z axis,
but the power series (4.8) illustrates the central point:

The behavior of the potential at large distance from the source will be dominated
by the first term in the multipole expansion (4.8) that has a non-zero coefficient.

Let us look at the coefficients in Eq. (4.8) more closely. The monopole coefficient C0 =∫
ρ(xxx′)dτ ′ is the total charge. If we have a neutral atom or molecule, C0 = 0. If it is not

neutral (ionized, for example) so that ρ ̸= 0, the monopole will always dominate at large
enough distance. If the atom or molecule is charge-neutral so that ρ = 0, the dipole term
with C1 =

∫
r′ cosθρ(xxx′)dτ ′ dominates. Furthermore, if the charge distribution is charge-

neutral the value of C1 is independent of the choice of origin.2

As we shall see, for our main task here of understanding the behavior of di-
electrics only the monopole strength (the total charge) and the dipole strength of
the molecular building blocks of the dielectric are important in determining its
electric-field properties.

Thus, for the properties of dielectrics we will find that all multipole moments of the charge
distribution of order greater than the dipole can usually be ignored. As noted in the intro-
duction to this chapter, a net dipole moment can come about because of induced polariza-
tion by an electric field, or because of molecules that have a permanent dipole moment. We
address induced moments in Section 4.3 and permanent dipole moments in Section 4.4.

4.3 Induced Dipole Moments

The simplest atom is hydrogen, consisting of one nucleus and one electron. The nucleus is
so small compared with the electron cloud that in hydrogen and in more complicated atoms
and molecules we can approximate the nuclei as point charges. Quantum mechanically the
electron in hydrogen must be viewed as a cloud of negative charge with smoothly varying
density (with the integrated charge equal to the electron charge e). The density falls off
exponentially on the boundaries, so it makes sense to view the charge clouds of atoms and
molecules as having approximate radii and shapes.

The electron cloud of the undisturbed hydrogen atom is spherically symmetric but if it is
placed in an electric field pointing upward along a z-axis, the charge cloud of the atom will
be distorted, with the negative electron charge cloud pulled down and the nucleus pushed

2 Generally the value of a multipole moment depends on the origin chosen for the coordinate system. But for the
special case of a dipole moment in a charge-neutral dielectric, changing the origin will not change the value
of the dipole moment.
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up. This distorted atom will have an electric dipole moment because the center of mass of
the electron cloud will be displaced a small amount ∆z from the nucleus, giving a net dipole
moment of magnitude ∼ e∆z, where e is the total electron charge. Example 4.1 estimates
the size of the distortion in actual atoms.

Example 4.1 We may make a very rough estimate of how much distortion will be
caused by a field of strength E by noting that a strong electric field already exists hold-
ing the unperturbed H atom together, which may be estimated as

E ≃ e
4πε0a2 ,

where a is a characteristic atomic length scale (for example, some multiple of the Bohr
radius). If we assume that a field of the same order of magnitude would be required to
produce significant distortion, we may estimate the distortion as

∆z
a

≃ E
e/4πε0a2 .

Typically, e/4πε0a2 ∼ 1011 volts/m, which is enormous (thousands of times larger than
any field produced in a laboratory); the distortion of the atom ∆z/a will be tiny indeed!

The dipole moment vector ppp induced by an electric field will point in the direction of EEE.
The induced dipole moment is generally proportional to the electric field, at least if the
field is not too strong. The factor relating the dipole moment vector ppp to EEE is the atomic
polarizability α ,

ppp = αEEE. (4.9)

More generally, the scalar coefficient α in this equation must be replaced by a polarizabil-
ity tensor It is common to report atomic polarizabilities as the quantity α/4πε0 (which
has units of volume) rather than as α itself.3 Some atomic polarizabilities are given in
Table 4.2, listed in order of increasing total electron number.

The large variations in polarizabilities seen in Table 4.2 may be attributed to differences
in electron number and to differences in valence electronic structure. For example, the
noble gas elements He, Ne, and Ar have relatively small polarizabilities because their outer
electrons are more tightly bound than for other elements, but the polarizabilities increase
in the sequence He to Ne to Ar because the total electron number is increasing. As another
example, the elements Na and K each have one electron outside a closed electronic shell
and that electron is susceptible to perturbation by an electric field. As a result Na and K
have very large polarizabilities (κ = 27 and κ = 34, respectively).

Example 4.2 Let’s estimate the charge displacement induced by a typical electric field.
From the polarizability of atomic hydrogen in Table 4.2, the magnitude of the dipole mo-
3 Beware: Both α and α/4πε0 are sometimes called the atomic polarizability in the literature.
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Box 4.2 Asymmetric Polarization

Molecules can be very asymmetric and may have different polarizabilities along
different axes. For example, the linear molecule carbon dioxide (CO2) illustrated in
the following figure

O OC

has a polarizability more than twice as large if the field is applied along its long
axis than if it is applied perpendicular to that. In the most general case of a highly
asymmetric molecule the simple relation (4.9) between the polarization vector and
the electric field vector must be replaced by a tensor equation that can be expressed
as a matrix–vector multiply,

ppp =

px

py

pz

=

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz


Ex

Ey

Ez

 ,

which is equivalent to the simultaneous equations

px = αxxEx +αxyEy +αxzEz,

py = αyxEx +αyyEy +αyzEz,

pz = αzxEx +αzyEy +αzzEz.

Thus the scalar coefficient α in Eq. (4.9) has been replaced by a polarizability tensor
A that has the components

A =

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 ,

expressed as a matrix in the current basis.

ment induced by an electric field of one megavolt / meter is p < 10−34 coulomb-meters.

4.4 Permanent Dipole Moments

Some molecules have asymmetric shapes and permanent dipole moments in their normal
ground state, even in the absence of an external field; a few examples are shown in Fig. 4.3.
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Table 4.2 Atomic polarizabilities (α/4πε0) in units of 10−30 m3

Element: H He Li Be C Ne Na Ar K
0.66 0.21 12 9.3 1.5 0.4 27 1.6 34

Molecules with a permanent dipole moment are termed polar molecules. As a rule, intrin-
sic dipole moments (when they exist) are much larger than dipole moments induced by
laboratory electric fields.

Example 4.3 As shown in Fig. 4.3, the magnitude of the (permanent) dipole moment
for the molecule HCl is p = 3.43×10−30 coulomb-meters (which is equivalent to shifting
one electron by a distance of 0.2 angstrom (0.2× 10−8 cm) [23]. From Example 4.2, the
magnitude of the dipole moment in hydrogen induced by an electric field of magnitude
one megavolt per meter is p < 10−34 coulomb-meters. This result is a characteristic one
and permanent dipole moments (when they exist) are typically orders of magnitude larger
than those induced by laboratory electric fields.

In a uniform electric field polar molecules will have their dipole vectors partially aligned
with the field. The net force on the dipole vanishes, because the force on the negative end
exactly cancels the force on the positive end (see Fig. 4.4), but the torque NNN acting on the
dipole is

NNN = ppp×EEE, (4.10)

where ppp is the dipole moment vector. The direction of NNN is so as to align the dipole moment
of a polar molecule with the electric field. Perturbations such as thermal fluctuations tend
to inhibit this alignment, so the typical physical outcome is an equilbrium with the dipoles
partially aligned.

|p| = 3.43

Hydrogen chloride (HCl) Water (H2O) Ammonia (NH3)

|p| = 4.76|p| = 6.13tFig. 4.3
Approximate geometry of the electron cloud and the observed dipole moment vector ppp for
some polar molecules. Magnitudes of the dipole moment vector are in units of
10−30 coulomb-meters (adapted from Ref. [23]).
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p
θtFig. 4.4 Torque applied to a molecule with an intrinsic dipole moment in a uniform electric field.

4.5 Polarization

We have discussed two basic mechanism that lead to polarization of a dielectric: (1) distor-
tion of the charge distribution by an electric field, which induces many tiny dipoles pointing
in the same direction as the field if the dielectric substance consists of atoms or non-polar
molecules, and (2) alignment of the existing intrinsic dipole moments by an electric field
if the substance consists of polar molecules. The net effect of either is to produce a set of
dipoles aligned or partially aligned with the electric field. At this point our primary inter-
est is in the effect of this polarization, without regard to the mechanism by which it was
formed. Therefore, a measure of how polarized the matter is can be formed by asking how
many dipoles N of average dipole moment ppp there are in a unit volume, without regard to
the source of the dipoles. The total dipole strength of an infinitesimal volume element is
then pppNdτ and the polarization density PPP can be defined by

PPP ≡ pppN =

(
dipole moments

unit volume

)
, (4.11)

which has units of C-m/m3 = C/m2. The polarization-charge density ρpol is given by minus
the divergence of the polarization,

ρpol(xxx) =−∇∇∇ ·PPP(xxx). (4.12)

Let’s now estimate the the potential produced by the polarized dielectric material, consid-
ering separately the regions outside and inside the dielectric matter.

4.6 Field Outside Polarized Dielectric Matter

If it is assumed that the dielectric was assembled from neutral matter so that there is no
net charge, there is no monopole term in the multipole expansion (4.8). Therefore to very
good approximation only the dipole moments need be considered as sources of a field.
Consider a thin vertical cylinder of dielectric matter in an electric field, as illustrated in
Fig. 4.5 [23]. The polarization PPP is uniform and points in the positive z direction, and we
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tFig. 4.5 (a) A column of polarized material with cross section da observed at a distant point A
produces the same field as two charges, one at each end of (b). Figure adapted from Ref.
[23].

wish to calculate the electric potential at the point A. An element of the cylinder of height
dz in Fig. 4.5(a) has a dipole moment

ppp = PPPdτ = PPPdadz, (4.13)

and its contribution to the potential at point A is

dΦA =
P cosθdadz

4πε0r2 . (4.14)

Then the potential at A produced by the entire column of polarized matter is obtained by
integration,

ΦA =
Pda
4πε0

∫ z2

z1

dzcosθ

r2

=
−Pda
4πε0

∫ z2

z1

dr
r2

=
Pda
4πε0

(
1
r2

− 1
r1

)
. (4.15)

But this is exactly the same result for the potential at A that would be produced by a
positive point charge of magnitude Pda at the top of the column at a distance r2 from A
and a negative point charge of the same magnitude placed at the bottom of the column a
distance r1 from A (see the dipole potential example in Box 3.2).

A column of uniformly polarized matter produces the same potential and thus
the same electric field at an external point A as a dipole consisting of two con-
centrated charges of magnitude Pda at the two ends of the column.

We can make Eq. (4.15) plausible by a more heuristic argument illustrated in Fig. 4.5(b).
Consider making the cylinder shown in Fig. 4.5(a) by stacking on top of each other small
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(a) Block of polarized dielectric (b) Two layers of surface charge

σ = +P

σ = −P

z

tFig. 4.6 The external field due to (a) a block of dielectric polarized by an electric field in the z
direction is the same as would be produced by (b) two sheets of charge ±P at the
positions of the top and bottom surfaces of the block.

cylinder segments of height dz, with a charge of +Pda on its top face and −Pda on its
bottom face. But now within the column the + charge on the top of a segment will be
cancelled by the − charge on the bottom of the next segment up, except for the top-most
segment, which will have an uncancelled charge on its top face of +Pda, and the bottom-
most segment, which will have an uncancelled charge on its bottom face of −Pda. Thus
the column of tiny dipoles will appear to be a single large dipole with end charges +Pda
and −Pda, separated by a distance z2 − z1. Note that nowhere in this derivation have we
assumed that A is particularly distant; we have only assumed that the distance to A is much
larger than the lengths of the individual microscopic dipoles and much larger than the width
of the column in Fig. 4.5(a), both of which are very small.

We can take a slab of dielectric and divide it up infinitesimally into such columns and
integrate over them to conclude that the electric field outside the slab is the same as if two
sheets of surface charge located where the top and bottom of the slab are located, carrying
constant surface charge density σ =+P and σ =−P, respectively. See Fig. 4.6.

4.7 Field Inside Polarized Dielectric Matter

The field inside polarized dielectric matter could be quite complicated. Inside the dielectric
we cannot assume that a point is at a much larger distance than the size of the dipoles.
However, we may surmise that the electrostatic properties are governed by averages rather
than the detailed local microscopic structure. Therefore, let us average over a region that is
macroscopically small but microscopically large.4 The spatial average of EEE over a volume

4 That is, a region that is large enough to suppress statistical sampling fluctuations, but small enough that PPP
doesn’t vary substantially over the averaging volume. If d is the characteristic size of atoms, L is the averaging
scale, and R is the size of the sample, then a suitable macroscopic description of averaged field quantities
requires that d ≪ L ≪. The reason that the averaging procedure preserves important properties of the fields
such as ∇∇∇×EEE = 0 is that derivative operations commute with averaging. A more detailed discussion of the
procedure to average microscopic quantities to produce macroscopic quantities may be found in Section 6.6
of Jackson [15] and Section 3.1 of Wald [25].
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V inside the polarized matter is given by

⟨EEE⟩V =

∫
EEE dτ∫
dτ

=
1
V

∫
EEE dτ, (4.16)

where the volume V =
∫

dτ . This average field ⟨EEE⟩V is a macroscopic quantity formed
from a spatial average of the microscopic quantity EEE(xxx) appearing in the integrand of Eq.
(4.16). Let us summarize some important properties of the macroscopic (that is, averaged)
electric field.

1. The fundamental relation

∇∇∇×EEE = 0 (4.17)

of Eq. (2.22) that is obeyed by the microscopic field remains valid for the macroscopic
field.

2. This implies that the macroscopic electric field is still derivable from a scalar potential
in electrostatics (see Section 2.5), through EEE =−∇∇∇ΦΦΦ.

If an electric field is applied to a medium consisting of a large number of atoms or molecules.
The dominant multipole mode response to the applied field is the dipole, with an electric
polarization PPP corresponding to the density of dipoles given by Eq. (4.11),

PPP(xxx) = ∑
i

Ni⟨pppi⟩,

where pppi is the dipole moment of the ith species (atoms or molecules), and the average ⟨ ⟩
is taken over a small volume centered on xxx and Ni is the average number per unit volume
of the ith species at xxx.

We can build up the macroscopic potential or field by linear superposition of contri-
butions from each macroscopically small volume element ∆V at the variable point xxx′. If
there are no macroscopic multipole moments higher than dipole, then from Eq. (3.124),
the macroscopically averaged potential is

∆Φ(xxx,xxx′) =
1

4πε0

[
ρ(xxx′)
|xxx− xxx′|

∆V +
PPP(xxx′) · (xxx− xxx′)

|xxx− xxx′|3
∆V

]
, (4.18)

assuming xxx to lie outside ∆V . Setting ∆V → d3x′ and integrating over all space gives the
potential

Φ(xxx) =
1

4πε0

∫
d3x′

[
ρ(xxx′)
|xxx− xxx′|

+PPP(xxx′) ·∇∇∇′
(

1
|xxx− xxx′|

)]
, (4.19)

where the prime on ∇∇∇
′ indicates that the ∇∇∇ operator acts on xxx′ instead of xxx. An integration

of the second term by parts leads to

Φ(xxx) =
1

4πε0

∫
d3x′

1
|xxx− xxx′|

[
ρ(xxx′)−∇∇∇

′ ·PPP(xxx′)
]
, (4.20)

which represents the potential generated by an effective charge distribution ρ̃(xxx′)= ρ(xxx′)−
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∇∇∇
′ ·PPP(xxx′).5 Then Gauss’s law (1.1a) reads

∇∇∇ ·EEE =
1
ε0

[
ρ −∇∇∇

′ ·PPP(xxx′)
]
, (4.21)

which reduces to Eq. (1.1a) in the absence of polarization.

4.8 Displacement and Constitutive Relations

If we define the electric displacement DDD by

DDD ≡ ε0EEE +PPP, (4.22)

Eq. (4.21) can be written as

∇∇∇ ·DDD = ρ. (4.23)

Solution for potentials or fields requires also that the constitutive relations that connect DDD
and EEE be specified.

1. A common assumption is that the response to the applied field is linear, PPP ∝ EEE.
2. A second common assumption is that the medium is isotropic, so that PPP is parallel to EEE

and the coefficient of proportionality has no angular dependence,

PPP = ε0χeEEE, (4.24)

where χe is termed the electric susceptibility of the medium.

With these assumptions the displacement DDD and the electric field EEE are related by

DDD = εEEE ε ≡ ε0(1+χe), (4.25)

where ε is the electric permittivity and

κ ≡ ε

ε0
= 1+χe (4.26)

is called the dielectric constant. Then the polarization can be written

PPP = (ε − ε0)EEE. (4.27)

If the dielectric medium is uniform in addition to isotropic, then ε is independent of posi-
tion and the divergence equation (4.23) can be written

∇∇∇ ·EEE =
ρ

ε
, (4.28)

which is Gauss’s law (1.1a) with ε0 replaced by ε = ε0(1 + χe). Equations (4.23) and
(4.17) are the macroscopic counterparts of the microscopic equations (1.1a) and (2.22),
respectively.

5 The divergence term appears in the effective charge density ρ̃ because for non-uniform polarization there can
be a net increase or decrease of charge within any small volume. See Section 4.9. As we have noted in Eq.
(4.12), the polarization-charge density is given by −∇∇∇ ·PPP.
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For a medium fulfilling all the conditions given above, solutions for electrostatics
problems in that medium are equivalent to the corresponding solutions found
previously for vacuum, except that the electric fields must be reduced by a factor
ε0/ε . Physically this reduction is a consequence of polarized atoms producing
fields that oppose the applied field.

One immediate consequence relevant to our prior discussion is that the capacitance of a
capacitor is increased by a factor ε/ε0 if the empty space between the electrodes is filled
with a material having dielectric constant ε/ε0 (and the effect of fringing fields may be
neglected). Example 4.4 illustrates.

Example 4.4 From Eq. (4.25), the effect of inserting a dielectric layer in a parallel-plate
capacitor is to alter the electric field, which alters the capacitance from its value C0 without
the dielectric,

C = κC0 =
ε

ε0
C0 = (1−χe)C0. (4.29)

For the parallel-plate capacitor described in Section 3.2.1, the capacitance with a dielectric
layer between the plates is

C =
ε

ε0
C0 =

ε

ε0

Aε0

d
=

Aε

d
. (4.30)

The corresponding work required to charge a parallel-plate capacitor given in Section 3.2.2
is modified to

W =
Q2

2C
=

1
2

CV 2 =
1
2

Aε

d
V 2, (4.31)

which is ε/ε0 times the work required without the dielectric layer that was given in Eq.
(3.8).

If a system contains different media juxtaposed, the question of boundary conditions
must be considered for DDD and EEE at interfaces between media. This will be addressed in
Section 4.11. The results for electrostatics are that the normal components of DDD and the
tangential components of EEE on either side of an interface between medium 1 and medium
2 must satisfy the boundary conditions (for static or time-varying fields)

(DDD2 −DDD1) ·nnn = σ , (4.32a)

(EEE2 −EEE1)×nnn = 0, (4.32b)

where nnn is a unit normal to the surface pointing from medium 1 to medium 2, and σ is the
macroscopic surface-charge density on the boundary surface (which does not include the
polarization charge discussed in following sections).
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tFig. 4.7 Coordinate system for an electric dipole. The distance from the dipole to P is rrr = xxx− xxx′

and r ≡ |rrr|.

4.9 Surface and Volume Bound Charges

The potential created by a single dipole can be written

Φ(xxx) =
1

4πε0

ppp · r̂rr
r2 , (4.33)

where from Fig. 4.7, r = |rrr|, rrr = xxx − xxx′, and ppp is the dipole moment vector. The total
potential contributed by dipoles then follows by integration,

Φ(xxx) =
1

4πε0

∫
V

PPP(xxx′) · r̂rr
r2 dτ

′, (4.34)

where dτ ′ ≡ d3x′ and PPP is the dipole moment density. This can be rewritten using

∇∇∇
′
(

1
r

)
=

r̂rr
r2 (4.35)

in the form

Φ(xxx) =
1

4πε0

∫
V

PPP ·∇∇∇′
(

1
r

)
dτ

′. (4.36)

This can be integrated by parts using the product rule in Eq. (A.18c)

∇∇∇
′ · ( f AAA) = f (∇∇∇′ ·AAA)+AAA · (∇∇∇′ f ).

Setting f = 1/r and AAA = PPP, and integrating both sides over the volume V , the product rule
becomes ∫

V
∇∇∇

′ ·
(

PPP
r

)
dτ

′ =
∫

V

1
r
(∇∇∇′ ·PPP)dτ

′+
∫

V
(PPP ·∇∇∇′)

1
r

dτ
′ (4.37)

Now apply the divergence theorem (A.33)∮
S

AAA ·nnnda =
∫

V
∇∇∇ ·AAAd3x,

to the term on the left side of Eq. (4.37) to give∮
S

1
r

PPP ·nnnda′ =
∫

V

1
r
(∇∇∇′ ·PPP)dτ

′+
∫

V
(PPP ·∇∇∇′)

1
r

dτ
′. (4.38)
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Multiply both sides by 1/4πε0 and rearrange to give

1
4πε0

∫
V
(PPP ·∇∇∇′)

1
r

dτ
′ =

1
4πε0

∮
S

1
r

PPP ·nnnda′− 1
4πε0

∫
V

1
r
(∇∇∇′ ·PPP)dτ

′, (4.39)

and finally, comparing with Eq. (4.36),

Φ(xxx) =
1

4πε0

∮
S

1
r

PPP ·nnnda′− 1
4πε0

∫
V

1
r
(∇∇∇′ ·PPP)dτ

′. (4.40)

Thus we see that

1. The first term of Eq. (4.40) looks like the potential generated by a surface charge of
magnitude

σb ≡ PPP · n̂nn, (4.41)

with n̂nn the unit vector normal to the surface and the subscript “b” indicates that it origi-
nates in the bound charges.

2. The second term of Eq. (4.40) looks like the potential generated by a volume charge of
magnitude

ρb =−∇∇∇ ·PPP. (4.42)

Equation (4.40) can thus be written

Φ =
1

4πε0

∮
S

σb

r
da′+

1
4πε0

∫
V

ρb

r
dτ

′. (4.43)

The potential Φ and the field EEE of a polarized object is equivalent to that produced by a
volume charge density ρb = −∇∇∇ ·PPP plus a surface charge density σb = PPP · n̂nn. Notice that
the volume charge density ρb involves derivatives of the polarization PPP. Thus it contributes
only if the polarization is spatially non-uniform [see Eq. (4.20)].

Example 4.5 Let’s use the result of Eq. (4.43) to determine the potential inside and
outside a uniformly polarized sphere of radius R. Since we assume uniform polarization the
second (volume-charge) term, which is non-zero only if the derivative of the polarization
density is finite, makes no contribution and the potential is generated entirely by the surface
charge defined in Eq. (4.41),

σb = PPP · n̂nn = Pcosθ , (4.44)

where we have chosen the z-axis as the direction of polarization. Thus, we need to evaluate
the potential for a sphere with the surface charge (4.44) painted on it. This problem was
already solved in Problems 3.5 and 4.2, with the result that

Φ(r,θ) =


Pr
3ε0

cosθ (r ≤ R),

PR3

3ε0r2 cosθ (r ≥ R).
(4.45)
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tFig. 4.8 Electric field for uniformly polarized sphere.

The electric field is then given by EEE =−∇∇∇Φ. Note that since r cosθ = z, inside the sphere
the field is uniform:

EEE =−∇∇∇Φ =− P
3ε0

ẑzz =− 1
3ε0

PPP (r < R). (4.46)

Outside the sphere the field has a dipole form

Φ =
1

4πε0

ppp · r̂rr
r2 (r ≥ R),

where the dipole moment is equal to the total dipole moment of the sphere

ppp =
4
3

πR3PPP.

The field lines for EEE of the uniformly polarized sphere are plotted in Fig. 4.8.

4.10 Average Electric Fields in Matter

The influence of matter on electrostatics will in most cases require some amount of aver-
aging over the detailed and complex microscopic interactions in the matter. One important
concept will be to compute the average electric field in some volume of matter. Let’s begin
by consider a sphere containing a single point charge Q located a distance r′ from the ori-
gin along the z-axis, as illustrated in Fig. 4.9 [4]. By symmetry the average field over the
entire volume must be along the z-axis The average field is then

⟨Ez⟩=
∫

τ
Ez dτ∫
τ

dτ
=

1
τ

∫
τ

Ez dτ,
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drtFig. 4.9 A point charge Q located at a distance r′ from the center of a sphere of radius R.

where τ is the volume of the sphere. It is convenient to separate the integral into two
parts: one over the spherical shell from radii r′ to R (outside the dashed circle in the above
diagram) and one over the sphere of radius r′ (inside the dashed circle).

The integral over the outer volume vanishes, by the following qualitative argument. Con-
sider the concentric shell at radius R with thickness dr. The solid angle element intercepts
the volume elements dτ1 and dτ2 in the shaded shell of thickness dr. The value of Ez de-
creases quadratically with distance from Q but dτ increases quadratically with distance,
so their product remains constant. But Ez is positive at dτ1 but negative at dτ2, so the two
contributions cancel. A similar argument can be make for all shells and the entire outer
shell with r > r′ contributes zero.

To calculate the integral over the inner volume (inside the dashed circle), consider the
point P in Fig. 4.9. The potential at P is

Φ =
1

4πε0

Q
r1

=
1

4πε0

Q
|xxx− xxx′|

,

where from Fig. 4.9 that r1 = |xxx− xxx′|. Thus, we may expand in the multipole expansion
given in Eq. (3.111),

1
|xxx− xxx′|

=
∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ) =
∞

∑
l=0

rl

(r′)l+1 Pl(cosθ)

where we’ve used from the diagram that r < r′. Writing this expansion out and substituting
the explicit values for the Legendre polynomials from Table 3.1,

Φ =
Q

4πε0

1
r′

[
1+

r
r′

cosθ +
1
2

r2

r′2
(3cos2

θ −1)+
1
2

r3

r′3
(5cos3

θ −3cosθ + · · ·
]
.
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The electric field is minus the gradient of the potential, so we need to evaluate Ez =

−∂Φ/∂ z. Utilizing

r cosθ = z
∂ r
∂ z

=
∂

∂ z
(x2 + y2 + z2)1/2 =

z
r
= cosθ

the preceding multipole expansion can be written in terms of z and the derivative taken to
give the expansion for the electric field

Ez =− Q
4πε0r′2

[
1+

2z
r′

+
3

2r′2
(3z2 − r2)+ · · ·

]
Then we may compute the average by integrating term by term in this series. The first term
gives

⟨Ez⟩1 =− Q
4πε0r′2

∫
π

0

∫ r′

0
2πr2 sinθ dr dθ =− Qr′

3ε0τ
.

All of the higher-order terms give zero, so we obtain

⟨Ez⟩=− Qr′

3ε0τ
=−Qr′

3ε0

3
4πR3 =− Qr′

4πε0R3 =− p
4πε0R3 ,

where the volume is τ = 4
3 πR3 and the dipole moment p of the charge Q is p = Qr′. This

result was for a single charge on the z-axis. For an arbitrary charge distribution the same
result is obtained, except that

⟨Ez⟩=− ptotal

4πε0R3 ,

where ptotal is the total dipole moment of the arbitrary charge distribution within the sphere
of radius R.

4.11 Boundary Conditions at Interfaces

We must often consider problems in which media with different properties are adjacent
and boundary conditions at interfaces must be evaluated. In a medium that is possibly
polarized by electric or magnetic fields, the vacuum Maxwell equations (1.1) are modified
to the Maxwell equations in medium,

∇∇∇ ·DDD = ρ (Gauss’s law), (4.47a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (4.47b)

∇∇∇ ·BBB = 0 (No magnetic charges), (4.47c)

∇∇∇×HHH − ∂DDD
∂ t

= JJJ (Ampère–Maxwell law), (4.47d)
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where DDD is defined in Eq. (4.22) and HHH is defined in Eq. (6.7).6 The Maxwell equations
(4.47) in differential form can be cast in integral form using the divergence theorem and
Stokes’ theorem.

Let V be a finite volume bounded by a closed surface (or surfaces) S, let da be an area
element of that surface, and let nnn be a unit normal at da, pointing out of the volume. The
divergence theorem (2.15) ∮

S
AAA ·nnnda =

∫
V

∇∇∇ ·AAAd3x,

applied to Eq. (4.47a) yields ∮
S

DDD ·nnnda =
∫

V
ρ d3x, (4.48)

with Eq. (4.48) being an integral form of Gauss’s law requiring that the total flux DDD out
through the surface be equal to the charge contained in the volume. Likewise, applying the
divergence theorem to Eq. (4.47c) yields the integral equation∮

S
BBB ·nnnda = 0, (4.49)

with Eq. (4.49) being the magnetic analog of Eq. (4.48) requiring no net flux of B through
the closed surface because (as far as we know) magnetic charges do not exist.

In a similar manner, suppose that C is a closed contour spanned by an open surface S′,
dlll is a line element on C, da is an area element on S′, and nnn′ is a unit vector pointing in a
direction given by the right-hand rule (see Box 2.3). Applying Stokes’ theorem (2.20),∫

S
(∇∇∇×AAA) ·nnnda =

∮
C

AAA ·dlll,

to Eq. (4.47b) gives ∮
C

EEE ·dlll =−
∫

S

∂BBB
∂ t

·nnn′da, (4.50)

which is an integral form of Faraday’s law of magnetic induction. Likewise, applying
Stokes’ theorem to Eq. (4.47d) gives∮

C
HHH ·dlll =

∮
S′

(
JJJ+

∂DDD
∂ t

)
·nnn′da (4.51)

which is an integral form of the Ampère–Maxwell law of magnetic fields. Summarizing
equations (4.48)-(4.51),∮

S
DDD ·nnnda =

∫
V

ρ d3x (Gauss’s law) (4.52a)∮
C

EEE ·dlll =−
∫

S

∂BBB
∂ t

·nnn′da, (Faraday’s law) (4.52b)∮
S

BBB ·nnnda = 0, (No magnetic charges) (4.52c)∮
C

HHH ·dlll =
∮

S′

(
JJJ+

∂DDD
∂ t

)
·nnn′da (Ampère–Maxwell law) (4.52d)

6 The vacuum Maxwell equations (1.1) can be recovered by substituting DDD = ε0EEE and HHH = BBB/µ0 into Eqs.
(4.47), remembering from Eq. (2.4) that µ0ε0 = 1/c2.
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1

D
1
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1

C

t

σ, K

tFig. 4.10 Schematic illustration of a boundary surface between different media that is assumed to
carry surface charge σ and surface current density KKK. The infinitesimal cylinder of volume
V is half in one medium and half in the other, with the normal nnn to its surface pointing from
medium 1 into medium 2. The infinitesimal rectangular contour C is partly in one medium
and partly in the other, with its plane perpendicular to the surface so that its normal ttt
(pointing out of the page) is tangent to the surface. Adapted from Ref. [15].

define Maxwell’s equations in medium in integral form.
These equations may be used to determine the relationship of normal and tangential

components of the fields on either side of an interface between media having different
electromagnetic properties, as we now discuss [15]. Consider Fig. 4.10, where there is a
boundary between medium 1 and medium 2, and we allow the possibility that there is a
surface charge σ and a current density KKK at the interface. To facilitate our analysis, an
infinitesimal cylindrical Gaussian pillbox of volume V straddles the surface between the
two media. In addition, an infinitesimal rectangular contour C has long sides on either side
of the boundary and is oriented so that the normal to the rectangular surface points out of
the page and is tangent to the interface.

Let us first apply equations (4.52a) and (4.52c) to the cylindrical pillbox in Fig. 4.10. In
the limit that the pillbox is very shallow the side of the cylinder does not contribute to the
integrals on the left side of Eqs. (4.52a) and (4.52c). If the top and bottom of the cylinder
are parallel to the interface and have area ∆a, then the integral on the left side of Eq. (4.52a)
is ∮

S
DDD ·nnnda = (DDD2 −DDD1) ·nnn∆a.

Applying a similar argument to the left side of Eq. (4.52c), the integral is∮
S

BBB ·nnnda = (BBB2 −BBB1) ·nnn∆a.

If the charge density ρ is singular at the interface and produces an idealized surface charge
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density σ , the integral on the right side of Eq. (4.52a) evaluates to∫
V

ρ d3x = σ∆a,

and the normal components of DDD and BBB on the two sides of the interface are related by

(DDD2 −DDD1) ·nnn = σ , (4.53a)

(BBB2 −BBB1) ·nnn = 0. (4.53b)

Thus, in words

1. the normal component of BBB is continuous across the interface but
2. the discontinuity of the normal component of DDD at any point is equal to the surface

charge density σ at the point.

In a similar manner, the infinitesimal rectangular contour C in Fig. 4.10 can be used in
conjunction with Stokes’ theorem to determine the discontinuities in the tangential compo-
nents of EEE and HHH. In the limit that the short sides of the rectangular loop may be neglected
and each long side is of length ∆l and parallel to the interface, the integral on the left side
of Eq. (4.52b) is ∮

C
EEE ·dlll = (ttt ×nnn) · (EEE2 −EEE1)∆l.

Likewise, the integral on the left side of Eq. (4.52d) is∮
C

HHH ·dlll = (ttt ×nnn) · (HHH2 −HHH1)∆l.

The right side of Eq. (4.52b) vanishes because in the limit of vanishing length of the short
side of the rectangular contour ∂BBB/∂ t is finite while ∆t → 0. Because there is an idealized
surface current density KKK flowing exactly on the boundary, the integral on the right side of
Eq. (4.52d) is equal to ∮

S′

(
JJJ+

∂DDD
∂ t

)
· ttt da = KKK · ttt∆l,

where the second term vanishes by the same argument as for the right side of Eq. (4.52b).
Therefore, the tangential components of EEE and HHH on either side of the media interface are
related by

(ttt ×nnn) · (EEE2 −EEE1) = 0 (ttt ×nnn) · (HHH2 −HHH1) = KKK · ttt,

and using the identity (A.4), this implies that

nnn× (EEE2 −EEE1) = 0, (4.54a)

nnn× (HHH2 −HHH1) = KKK, (4.54b)

where in Eq. (4.54b) it is understood that the surface current has only components parallel
to the interface at every point. Thus,

1. the tangential component of EEE is continuous across an interface, but
2. the tangential component of HHH is discontinuous across the interface by an amount with

magnitude equal to |KKK| and direction given by the direction of KKK ×nnn.
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tFig. 4.11 Delectric ball of radius a and dielectric constant κ = ε/ε0 in an initially uniform external
electric field EEE0 directed along the zzz axis. Used in Example 4.6.

The discontinuity equations (4.53) and (4.54) for the fields BBB, EEE, DDD, and HHH allow solving
the Maxwell equations in different regions having potentially different electromagnetic
properties, and then connecting the solutions to obtain the fields over all of the space.

4.12 Dielectric Boundary Value Problems

The methods developed in previous chapters may be adapted to handle the presence of
dielectrics. Example 4.6 illustrates.

Example 4.6 A dielectric ball with dielectric constant κ = ε/ε0 is placed in an initially
uniform electric field directed along the z axis, as illustrated in Fig. 4.11. Let’s determine
the potential and the electric field inside and outside the ball, assuming no free charges
inside or outside of the ball. There are no free charges so the solution will involve solving
the Laplace equation with appropriate boundary conditions. We assume axial symmetry
about the z axis. Solving the Laplace equation in spherical coordinates by separation of
variables (see Section 3.10.2), general solutions are of the form given by Eq. (3.97),

Φ(r,θ) =
∞

∑
l=0

(Alrl +Blr−(l+1))Pl(cosθ).

However, there are no charges at the origin and the requirement that Φ(r,θ) be finite there
demands that for the interior solution, Bl = 0, and the interior solution is of the form

Φin(r,θ) =
∞

∑
l=0

AlrlPl(cosθ), (4.55)

and the exterior solution is of the form

Φout(r,θ) =
∞

∑
l=0

(Blrl +Clr−(l+1))Pl(cosθ),
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with the constants Al , Bl , and Cl to be determined by imposing boundary conditions. At
infinity, we must have [see Eq. (3.101)],

Φ(r → ∞) =−E0z =−E0r cosθ =−E0rP1(cosθ).

This requires that

−E0rP1(cosθ) = [Blrl +Clr−(l+1)]Pl(cosθ)≃ BlrlPl(cosθ),

since the Cl term vanishes as r → ∞. Multiply both sides by P1(cosθ) and integrate,

−E0r
∫

P1(cosθ)P1(cosθ)d(cosθ) = Blrl
∫

P1(cosθ)Pl(cosθ)d(cosθ).

Using the orthogonality relation (3.98),∫ +1

−1
Pk(cosθ)Pl(cosθ)d(cosθ) =

2
2l +1

δkl ,

all terms vanish except for l = 1 and we obtain B1 =−E0, with all other Bl equal to zero.
Thus, the exterior solution becomes,

Φout(r,θ) =−E0rlP1(cosθ)+
∞

∑
l=0

Clr−(l+1)Pl(cosθ), (4.56)

Now let’s use the boundary conditions at the edge of the sphere to fix the other constants,
by requiring the matching at the surface r = a for tangential and normal components of Φ,

−1
a

∂Φin

∂θ

∣∣∣∣
r=a

= −1
a

∂Φout

∂θ

∣∣∣∣
r=a

(Tangential), (4.57)

−ε
∂Φin

∂ r

∣∣∣∣
r=a

= −ε0
∂Φout

∂ r

∣∣∣∣
r=a

(Normal). (4.58)

Now substitute the expansions (4.55) and (4.56) into these matching equations and solve
to determine the constants.

First consider the tangential matching. Substituting (4.55) and (4.56) into Eq. (4.57)
gives

−1
a

∂

∂θ

∞

∑
l=0

AlrlPl(cosθ)

∣∣∣∣∣
r=a

=−1
a

∂

∂θ

[
BlrlP1(cosθ)+

∞

∑
l=0

Clr−(l+1)

]
r=a

Pl(cosθ),

which simplifies to

∞

∑
l=0

alAl
∂

∂θ
Pl(cosθ) =−aE0

∂

∂θ
P1(cosθ)+

∞

∑
l=0

a−(l+1)Cl
∂

∂θ
Pl(cosθ). (4.59)

Let’s convert the derivatives of Legendre polynomials Pn(x) to associated Legendre poly-
nomials Pm

n (x) using the general relationship [1],

Pm
n (x) = (1− x2)m/2 dm

dxm Pn(x), (4.60)
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which upon specializing to m = 1 yields

dPn(x)
dx

= (1− x2)−1/2P1
n (x), (4.61)

or letting x = cosθ ,
dPn(cosθ)

dθ
=−P1

n (cosθ), (4.62)

Then Eq. (4.59) becomes

−
∞

∑
l=0

alAlP1
l (cosθ) =−aE0P1

1 (cosθ)+
∞

∑
l=0

a−(l+1)ClP1
l (cosθ) (4.63)

We will now exploit the orthogonality properties of the associated Legendre polynomials,
which obey the relationship [1],∫ +1

−1
Pm

p (x)P
m
q (x)dx = Kqmδpq Kqm ≡ 2

2q+1
(q+m)!
(q−m)!

(4.64)

or in spherical coordinates∫
π

0
Pm

p (cosθ)Pm
q (cosθ)sinθdθ = Kqm δpq (4.65)

There are two solutions, a special solution for l = 1 and a general solution for all l ̸= 1. To
obtain the special solution let x = cosθ , multiply both sides by P1

1 (x), and integrate.

−
∞

∑
l=0

alAl

∫
P1

1 (x)P
1
l (x)dx =−aE0

∫
P1

1 (x)P
1
1 (x)dx+

∞

∑
l=0

a−(l+1)Cl

∫
P1

l (x)P
1
1 (x)dx

Utilizing Eq. (4.64), this gives

−
∞

∑
l=0

alAlδ1l =−aE0 +
∞

∑
l=0

a−(l+1)Clδ1l

and finally

aA1 =−aE0 +a−2C1

or equivalently,

A1 =−E0 +
C1

a3 . (4.66)

Now let’s find the general solution for l ̸= 1. Let x = cosθ and multiply both sides of Eq.
(4.63) by P1

k (x) and integrate,

−
∞

∑
l=0

alAl

∫
P1

k (x)P
1
l (x)dx =−aE0

∫
P1

k (x)P
1
1 (x)dx+

∞

∑
l=0

a−(l+1)Cl

∫
P1

k (x)P
1
l (x)dx

Utilizing the orthogonality relation (4.64), this gives

alAl = a−(l+1)Cl .

which rearranges to

Al =
Cl

a2l+1 . (4.67)
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We now have two relations [Eqs. (4.66) and (4.67)] among the coefficients obtained from
the tangential matching condition (4.57). Now let’s use the normal matching condition
(4.58) to obtain additional constraints. From Eq. (4.58), upon substituting the expansions
(4.55) and (4.56),

ε

∞

∑
l=0

lal−1AlPl(x) = ε0B1P1(x)+
∞

∑
l=0

−(l +1)Cla−(l+2)Pl(x). (4.68)

As before, there are two solutions, a special one when l = 1, and a general one when l ̸= 1.
Lets find the special solution by multiplying Eq. (4.68) by P1(x) and integrating. Upon
exploiting the orthogonality properties the result is another relationship among coefficients:

ε

ε0
A1 =−E0 −2

C1

a3 (l = 1). (4.69)

The general solution may be obtained by multiplying both sides of Eq. (4.68) by Pk(x),
integrating, and exploiting the orthogonality constraints (3.98). The result is

ε

ε0
lAl =−(l +1)

Cl

a2l+1 (l ̸= 1). (4.70)

We now have four equations, (4.66), (4.67), (4.69), and (4.70), to solve simultaneously for
the unknown coefficients. Equations (4.67) and (4.70) can be satisfied only if Al =Cl = 0
for all l ̸= 1. Solving the other two equations (4.66) and (4.69) simultaneously for l = 1
gives

A1 =−
(

3
ε/ε0 +2

)
E0 C1 =

(
ε/ε0 −1
ε/ε0 +2

)
a3E0. (4.71)

Inserting these results into Eqs. (4.55) and (4.56) gives for the interior and exterior poten-
tials

Φin =−
(

3
2+ ε/ε0

)
E0 r cosθ =−

(
3

2+ ε/ε0

)
E0 z, (4.72a)

Φout =−E0 z+
(

ε/ε0 −1
ε/ε0 +2

)
E0 a3 cosθ

r2 , (4.72b)

The electric fields then follow from EEE =−∇∇∇Φ. For the interior,

Ein =− ∂

∂ z

[(
−3

ε/ε0 +2

)
E0 z
]
=

(
3

ε/ε0 +2

)
E0, (4.73)

from which we conclude that

1. the interior field Ein is constant, proportional to the constant exterior field,
2. if ε = ε0, then the interior field is equal to the exterior field, Ein = E0, and
3. if ε > ε0, then the interior field is reduced relative to the exterior field, Ein < E0.

In Eq. (4.72b) it is clear that the first term is due to the unperturbed exterior field EEE0 and the
second term is a correction associated with a potential generated by the polarized dielectric
sphere. If the induced electric dipole moment ppp [see Eq. (3.116)] of the polarized sphere is
taken to have magnitude

p = 4πε0

(
ε/ε0 −1
ε/ε0 +2

)
a3E0, (4.74)
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(a) (b)tFig. 4.12
(a) Polarization of a dielectric ball by an external electric field EEE0. (b) The polarization of
charge induces a field EEE ind that opposes the applied field EEE0.

zz

(a) Dielectric filled sphere (a) Metal filled spheretFig. 4.13 (a) Electric field lines for dielectric filled sphere in an external electric field EEE0 directed
along the zzz axis. (b) Electric field lines for a conducting ball in an external electric field EEE0

directed along the zzz axis. Original calculation in Fig. 3.13.

then the exterior potential (4.72b) can be written

Φout =−E0 z+
p

4πε0

cosθ

r2 , (4.75)

making clear that the external potential is the unperturbed external potential (first term)
modified by a potential corresponding to an induced electric dipole associated with the
polarized dielectric sphere. From Eqs. (4.24) and (4.26), the polarization PPP is given by

PPP = (ε − ε0)EEE, (4.76)

and from Eq. (4.11) the polarization may also be defined as the density of dipole moments.
Then from Eq. (4.74) the polarization of the dielectric sphere is given by

PPP = (ε − ε0)EEE =

(
dipole moments

unit volume

)
=

p
4
3 πa3

= 3ε0

(
ε/ε0 −1
ε/ε0 +2

)
EEE0. (4.77)

The results of this example are displayed in Fig. 4.12 and Fig. 4.13.

! In Fig. 4.12 the results of Example 4.6 are illustrated. As indicated schematically in
Fig. 4.12(a), the external field E0 aligned in the z direction polarizes the dielectric sphere,
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with the polarization vector PPP given in Eq. (4.77) and oriented in the direction of the ex-
ternal field. The polarization is the density of induced dipole moments (4.74). This corre-
sponds to the polarization of charge illustrated in Fig. 4.12(b) with positive charge accumu-
lating on the right side of the sphere and negative charge on the left side. The polarization
of charge indicated in Fig. 4.12(b) induces an electric field EEE ind that opposes the applied
field EEE0 but does not completely cancel it as would happen for a conducting filled sphere.
The electric field EEE in inside the sphere is given by Eq. (4.73) and is constant. If ε > ε0

the electric field inside acts in the opposite direction as the applied field and is reduced in
strength by a factor 3/(ε/ε0 + 2) relative to the applied field. This is indicated schemati-
cally in Fig. 4.13(a), where we notice that

1. The field inside EEE in is in the same direction as the applied field EEE0, but is reduced in
strength by the induced field EEE ind acting against the applied field.

2. This reduction in strength for the interior field is indicated by the decreased density of
field lines inside the sphere relative to the outside.

3. There is a discontinuity of the electric field lines at the boundary of the sphere because
of the surface charge that has accumulated there because of polarization.

As indicated in Eqs. (4.74) and (4.75), the external potential consists of the original po-
tential contributed by the external field plus a correction term that may be viewed as the
potential generated by a set of electric dipoles centered on the sphere because of the charge
polarization. Far from the sphere the external potential is that of the original applied field
EEE0, but near the sphere the field lines in Fig. 4.13(a) are strongly distorted by the increas-
ing importance of the second term in Eq. (4.75), which scales as r−2 and therefore grows
rapidly as the sphere is approached.

Background and Further Reading

Good introductions to the material of this chapter may be found in Griffiths [8]. More
advanced treatments may be found in Jackson [15], Garg [6], Chaichian et al [3], and
Zangwill [27].
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Problems

4.1 Consider a sphere containing a single point charge Q located a distance r′ from the
origin along the z-axis.

R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

Calculate the average electric field inside the sphere. Hint: Separate the volume of
the sphere τ into the part outside Q plus the part inside Q, as indicated by the dashed
circle in the figure, and show by qualitative argument that the contribution from
outside the dashed circle is zero.

4.2 Assume a sphere of radius R parameterized by spherical coordinates (r,θ ,φ), with a
surface charge layer of density

σ(θ) = kP1(cosθ) = k cosθ ,

where k is a constant and P1(cosθ) is a Legendre polynomial. Use the Laplace equa-
tion assuming axial symmetry (no φ dependence) to find expressions for the potential
Φ(r,θ) inside and outside of R. Hint: This will be easy if you do Problem 3.5 first.

4.3 Two concentric conducting spheres of inner and outer radii a and b, respectively,
carry charges ±Q. The empty space between the spheres is half-filled by a hemi-
spherical shell of dielectric having dielectric constant ε/ε0.

a

b

-Q

+Q

εε
0
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(a) Find the electric field in the region between the spheres. (b) Calculate the surface-
charge distribution on the inner sphere. (c) Calculate the polarization-charge density
induced on the surface of the dielectric at r = a.

4.4 (a) A capacitor consists of concentric cylinders with radii a for the inner cylinder and
b for the outer cylinder.

a

b

Derive a formula for the capacitance per unit length assuming the inner cylinder to
be positively charged with a charge density of λ coulombs per unit length.

(b) Two long coaxial conducting cylinders of radii a and b are lowered vertically into
a dielectric liquid.

a b

h

L-h

Dielectric

liquid

L

If the liquid rises an average height of h between the electrodes when a potential dif-
ference V is established between them, show that the susceptibility of the dielectric
liquid is given by

χe =
(b2 −a2)ρgh ln(b/a)

ε0V 2 ,

where ρ is the density of the liquid, g is the acceleration due to gravity, and the
susceptibility of the air is neglected.

4.5 A parallel-plate capacitor has plates of area A separated by a distance d and the plates
are charged to a potential difference V using a battery.
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(a) With the charging battery disconnected a dielectric sheet that has exactly the same
width and length as a plate is inserted between the plates. Find the work done on the
dielectric sheet; is it pulled in or must it be pushed in?

(b) Repeat the experiment and analysis of part (a), but with the charging battery
connected to the plates.

4.6 A point charge q is located in free space a distance d from the center of a dielectric
sphere of radius a, with a< d. Find the potential at all points in space as an expansion
in spherical harmonics with expansion coefficients evaluated.



5 Magnetostatics in Vacuum

Chapters 1-4 have dealt with the subject of electrostatics. The basic goal of electrostatics is
that we have some set of discrete source charges {qi}, or a localized continuous distribution
of charge ρ(xxx), that are stationary with respect to a chosen reference frame, and we desire
to calculate the electric field at arbitrary locations in space produced by those charges. This
can be done using the principle of superposition: calculate the contribution of each source
charge qi or infinitesimal piece of a continuous charge dρ(xxx) to the electric field at some
point, and sum them to get the total electric field at that point. We have developed a number
of sophisticated ways to do this beyond brute force summation or integration, but that is
the essential idea. In this chapter we wish to expand upon this idea by the (seemingly)
elemental extension of allowing the source charges to move.

5.1 Magnetostatics Versus Electrostatics

The introduction of charges in motion (currents) may seem an innocuous change on its
surface, but it adds to the electric field associated with the stationary source charges a new
magnetic field associated with their motion, and a host of associated phenomena (mag-
netism) having a phenomenology that is often very different from that of electrostatics;
so much so that it took centuries after electrostatic and magnetic phenomena were first
identified in nature to realize that they are not separate subjects but are in fact different
manifestations of the same basic physical principles.

Magnetostatics is more subtle and complex than electrostatics. From Maxwell’s equa-
tions (1.1), a time-independent current distribution JJJ(xxx) is a source of a vector field BBB(xxx)
called the magnetic field that satisfies the differential equations1

∇∇∇ ·BBB(xxx) = 0, (5.1a)

∇∇∇×BBB(xxx) = µ0JJJ(xxx). (5.1b)

Applying the divergence operation to both sides of Eq. (5.1b) using the vector identity
∇∇∇ · (∇∇∇×AAA) = 0 of Eq. (A.6) gives

∇∇∇ · (∇∇∇×BBB(xxx)) = 0 = µ0∇∇∇ · JJJ(xxx). (5.2)

Thus, magnetostatic current densities satisfy ∇∇∇ ·JJJ(xxx)= 0. In electrostatics stationary charges
produce electric fields constant in time; in magnetostatics stationary (unchanging) currents

1 Equations (5.1) specify the divergence and the curl of the vector field BBB(xxx). Therefore, this should be sufficient
to specify BBB(xxx) uniquely by the Helmholtz theorem of Box 3.1.
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produce magnetic fields that are constant in time. The more complex nature of magne-
tostatics relative to electrostatics arises in part because magnetostatics involves a current
density that is a vector and the force law [given in Eq. (5.4) below] involves a cross prod-
uct of vectors, in contrast to the scalar quantities and operations inherent in electrostatics.
From a physics perspective magnetism is also complicated by there being two fundamen-
tally different types of currents that can produce magnetic effects:

1. currents that results from moving charges, and
2. currents that result from the quantum spins of point-like particles (magnetization cur-

rents ), which have no suitable classical analogs.2

It follows that magnetizable matter exhibits much greater variety than polarizable matter
(Ch. 4), both in its fundamental attributes and in the way that it responds to external fields.

For example, permanent magnetism (ferromagnetism), caused by spontaneous
breaking of angular momentum symmetry by macroscopic alignment of spins, is
much more common than than the dielectric counterpart of ferroelectricity [27].

From the static (all time derivatives set to zero) Maxwell equations (1.1), the basic equa-
tions governing electrostatics are

∇∇∇×EEE(xxx) = 0 (5.3a)

∇∇∇ ·EEE(xxx) = ρ(xxx)
ε0

. (5.3b)

Comparing with the basic equations (5.1) governing magnetostatics, we see that the formal
roles of the divergence and curl operators are interchanged between electrostatics and mag-
netostatics. As a purely practical matter, this leads to methods and corresponding results
for magnetostatics that are quite different from the methods and corresponding results in
electrostatics.

Finally, though, let us note that from a fundamental point of view special relativity tells
us that (despite the differences described above) the distinction between electric EEE fields
and magnetic BBB fields amounts to nothing more than a choice of observer reference frame:

What looks like an electric field from one inertial frame looks like a magnetic
field from a different inertial frame.

We shall take that up in later chapters when we discuss the special theory of relativity,
Lorentz transformations, and the formulation of the Maxwell equations in a manifestly
Lorentz-covariant manner. For now we note that in the low-energy world3 there is utility
in using a formalism that distinguishes between electric and magnetic phenomena through
the use of equations that are (secretly) Lorentz covariant, but are not manifestly so.
2 Quantum-mechanical orbital angular momentum can be viewed semiclassically as charge in motion on a

classical orbit (think of the Bohr model of the hydrogen atom), but quantum spin angular momentum has no
corresponding classical analog that is completely faithful to the underlying quantum physics.

3 Although it is not completely apparent from looking at the equations in SI units without examining the con-
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5.2 Magnetic Forces

A magnetic field BBB generated by source charges in motion and the electric field EEE asso-
ciated with those charges lead to a force FFF that is found to act on a test charge q having
relative velocity v according to the Lorentz force law,

FFF = q(EEE + vvv×BBB). (5.4)

As we will find, the very different phenomenology of magnetic effects relative to electro-
static effects is partially due to the nature of this force law, which mixes the effect of the
electric field and magnetic field in a non-trivial way. The characteristic motion of a charged
particle in a magnetic field is circular, as illustrated in Box 5.1 and Fig. 5.1. Two physi-
cal consequences of the force law (5.4) are illustrated in Box 5.1: cyclotron orbits and the
classical Hall effect.

How much work can be done by the Lorentz force? We calculated previously in Eq.
(2.38) that the work done if a test charge is moved in an electric field is the product of the
charge and the difference in electric potential over the path. If we repeat that calculation
using the Lorentz force (5.4) with BBB = 0 the same result is obtained (which is reassuring!).
On the other hand, let’s set EEE = 0 in Eq. (5.4) and calculate the work done by the magnetic
part of the Lorentz force on a test charge. If a charge Q moves a distance dLLL = vvvdt, then
the amount of work done by the magnetic field is

dW = FFF ·dLLL = Q(v×BBB) · vvvdt = 0. (5.5)

The magnetic field does no work, which is obviously because the cross product vvv×BBB is
perpendicular to the velocity vvv, so the scalar product (v×BBB) ·vvv must vanish. As exemplified
in the cyclotron motion discussed in Box 5.1, magnetic forces can alter the direction of
charged-particle motion, but they cannot change its speed (magnitude of the velocity).

5.3 The Law of Biot and Savart

The magnetic field BBB(xxx) of a steady current described by the density JJJ(xxx) is given by the
empirical Biot–Savart law,4

BBB(xxx) =
µ0

4π

∫ JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′, (5.6)

where the permeability of free space µ0 is defined in Eq. (1.2). When a steady current is
flowing in a 1D wire the magnitude of the current I must be constant. If LLL is a vector that

stants carefully, the magnetic field is intrinsically much weaker than the electric field under typical laboratory
conditions. But this is largely because the typical speeds of charged particles are much less than the speed of
light in those circumstances. If the velocities of particles approach the speed of light magnetic forces approach
electric forces in intrinsic strength.

4 The SI units for BBB are teslas (T), where 1 T ≡ 1 N A−1 m−1. It is common also to use the CGI unit of gauss
for BBB, where 1 tesla = 104 gauss.
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Box 5.1 Motion of Charged Particles in Magnetic and Electric Fields

Characteristic cyclotron motion of a charged particle in a magnetic field is circular
with the centripetal acceleration that curves the path provided by the magnetic force.

Cyclotron Motion
As illustrated in Fig. 5.1(a), the magnetic field BBB, oriented into the page, produces
through the qvvv×BBB component of the Lorentz force (5.4) a centripetal force directed
toward the center of the circle for a particle of charge q and velocity vvv, causing
the particle to be deflected in a circular path without changing its speed (implying
that the magnetic field does no work). The motion becomes more complex if an
electric field is present also. For an electric field perpendicular to the magnetic field,
the circular cyclotron motion due to the magnetic field is converted into a the spiral
motion depicted in Fig. 5.1(b) by the qEEE component of the Lorentz force.

The Hall Effect
A scientifically important consequence of the Lorentz force is exemplified by the
classical Hall effect, depicted in the following diagram.

− − − −− − − −

+ + + ++ + + +

jx(d)

VL

VH

jx

jx

jx

(a)

(b)

(c) Ey

Ex

Ex

Magnetic

field Bz

x

z
y

w

L

(a) For a 2D sample an electric field Ex causes a current density jx in the x direction.
(b) A uniform magnetic field BBB placed on the sample in the +z direction deflects
electrons in the −y direction. (c) Negative charge accumulate on one edge and
a positive charge excess on the other edge, producing a transverse electric field
Ey called the Hall field that just cancels the force from the magnetic field; thus in
equilibrium current flows only in the x direction. (d) Typically the longitudinal voltage
VL and the transverse Hall voltage VH are measured.

The Hall resistance RH (inferred from RH = VH/w jx) depends on the sign and
density of charge carriers. Thus the classical Hall effect is important as a diagnos-
tic for charge carriers in materials samples. At very high magnetic fields, quantum
effects become significant. These quantum Hall effects are of even greater impor-
tance, since they first revealed topological effects that were the harbingers of the
modern topological matter revolution in condensed matter and materials science.
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B

x

y

R

q

v

F

(a) (b)tFig. 5.1 (a) Cyclotron motion caused by magnetic field BBB pointing into the page along the z axis
(not shown) acting on a charge q with a velocity vvv, as explained in Box 5.1. (b) An electric
field EEE perpendicular to the magnetic field converts circular cyclotron motion into spiral
motion because of the Lorentz force law (5.4).
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θ
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dB
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x

IdL
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R

(a) (b)

tFig. 5.2 (a) Current loop carrying a steady current I for Eq. (5.7). (b) Geometry for Biot–Savart
calculation of the magnetic field on the symmetry axis of a circular current loop.

points to a line element dLLL of the wire as in Fig. 5.2(a), substitution of IdLLL for jjjd3x in Eq.
(5.6) yields the Biot–Savart law in the form

BBB(xxx) =
µ0I
4π

∫ dLLL× (xxx−LLL)

|xxx−LLL|3
. (5.7)

for a steady current.

Example 5.1 Let us use the Biot–Savart law (5.7) to calculate the magnetic field pro-
duced along the z axis by the circular current loop in Fig. 5.2(b). The components of dBBB
that are perpendicular to the z symmetry axis cancel one another when the entire loop is
traversed, but the z components add with the same magnitude for each line increment dLLL,
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which gives

BBB(z) = ẑzz
µ0

4π

cosθ

R2 + z2

∮
dL = ẑzz

µ0I
2

R2

(R2 + z2)3/2 (5.8)

This non-zero value of BBB on the symmetry axis contrasts with the value of zero for the
electric field EEE found for a uniformly charged ring. The difference follows from the cross
product in the Biot–Savart formula that isn’t present in the electric field formula. This
causes contributions to BBB(z = 0) from opposite sides of the ring to add to each other for
the magnetic field, but to subtract and cancel each other for the electric field. This example
is one illustration of the basic differences between the way that stationary charges produce
electric fields and the way that charges in motion produce magnetic fields.

Both Coulomb’s law and the Biot–Savart law are empirical, with each tailored to account
for the corresponding electrostatic and magnetostatic data, respectively.

The Biot–Savart law may be viewed as the starting point for magnetostatics, just
as Coulomb’s law may be viewed as the starting point for electrostatics.

Both laws exhibit a one over distance squared dependence, but otherwise they differ sub-
stantially because of the vector character of the magnetic law.

5.4 Differential Form of the Biot–Savart Law

The Biot–Savart law (5.6) in integral form,

BBB(xxx) =
µ0

4π

∫ JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′,

contains (in principle) a complete description of magnetostatics, but is not always the most
convenient form for solving problems. In many situations a differential equation is more
convenient to use. Let us find a form of the Biot–Savart law expressed as a differential
equation, following the presentation in Jackson [15]. From Eq. (A.11),

xxx− xxx′

|xxx− xxx′|3
=−∇∇∇

(
1

|xxx− xxx′|

)
= ∇∇∇

′
(

1
|xxx− xxx′|

)
, (5.9)

which allows converting the Biot–Savart equation (5.6) into

BBB(xxx) =
µ0

4π

∫ JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′

=
µ0

4π
∇∇∇×

∫ JJJ(xxx′)
|xxx− xxx′|

d3x′, (5.10)
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where ∇∇∇ has been pulled out of the integral because it operates on xxx but not xxx′.5 Now take
the divergence of Eq. (5.10)

∇∇∇ ·BBB =
µ0

4π
∇∇∇ ·∇∇∇×

∫ JJJ(xxx′)
|xxx− xxx′|

d3x′.

But from Eq. (A.6) we have the identity ∇∇∇ · (∇∇∇×AAA) = 0 so

∇∇∇ ·BBB = 0, (5.11)

which may be termed the first law of magnetostatics [and is the third Maxwell equation
(1.1c), corresponding to the absence of magnetic charges].

Next, take the curl of BBB in Eq. (5.10),

∇∇∇×BBB =
µ0

4π
∇∇∇×∇∇∇×

∫ JJJ(xxx′)
|xxx− xxx′|

d3x′. (5.12)

Using the vector identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA of Eq. (A.8), this may be written
as

∇∇∇×BBB =
µ0

4π
∇∇∇

∫
JJJ(xxx′) ·∇∇∇

(
1

|xxx− xxx′|

)
d3x′− µ0

4π

∫
JJJ(xxx)∇

2
(

1
|xxx− xxx′|

)
d3x′

=− µ0

4π
∇∇∇

∫
JJJ(xxx′) ·∇∇∇′

(
1

|xxx− xxx′|

)
d3x′+µ0JJJ(xxx), (5.13)

where we have used the identities of Eq. (A.11),

∇∇∇

(
1

|xxx− xxx′|

)
=−∇∇∇

′
(

1
|xxx− xxx′|

)
∇

2
(

1
|xxx− xxx′|

)
=−4πδ (xxx− xxx′) (5.14)

(where ∇∇∇ operates on xxx and ∇∇∇
′ operates on xxx′) in the last step. Integrating the remaining

integral in Eq. (5.13) by parts then gives

∇∇∇×BBB = µ0JJJ+
µ0

4π
∇∇∇

∫
∇∇∇

′ · JJJ(xxx′)
|xxx− xxx′|

d3x′. (5.15)

But for steady-state magnetism ∇∇∇ · JJJ = 0 and we obtain finally

∇∇∇×BBB = µ0JJJ, (5.16)

which may be termed the second law of magnetostatics [and is the fourth Maxwell equation
(1.1d) if electric fields don’t depend on time (Ampère’s law)].

The integral equivalent of Ampère’s law (5.16) may be obtained from Stokes’ theorem
(2.20), ∫

S
(∇∇∇×AAA) ·nnnda =

∮
C

AAA ·dlll,

for the vector field AAA where S is an arbitrary open surface bounded by a closed curve C and
where nnn is the normal to S. Figure 5.3 illustrates. Applying Stokes’ theorem to Eq. (5.16),

5 Remember that in these manipulations the integrations are over the primed coordinates, but applied gradient,
divergence, and curl operations [∇∇∇, ∇∇∇·, and ∇∇∇×, respectively, without primes] are taken with respect to the
unprimed coordinates. This is made explicit in the notation exemplified in Eqs. (A.11) of Appendix A, where
∇∇∇ ≡ ∇∇∇x operates on the xxx coordinates while ∇∇∇

′ ≡ ∇∇∇x′ operates on the xxx′ coordinates.
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n

S

C
dl

da

tFig. 5.3 Surface S and contour C bounding the surface for Stokes’ theorem. An infinitesimal line
element on C is indicated by dl and an infinitesimal surface element on S is indicated by
da, with the normal to da indicated by nnn. The path in the line integration is traversed in a
right-hand screw sense relative to nnn, as indicated by arrows.

∫
S
(∇∇∇×BBB) ·nnnda =

∮
C

BBB ·dlll = µ0

∫
S

JJJ ·nnnda (5.17)

and therefore Eq. (5.16) becomes∮
C

BBB ·dlll = µ0

∫
S

JJJ ·nnnda. (5.18)

Using that the total current I passing through the closed curve C is given by the surface
integral on the right side of Eq. (5.18),

I =
∫

S
JJJ ·nnnda, (5.19)

we finally write Ampère’s law in the integral form∮
C

BBB ·dlll = µ0I, (5.20)

We found in our study of electrostatics that Gauss’s law can often be used to find the
electric field in highly symmetric cases. Ampére’s law can be employed in an analogous
way for magnetostatic problems with high symmetry. The following example illustrates.

Example 5.2 Let’s determine the magnetic field for the long solenoid illustrated in
Fig. 5.4, with n closely wound turns per unit length on a cylinder of radius R and car-
rying a steady current I. Because the solenoid is tightly wound, we expect that each coil
can be assumed to be perpendicular to the symmetry axis of the cylinder. We expect then on
symmetry and general grounds that the magnetic field field is oriented along the cylinder
axis, and that it drops to zero at large distances from the solenoid. Let’s apply Ampère’s
law (5.20) to the two rectangular loops shown in the diagram. Loop 1 is completely outside
the solenoid and encloses no current, Ienc = 0, with its left side a distance a and its right
side a distance b from the central axis of the cylinder. Applying Ampère’s law to it∮

BBB ·dl = [B(a)−B(b)]L = µ0Ienc = 0,

where B = |BBB|. So B(a) = B(b) and the magnetic field outside is independent of the dis-
tance from the solenoid. But the boundary conditions require that B = 0 at infinity, so the
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a

b

2 1

I

I

R

n coils per

unit length L

tFig. 5.4 Analysis of a long, tightly wound solenoid using Ampère’s law. Two rectangular loops are
shown, number 1 outside the solenoid and number 2 overlapping the solenoid.

magnetic field must vanish everywhere outside the solenoid. Loop 2 is halfway inside the
solenoid and Ampère’s law gives∮

BBB ·dl = BL = µ0Ienc = µ0nIL,

where B is the field inside the solenoid (there is no contribution from the half rectan-
gle outside the cylinder since B = 0 there). Thus inside the solenoid the field is uniform,
BBB = µ0nIẑzz, where ẑzz is a unit vector along the cylinder axis, and outside the solenoid the
magnetic field vanishes.

Like Gauss’s law, Ampère’s law is generally valid (for steady currents), but it is useful only
if a problem has sufficient symmetry to allow B to be pulled out of the integral

∮
BBB · dlll,

allowing Eq. (5.20) to be solved easily for the magnetic field..

5.5 The Vector Potential and Gauge Invariance

We have seen in the preceding section that the basic laws of magnetostatics are defined in
differential form through Eqs. (5.16) and (5.11),

∇∇∇×BBB = µ0JJJ,

∇∇∇ ·BBB = 0,
(5.21)

which must be solved for the magnetic field BBB. In electrostatics we found that the electric
potential Φ was an extremely useful quantity because the electric field can be derived from
it by taking the gradient, EEE =−∇∇∇Φ. The electric potential Φ is a scalar quantity, and it is
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often termed the scalar potential [we have indeed used the terms “(electric) potential” and
“scalar potential” interchangeably]. For the special case that the current density is zero in a
region, it is possible to define a magnetic scalar potential ΦM such that the magnetic field is
given by BBB =−∇∇∇ΦM. Then Eq. (5.16) with JJJ = 0 reduces to the Laplace equation for ΦM.
Therefore, the methods for solving Laplace’s equation developed for electrostatics in Chs.
2-4 become applicable. However, this approach has limited applicability because it is valid
only if the current density vanishes. As we now discuss, an approach with more general
applicability may be developed by exploiting the second equation above, ∇∇∇ ·BBB = 0. This
will allow defining a vector potential AAA, from which the magnetic field BBB can be derived
by taking the curl of AAA.

We begin by noting that if ∇∇∇ ·BBB = 0 is to hold everywhere, than BBB must be the curl of
some vector field AAA (the vector potential),

BBB(xxx) = ∇∇∇×AAA(xxx), (5.22)

since then the identity ∇∇∇ ·(∇∇∇×AAA) = 0 ensures that the divergence of BBB vanishes identically
under all conditions. In fact, BBB was already written in this form in Eq. (5.10),

BBB(xxx) =
µ0

4π
∇∇∇×

∫ JJJ(xxx′)
|xxx− xxx′|

d3x′, (5.23)

and upon comparing Eqs. (5.22) and (5.23), a vector potential AAA consistent with the phe-
nomenology of magnetism takes the general form

AAA(xxx) =
µ0

4π

∫ JJJ(xxx′)
|xxx− xxx′|

d3x′+∇∇∇ψ(xxx), (5.24)

where the addition of the arbitrary scalar function ψ(xxx) has no effect on ∇∇∇ ·BBB = 0 because
of the identity ∇∇∇×(∇∇∇ f ) = 0 [Eq. (A.7)] for an arbitrary scalar function f . Since ψ(xxx) is an
arbitrary scalar function of xxx, the vector potential AAA can be transformed freely according to

AAA → AAA+∇∇∇ψ, (5.25)

which has no effect on the magnetostatic equation ∇∇∇ ·BBB = 0 because identically ∇∇∇ · (∇∇∇×
∇∇∇χ) = 0.

Gauge transformations: The addition of the gradient of an arbitrary scalar func-
tion ψ to the vector potential AAA → AAA+∇∇∇ψ is called a gauge transformation and
the invariance of the laws of electromagnetism under this transformation is called
gauge invariance. The gauge symmetry associated with this invariance has large
implications for classical electromagnetism and quantum electrodynamics, and a
generalization of this gauge symmetry is of fundamental importance in relativis-
tic quantum field theories, particularly for the Standard Model of elementary
particle physics. We will elaborate on electromagnetism as the prototype gauge
field theory in Ch. 10.

From the Helmholtz theorem (Box 3.1), a vector field with suitable boundary conditions is
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Current

distribution

P

x'

J(x')

x

tFig. 5.5 A localized current density JJJ(xxx′) that produces a vector potential AAA(xxx) and corresponding
magnetic field BBB(xxx) at the point xxx, with xxx ≫ xxx′.

specified uniquely by its curl and its divergence. From Eq. (5.22), specifying the magnetic
field requires only the curl of AAA. Thus we are free to make gauge transformations in the
vector potential such that ∇∇∇ ·AAA has any convenient functional form without affecting the
magnetic field and thus without altering the physics of electromagnetism.

Substituting BBB = ∇∇∇×AAA into Eq. (5.16) gives

∇∇∇× (∇∇∇×AAA) = µ0JJJ,

which becomes

∇∇∇(∇∇∇ ·AAA)−∇
2AAA = µ0JJJ, (5.26)

upon invoking the identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA given in Eq. (A.8). Now we
exploit the freedom to make a gauge transformation (5.25) by choosing a gauge where

∇∇∇ ·AAA = 0 (Coulomb gauge condition), (5.27)

which defines the Coulomb gauge (also know as the radiation gauge or the transverse
gauge, for reasons that will be explained later). In Coulomb gauge, Eq. (5.26) is trans-
formed into the Poisson equation,

∇
2AAA =−µ0JJJ (Coulomb gauge). (5.28)

From application of the Poisson equation in electrostatics we expect that the solution for AAA
in Coulomb gauge is given by the first term of Eq. (5.24), with ψ = constant,

AAA(xxx) =
µ0

4π

∫ JJJ(xxx′)
|xxx− xxx′|

d3x′ (5.29)

if the JJJ(xxx′)→ 0 sufficiently rapidly at infinity. Gauge transformations will be discussed in
more depth in Ch. 7.

5.6 Magnetic Fields of Localized Current Distributions

We now consider a current distribution that is localized in a region of space small compared
to the length scale of interest to an observer. Figure 5.5 illustrates. A full treatment of this
problem by analogy with electric multipole expansions is possible using vector spherical
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harmonics, which are described briefly in Box 5.2. We shall avoid using them and confine
ourselves instead to lowest-order expansions.

Let us assume that xxx ≫ xxx′ and expand the denominator of Eq. (5.29) in powers of xxx′

relative to a suitable origin located in the current distribution in Fig. 5.5,

1
|xxx− xxx′|

=
1
|xxx|

+
xxx · xxx′

|xxx|2
+ · · · . (5.30)

Thus the ith components of the vector potential AAA(xxx) has the expansion

Ai(xxx) =
µ0

4π

[
1
|xxx|

∫
Ji(xxx′)d3x′+

xxx

|xxx|2
·
∫

Ji(xxx′)xxx′ d3x′+ · · ·

]
. (5.31)

That the current current(xxx′) is localized and has zero divergence permits simplification
of this expansion. The first term vanishes because the integral of the current vector over
all orientations will average to zero. (This argument is intuitive; a more formal proof that
the first term vanishes is given in Jackson [15], Section 5.6.) This reflects that the first
term in the multipole expansion is the monopole term, which measures the total “charge”;
but there are no magnetic monopoles because there is no magnetic charge consistent with
the Maxwell equations (∇∇∇ ·BBB = 0). The integral in the second term of Eq. (5.31) can be
manipulated into

xxx ·
∫

xxx′Ji(xxx′)d3x′ = ∑
i

xi

∫
x′jJi d3x′

=−1
2 ∑

i
xi

∫
(x′iJi − x′jJi)d3x′

=−1
2 ∑

j,k
εi jk x j

∫
(xxx′× JJJ)k d3x′

=−1
2

[
xxx×

∫
(xxx′× JJJ)d3x

]
i
. (5.32)

The magnetic moment density or magnetization is defined by

MMM(xxx) =
1
2
[xxx× JJJ(xxx)] , (5.33)

and the magnetic moment mmm is defined by

mmm =
1
2

∫
xxx′× JJJ(xxx′)d3x′. (5.34)

Then the multipole expansion (5.31) can be written as

AAA(xxx) =
µ0

4π

mmm× xxx

|xxx|3
+ higher-order multipole terms.

The first non-vanishing term in this multipole expansion for a steady-state current distri-
bution has the form of a magnetic dipole. The higher-order multipoles have increasingly
larger powers of |xxx| in their denominators and at large distances from the current source
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Box 5.2 Vector Spherical Harmonics

Vector spherical harmonics are an extension of regular (scalar) spherical harmonics
designed for use with vector fields. Generally the components of vector spherical
harmonics are complex-valued functions expressed in terms of spherical basis vec-
tors. Following the conventions of Ref. [2], three vector spherical harmonics may be
defined

YYY lm = Ylmr̂rr ΨΨΨlm = r∇∇∇Ylm ΦΦΦlm = rrr×∇∇∇Ylm,

where rrr is the radial vector in spherical coordinates. The purpose of the radial fac-
tors is to ensure that the vector spherical harmonics have the same dimensions as
ordinary spherical harmonics, and that they do not depend on the radial coordinate.
These new vector fields facilitate separation of radial from angular coordinates in
spherical coordinates, permitting a a multipole expansion of the electric field EEE of
the form

EEE =
∞

∑
l=0

+l

∑
m=−l

(
Er

lm(r)YYY lm +E(1)
lm (r)ΨΨΨlm +E(2)

lm (r)ΦΦΦlm

)
,

The component labels indicate that Er
lm(r) is the radial component, and E(1)

lm (r) and
E(2)

lm (r) are transverse components of the vector field (with respect to the vector rrr).

the vector potential can be approximated well by

AAA(xxx) =
µ0

4π

mmm× xxx

|xxx|3
. (5.35)

Then the magnetic field may be found by taking the curl of AAA, giving

BBB(xxx) =
µ0

4π

(
3nnn(nnn ·mmm)−mmm

|xxx|3

)
, (5.36)

where nnn is a unit vector in the direction of xxx. Because the dipole term dominates the multi-
pole expansion in typical situations, it is common to refer to the magnetic dipole moment
as simply the magnetic moment.

If the current as assumed to correspond to an arbitrary closed loop confined to a plane
the magnitude of the magnetic moment takes a simple form that is independent of the shape
of the loop,

|mmm|= I ×A, (5.37)

where A is the area enclosed by the planar current loop. If the current distribution is due to
charged particles with charges qi, masses Mi, and velocities vvvi, the current density is

JJJ = ∑
i

qivvviδ (xxx− xxxi),
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where xxxi is the position of the ith particle, and the magnetic moment is

mmm =
1
2 ∑

i
qi(xxxi × vvvi).

But the orbital angular momentum of particle i is LLLi =Mi(xxxi×vvvi) and the magnetic moment
becomes

mmm = ∑
i

qi

2Mi
LLLi. (5.38)

If all the particles have the same charge-to-mass ratio qi/Mi = e/M,

mmm =
e

2M ∑
i

LLLi =
e

2M
LLL, (5.39)

where LLL is the total orbital angular momentum. Equation (5.39) is the well-known classical
connection between angular momentum and magnetic moment. It holds for orbital angular
momentum even on the atomic scale, but fails for intrinsic moments arising from parti-
cle spin, which is an intrinsically quantum effect that is beyond the scope of our present
discussion of classical electromagnetism.

Background and Further Reading

Good introductions to the material of this chapter may be found in Griffiths [8]. More
advanced treatments may be found in Jackson [15], Garg [6], Chaichian et al [3], and
Zangwill [27].
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Problems

5.1 A localized current distribution of cylindrical symmetry has a current flowing only
in the azimuthal direction, with a current density JJJ = J(r,θ)φ̂φφ . The current is zero
both outside the cylinder and near the origin. Working in Coulomb gauge, show that
the corresponding vector potential AAA has only an azimuthal component with

Ain
φ (r,θ) =− µ0

4π
∑

l
mlrlP1

l (cosθ),

where P1
l (cosθ) is an associated Legendre polynomial and the multiple moments are

given by

ml =


− 1

l(l +1)

∫
r−l−1P1

l (cosθ)J(r,θ)d3x ( interior),

− 1
l(l +1)

∫
rlP1

l (cosθ)J(r,θ)d3x (exterior),

for the interior and exterior solutions, respectively.
5.2 A cylindrical solenoid of length L and radius a carries a current I through N turns

per unit length.

I

I

θ2θ1
z

Show that in the limit NL → ∞, the magnetic field is

Bz =
µ0NI

2
(cosθ1 + cosθ2)

at the point defined on the cylinder axis by the angles θ1 and θ2 in the preceding
figure.

5.3
5.4



6 Magnetic Fields in Matter

Just as electric fields can polarize matter, magnetic fields can magnetize matter. In classi-
cal electromagnetism all magnetic phenomena have their origin in the motion of electrical
charges. At the microscopic level, we may view magnetism as being produced by small
current loops (for example, electrons in orbits around nuclei in atoms) that may be mod-
eled as tiny magnetic dipoles. Ordinarily the effects of these dipoles cancel out because of
random orientation of atoms, but if a magnetic field is applied to the matter it can cause
a net alignment of the dipoles so that the matter becomes magnetically polarized (magne-
tized). For the electric polarization of matter described in Ch. 4, the polarization is usually
in the direction of the EEE field. Magnetic polarization of matter is more complex and varied
than electric polarization of matter. For example,

1. paramagnetic materials acquire a magnetization in the same direction as the applied
field BBB, while

2. the magnetization of diamagnetic materials is in the direction opposite the applied field,
and

3. ferromagnetic materials can become permanent magnets, by retaining their magne-
tization after the polarizing field has been removed, with the retained magnetization
depending on the entire magnetic history of the material.

As a consequence, the discussion of magnetized matter is more involved than the discus-
sion of electrically polarized matter.

6.1 Ampère’s Law in Magnetically Polarized Matter

In the previous chapter we have dealt with steady-state magnetic fields in a microscopic
manner, assuming that the current density JJJ is a known function of position. In macro-
scopic problems dealing with magnetic effects in materials, this will often not be true. The
atomic currents in matter produce rapidly fluctuating current densities on a microscopic
scale. Just as discussed in Section 4.7 for electric fields in matter, only averages over small
macroscopic volumes are known and only these enter into the classical equations of elec-
tromagnetism.

6.1.1 Macroscopic Averaging

The first step in introducing averaging in matter for electric fields in Section 4.7 was to note
that the averaging procedure preserves the crucial relation ∇∇∇×EEE = 0, which ensures that
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the macroscopic electric field is still derivable from a scalar potential through EEE = −∇∇∇Φ.
In a similar manner, for magnetic fields the macroscopic averaging procedure leads to the
same equation ∇∇∇ ·BBB = 0 that we introduced in Eq. (5.11). Thus, the averaging procedure
preserves the notion of a vector potential AAA(xxx), from which we can derive the macroscopic
magnetic field by taking the curl, BBB = ∇∇∇×AAA.

The basic effect of magnetization is to establish currents within a material and on its
surface such that these currents produce the field due to magnetization. The average macro-
scopic magnetization or magnetic (dipole) moment density is

MMM(xxx) = ∑
i

Ni⟨mmmi⟩, (6.1)

where ⟨mmmi⟩ is the magnetic moment averaged over a small volume around the point xxx.
In addition to the bulk magnetization we may assume that there is a macroscopic current
density JJJ(xxx) produced by the flow of free charge in the medium. Then the vector potential
resulting from averaging over a small volume ∆V around xxx′ will take the form

∆AAA(xxx) =
µ0

4π

[
JJJ(xxx′)
|xxx− xxx′|

+
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3

]
∆V, (6.2)

where the first term represents the contribution of the flow of free charge and the second
term represents the contribution from the magnetic dipoles in the medium described by Eq.
(5.35). Letting ∆V tend to d3x′, the total vector potential at xxx is given by an integral over
all space,

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)
|xxx− xxx′|

+
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3

]
d3x′. (6.3)

The second (magnetization) term can be cast in another form by utilizing Eq. (5.9) to write∫
MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′ =

∫
MMM(xxx′)×∇∇∇

′
(

1
|xxx− xxx′|

)
d3x′.

Integration by parts then allows Eq. (6.3) to be written

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)+∇∇∇

′×MMM(xxx′)
]

|xxx− xxx′|
d3x′, (6.4)

where a surface term has been discarded by assuming MMM(xxx′) to be localized and well be-
haved.

6.1.2 The Auxiliary Field HHH and Constituitive Relations

From the results in the preceding section we see that the magnetization contributes an
effective current density

JJJM = ∇∇∇×MMM. (6.5)

Then JJJ+ JJJM plays the role of the effective current such that

∇∇∇×BBB = µ0(JJJ+∇∇∇×MMM). (6.6)
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It is then convenient to define a new macroscopic field1

HHH ≡ 1
µ0

BBB−MMM. (6.7)

The introduction of HHH in the presence of magnetically polarized materials is a matter of
convenience, analogous to the introduction in Section 4.7 of DDD to account for electrically
polarized materials in electrostatics. The fundamental fields in classical electromagnetism
are the electric field EEE and the magnetic field BBB.2 The derived fields DDD and HHH are introduced
as a convenient way to take into account the average contributions to charge density and
current of the atomic-level charges and currents. Then the macroscopic fields in medium
that replace the microscopic fields of Eqs. (5.21) are

∇∇∇×HHH = JJJ,

∇∇∇ ·BBB = 0,
(6.8)

which are analogous to the macroscopic fields for electrostatics in medium

∇∇∇×EEE = 0,

∇∇∇ ·DDD = ρ,
(6.9)

that were derived in Sections 4.7 and 4.8.
Just as for Eqs. (6.9), the description of macroscopic magnetostatics in Eqs. (6.8) re-

quires constituitive relationships, in this case between the fundamental field BBB and the
derived field HHH. For paramagnetic and diamagnetic materials that are isotropic, the rela-
tionship may be assumed linear,

BBB = µHHH, (6.10)

where the constant µ is characteristic of the medium and is called the magnetic permeabil-
ity. It is also common to characterize the magnetic properties of the medium in terms of
the magnetic susceptibility χ , which is related to the magnetic permeability by

χ =

(
µ

µ0
−1
)
. (6.11)

Typically for paramagnetic materials µ > 1 and for diamagnetic materials µ < 1, with
µ/µ0 differing from unity by a part in ∼ 105 for either case. The physical reasons for
paramagnetism and diamagnetism are discussed in Box 6.1.

1 We have routinely termed BBB the magnetic field. Some authors instead call HHH the magnetic field, which requires
finding another name for BBB. For example, Jackson [15] calls HHH the magnetic field and BBB the magnetic induction.
This is a question of terminology, not physics, and arguments can be made from a theoretical or experimental
perspective in favor of either naming convention. Because the fundamental fields are EEE and BBB, and the auxiliary
fields DDD and HHH are derived quantities, we have adopted the convention of calling BBB the magnetic field, with
no specific name for HHH. Likewise EEE is termed the electric field and DDD the displacement field (but the common
name “displacement” for DDD survives for historical, not descriptive, reasons).

2 This is a classical statement. As we shall discuss briefly in Ch. 7, in quantum mechanics one finds that the
scalar potential Φ and the vector potential AAA (or a 4-vector having Φ and AAA as components in a Lorentz-
invariant theory) should be viewed as more fundamental than the electric and magnetic fields, for two basic
reasons. (1) There are experiments where probes that never see the magnetic field are influenced by the vector
potential (the Aharonov–Bohm effect), and (2) the fundamental coupling of electromagnetism to charged
particles is through the vector and scalar potentials (the minimal coupling prescription).
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Box 6.1 Diamagnetism and Paramagnetism

Materials characterized by small magnetic susceptibilities |χ| ≪ 1 are called para-
magnetic if χ > 0, and diamagnetic if χ < 0. Magnetization in diamagnetic and
paramagnetic media typically depends linearly on the applied magnetic field.

Physical Origin of Diamagnetism
In diamagnetic media an external field HHH creates a magnetization MMM opposite to HHH,
so χ < 0. Physically, external fields induce currents associated with orbital motion
in the diamagnetic material. (The external field also interacts with electron spins,
but this is a much smaller effect than the interaction with orbital currents.) The field
created by the moving charges opposes the applied field HHH (Lenz’s law). Thus,
the magnetic field is decreased inside the material and magnetic lines of force are
expelled from the medium. This diamagnetic effect is particularly dramatic in su-
perconductors, where the magnetic field is expelled completely (Meissner effect),
except for a thin surface layer where the magnetic field decays exponentially over a
distance called the London penetration depth).a

Physical Origin of Paramagnetism
Some materials have magnetic dipoles associated with intrinsic spins (a quantum-
mechanical effect). Application of an external field HHH then partially aligns the dipoles
with the applied field, thereby enhancing the internal field. (This ordering is opposed
by thermal fluctuations, so the fraction of alignment is temperature dependent.)
Such materials are called paramagnetic. The net effect is that the lines of magnetic
force are “drawn in” to paramagnetic material.

Magnetic Field Lines for Diamagnets and Paramagnets
The contrasting behavior of diamagnetic and paramagnetic matter in magnetic fields
can be characterized by their magnetic field lines, as in the following figure [3].

The diamagnetic matter in (a) expels the magnetic field but the paramagnetic matter
in (b) enhances the density of field lines within the sample.

a Diamagnetic effects are greatly amplified in a superconductor because the induced currents flow with-
out resistance. It may be shown in quantum field theory that the (normally massless) photon gains
an effective mass through interaction with the dielectric medium, which causes it to penetrate the su-
perconductor with exponentially decaying probability. This acquisition of effective mass by photons
is a non-relativistic model of the Higgs mechanism, whereby a massless gauge boson (the photon)
acquires a mass. As we shall discuss further in Ch. 10, this Higgs mode of spontaneous symmetry
breaking is fundamental for the Standard Model of elementary particle physics.



123 Ampère’s Law in Magnetically Polarized Matter

H

B

tFig. 6.1 Schematic illustration of hysteresis.

The case of ferromagnetic materials is more involved. In ferromagnetic substances the
magnetic susceptibility χ (or the magnetic permeability µ) is positive but not constant;
it depends on the applied field HHH, and typically can take large values. When an external
field is applied to a ferromagnetic material the system acquires a magnetization MMM aligned
with the applied field. The origin of permanent ferromagnetism (magnetism that remains in
the absence of an external field) is an essentially quantum-mechanical effect where many
spins align spontaneously to form a highly collective state.3 Ferromagnets may exhibit
hysteresis, where the magnetic field BBB is not a single-valued function of HHH, and the state
of the system may depend on its preparation history; Fig. 6.1 illustrates. These complex
behaviors lead to a constituitive relationship

BBB = FFF [HHH], (6.12)

where FFF [HHH] is a non-linear function of HHH. Clearly the complex relationship of BBB and HHH in
ferromagnetic materials means that magnetic boundary-value problems are generally more
difficult to deal with than corresponding problems in electrostatics.

6.1.3 Magnetic Boundary-Value Conditions

Boundary conditions for BBB and HHH at media interfaces were considered in Section 4.11; Eqs.
(4.53b) and (4.54b) indicate that normal components of BBB and tangential components of HHH
on opposite sides of a boundary between medium 1 and medium 2 are related by

(BBB2 −BBB1) ·nnn = 0, (6.13a)

nnn× (HHH2 −HHH1) = KKK, (6.13b)

3 This is an example of quantum-mechanical spontaneous symmetry breaking, which is a phenomenon where
the ground state wavefunction does not have the full symmetry of the Hamiltonian for a system. In the case
of permanent ferromagnetism, the correct Hamiltonian is rotationally invariant (conservation of angular mo-
mentum) but the ferromagnetic wavefunction has spins aligned in a preferred direction, even if no external
field is present, which breaks rotational invariance. Thermal fluctuations can destroy this collective alignment
of spins, so in permanent ferromagnets the collective magnetic state disappears above a critical temperature
called the Curie temperature Tc. For T > Tc, a ferromagnet then behaves as a paramagnet. An introduction to
spontaneously broken symmetry may be found in Chs. 17 and 18 of Ref. [12].
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where nnn is a unit normal vector pointing from region 1 into region 2, and KKK is the sur-
face current density. If media satisfy the linear constituitive relation (6.10) and have finite
conductivities so that JJJ = σEEE and KKK = 0, boundary conditions can be expressed as [15],

BBB2 ·nnn = BBB1 ·nnn BBB2 ×nnn =
µ2

µ1
BBB1 ×nnn, (6.14)

or as

HHH2 ·nnn =
µ1

µ2
HHH1 ·nnn HHH2 ×nnn = HHH1 ×nnn. (6.15)

If µ1 ≫ µ2 the boundary conditions on HHH for highly-permeable material are essentially
the same as for the electric field at the surface of a conductor, which permits electrostatic
potential theory to be applied to magnetic field problems.

6.2 Solving Magnetostatic Boundary-Value Problems

Magnetostatic boundary value problems require solving Eqs. (6.8) subject to constituitive
relations as in Eqs. (6.10) and (6.12). Especially because of the range of constituitive re-
lations that are possible for magnetic and magnetized materials, a variety of situations can
occur and a survey of possible methods of attack is useful. We summarize some approaches
following the presentation in Jackson [15].

6.2.1 Methods Using the Vector Potential

Because ∇∇∇ ·BBB = 0, it is always possible introduce a vector potential AAA(xxx) such that BBB =

∇∇∇×AAA. Then if we have a non-linear constituitive relation (6.12) the resulting differential
equation

∇∇∇×HHH[∇∇∇×AAA] = JJJ

is generally very difficult to solve. However, if the constituitive relation is linear, BBB = µHHH,
the preceding equation becomes

∇∇∇×
(

1
µ

∇∇∇×AAA
)
= JJJ. (6.16)

For a region of space in which µ is constant, the vector identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−
∇2AAA of Eq. (A.8) may be used to write this as

∇∇∇(∇∇∇ ·AAA)−∇
2AAA = µJJJ. (6.17)

Invoking the Coulomb gauge condition (5.27) by setting ∇∇∇ ·AAA = 0 we obtain the Poisson
equation

∇
2AAA =−µJJJ. (6.18)

Comparing with Eq. (5.28) in vacuum, this is a Poisson equation with a current density
modified by the medium, which is similar to a Poisson equation for uniform dielectric me-
dia with an effective charge density (ε/ε0). Matching of solutions for Eq. (6.18) across
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interfaces between different (linear) media can be implemented using the boundary condi-
tions (6.14) or (6.15).

6.2.2 Using a Magnetic Scalar Potential if JJJ === 000

As mentioned in Section 5.5, for the special case JJJ = 0 where the current density van-
ishes in a region of interest, ∇∇∇×HHH = 0, suggesting the introduction of a magnetic scalar
potential ΦM such that

HHH =−∇∇∇ΦM. (6.19)

If the medium is linear and µ is constant the magnetic scalar potential satisfies the Laplace
equation

∇
2
ΦM = 0, (6.20)

for which the boundary conditions (6.14) are appropriate. This method is of limited utility
since it applies only if JJJ = 0. One use case is the magnetic field external to a closed loop
of current. Another is the hard ferromagnet that will be considered in Section 6.2.3.

6.2.3 Hard Ferromagnets

A hard ferromagnet is one having a magnetization that is largely independent of applied
field for moderate field strengths. This suggests an approximation where the ferromagnet
can be assumed to have a specified fixed magnetization MMM(xxx), using either magnetic scalar
potential methods or vector potential methods.

Solve Using the Magnetic Scalar Potential

Since JJJ = 0 for a hard ferromagnetic, the magnetic scalar potential method of Section 6.2.2
is applicable. Then ∇∇∇ ·BBB = 0 becomes

∇∇∇ ·BBB = µ0∇∇∇ · (HHH +MMM) = 0, (6.21)

where Eq. (6.7) was used, and since HHH =−∇∇∇ΦM from Eq. (6.19), this becomes a magnetic
Poisson equation,

∇
2
ΦM = ∇∇∇ ·MMM =−ρM, (6.22)

where an effective magnetic-charge density

ρM ≡−∇∇∇ ·MMM (6.23)

has been introduced. By analogy with the second term of Eq. (4.20) for electrostatics in
electrically polarized matter, if there are no boundary surfaces the solution is expected to
be [15]

ΦM(xxx) =− 1
4π

∫
∇∇∇

′ ·MMM(xxx′)
|xxx− xxx′|

d3x =− 1
4π

∇∇∇ ·

∫
MMM(xxx′)
|xxx− xxx′|

d3x, (6.24)
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where the second form results from an integration by parts and Eq. (5.9), which is justified
if MMM is localized and well behaved.

Although physical magnetization distribution generally don’t have discontinuities, it is
sometimes useful to idealize a problem and treat MMM(xxx) as if it is discontinuous. We can then
model a hard ferromagnet as having a volume V and a surface S, with MMM(xxx) finite inside
but falling to zero at the surface S. Application of the divergence theorem to the surface
indicates that in this idealization there is an effective magnetic surface-charge density given
by [15]

σM = nnn ·MMM, (6.25)

where nnn is the outward normal at the surface. Then the first form of the potential (6.24) is
modified to

ΦM(xxx) =− 1
4π

∫
V

∇∇∇
′ ·MMM(xxx′)
|xxx− xxx′|

d3x+
1

4π

∮
S

nnn′ ·MMM(xxx′)
|xxx− xxx′|

da′. (6.26)

An important special case is for uniform magnetization of the volume. Then JJJ′ = 0 inside
the volume and the first term of Eq. (6.26) vanishes, leaving only the surface term,

ΦM(xxx) =
1

4π

∮
S

nnn′ ·MMM(xxx′)
|xxx− xxx′|

da′ =
1

4π

∮
S

σ(xxx′)
|xxx− xxx′|

da′, (6.27)

where Eq. (6.25) was used. Thus, introduction of a sharp boundary for the volume of a
uniformly magnetized object induces a surface charge on the boundary given by Eq. (6.25).

Solve Using the Vector Potential

If we choose to satisfy ∇∇∇ ·BBB automatically by introducing a vector potential AAA and defining
BBB = ∇∇∇×AAA, then the first of Eqs. (6.8) is

∇∇∇×HHH = ∇∇∇×
(

1
µ0

BBB−MMM
)
= 0, (6.28)

which becomes upon introduction of BBB = ∇∇∇×AAA,

1
µ0

(∇∇∇×∇∇∇×AAA) = ∇∇∇×MMM,

and upon using the identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA on the left side and Eq. (6.5)
on the right side,

∇∇∇(∇∇∇ ·AAA)−∇
2AAA = µ0JJJM, (6.29)

where JJJM is the effective magnetic current density defined in Eq. (6.5). Transforming to
Coulomb gauge (5.27) by setting ∇∇∇ ·AAA = 0 then leads to a Poisson equation for the vector
potential,

∇
2AAA =−µ0JJJM. (6.30)
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tFig. 6.2 Uniformly magnetized sphere of radius a, with a sharp surface and surface
magnetic-charge density σM(θ) with MMM = MMM0ẑzz parallel to the z axis, so that
σM = nnn ·MMM = M0 cosθ .

If there are no bounding surfaces, the solution is

AAA(xxx) =
µ0

4π

∫
∇∇∇

′×MMM(xxx′)
|xxx− xxx′|

d3x (6.31)

[compare Eq. (6.4) with JJJ = 0]. If the magnetization is discontinuous [as in the uniformly
magnetized sphere with sharp surface in Section 6.2.4] it is necessary to add a surface
integral to Eq. (6.24). For the case of MMM falling to zero at the surface S bounding the
volume V , starting from Eq. (6.3), the proper generalization of Eq. (6.31) may be shown to
be [15]

AAA(xxx) =
µ0

4π

∫
V

∇∇∇
′×MMM(xxx′)
|xxx− xxx′|

d3x+
µ0

4π

∮
S

MMM(xxx′)×nnn′

|xxx− xxx′|
da′. (6.32)

For the special case that the magnetization is constant over the volume V , only the surface
integral can contribute in Eq. (6.32).

6.2.4 Example: Uniformly Magnetized Sphere

As an example of solving boundary problems in magnetostatics using the methods just
discussed, let’s consider a sphere with uniform permanent magnetization, with a sharp
transition at the surface from magnetized to non-magnetized matter; Fig. 6.2 illustrates.

Solution Using the Magnetic Scalar Potential

Since the sphere is uniformly magnetized, there are no volume currents and the scalar mag-
netic potential method of Section 6.2.2 is applicable. As discussed in Section 6.2.3, there
will be a surface charge σM = nnn ·MMM associated with the sharp transition from magnetized
to un-magnetized material. Assuming that MMM = M0ẑzz so that σM = nnn ·MMM = MMM0 cosθ using
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spherical coordinates, from Eq. (6.24) the scalar magnetic potential is

ΦM(r,θ) =
1

4π

∮
S

σ(xxx′)
|xxx− xxx′|

da′ =
M0a2

4π

∫
cosθ

|xxx− xxx′|
dΩ

′.

Inserting the multipole expansion

1
|xxx− xxx′|

=

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ)

of Eq. (3.111) and using that P1(cosθ) = cosθ gives

ΦM(r,θ) =
M0a2

4π

∫
P1(cosθ)

|xxx− xxx′|
dΩ

′

=
M0a2

4π

∞

∑
l=0

rl
<

rl+1
>

∫
Pl(cosθ)P1(cosθ)dΩ

′

=
1
3

M0a2 r<
r2
>

P1(cosθ) =
1
3

M0a2 r<
r2
>

cosθ , (6.33)

where the orthogonality condition of Eq. (3.99) has been used to eliminate all terms in the
sum except for l = 1, and (r<,r>) are the smaller and larger of r and a, respectively. Inside
the sphere, r< = r and r> = a, so the magnetic scalar potential is

Φ
in
M =

1
3

M0r cosθ =
1
3

M0z.

Then from Eq. (6.19)

HHH in =−∇∇∇Φ
in
M =− ∂

∂ z

(
1
3

M0z
)

ẑzz =−1
3

M0ẑzz =−1
3

MMM,

and from Eq. (6.7),

BBBin = µ0(HHH in +MMM) = µ0

(
−1

3
MMM+MMM

)
=

2µ0

3
MMM.

Therefore, the interior solution is

Φ
in
M =

1
3

M0z HHH in =−1
3

MMM BBBin =
2µ0

3
MMM, (6.34)

where we see that the fields are constant inside the sphere, with BBB parallel and HHH antipar-
allel to MMM.

For the exterior solution, r< = a and r> = r, which gives from Eq. (6.33) for the exterior
potential,

Φ
out
M =

1
3

M0a3 cosθ

r2 , (6.35)

which is a dipole potential with dipole moment

mmm =
4πa3

3
MMM. (6.36)
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tFig. 6.3 Lines of BBB and HHH for a uniformly magnetized sphere having a sharp boundary [15].

Then, proceeding as above

HHHout =−∇∇∇Φ
out
M =−1

3
a3

r3 MMM BBBout = µ0(HHH +MMM) =

(
3r3 −a3

3r3

)
µ0 MMM. (6.37)

The BBB and HHH fields are plotted in Fig. 6.3

Solution Using the Vector Potential

Alternatively, the vector potential and Eq. (6.32) can be used to obtain the solution for the
problem posed in Fig. 6.2. The magnetization is assumed uniform so the volume current
JJJM = 0 and the first (volume) term in Eq. (6.32) make no contribution. However, there is
a surface charge due to the sharp boundary on magnetization so the second term in Eq.
(6.32) will be non-zero and

AAA(xxx) =
µ0

4π

∮
S

MMM(xxx′)×nnn′

|xxx− xxx′|
da′. (6.38)

Using the notation (εεε1,εεε2,εεε3) = (x̂xx, ŷyy, ẑzz) for cartesian basis vectors and (εεεr,εεεθ ,εεεφ ) =

(r̂rr, θ̂θθ , φ̂φφ) for spherical basis vectors, since MMM = M0εεε3 we have

MMM(xxx′)×nnn′ = M0 sinθ
′
εεεφ

= M0 sinθ
′(−sinφεεε1 + cosφ

′
εεε2),

where Eq. (A.41) was used. The problem has azimuthal (φ ) symmetry about the z-axis. If
the observing point P is chosen to lie in the x-y plane, then only the y component of MMM×nnn
survives integration over the azimuth so (−sinφ ′εεε1 + cosφ ′εεε2) → cosφ ′εεε2, which gives
an azimuthal component of the vector potential

Aφ =
µ0

4π
M0a2

∫
sinθ ′ cosφ ′

|xxx− xxx′|
dΩ

′, (6.39)

where the components of xxx′ are (r′ = a,θ ′,φ ′), confining the integration to the surface of
the sphere. Since

Y11(θ
′,φ ′) =−

√
3

8π
sinθ

′eiφ ′
=−

√
3

8π
sinθ

′(cosφ
′+ isinφ

′),
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we may write

sinθ
′ cosφ

′ =−
√

8π

3
Re [Y11(θ

′,φ ′)]

where Re(x) denotes the real part of x. Thus,

Aφ =−
√

3
8π

µ0

4π
M0a2

∫
Re [Y11(θ

′,φ ′)]

|xxx− xxx′|
dΩ

′.

Then if the denominator is expanded using Eq. (3.114),

1
|xxx− xxx′|

= 4π

∞

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗
lm(θ

′,φ ′)Ylm(θ ,φ),

the spherical harmonic orthogonality relation (3.118),∫ 2π

0
dφ

∫
π

0
Y ∗

l′m′(θ ,φ)Ylm(θ ,φ)sinθdθ = δl′lδm′m,

ensures that only the l = 1,m = 1 term survives the summation and the vector potential is

Aφ (xxx) =
µ0

3
M0a2

(
r<
r2
>

)
sinθ (6.40)

For the inside solution, r< = r and r> = a, so

Ain
φ (xxx) =

µ0

3
M0r sinθ (6.41)

You are asked to calculate the corresponding BBB and HHH fields for the interior of the sphere
in Problem 6.1.

By placing a shell of permeable matter in a magnetic field, it is possible to shield the
interior of the shell from the magnetic field. Example 6.1 illustrates.

Example 6.1 Consider Fig. 6.4, where the shell contains material of permeability µ .
Let us find the fields BBB and HHH for this arrangement. There are no currents so the magnetic
scalar potential method of Section 6.2.2 is applicable and from Eq. (6.19)

HHH =−∇∇∇ΦM,

and since BBB = µHHH, ∇∇∇ ·BBB = 0 becomes ∇∇∇ ·HHH = 0 in all regions. Therefore, the magnetic po-
tential ΦM satisfies the Laplace equation in all regions and the problem reduces to solving
the Laplace equation subject to the boundary conditions of Eq. (6.15) at r = a and r = b.
If r > b, the potential is of the form

ΦM =−H0r cosθ +

∞

∑
l=0

αl

rl+1 Pl(cosθ) (r > b), (6.42)
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a b
B0=µH

0

tFig. 6.4 A shell of material with permeability µ is placed in a previously uniform magnetic field
BBB0 = µ0HHH0. Example 6.1 demonstrates that if the shell contains highly permeable material
the cavity inside the shell is shielded strongly from the magnetic field.

which gives a uniform field ΦM = HHH0 at large distance. Likewise, in the interior regions
the potential must take the form

ΦM =

∞

∑
l=0

(
βlrl + γl

1
rl+1

)
Pl(cosθ). (a < r < b), (6.43a)

ΦM =

∞

∑
l=0

δlrlPl(cosθ) (r < a). (6.43b)

The boundary conditions at r = a and r = b require the components Hθ and Br be contin-
uous, which implies that

∂ΦM

∂θ
(b+) =

∂ΦM

∂θ
(b−)

∂ΦM

∂θ
(a+) =

∂ΦM

∂θ
(a−), (6.44a)

µ0
∂ΦM

∂ r
(b+) = µ

∂ΦM

∂ r
(b−) µ

∂ΦM

∂ r
(a+) = µ0

∂ΦM

∂ r
(a−), (6.44b)

where the notation b+ means the limit r → b approached from r > b and the notation b−
means means the limit r → b approached from r < b, with a similar convention for a±. The
four conditions (6.44) determine the unknown constants in Eqs. (6.42) and (6.43). One
finds that all coefficients with l ̸= 1 vanish and the l = 1 coefficients satisfy the simultane-
ous equations

α1 −b3
β1 − γ1 = b3H0,

2α1 +µ
′b3

β1 −2µ
′
γ1 =−b3H0,

a3
β1 + γ1 −a3

δ1 = 0,

µ
′a3

β1 −2µ
′
γ1 −a3

δ1 = 0,

(6.45)
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tFig. 6.5 The magnetic shielding effect of a shell of highly permeable material. Lines for the
magnetic field BBB are shown [15]. Note the absence of field lines in the cavity inside the
shell. Calculation described in Example 6.1.

where µ ′ ≡ µ/µ0. The solution of Eqs. (6.45) for α1 and δ1 are [15],

α1 =

 (2µ ′+1)(µ ′−1)

(2µ ′+1)(µ ′+2)−2
a3

b3 (µ
′−1)2

(b3 −a3)H0,

δ1 =−

 9µ ′

(2µ ′+1)(µ ′+2)−2
a3

b3 (µ
′−1)2

H0.

(6.46)

The corresponding magnetic field lines are shown in Fig. 6.5. For this solution the potential
outside the shell corresponds to the original uniform field HHH0 plus a dipole field with dipole
moment α1 parallel to HHH0. In the cavity inside the shell there is a uniform field parallel to
HHH0 and equal in magnitude to −δ1. If µ ≫ µ0, the dipole moment α1 and the inner field
−δ1 tend to

α1 → b3H0 −δ1 →
9µ0

2µ(1−a3/b3)
H0. (6.47)

Thus the field in the inner cavity is proportional to µ−1 and a shield made of highly perme-
able material causes a large reduction of the field inside. Even thin shells of material with
µ/µ0 ∼ 103 −106 can greatly reduce the interior field, as is clear from Fig. 6.5.

6.3 Faraday and the Law of Induction

We have considered primarily static charges (no relative motion) as sources of electric
fields and steady-state (no change in time) charge currents as the source of magnetic fields
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C

n

da
S

BtFig. 6.6 Magnetic flux through a circuit C bounding a surface S with a unit normal to the surface nnn
and surface element da. The magnetic field in the neighborhood of the circuit is BBB.

to this point. However, many important electromagnetic phenomena involve the motion of
charges and/or non-steady electrical currents. Michael Faraday performed the first quan-
titative experiments on time-dependent electric and magnetic field, and their relationship,
beginning in 1831. Faraday’s essential observations were that

1. a transient current is produced in a test circuit if a steady current in a nearby circuit is
turned off;

2. a transient current is also produced in a test circuit if a nearby circuit with a steady
current is moved relative to the first circuit;

3. a transient current is produced in a test circuit if a permanent magnet is moved into or
out of the circuit.

In summary, a current flows in the test circuit if a the current in a nearby circuit
changes in time, or if the two circuits move with respect to each other.

Faraday interpreted these results as originating in a changing magnetic flux that produced
an electric field around the test circuit, which leads to an electromotive force E (EMF)
that drives a current in the test circuit governed by Ohm’s law (see Box 6.2). Thus, with
Faraday’s results and interpretation begins the unification of electricity and magnetism in
a single theory of electromagnetism.

Let us express the results of Faraday’s observations mathematically. Consider Fig. 6.6;
the magnetic flux linking the circuit is

F =
∫

S
BBB ·nnnda (6.48)

and the electromotive force around the circuit is

E =
∮

C
EEE ′ ·dlll, (6.49)
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Box 6.2 Ohm’s Law

To make a current flow some force, typically electromagnetic in origin, must push
on the charges (continuously if, as is usual, there is any resistance to the charge
flow). For most materials the current density JJJ is proportional to the force per unit
charge fff ,

JJJ = σ fff ,

where the constant of proportionality σ depends on the nature of the medium and
is called the conductivity. Often the reciprocal of the conductivity, ρ = σ−1, which is
called the resistivity, is used instead. If the force is electromagnetic in origin,

JJJ = σ(EEE + vvv×BBB),

where EEE is the electric field, BBB is the magnetic field, and vvv is the velocity. Except for
special circumstances such as in plasmas, the velocity is relatively small and the
vvv×BBB term can be neglected, leaving

JJJ = σEEE.

This is called Ohm’s law.a For a cylindrical wire of cross-sectional area A and con-
ductivity σ , if the potential difference between the ends is V the electric field and
current density are uniform and the total current is

I ≡ JAσEA =
σA
V

.

In this and similar examples the total current flow in the wire from one point to
another is proportional to the potential difference between the points,

V = IR,

where the constant of proportionality R is called the resistance. This is the most
familiar form of Ohm’s law. The resistance depends on the geometry and the con-
ductivity of the medium; in the example given above R = L/σA, where L is the
length.

a Ohm’s law is not a true “law” in the same sense as say the law of gravity. It is a “rule of thumb” that is
often (but not always) obeyed. Conductors that do obey Ohm’s law are called ohmic conductors.

where EEE ′ is the electric field at element dlll of the circuit C. Faraday’s observations are
summarized by the relationship

E =−k
dF

dt
.

between the rate of change of the magnetic flux and the EMF, where k is a constant of
proportionality. The constant k can be determined by requiring Galilean invariance at low
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velocities4 This indicates that k = 1 in SI units (and k = c−1 in Gaussian units). Therefore,
in SI units

E =−dF

dt
, (6.50)

where the sign is specified by Lenz’s law.

Lenz’s law: The induced current and corresponding magnetic field are in a di-
rection so as to oppose changing the flux through the circuit.

Combining Eq. (6.50) with Eqs. (6.48) and (6.49),∮
C

EEE ′ ·dlll =− d
dt

∫
S

BBB ·nnnda (Faraday’s law) (6.51)

indicating that the induced EMF is proportional to the total time derivative of the flux.5

Equation (6.51) represents a form of Faraday’s law with broad implications. If we view C
as a geometrical closed path not necessarily coincident with an electrical circuit, Eq. (6.51)
may be viewed as a relationship among the fields BBB and EEE ′.

If the circuit C is moving with some velocity, the total time derivative must take that
motion into account, since the flux through the circuit can change for two reasons:

1. the flux is changing with time at a given point, or
2. translation of the circuit changes location of the circuit in an external field.

This can be taken into account by computing the convective derivative,

d
dt

=
∂

∂ t
+ vvv ·∇∇∇, (6.52)

where vvv is the velocity and the partial derivative in the first term on the right side has the
usual meaning that it is the derivative with respect to a variable (time in this case) with all
other variables held constant. Then the total time derivative of the moving circuit is [15],

d
dt

∫
S

BBB ·nnnda =

∫
S

∂BBB
∂ t

·nnnda+

∮
C
(BBB× vvv) ·dlll. (6.53)

Then this result can be used to write Eq. (6.51) in the form∮
C

[
EEE ′− (vvv×BBB)

]
·dlll =−

∫
S

∂BBB
∂ t

·nnnda. (6.54)

This is Faraday’s law applied to the moving circuit C, but if we think of the circuit C and

4 As we shall see in Ch. 8, the Maxwell equations are invariant under Lorentz transformations, not Galilean
transformations. But Lorentz transformations reduce to Galilean transformations in the limit v ≪ c, so requir-
ing Galilean invariance for low velocities is a legitimate way to determine the constant k.

5 The flux can be changed by changing the magnetic field, or the shape, position, or orientation of the circuit. The
total time derivative accounts for all such possibilities. Note that EEE ′ is the electric field at dlll in the coordinate
system where dlll is at rest.
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surface S being instantaneously at a certain point, then application of Eq. (6.51) to that
circuit at fixed location gives, ∮

C
EEE ·dlll =−

∫
S

∂BBB
∂ t

·nnnda, (6.55)

where EEE is now the electric field in the laboratory frame. Galilean invariance (valid at low
velocities) then requires that the left sides of Eqs. (6.54) and (6.55) must be equivalent.

If the circuit is held fixed in a reference frame so that the electric and magnetic fields are
defined in the same frames, Faraday’s law (6.51) in integral form can be transformed into
a differential equation. From Stoke’s theorem,∮

C
EEE ′ ·dlll =

∫
S
(∇∇∇×EEE ′) ·nnnda

and Eq. (6.51) may be written as∫
S

(
∇∇∇×EEE +

∂BBB
∂ t

)
·nnnda = 0.

But the circuit C and surface S are arbitrary, so the integrand must vanish identically, giving

∇∇∇×EEE +
∂BBB
∂ t

= 0, (6.56)

which is Faraday’s law (1.1b) in differential form. We note that this is the time-dependent
generalization of the equation ∇∇∇×EEE = 0 from electrostatics.

Background and Further Reading

The presentation in this chapter has followed Jackson [15] rather closely.
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Problems

6.1 Find the fields BBBin and HHH in corresponding to the vector potential of Eq. (6.41),

Ain
φ (xxx) =

µ0

3
M0r sinθ ,

inside the sphere of Fig. 6.2.



7 Maxwell’s Equations

The preceding chapters have provided a systematic understanding and validation of the
various pieces of electromagnetic theory that James Clerk Maxwell synthesized into the
four concise Maxwell equations. Up to this point we have treated electricity and mag-
netism largely as separate subjects. As Faraday’s discovery of induction that was discussed
in Section 6.3 makes clear, this distinction begins to fail when we move from static to
time-dependent phenomena, and we will now begin to address a unified picture of electro-
magnetism. In this chapter we take the Maxwell equations to be the basis for all classical
understanding of electromagnetism and address systematically their broader scientific and
technical implications.

7.1 The Almost-but-Not-Quite Maxwell’s Equations

The basic equations of electricity and magnetism that we have studied in Chs. 2-6 can be
summarized (in medium, in differential form) as

∇∇∇ ·DDD = ρ (Gauss’s law), (7.1a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (7.1b)

∇∇∇ ·BBB = 0 (No magnetic charges), (7.1c)

∇∇∇×HHH = JJJ (Ampère’s law), (7.1d)

In modern notation, these were the fundamental equations of electromagnetism as they
stood in the mid-1800s when James Clerk Maxwell set about his synthesis of electromag-
netic understanding. A comparison shows that these are almost, but not quite, the Maxwell
equations (in medium, in differential form) that were introduced in Eqs. (4.47). The differ-
ence lies in the fourth equation (Ampère’s law), where a term −∂DDD/∂ t is missing relative
to the fourth Maxwell equation (4.47d).

7.1.1 Ampère’s Law and the Displacement Current

It is important to recognize that all but Faraday’s law in Eqs. (7.1) were derived from
data taken under steady-state conditions, so we should expect that modifications might
be required in the face of data for time-dependent fields. Maxwell first realized that the
fundamental equations of electromagnetism (7.1) in his time were inconsistent as they
then stood. Since the divergence of a curl vanishes by a basic vector-calculus identity,

138
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∇∇∇ · (((∇∇∇×BBB) = 0, it follows from Ampère’s law (7.1d) for steady currents that

∇∇∇ · JJJ = ∇∇∇ · (∇∇∇×HHH) = 0. (7.2)

But from the continuity equation (1.3) ensuring conservation of charge,

∂ρ

∂ t
=−∇∇∇ · JJJ,

so ∇∇∇ ·JJJ = 0 can hold only if the charge density doesn’t change with time. Maxwell modified
Ampère’s law to accomodate a time dependence by introducing a displacement current
term ∂DDD/∂ t,1

∇∇∇×HHH = JJJ −→ ∇∇∇×HHH = JJJ+
∂DDD
∂ t

, (7.3)

thus converting Eqs. (7.1) into what we now call the Maxwell equations (4.47) (in medium,
in differential form),2

∇∇∇ ·DDD = ρ (Gauss’s law), (7.4a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (7.4b)

∇∇∇ ·BBB = 0 (No magnetic charges), (7.4c)

∇∇∇×HHH − ∂DDD
∂ t

= JJJ (Ampère–Maxwell law), (7.4d)

where the last equation is now called the Ampère–Maxwell law. It still is the same law as
before when applied to steady-state phenomena, but addition of the displacement current
term means that a changing electric field can generate a magnetic field, even if there is
no current. Thus, it is the converse of Faraday’s law, where a changing magnetic field can
produce an electric field. These (Maxwell) equations are now consistent with the continuity
equation. Taking the divergence of both sides of the Ampère–Maxwell law,

∇∇∇ · (∇∇∇×HHH) = ∇∇∇ · jjj+
∂ (∇∇∇ ·DDD)

∂ t
,

using ∇∇∇ ·DDD = ρ from Gauss’s law and the identity ∇∇∇ · (∇∇∇×BBB) = 0 from Eq. (A.6), this
becomes

∂ρ

∂ t
+∇∇∇ · jjj = 0,

which is the continuity equation (1.3).

1 Maxwell’s original detailed physical reason for the term and corresponding name is partially bogus, but his
insight that the term is required was seminal, and the name itself survives.

2 Recall that the vacuum Maxwell equations (1.1) in differential form can be recovered by substituting DDD = ε0EEE
and HHH = BBB/µ0 into these equations, remembering from Eq. (2.4) that µ0ε0 = 1/c2, and that the integral form
of the Maxwell equations in medium are given by Eqs. (4.52).
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Local conservation of charge: Physically the continuity equation requires that
changes in electrical charge in some arbitrary volume are caused by flow of
charge through the surface bounding that volume. This requires conservation of
charge within a volume of space that can be arbitrarily small, thus implying that
charge is conserved locally. A charge that disappears from one point in space
and instantly reappears at another point is consistent with global charge conser-
vation, but not with local charge conservation. The reason requires relativistic
quantum field theory for its full explanation: destroying a charge at one point and
simultaneously creating it at another would require instantaneous propagation of
a signal between the two points, which is inconsistent with special relativity.

Maxwell’s equations (7.4), supplemented by the Lorentz force law (1.4)

FFF = q(EEE + vvv×BBB),

to describe electromagnetic forces, and Newton’s laws of motion to translate force into
particle motion are thought to describe all of classical electromagnetism.

7.1.2 Implications of the Ampère–Maxwell Law

As was introduced in Box 1.1, Maxwell’s seemingly small change in the Ampère law turns
out to have enormous implications for both our classical and quantum understanding of
electromagnetism.

1. Maxwell’s addition of ∂DDD/∂ t to Ampère’s law (and Faraday’s induction experiments)
effectively brought together the previously separate subjects of electricity and mag-
netism. Ampère’s law is only about magnetism, but both the polarized electric field DDD
and the polarized magnetic field HHH appear in the Ampère–Maxwell law, while EEE and
BBB both appear in Faraday’s law. Changing electric fields produce magnetic fields and
changing magnetic fields produce electric fields, and we may now speak of the unified
subject of electromagnetism.

2. The fundamental equations of electromagnetism are now consistent with (local) con-
servation of electrical charge.

3. This modification will lead eventually to the greatest triumph of the classical Maxwell
equations: the realization that the Maxwell equations have a wave solution, and that the
resulting electromagnetic waves may be interpreted as light, thus unifying electricity
and magnetism with optics.

4. That Maxwell’s equations obey the continuity equation and thus conserve charge locally
will lead to the idea of classical electromagnetic gauge invariance, which will underlie
a quantum field theory of electromagnetism (quantum electrodynamics or QED).

5. Electromagnetic gauge invariance will eventually be generalized to more sophisticated
local gauge invariance in the weak and strong interactions, resulting in the relativistic
quantum field theory that we term the Standard Model of elementary particle physics.
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Some of these topics are beyond the scope of classical electromagnetism, but have their
historical and scientific antecedents in that discipline. A general introduction to modern
relativistic quantum field theory and many of these topics specifically may be found in
Ref. [9].

7.2 Vector and Scalar Potentials

In our discussions of electrostatics and magnetostatics we introduced the scalar potential
Φ (Section 2.5) and the vector potential AAA (Section 5.5). The Maxwell equations (7.4) are
a set of coupled first-order differential equations relating the components of the electric
and magnetic fields. To solve those coupled differential equations it is often convenient to
introduce the potentials AAA and Φ, which satisfy some of the Maxwell equations identically
and leave a smaller number of second-order differential equations to solve.

Consider the two homogeneous equations (the ones equal to zero on the right side) in
Eqs. 7.4. As we have noted in Section 5.5, since ∇∇∇ ·BBB = 0, the magnetic field BBB can be
described as the curl of a vector potential AAA,3

BBB = ∇∇∇×AAA. (7.5)

Then Faraday’s law (7.4b) may be written as,

∇∇∇×
(

EEE +
∂AAA
∂ t

)
= 0. (7.6)

Since the curl of the quantity EEE + ∂AAA/∂ t in parentheses vanishes, it can be written as the
gradient of a scalar function; let’s choose it to be minus the scalar potential Φ,

EEE +
∂AAA
∂ t

=−∇∇∇Φ,

which rearranges to

EEE =−∇∇∇Φ− ∂AAA
∂ t

. (7.7)

For simplicity, let’s restrict consideration to the vacuum form of the Maxwell equations
given in Eq. (1.1), which are formulated in terms of the fundamental fields EEE and BBB,

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law), (7.8a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (7.8b)

∇∇∇ ·BBB = 0 (No magnetic charges), (7.8c)

∇∇∇×BBB− 1
c2

∂EEE
∂ t

= µ0JJJ (Ampère–Maxwell law). (7.8d)

3 Recall the reason: if BBB = ∇∇∇×AAA, then by taking the divergence of both sides ∇∇∇ ·BBB = ∇∇∇ · (∇∇∇×AAA) = 0, where
the identity (A.6) was used. Thus the condition ∇∇∇ ·BBB = 0 is guaranteed if BBB derives from the curl of a vector
potential.
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Introducing the substitutions BBB = ∇∇∇×AAA and EEE = −∇∇∇Φ− ∂AAA/∂ t into the Maxwell equa-
tions (7.8), we find using the identities ∇∇∇ · (∇∇∇× BBB) = 0 and ∇∇∇×∇∇∇Φ = 0, that the ho-
mogeneous equations (7.8b) and (7.8c) are satisfied identically, while the inhomogeneous
equations (7.8a) and (7.8d) are transformed into the coupled second-order differential equa-
tions,

∇
2
Φ+

∂

∂ t
(∇∇∇ ·AAA) =− ρ

ε0
, (7.9a)

∇
2AAA− 1

c2
∂ 2AAA
∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

1
c2

∂Φ

∂ t

)
=−µ0JJJ, (7.9b)

where the identity ∇∇∇×(∇∇∇×AAA)=∇∇∇(∇∇∇ ·AAA)−∇2AAA has been used. Thus the problem has been
converted into solving the two coupled, second-order differential equations (7.9). These
equations can be decoupled by a suitable gauge transformation, as will now be shown.

7.3 Exploiting Gauge Symmetry

In Section 5.5 we showed that the magnetic field is invariant under a gauge transformation
on the vector potential,

AAA → AAA′ = AAA+∇∇∇χ,

where χ is an arbitrary scalar function. But in general the Maxwell equations involve both
magnetic and electric fields. If the electric field is to be unaltered under this transformation
of the magnetic field the scalar potential must be changed at the same time according to

Φ → Φ
′ = Φ− ∂ χ

∂ t
.

Gauge Transformation: A classical gauge transformation on the electromag-
netic field is defined by the simultaneous transformations

AAA → AAA+∇∇∇χ Φ → Φ− ∂ χ

∂ t
, (7.10)

on the vector potential AAA and the scalar potential Φ, for an arbitrary scalar func-
tion χ . A gauge transformation leaves the electric and magnetic fields, and thus
Maxwell’s equations, unchanged.

Notice that in the gauge transformation the same scalar function χ is used in both equa-
tions, but the choice of χ is arbitrary.

Mathematically, the invariance of electromagnetism under the gauge transformation
(7.10) means that an electromagnetic field may be viewed as an equivalence class of po-
tentials {Φ,AAA}, where equivalence classes are defined in Box 7.1. Thus, on the set of all
possible electromagnetic potentials {(Φ1,AAA1),(Φ2,AAA2), · · ·} we may define an equivalence
relation “related by a gauge transformation (7.10)” and the equivalence class is the set of
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Box 7.1 Equivalence Classes

A very useful concept for a set is that of an equivalence class, which is predicated
on there being an equivalence relation defined between set members. Equivalence
classes are of utility when one wishes to refer to a subset of things that are “the
same” for our considerations, in that they all exhibit a specific property.

For example, if for the set of all balls of a solid color we define an equiva-
lence relation “having the same color”, then the subset of all yellow balls
would be one equivalence class of the set of all balls of a solid color, and
the subset of all black balls would be another.

When a set S has an equivalence relation defined on it the set may be partitioned
naturally into disjoint (non-overlapping) equivalence classes, with elements a and b
belonging to the same equivalence class if and only if they are equivalent. Formally,
equivalence is a binary relation ∼ between members of a set S exhibiting

1. Reflexivity: For each a ∈ S, we have a ∼ a.
2. Symmetry: For each a,b ∈ S, if a ∼ b, then b ∼ a.
3. Transitivity: For each a,b,c ∈ S, if a ∼ b and b ∼ c, then a ∼ c.

Since mathematical groups are sets with added structure, equivalence classes may
be defined in a similar way for groups.

all electromagnetic potentials related to each other by a gauge transformation. The objects
of the class then are “equivalent” in the sense that all members of the equivalence class give
the same electric and magnetic fields, and thus lead to the same electromagnetic physics
when inserted in the Maxwell equations.

7.3.1 Lorenz Gauge

Suppose that we now take advantage of the invariance of electromagnetism under gauge
transformations and choose a set of potentials {Φ,AAA} that satisfy the Lorenz condition

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t
= 0 (Lorenz gauge). (7.11)

A constraint like Eq. (7.11) is termed a gauge-fixing condition and imposing such a con-
straint is termed fixing the gauge. The gauge choice implied by Eq. (7.11) is called the
Lorenz gauge.4 If the Lorenz gauge condition is inserted into the coupled equations (7.9),

4 The Lorenz gauge (named for Danish physicist and mathematician Ludvig Lorenz) has often mistakenly been
called the Lorentz gauge, after the better-known Dutch physicist Hendrik Lorentz (who shared the 1902 No-
bel Prize in physics for the theoretical explanation of the Zeeman effect). The present author must confess
to being among the many who have made this error, referring to the “Lorentz” rather than “Lorenz” gauge
in the book [9]. Ludvig Lorenz did significant work on electromagnetism contemporary with, but indepen-
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the equations decouple and solving the Maxwell equations has now been reduced to solv-
ing two second-order differential equations,

∇
2
Φ− 1

c2
∂ 2Φ

∂ t2 =− ρ

ε0
, (7.12a)

∇
2AAA− 1

c2
∂ 2AAA
∂ t2 =−µ0JJJ, (7.12b)

which are uncoupled: solution of Eq. (7.12a) gives the scalar potential Φ independent of the
vector potential AAA, while solution of Eq. (7.12b) gives the vector potential, independent of
the scalar potential. Equations (7.12) along with the gauge condition (7.11) are completely
equivalent in physical content to the original Maxwell equations (7.4).

It is always possible to find potentials {Φ,AAA} that satisfy the Lorenz condition.
Suppose that we have a solution with gauge potentials that satisfies Eqs. (7.9), but
does not satisfy Eqs. (7.11). Then, make a gauge transformation to new potentials
{Φ′,AAA′} and require the new potentials to satisfy the Lorentz condition

∇∇∇ ·AAA′+
1
c2

∂Φ′

∂ t
= 0 = ∇∇∇ ·AAA+

1
c2

∂Φ

∂ t
+∇

2
χ − 1

c2
∂ 2χ

∂ t2 .

Thus, if a scalar function χ can be found that satisfies

∇
2
χ − 1

c2
∂ 2χ

∂ t2 =−
(

∇∇∇ ·AAA+
1
c2

∂Φ

∂ t

)
, (7.13)

the new potentials will satisfy the Lorenz gauge conditions (7.11) and the simul-
taneous equations (7.12).

The Lorenz condition Eq. (7.11) does not exhaust the gauge degrees of freedom in
Lorenz gauge. The restricted gauge transformation

AAA → AAA+∇∇∇χ Φ → Φ− ∂ χ

∂ t
, (7.14)

where the scalar function χ (which is arbitrary for general gauge transformations) is re-
stricted to those that satisfy the constraint

∇
2
χ − 1

c2
∂ 2χ

∂ t2 = 0, (7.15)

preserves the Lorenz condition if {AAA,Φ} satisfies it to begin with. Thus the Lorenz gauge
corresponds to an entire family of of gauge conditions that satisfy Eq. (7.11). The Lorenz
gauge is often used for two reasons:

1. It leads to the decoupled equations (7.12) that treat Φ and AAA on an equal footing.

dent of, Maxwell. For example, he proposed independently that electromagnetic waves might be light waves.
An overview of Lorenz’s scientific work is given in Ref. [19] and the history of his work and the incorrect
attribution of his famous gauge to Lorentz is discussed in Ref. [16].
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2. As will be elaborated in Ch. 8, the Lorenz gauge condition is manifestly invariant under
Lorentz transformations, which fits naturally into special relativity.5

There are infinitely many valid gauge transformations that can be made using Eq. (7.10)
with different choices for the scalar function χ . However, only some prove to be useful.
One of use is the transformation to Lorenz gauge described in this section. Another that
we have already encountered in Section 5.5 is the transformation to Coulomb gauge.

7.3.2 Coulomb Gauge

We have already introduced the Coulomb gauge condition in Eq. (5.27),

∇∇∇ ·AAA = 0 (Coulomb gauge).

From Eq. (7.9a), in Coulomb gauge the scalar potential obeys a Poisson equation

∇
2
Φ =− ρ

ε0
, (7.16)

which has a solution

Φ(xxx, t) =
1

4πε0

∫
ρ(xxx′, t)
|xxx− xxx′|

d3x′. (7.17)

This is the instantaneous Coulomb potential caused by the charge density ρ(xxx), which is
the source of the name Coulomb gauge.

As Box 7.2 discusses, the Coulomb potential (7.17) suggests instantaneous trans-
mission of information in a universe where lightspeed c is the speed limit. In Chs.
8-10 we will resolve this issue and show that classical electromagnetism is in fact
causal because no information is being transmitted at a speed v > c.

From Eq. (7.9b), in Coulomb gauge the vector potential obeys

∇
2AAA− 1

c2
∂ 2AAA
∂ t2 =−µ0JJJ+

1
c2

∂Φ

∂ t
. (7.18)

As guaranteed by the Helmholtz theorem for any vector (see Box 3.1), the current density
can be decomposed as a sum of two terms

JJJ = JJJL + JJJT, (7.19)

where the terms have the following properties:

1. The component JJJL has vanishing curl, ∇∇∇× JJJL = 0; it is called the longitudinal current
or the irrotational current.

2. The component JJJT has vanishing divergence, ∇∇∇ · JJJT = 0; it is called the transverse
current or the solenoidal current.

5 Note that the equations are in (Ludvig) Lorenz gauge, but we shall see in Ch. 8 that they are invariant under
(Hendrik) Lorentz transformations. This perhaps helps to explain the historical confusion in the name of the
gauge.
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The longitudinal and transverse currents are given explicitly by

JJJL =− 1
4π

∇∇∇

∫
∇∇∇

′ · JJJ(xxx′, t)
|xxx− xxx′|

d3x′, (7.20a)

JJJT =
1

4π
∇∇∇×∇∇∇×

∫
JJJ(xxx′, t)
|xxx− xxx′|

d3x′. (7.20b)

From Eq. (7.17) and the continuity equation (1.3),

1
c2 ∇∇∇

∂Φ

∂ t
= µ0JJJT, (7.21)

which gives when inserted into Eq. (7.9b), using the identity ∇∇∇(∇∇∇ ·AAA) = 0 and Eq. (7.19),

∇
2AAA− 1

c2
∂ 2AAA
∂ t2 =−µ0JJJT. (7.22)

Thus, in Coulomb gauge the source for the equation for AAA can be expressed entirely in
terms of the transverse current JJJT. For this reason, the Coulomb gauge is sometimes termed
the transverse gauge. The Coulomb gauge is also sometimes called the radiation gauge,
because one finds in quantum electrodynamics that only the vector potential (which is
determined by the transverse components) need be quantized.

Notice that Eq. (7.22) has the form of a wave equation with the speed of the wave equal
to c, which is the behavior expected for electromagnetic waves. However, the discussion
above implies that for the scalar potential the propagation speed is infinite. The resolution
of this seeming paradox requires relativistic quantum field theory, but in essence the prop-
agating classical field has only transverse components and one finds that in QED only the
vector potential (and thus only the transverse components ) need be quantized.

As we will see in Ch. 8, Lorentz covariance requires the 3-vector potential AAA and the
scalar potential Φ to be combined into a spacetime 4-vector Aµ with the components of the
4-vector given by

Aµ = (A0,A1,A2,A3) = (Φ,AAA) = (Φ,A1,A2,A3), (7.23)

where Φ is the scalar potential and AAA is the 3-vector potential with components Ai(i =
1,2,3). In the 4-vector the first component A0 is called the timelike component and the
other three components (A1,A2,A3) are called the spacelike components of the 4-vector.6

We have asserted above that only the two transverse components of the vector (typically
chosen to be A1 and A2 for AAA and A2 and A3 for Aµ ) are required to describe propagating
waves. But a 3-vector like AAA normally has three components, and a 4-vector like Aµ has
four components. So how can a propagating photon have only two rather than three or four
degrees of freedom. Relativistic quantum field theory applied to electrons and photons
(QED) is beyond our present scope in these lectures. However, the essential answer is

6 A small terminology problem now enters our discussion. We have been calling AAA the vector potential, but
relativistically it will be more convenient to work with the 4-vector potential Aµ (which makes more obvious
the requirement of relativity that space and time enter on an equal footing). We adopt a policy that where it
is clear that we are working non-relativistically we will often call AAA the vector potential, while if it is clear
that we are working in a relativistic context we will often call Aµ the vector potential. If there is chance for
confusion we may use the explicit names “3-vector potential” for AAA and “4-vector potential” for Aµ to be clear.
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that it is found in QED that in a covariant gauge like Lorenz gauge there are four states
of polarization, but the contributions from timelike and longitudinal polarizations enter
with equal magnitudes but opposite signs and exactly cancel each other, leaving only the
transverse contributions for a free propagating photon. (This is called the Gupta–Bleuler
mechanism in quantum electrodynamics.) A massive vector field would have three spatial
polarization components. As we will see, the reduction to two spatial polarizations is a
consequence of the photon being identically massless: massless vector fields have two
rather than three states of polarization.

7.4 Retarded Green Function

From Eqs. (7.12), it is clear that the key to solving Maxwell’s equations in Lorenz gauge
is to be able to solve the wave equation with a source f ,

□ψ =− f , (7.24)

where we now introduce for convenience the d’Alembertian operator □ with7

□≡− 1
c2

∂ 2

∂ t2 +∇
2, (7.25)

since if we know how to solve (7.24), we can solve Eqs. (7.12). Since we are assuming
Lorenz gauge, we must also satisfy Eq. (7.11), but the retarded solution of Eqs. (7.12)
with sources that we will find shortly will in fact satisfy Eq. (7.11) automatically, provided
that they decrease rapidly enough at infinity. Generalizing the electrostatics case, a Green
function G(t,xxx; t ′xxx′) can be defined by

□G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t − t ′), (7.26)

where the derivative operators in □ are understood to operate on the unprimed variables,
and in contrast to Eq. (3.30) for electrostatics, the Green function depends on (t ′,xxx′) and
(t,xxx) and there is a delta function in t ′− t as well as in xxx− xxx′. If we can obtain a Green
function, a solution ψ of Eq. (7.24) is given by

ψ(t,xxx) =
∫

G(t,xxx; t ′xxx′) f (t ′,xxx′)d3x′ dt ′, (7.27)

assuming that the integral converges.
Let us seek a solution of Eq. (7.26) using Fourier transforms. For an integrable function

F : R→ R, define its Fourier transform F̂ as

F̂(k) =
1√
2π

∫ +∞

−∞

F(x)e−ikxdx. (7.28)

7 The d’Alembertian operator □ is a Lorentz-invariant combination of the second derivatives with respect to
space and time that will play a significant role in discussing the relationship of the Maxwell equations to
special relativity in Ch. 8.
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Fourier transforms can be extended to distributions such as the Dirac delta function, as well
as functions. For example, the Fourier transform of the delta function is,

δ̂x0 =
1√
2π

eilx0 . (7.29)

Assuming a function to be smooth and to fall off fast enough at infinity, the original func-
tion F(x) can be recovered by the inverse Fourier transform,

F(x) =
1√
2π

∫ +∞

−∞

F̂(k)e+ikxdk. (7.30)

This formula applies also to distributions and the inverse of the Fourier transform for a
delta function is

δx0(x) =
1√
2π

∫ +∞

−∞

δ̂x0(k)e
+ikxdk =

1
2π

∫ +∞

−∞

e−ikx0 e+ikx dk. (7.31)

An important property of Fourier transforms is that differentiation in real space corre-
sponds to multiplication by ik in Fourier transform space. For example, as you are asked to
show in Problem 7.1,

d̂F
dx

(k) = ikF̂(k), (7.32)

for the Fourier transform of dF(x)/dt.

Thus any partial differential equation with constant coefficients in real space can
be converted to an algebraic equation in Fourier transform space.

Now let’s try to solve Eq. (7.26) for G using Fourier transforms. To simplify notation we
temporarily set x′ = t ′ = 0 and c = 1, and define the 4D Fourier transform of G as8

Ĝ(ω,kkk) =
1

(2π)2

∫ +∞

−∞

G(t,xxx)e+iωte−ikkk·xxxdt d3x (7.33)

Taking the Fourier transform of Eq. (7.26) with respect to t and xxx, using Eq. (7.29) with
x0 = 0, and using Eq. (7.32) yields

(ω2 − k2) Ĝ(ω,kkk) =− 1
4π2 , (7.34)

where k ≡ |k|. Naively, this suggest the solution

Ĝ(ω,kkk) =− 1
4π2

1
(ω2 − k2)

=− 1
4π2

1
(ω + k)(ω − k)

, (7.35)

but division by (ω2 − k2) is illegal since it is possible that ω = k. To see the difficulty

8 By convention the time Fourier transform is defined by integrating with e+iωt rather than with e−iωt for com-
patibility with the 4-momentum vector kµ = (ω/c,kkk) of special relativity that will be introduced in Ch. 8.
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clearly, let’s attempt to take the inverse transform of Ĝ with respect to ω (but not kkk). This
is a Fourier transform with respect to space but not time; denoting it as G̃,

G̃(t,kkk) =
1√
2π

∫ +∞

−∞

Ĝ(ω,kkk)e−iωt dω.

=− 1
4π2

√
2π

∫ +∞

−∞

e−iωt

(ω + k)(ω − k)
dω, (7.36)

where Eq. (7.35) was used. This has logarithmic divergences9 of the integral if ω → k, so
it is ill-defined.10 To proceed it is necessary to regularize the integration in Eq. (7.36) in
such a way that

1. equation (7.34) remains valid, and

2. the right side of Eq. (7.36) becomes well defined.

One way to do this is to displace the poles at ω =±k into the complex ω plane and evaluate
the resulting contour integral. There is more than one way to do this, each leading to a
different Green function. The Green function that we seek is the retarded Green function,
which will be appropriate for the situation where there is only outgoing radiation from a
source. To get the retarded Green function the poles should be displaced into the lower half
of the complex ω-plane; thus we define the retarded Green function by

G̃(t,kkk)ret =− 1
4π2

√
2π

∫ +∞

−∞

e−iωt

(ω + k+ iε)(ω − k+ iε)
dω, (7.37)

where ε is positive and the limit ε → 0 is to be taken after the integral is evaluated. View-
ing the integral in Eq. (7.37) as a contour integral in the complex ω-plane, if t < 0 the
exponential is damped in the upper half-plane of ω and the countour integral can be closed
in the upper half plane. Since the poles are in the negative half-plane, the contour does not
enclose them and by the Cauchy theorem,

G̃(t,kkk)ret = 0 (t < 0). (7.38)

This vanishing of the Green function before the time t = 0 is characteristic of the retarded
solution, and corresponds to a solution with outgoing but no incoming radiation. This so-
lution is relevant physically if there is no radiation present when the source is turned on.

By similar reasoning, for t > 0 the contour can be closed in the lower half-plane. Now
the contour encloses poles at ω =±k− iε and by the Cauchy theorem the integral evaluates

9 The simplest example of a logarithmic divergence occurs in an integral of the form

f (x) =
∫ x

x0

1
Λ

dΛ.

Such an integral diverges as x → ∞, but rather mildly, growing as f (x)∼ log(x) at large x.
10 The basic reason for the ambiguity is that many different Green functions satisfy Eq. (7.26), so we cannot

expect to solve for G without providing further information to identify the Green function that we are after.
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to 2πi times a sum of residues at the two poles.11 From Eq. (7.37),

G̃(t,kkk)ret =
2πi

4π2
√

2π

(
e−ikt

2k
− e+ikt

2k

)
=

1
2π

√
2π

sinkt
k

(t > 0), (7.39)

The retarded Green function in real (position) space then results from taking the inverse
transform of Eq. (7.39) with respect to k (homework problem),

G(t,xxx)ret =
1

(2π)3/2

1
2π

√
2π

∫
sinkt

k
eikkk·xxxd3x

=
δ (t −|xxx|)

4π |xxx|
(t > 0). (7.40)

Restoring t ′, xxx′, and c, this result becomes

G(t,xxx; t ′,xxx′)ret =


0 (t < t ′),

δ (t − t ′−|xxx− xxx′|/c)
4π |xxx− xxx′|

(t > t ′).
(7.41)

This propagator now has the desired causal behavior. Using the language of special rela-
tivity (see Ch. 8), it is nonvanishing only on the future lightcone of the source point (t ′,xxx′),
meaning that it is non-vanishing only if |xxx− xxx′|= c(t − t ′). That is, if a field satisfying the
wave equation □ψ = − f of Eq. (7.24) vanishes at early times and a δ -function source is
placed at (t ′,xxx′), the resulting disturbance of the field (electromagnetic waves) will prop-
agate away from the source at the speed of light. Thus, light waves correspond to a wave
solution of the Maxwell equations.

The retarded solution of Eq. (7.24) is the solution obtained using the retarded Green
function in Eq. (7.27),

ψ(t,xxx) =
1

4π

∫
f (t −|xxx− xxx′|/c,xxx′)

|xxx− xxx′|
d3x′. (7.42)

This can also be written more compactly as

ψ(t,xxx) =
1

4π

∫
f (t ′,xxx′))ret

|xxx− xxx′|
d3x′, (7.43)

where the notation means that f (t ′,xxx′) is to be evaluated at the retarded time

t ′ = t − |xxx− xxx′|
c

, (7.44)

and where t ′ isn’t independent but rather is a function of t, xxx, and xxx′.12 Written in this form

11 The residue res f (a) of a function f (z) at a pole z = a is given by

res f (a) =
1

(m−1)!
lim
z→0

(
dm−1

dzm−1 (z−a)m f (z)
)
,

where m is the order of the pole (exponent on the denominator factor tending to zero at the pole) and a is the
location of the pole (with a ̸= ∞). In Eq. (7.37) the poles are of order m = 1.

12 In Eq. (7.43), the integration is not over all of space at an instant of time (as the notation might suggest). Rather
is restricted to the past lightcone of the spacetime point (t,xxx), since only points on the past lightcone can be
causally connected to (t,xxx) by a signal traveling at lightspeed (see the discussion of lightcones in Ch. 8).
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the retarded solution looks like a solution of the Poisson equation, but evaluated at the
retarded time (7.44).

The Maxwell equations (7.12a) and (7.12b) for the scalar and vector potentials are of
the form (7.24), so we can write immediately the corresponding retarded solutions,

Φ(t,xxx) =
1

4πε0

∫
[ρ(t ′,xxx′]ret

|xxx− xxx′|
d3x′, (7.45a)

AAA(t,xxx) =
µ0

4π

∫
[JJJ(t ′,xxx′]ret

|xxx− xxx′|
d3x′. (7.45b)

Finally, substitution of Eqs. (7.45a) and (7.45b) in Eq. (7.11) and some manipulation indi-
cates that these solutions are indeed consistent with the Lorenz gauge condition. Therefore,
we may conclude that the solution of the Maxwell equations for a charge density ρ and a
current density JJJ, with initial conditions of no incoming radiation, is given by Eqs. (7.45).
This has been shown here in Lorenz gauge, but the Maxwell equations are invariant under
gauge transformations so this solution may be taken to be valid generally.

Background and Further Reading

Much of this chapter is based on the presentations in Jackson [15], Garg [6], and Wald
[25]. Further useful discussion may be found in Refs. [3, 8, 27].
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Box 7.2 Causality and Coulomb and Gravitational Potentials

Causality (that actions must precede results) is a fundamental principle underlying
all of modern science. The Coulomb potential of Eq. (7.17) appears to violate that
principle.

Causality and the Coulomb Potential
The Coulomb potential in Eq. (7.17) is said to be “instantaneous” because the as-
sociated force acts without delay at any xxx corresponding a distance |xxx− xxx′| from
the source. This is inconsistent with special relativity and relativistic quantum field
theory, which require that a force be transmitted by a virtual particle (the photon in
this case) communicated at a speed less than or equal to the speed of light c.

Causality and the Newtonian Gravitation Potential
The Newtonianian gravitational potential has the form of a Coulomb potential with
masses playing the role of charges, and has the same causality problem: it implies
that the gravitational force acts instantaneously over any distance. The solution of
this problem in gravitational physics is replacement of Newtonian gravity with gen-
eral relativity, which generalizes special relativity and requires that the transmission
speed of the gravitational force be equal to the speed of light. This prediction of
general relativity has been confirmed by observations, as we now describe.

The Speed of Light and the Speed of Gravity
In 2017 the ground-based Ligo–Virgo detectors observed gravitational wave
GW170817.a But there was more to come: 1.7 seconds later the Fermi Gamma-ray
Space Telescope (Fermi) and International Gamma-Ray Astrophysics Laboratory
(INTEGRAL) in orbit around Earth detected a gamma-ray burst from the same por-
tion of the sky as the source of the gravitational wave. Detailed observations of the
afterglow of the gamma-ray burst at many wavelengths, and comprehensive anal-
ysis of the gravitational and electromagnetic data sets, concluded that the gravita-
tional wave and the gamma-ray burst were caused by a binary neutron star merger
in the galaxy NGC 4993, at a distance of 40 megaparsecs (130 million lightyears).

That the gravitational and electromagnetic signals arrived within 1.7 seconds
of each other after traveling 40 megaparsecs implied that the speed of gravity (for
the gravitational waves) and the speed of light c (for the gamma-rays) differ by no
more than 3 parts in 1015. Thus the speed of gravity is c, just as predicted by the
general theory of relativity. More extensive discussion of physical implications for
GW170817 may be found in Ref. [10] and in Section 24.7 of Ref. [11].

a The name GW170817 indicates that the gravitational wave (GW) was observed in the year 20(17), in
the (08)th month of that year, on the (17)th day of that month.
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Problems

7.1 An important feature of Fourier transforms is that differentiation in real space cor-
responds to multiplication by ik in Fourier transform space. As an example, prove
that

d̂F
dx

(k) = ik F̂(k),

for the Fourier transform of dF/dx.
7.2 Supply and explain the steps in verifying the result of Eq. (7.40).



8 Minkowski Spacetime

These lectures constitute a graduate-level course in classical electromagnetism. The dis-
tinction between classical and modern physics turns on whether the dynamics are described
by quantum mechanics and quantum field theory or classical mechanics and classical field
theory, and by non-relativistic mechanics or relativistic mechanics. Traditionally classical
electromagnetism excludes quantum mechanics and quantum field theory (except for a few
quantum concepts that must be imported for parts of the discussion involving the micro-
scopic structure of matter), but special relativity has been considered part of the discussion
of classical electromagnetism. Accordingly, this chapter will introduce Minkowski space-
time and a differential geometry and spacetime tensor formalism that is the mathematical
foundation of the theory of relativity. Then in Ch. 9 we will introduce the special theory
of relativity and demonstrate explicitly the Lorentz invariance of Maxwell’s equations. Fi-
nally, Ch. 10 will use the gauge-invariant and Lorentz-invariant formulation of classical
electromagnetism in terms of the Maxwell equations to paint electromagnetism as a rela-
tivistic gauge field theory that, when quantized, is the harbinger of the Standard Model of
elementary particle physics.

It is possible to introduce special relativity in a minimal way and then use that to demon-
strate the Lorentz invariance of the Maxwell equations in less space than we will use here.
However, we choose to give a more thorough introduction to the differential geometry and
tensor formalism underlying the theory of relativity. In particular, the tensor formalism will
be developed in a way that is compatible with curved spacetime, and therefore with general
relativity. Then, we will approximate by restricting to flat spacetime to recover the theory
of special relativity. This approach has several advantages:

1. It does not take much longer to develop the formalism in a way compatible with either
flat or curved spacetime than to describe special relativity minimally.

2. The resulting formalism gives more satisfying insight into special relativity and its re-
lationship with Newtonian mechanics, general relativity, and the Maxwell equations.

3. Developing the formalism in this way gives the reader a solid foundation to take on
more advanced topics such as general relativity.

Let us begin with an overview of Minkowski spacetime.

8.1 Minkowski Spacetime and Spacetime Tensors

The most elegant formulation of special relativity is in terms of a 4-dimensional spacetime
manifold called Minkowski space, and in terms of spacetime tensors that are a consequence
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of the differential geometry of that manifold. Let us review Minkowski space and spacetime
tensors defined for that manifold.

8.1.1 Transformations between Inertial Systems

In 1905 Einstein published the special theory of relativity, which was to revolutionize our
conception of space and time. His motivation for the special theory was a conviction that
the laws of physics must be independent of coordinate system for the observer (the princi-
ple of relativity), and that transformations between inertial frames (coordinate systems in
which Newton’s first law is valid) should be the same for particles and for light. Newtonian
mechanics already implied a principle of relativity for space: the laws of mechanics were
unchanged by a Galilean transformation between inertial frame. For motion along the x
axis a Galilean transformation takes the form

x′ = x− vt y′ = y z′ = z t ′ = t, (8.1)

where primed coordinates and unprimed coordinates represent the two inertial frames, the
velocity is v, and a single universal time t = t ′ is assumed for all inertial frames. But
Einstein (as well as others such as Lorentz) realized that there is a problem in that these
common-sense notions of relative motion between inertial frames were consistent with
the motion of billiard balls and projectiles, but were inconsistent with the theory of light,
which was well understood in 1905 to be an electromagnetic wave described by Maxwell’s
equations.

A striking aspect of the Maxwell theory was that it admitted wave solutions and these
waves traveled with a speed that was a constant of the theory (and thus independent of iner-
tial frame for the observer). When the constant was evaluated it was found to be equal to the
speed of light, which led to Maxwell’s electromagnetic waves being identified with light.
The beauty of Maxwell’s equations greatly impressed Einstein, but they presented a prob-
lem of interpretation for classical physics. By the Galilean transformations, the speed of
light should depend upon the inertial frame of the observer; but not by Maxwell’s equations
because the speed of light is a constant of the theory. The interpretation that emerged to rec-
oncile this discrepancy was that electromagnetic waves must move through some medium.
(How could a wave travel through nothing?) This hypothesized medium was called the
aether, and it possessed quite magical properties: it was required to be an invisible, rigid
(because transverse light waves don’t propagate through fluids) substance permeating all
of space, but relevant only for light propagation, so as not to disturb other physical laws.
Then the constant speed of light could be understood as an artifact of the special aether rest
frame in which light propagated.

It is now understood that light waves are propagating disturbances in electric and mag-
netic fields that do not require a physical medium, and that the aether is a fiction. But in
the latter part of the 19th century it was widely believed to exist, and various attempts were
made to detect the motion of the Earth relative to the aether (an effect called the aether
drift). Using light interferometry, Michelson and Morley showed in 1887 that there was
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no evidence for motion of the Earth with respect to the hypothetical aether, thus casting
serious doubt on its existence.1

8.1.2 The Special Theory of Relativity

Without the aether fiction, Maxwell’s equations for light and the Galilean invariance ex-
hibited by material particles were clearly at odds. Others had hinted at a solution (notably
Hendrik Lorentz and Henri Poincaré) but it was Einstein who concluded that the Maxwell
theory was correct and that the Galilean transformations required modification. Thus he
put forth the bold and unqualified assertion that the speed of light was constant in all in-
ertial frames. This, along with the relativity assumption (physical law is the same in all
coordinate systems) yielded in 1905 the special theory of relativity.

In the special theory (of relativity), requiring the speed of light c be an invariant indepen-
dent of inertial frame dictated replacement of Galilean transformations (8.1) with Lorentz
transformations,

x′ = γ(x− vt) y′ = y z′ = z,

t ′ = γ

(
t − vx

c2

)
γ ≡ 1√

1− v2/c2
,

(8.2)

where γ is called the Lorentz γ-factor. Notice that the Galilean transformations remain quite
correct in the low-velocity world since in the limit v/c→ 0 the factor γ → 1 and the Lorentz
transformations (8.2) become equivalent to the Galilean transformations (8.1). Notice also
that time transforms non-trivially under Lorentz transformations, with the Lorentz trans-
formations mixing the space and time coordinates. This is in stark contrast to the Galilean
transformations, where there is a universal time shared by all observers.

The mathematician Hermann Minkowski (once Einstein’s teacher) then proposed that
in special relativity separate notions of space and time should be abandoned in favor of a
4-dimensional spacetime parameterized by spacetime coordinates

(x0,x1,x2,x3)≡ (ct,x,y,z), (8.3)

where the superscripts are indices, not exponents. (The reason for placement of indices as
superscripts will explained shortly.) In a 1908 presentation entitled Raum und Zeit (Space
and Time) Minkowski introduced 4-dimensional spacetime using a now-legendary phras-
ing:

1 However, efforts persisted for years to salvage the aether hypothesis. Einstein originally took the aether hy-
pothesis seriously, but abandoned it at some point before he published the special theory of relativity. Einstein
claimed that the Michelson–Morley result had no influence on his formulation of the special theory of relativ-
ity. It is likely that Einstein knew of the Michelson–Morley results, but seems to have felt that this was not as
important as his own reasoning in coming to the special theory of relativity. For example, Einstein emphasized
the role of a thought experiment that he first carried out as a student concerning whether one could travel fast
enough to catch up with a light wave, and what the observational consequences would be.
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The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.

Hermann Minkowski (1908)

Now time, scaled by the speed of light so that it has the same units as the other three co-
ordinates, is just another coordinate in 4-dimensional spacetime. Minkowski’s formulation
showed that special relativity is simple in 4-dimensional spacetime, but becomes compli-
cated when projected onto 3-dimensional space.2

8.1.3 Minkowski Space

Allowing the coordinates (x0,x1,x2,x3) to range over all their possible values traces out
the manifold of 4-dimensional spacetime called Minkowski space. In this space the square
of the infinitesimal distance ds2 between two points (ct,x,y,z) and (ct + cdt,x+ dx,y+
dy,z+dz) is given by

ds2 = ∑
µν

ηµν dxµ dxν =−c2dt2 +dx2 +dy2 +dz2,

=−(dx0)2 +(dx1)2 +(dx2)2 +(dx3)2, (8.4)

which is called the line element of the Minkowski space. Notice that in this equation ds2

means (ds)2, and dx2 means (dx)2, but the superscripts in (dx0,dx1,dx2,dx3) are indices
and not powers. The metric tensor of Minkowski space ηµν appearing in Eq. (8.4) may be
expressed as the diagonal matrix

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (8.5)

The line element (8.4) or the metric tensor ηνµ determine the geometry of Minkowski
space because they specify distances, distances can be used to define angles, and that is
geometry.

The pattern of plus and minus signs on the right side of Eq. (8.4), or on the diagonal
of the matrix in Eq. (8.5), defines the signature of the metric. For Minkowski space the
signature that we adopt is (− + ++). Some authors define the signature as the difference
of the number of + and − signs, which conveys similar information. A metric such as (8.5)
where the signs in the signature pattern are not all the same is termed an indefinite metric.
Equally common is the choice (+−−−) for the Minkowski-space signature, which leads

2 An English translation of the full presentation may be found at https://en.wikisource.org/wiki/
Translation:Space_and_Time. Minkowski udoubtedly would have made further important contribu-
tions to the development of special and general relativity, but he died unexpectedly of peritonitis only months
after his famous Space and Time lecture.
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to the same physical results as our choice if all signs are carried through consistently. The
central point for the indefinite metric of Minkowski spacetime is that the last three terms
have the same sign and that the sign of the first term differs from that of the other three
(assuming the usual modern convention of displaying the timelike coordinate in the first
position and the spacelike coordinates in the last three positions).

Minkowski spacetime is not “just like ordinary space but with more dimensions”,
because the geometry of Minkowski space differs fundamentally from that of 4-
dimensional Euclidean space. The difference is encoded in the metric signature,
which is just the signature of the unit matrix (+ + ++) for 4-dimensional eu-
clidean space, compared with the indefinite-metric signature (− + ++) for the
Minkowski metric.

That change in sign between timelike and spacelike components of the metric signature
for spacetime has enormous implications. Most of the surprising features of special rela-
tivity (space contraction, time dilation, relativity of simultaneity, the twin “paradox”, . . . )
follow directly from this difference in geometry relative to euclidean space implied by the
Minkowski indefinite metric.

8.2 Symmetry under Coordinate Transformations

A physical system has a symmetry under some operation if after the operation the system
is indistinguishable from the system before the operation. The theory of relativity may be
viewed as a symmetry under coordinate transformations. Relativity is ultimately a state-
ment that physics is independent of our choice of coordinate system: two observers, refer-
encing their measurements to two different coordinate systems, should deduce from their
observations the same laws of physics. General relativity requires invariance of the laws of
physics under the most general possible coordinate transformations, while special relativity
requires a symmetry under only the subset of coordinate transformations that are between
inertial frames. Hence, to understand relativity it is important consider coordinate systems,
transformations between coordinate systems, and the properties of those transformations.

8.3 Euclidean Coordinates and Transformations

Our ultimate goal is to describe coordinates and transformations between coordinates in
a general (possibly curved) space having a Minkowski metric with three spacelike coor-
dinates and one timelike coordinate. However, to introduce these concepts it is useful to
begin with the simpler case of vector fields in euclidean space [5].
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8.3.1 Parameterizing in Different Coordinate Systems

Assume a 3D euclidean space having a cartesian coordinate system (x,y,z), with a set
of mutually orthogonal unit vectors (iii, jjj,kkk) pointing in the x, y, and z directions, respec-
tively. Assume also an alternative coordinate system (u,v,w), perhaps not cartesian, with
the (x,y,z) and (u,v,w) coordinates related by functional relationships

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w). (8.6)

Further, we assume the transformations to be invertible so that we can solve for (u,v,w) in
terms of (x,y,z).

Example 8.1 Let (u,v,w) correspond to spherical coordinates (r,θ ,φ), so that Eq. (8.6)
takes the familiar form

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ , (8.7)

with r ≥ 0 and 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π .

It will prove useful to combine Eqs. (8.6) into an equation giving a position vector rrr for
a point in terms of the (u,v,w) coordinates:

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk. (8.8)

For example, in terms of the spherical coordinates (r,θ ,φ),

rrr = (r sinθ cosφ) iii+(r sinθ sinφ) jjj+(r cosθ)))kkk. (8.9)

The second coordinate system in these examples generally may be non-cartesian but the
space still is assumed to be intrinsically euclidean (not curved). The transformation from
the (x,y,z) coordinates to the (r,θ ,φ) coordinates just gives two different schemes to label
points in the same flat space.

8.3.2 Basis vectors

Vectors are geometrical objects: they exist independent of representation in any particular
coordinate system. However, it is often useful to express vectors in terms of components
within a specific coordinate system by defining basis vectors that permit arbitrary vectors
to be expanded in that basis. Equations (8.8) and (8.9) are familiar examples, where an
arbitrary vector has been expanded in terms of the three orthogonal cartesian unit vectors
(iii, jjj,kkk). For a flat manifold, a single basis can be chosen that applies to all points in the
space. If the space is curved, or if it is represented in non-cartesian coordinates, it is often
useful to define basis vectors at individual points of the space, as we shall now describe.

Parameterized curves and surfaces: At any point P(u0,v0,w0), three surfaces pass, which
may be defined by setting u = u0, v = v0, or w = w0, respectively. The intersections of
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z
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z = z0 and x = x0

2D surfaces
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by z = z0

2D surface 
defined

by x = x0

(b) 3D space 
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by (r, θ, φ)

y

θ = constant 

(cone) 

φ = constant  

(half-plane) 

r = constant 

(sphere) 

P

tFig. 8.1 Examples of surfaces and curves arising from constraints. (a) In 3D euclidean space
parameterized by cartesian coordinates (x,y,z), the constraints x = x0 and z = z0 define
2D planes and the intersection of these planes defines a 1D surface parameterized by the
variable y. (b) In 3D space described in spherical coordinates (r,θ ,φ), the constraint
r = constant defines a 2D sphere, the constraint θ = constant defines a cone, and the
constraint φ = constant defines a half-plane. The intersection of any two of these surfaces
defines a curve parameterized by the variable not being held constant.

these three surfaces define three curves passing through P(u0,v0,w0). General parametric
equations for coordinate surfaces may be obtained from Eq. (8.8) by setting one of the
variables (u,v,w) equal to a constant, and for curves by setting two variables to constants.
For example, setting v and w to constant values, v = v0 and w = w0, yields an equation for
a curve given by the intersection of v = v0 and w = w0,

rrr(u) = x(u,v0,w0) iii+ y(u,v0,w0) jjj+ z(u,v0,w0)kkk, (8.10)

where u acts as a coordinate along the resulting curve. Figure 8.1 illustrates for a space
parameterized by cartesian and spherical coordinate systems. For example, in Fig. 8.1(b)

1. the surface corresponding to r = constant is a sphere parameterized by θ and φ ,
2. the constraint θ = constant is a cone parameterized by the variables r and φ ,
3. the constraint φ = constant defines a half-plane parameterized by r and θ , and
4. setting all three variables to constants defines a point P within the space.

Through any such point three curves pass that are determined by the pairwise intersections
of the three surfaces just defined. (1) Setting r and θ to constants specifies a curve that is the
intersection of the sphere and the cone, parameterized by the variable φ . (2) Setting r and
φ to constants specifies an arc along the spherical surface parameterized by θ . (3) Setting
θ and φ to constants specifies a ray along the conic surface parameterized by r.
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The tangent basis: Partial differentiation of (8.8) with respect to u, v, and w, respectively,
gives tangents to the three coordinate curves passing though a point P. These define a set
of basis vectors eeei through

eeeu ≡
∂ rrr
∂u

eeev ≡
∂ rrr
∂v

eeew ≡ ∂ rrr
∂w

, (8.11)

where it is understood that all partial derivatives are to be evaluated at the point P =

(u0,v0,w0). The basis generated by the tangents to the coordinate curves will be termed
the tangent basis. Example 8.2 illustrates construction of the tangent basis for the example
of a spherical coordinate system.

Example 8.2 Consider the spherical coordinate system defined in Eq. (8.7) and illus-
trated in Fig. 8.1(b). The position vector rrr is

rrr = (r sinθ cosφ) iii+(r sinθ sinφ) jjj+(r cosθ)))kkk

and the tangent basis is obtained from Eq. (8.11) as

eee1 ≡ eeer =
∂ rrr
∂ r

= (sinθ cosφ) iii+(sinθ sinφ) jjj+(cosθ)kkk,

eee2 ≡ eeeθ =
∂ rrr
∂θ

= (r cosθ cosφ) iii+(r cosθ sinφ) jjj− (r sinθ)kkk,

eee3 ≡ eeeφ =
∂ rrr
∂φ

=−(r sinθ sinφ) iii+(r sinθ cosφ) jjj.

These basis vectors are mutually orthogonal because eee1 · eee2 = eee2 · eee3 = eee3 · eee1 = 0. For
example,

eee1 · eee2 = r sinθ cosθ cos2
φ + r sinθ cosθ sin2

φ − r cosθ sinθ

= r sinθ cosθ(cos2
φ + sin2

φ)− r cosθ sinθ = 0.

From the scalar products of the basis vectors with themselves, their lengths are

|eee1|= 1 |eee2|= r |eee3|= r sinθ ,

and these can be used to define a normalized basis,

êee1 ≡
eee1

|eee1|
= (sinθ cosφ) iii+(sinθ sinφ) jjj+(cosθ)kkk,

êee2 ≡
eee2

|eee2|
= (cosθ cosφ) iii+(cosθ sinφ) jjj− (sinθ)kkk,

êee3 ≡
eee3

|eee3|
=−(sinφ) iii+(cosφ) jjj.

These basis vectors are now mutually orthogonal and of unit length, with a geometry that
is illustrated in Fig. 8.2.

In elementary physics it is common to use an orthogonal coordinate system so that the basis
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tFig. 8.2 Unit vectors in the tangent basis at point P for Example 8.2. The three basis vectors are
tangents to the curves passing through P that are defined by setting any two of the three
variables to a constant.

vectors are mutually orthogonal, and to normalize them to unit length, as in this example.
However, for more general applications the tangent basis defined by the partial derivatives
as in Eq. (8.11) need not be orthogonal or normalized to unit length.

The dual basis: We may also construct a basis at a point P by using the normals to
coordinate surfaces to define the basis vectors. Solving for

u = u(x,y,z) v = v(x,y,z) w = w(x,y,z),

an alternative set of basis vectors (eeeu,eeev,eeew) may be defined using the gradients

eeeu ≡ ∇∇∇u =
∂u
∂x

iii+
∂u
∂y

jjj+
∂u
∂ z

kkk,

eeev ≡ ∇∇∇v =
∂v
∂x

iii+
∂v
∂y

jjj+
∂v
∂ z

kkk, (8.12)

eeew ≡ ∇∇∇w =
∂w
∂x

iii+
∂w
∂y

jjj+
∂w
∂ z

kkk,

which are normal to the three coordinate surfaces through P defined by u = u0, v = v0, and
w = w0, respectively. This basis (eeeu,eeev,eeew) defined in terms of normals to surfaces is said
to be the dual of the basis (8.11), which is defined in terms of tangents to curves. Notice
that the two basis sets have been distinguished by the use of superscript indices on the
basis vectors (8.12) and subscript indices on the basis vectors (8.11).

Orthogonal and non-orthogonal coordinate systems: The tangent basis and dual basis
are equally valid. For orthogonal coordinate systems the set of normals to the planes cor-
responds to the set of tangents to the curves in orientation, differing possibly only in the
lengths of basis components. Thus, if the basis vectors are normalized the tangent basis
and the dual basis are equivalent for orthogonal coordinates and the preceding distinctions
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have little practical significance. However, for non-orthogonal coordinate systems the two
bases generally are not equivalent and the distinction between upper and lower indices is
relevant. Example 8.3 illustrates.

Example 8.3 Define a coordinate system (u,v,w) in terms of cartesian coordinates (x,y,z)
through [5]

x = u+ v y = u− v z = 2uv+w.

The position vector for a point rrr is then

rrr = x iii+ y jjj+ zkkk = (u+ v) iii+(u− v) jjj+(2uv+w)kkk

and from Eq. (8.11) the tangent basis is

eee1 ≡ eeeu =
∂ rrr
∂u

= iii+ jjj+2vkkk eee2 ≡ eeev =
∂ rrr
∂v

= iii− jjj+2ukkk eee3 ≡ eeew =
∂ rrr
∂w

= kkk.

Solving the original equations for (u,v,w),

u = 1
2 (x+ y) v = 1

2 (x− y) w = z− 1
2 (x

2 − y2),

and Eq. (8.12) gives for the dual basis

eee1 ≡ eeeu =
∂u
∂x

iii+
∂u
∂y

jjj+
∂u
∂ z

kkk = 1
2 (iii+ jjj) eee2 ≡ eeev =

∂v
∂x

iii+
∂v
∂y

jjj+
∂v
∂ z

kkk = 1
2 (iii− jjj)

eee3 ≡ eeew =
∂w
∂x

iii+
∂w
∂y

jjj+
∂w
∂ z

kkk =−(u+ v) iii+(u− v) jjj+ kkk.

For the tangent basis the preceding expressions give

eee1 · eee2 = 4uv eee2 · eee3 = 2u eee3 · eee1 = 2v,

where the orthonormality of the basis (iii, jjj,kkk) has been used. Thus the tangent basis is
non-orthogonal. Taking scalar products of tangent basis vectors with themselves gives

eee1 · eee1 = 2+4v2 eee2 · eee2 = 2+4u2 eee3 · eee3 = 1,

so the tangent basis in this example is also not normalized to unit length. In this non-
orthogonal case the normal basis and the dual basis are distinct.

The preceding example illustrates that Eqs. (8.11) and (8.12) define different but equally-
valid bases, and that they are physically distinguishable in the general case of non-cartesian
coordinate systems, and hence that the placement of indices in upper or lower positions
matters. It should be assumed going forward that the vertical placement of indices in equa-
tions (upper or lower positions) is significant.
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8.3.3 Expansion of Vectors and Dual Vectors

Any vector VVV may be expanded in terms of the tangent basis {eeei} and any dual vector ωωω

may be expanded in terms of the dual basis {eeei}:

VVV =V 1eee1 +V 2eee2 +V 3eee3 = ∑
i

V ieeei ≡V ieeei, (8.13)

ωωω = ω1eee1 +ω2eee2 +ω3eee3 = ∑
i

ωieeei ≡ ωieeei, (8.14)

where in the last step of each equation the Einstein summation convention has been intro-
duced:

Einstein Summation Convention: An index appearing twice on one side of
an equation, once in a lower position and once in an upper position, implies a
summation on that repeated index. The index that is summed over is termed a
dummy index; summation on a dummy index on one side of an equation implies
that it does not appear on the other side. If the same index appears more than
twice on the same side of an equation, or appears more than once in an upper
position or more than once in a lower position, you have likely made a mistake.
Since the dummy (repeated) index is summed over, it does not matter what the
repeated index is, as long as it is not equivalent to another index in the equation.

From this point onward the Einstein summation convention usually will be assumed be-
cause it leads to more compact, easier to read equations.

The upper-index coefficients V i appearing in Eq. (8.13) are the components of the vector
in the basis eeei = {eee1,eee2,eee3}, while the lower-index coefficients ωi appearing in Eq. (8.14)
are the components of the dual vector in the basis eeei = {eee1,eee2,eee3}. The vector and dual
vector components generally are distinct because they are components in two different
bases. However, as will now be discussed the vector and dual vector spaces are related
fundamentally way such that vector components V i and dual vector components ωi may be
treated operationally as if they were different components of the same vector.

8.3.4 Vector Scalar Product and the Metric Tensor

Utilizing Eq. (8.13), the scalar product of two vectors AAA and BBB may be expressed as

AAA ·BBB = (Aieeei) · (B jeee j) = eeei · eee j AiB j = gi jAiB j, (8.15)

where the components of the metric tensor gi j in this basis are given by

gi j ≡ eeei · eee j. (8.16)

Two vectors alone cannot form a scalar product, but the scalar product of two vectors can
be computed with the aid of the metric tensor, as Eq. (8.15) illustrates. Equivalently, the
scalar product of dual vectors ααα and βββ may be expressed as

ααα ·βββ = αieeei ·β jeee j = gi j
αiβ j, (8.17)
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where the metric tensor components gi j with two upper indices are defined by

gi j ≡ eeei · eee j, (8.18)

and the scalar product of dual vectors and vectors as

ααα ·BBB = αieeei ·B jeee j = gi
jαiB j, (8.19)

where the metric tensor components gi
j with mixed upper and lower indices are defined by

gi
j ≡ eeei · eee j. (8.20)

Properties of the metric tensor will be discussed below but first we shall use the metric
tensor to establish a relationship called duality between the vector and dual vector spaces.

8.3.5 Duality of Vectors and Dual Vectors

There is little practical distinction between vectors and dual vectors in euclidean space with
cartesian coordinates. However, in a curved space and/or with non-cartesian coordinates
the situation is more complex. Although the examples in this chapter are primarily from
non-curved spaces where it is possible to finesse the issue, it is important not to build
into the discussion at this stage methods and terminologies that will not serve us well in
the more general case . The essential mathematics will be discussed in more depth later,
primarily in Section 8.4.6, but the salient points are that

1. Vectors are not defined directly in the manifold, but instead are defined in a euclidean
vector space (see Box 8.3) attached to the (possibly curved) manifold at each spacetime
point that is called the tangent space.

2. Dual vectors are not defined directly in the manifold, but instead are defined in a eu-
clidean vector space attached to the (possibly curved) manifold at each spacetime point
that is called the cotangent space.

3. The tangent space of vectors and the cotangent space of dual vectors at a point P of
the manifold are different but dual to each other in a manner that will be made precise
below.

4. This duality allows objects in the two different spaces to be treated as effectively the
same kinds of objects.

As will be discussed further below, vectors and dual vectors are examples of more general
objects called tensors, which permits an abstract definition in terms of mappings from
vectors and dual vectors to the real numbers.3 To be specific,

1. Dual vectors ωωω are linear maps of vectors VVV to the real numbers: ωωω(VVV ) = ωiV i ∈ R.
2. Vectors VVV are linear maps of dual vectors ωωω to the real numbers: VVV (ωωω) =V iωi ∈ R.

3 A mapping generalizes a function. For example, y = f (x) is a map that associates the real number y with the
real number x. In this example the map is from a space to the same space (real numbers to real numbers). More
generally the mapping can be between different spaces, such as from vectors to real numbers.
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In these definitions expressions like ωωω(VVV ) = ωiV i ∈ R mean “the dual vectors ωωω act lin-
early on the vectors VVV to produce ωiV i ≡ ∑i ωiV i, which are elements of the real numbers,”
or “dual vectors ωωω are functions (maps) that take vectors VVV as arguments and yield ωiV i,
which are real numbers”. Linearity of the mapping means, for example,

ωωω(αAAA+βBBB) = αωωω(AAA)+βωωω(BBB),

where ωωω is a dual vector, α and β are arbitrary real numbers, and AAA and BBB are arbitrary
vectors.

It is easy to show (see Box 8.3) that, just as the space of vectors satisfies the conditions
required of a vector space, the space of dual vectors as defined by the map above satisfies
the same conditions and also is a vector space. The vector space of vectors and correspond-
ing vector space of dual vectors are said to be dual to each other because they are related
by

ωωω(VVV ) =VVV (ωωω) =V i
ωi ∈ R. (8.21)

Notice further that the expression AAA ·BBB = gi jAiB j from Eq. (8.15) defines a linear map from
the vectors to the real numbers, since it takes two vectors AAA and BBB as arguments and returns
the scalar product, which is a real number. Thus one may write

AAA(BBB) = AAA ·BBB ≡ AiBi = gi jAiB j. (8.22)

But since in AiBi = gi jAiB j the vector B is arbitrary, in general

Ai = gi jA j, (8.23)

which specifies a correspondence between a vector with components Ai in the tangent
space of vectors and a dual vector with components Ai in the cotangent space of dual
vectors. Likewise, Eq. (8.23) can be inverted using that the inverse of gi j is gi j (see Section
8.3.6) to give

Ai = gi jA j. (8.24)

Hence, using the metric tensor to raise and lower indices by summing over a repeated index
(an operation called contraction) as in Eqs. (8.23) and (8.24), we see that the vector and
dual vector components are related through contraction with the metric tensor.

This is the precise sense in which the tangent and cotangent spaces are dual: they
are different, but closely related through the metric tensor.

The duality of the vector and dual vector spaces may be incorporated concisely by requiring
that for the basis vectors {eeei} and basis dual vectors {eeei} in Eqs. (8.13) and (8.14)

eeei(eee j) = eeei · eee j = δ
i
j, (8.25)

where the Kronecker delta is defined by

δ
i
j =

{
1 i = j
0 i ̸= j

. (8.26)



167 Euclidean Coordinates and Transformations

This implies that the basis vectors can be used to project out the components of a vector VVV
by taking the scalar product with the vector,

V i = eeei ·VVV Vi = eeei ·VVV . (8.27)

A lot of important mathematics has transpired in the last few equations, so let’s pause
for a moment and take stock. For a space with a metric tensor defined,

1. Eqs. (8.21)–(8.27) imply that vectors and dual vectors are in a one-to-one relationship
2. that permits them to be manipulated effectively as if a dual vector component were just

a vector component with a lower index, and
3. component indices can be raised or lowered as desired by contraction with the metric

tensor.

All spaces of interest here will have metrics, so this reduces the practical implications of
the distinction between vectors and dual vectors to a simple matter of keeping proper track
of upper and lower positions for indices.

8.3.6 Properties of the Metric Tensor

The metric tensor will play a fundamental role in our discussion. Accordingly, let us sum-
marize some of its properties in simple euclidean spaces, since most will carry over (suit-
ably generalized) to 4D (possibly curved) spacetime. The metric tensor must be symmetric
in its indices:

gi j = g ji gi j = g ji. (8.28)

From Eqs. (8.23) and (8.24)

gi jA j = Ai gi jA j = Ai. (8.29)

That is, contraction with the metric tensor may be used to raise or lower an index. The
scalar product of vectors may be written in any of the equivalent ways

AAA ·BBB = gi jAiB j = gi jAiB j = gi
jAiB j = AiBi = AiBi. (8.30)

From the two expressions in (8.29), Ai = gi jA j = gi jg jkAk, and since this is valid for arbi-
trary components Ai it follows that the metric tensor obeys

gi jg jk = gk jg ji = δ
i
k. (8.31)

Viewing gi j as the elements of a matrix G and gi j as the elements of a matrix G̃, Eqs. (8.28)
are equivalent to the matrix equations

G = GT G̃ = G̃T, (8.32)

where T denotes the transpose of the matrix. The Kronecker delta is just the unit matrix I,
implying that Eq. (8.31) may be written as the matrix equations

G̃G = GG̃ = I. (8.33)

Therefore, we note the useful property that



168 Minkowski Spacetime

Box 8.1 The metric tensor for 3-dimensional euclidean space

Components: gi j ≡ eeei · eee j gi j ≡ eeei · eee j gi
j ≡ eeei · eee j = δ i

j

Scalar product: AAA ·BBB = gi jAiB j = gi jAiB j = gi
jAiB j = AiBi = AiBi

Symmetry: gi j = g ji gi j = g ji

Contractions: gi jA j = Ai gi jA j = Ai

Orthogonality: gi jg jk = gk jg ji = δ i
k

Matrix properties : G̃G = GG̃ = I G ≡ [gi j] G̃ ≡ [gi j]

The matrix corresponding to the metric tensor with two lower indices is the in-
verse of the matrix corresponding to the metric tensor with two upper indices,
and one may be obtained from the other by matrix inversion.

Some fundamental properties of the metric tensor for three-dimensional euclidean space
are summarized in Box 8.1.

8.3.7 Line Elements

For coordinates u1(t), u2(t), and u3(t) that are parameterized by the variable t, as t varies
the points corresponding to specific values of the coordinates

u1 = u1(t) u2 = u2(t) u3 = u3(t)

will trace out a curve in the 3D euclidean space. From Eq. (8.8), the position vector for
points on the curve as a function of t is

rrr(t) = x
(
u1(t),u2(t),u3(t)

)
iii+ y

(
u1(t),u2(t),u3(t)

)
jjj+ z

(
u1(t),u2(t),u3(t)

)
kkk,

and by the chain rule

drrr
dt

=
∂ rrr
∂u1

du1

dt
+

∂ rrr
∂u2

du2

dt
+

∂ rrr
∂u3

du3

dt
= u̇1eee1 + u̇2eee2 + u̇3eee3, (8.34)

where (8.11) was used and dui/dt ≡ u̇i. The squared infinitesimal distance along the curve
is then given by

ds2 = drrr ·drrr = duieeei ·du jeee j

= eeei · eee j duidu j

= gi j duidu j, (8.35)

where Eq. (8.16) was used. [Notice the notational convention dα2 ≡ (dα)2.] Thus ds2 =

gi j duidu j is the infinitesimal line element implied by the metric gi j, and the length d of a
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a

b

ds

t

tFig. 8.3 Distance ds between points a and b along a curve parameterized by t.

finite segment of the curve between points a and b is obtained integration,

d =

∫ b

a

(
gi j

dui

dt
du j

dt

)1/2

dt, (8.36)

where t parameterizes the position along the curve, as illustrated in Fig. 8.3.

8.3.8 Euclidean Line Element

The line element for 2D euclidean space in cartesian coordinates (x,y) is

ds2 = dx2 +dy2, (8.37)

which is just the Pythagorean theorem in differential form. The corresponding line element
in plane polar coordinates (r,φ) is then

ds2 = dr2 + r2dφ
2, (8.38)

as worked out in Example 8.4.

Example 8.4 For plane polar coordinates (r,φ)

x = r cosφ y = r sinφ ,

so the position vector (8.8) is

rrr = (r cosφ) iii+(r sinφ) jjj.

Then from Eq. (8.11) the basis vectors of the tangent basis are

eee1 =
∂ rrr
∂ r

= (cosφ)iii+(sinφ) jjj eee2 =
∂ rrr
∂φ

=−r(sinφ) iii+ r(cosφ) jjj.

The elements of the metric tensor are then given by Eq. (8.16),

g11 = cos2
φ + sin2

φ = 1 g22 = r2(cos2
φ + sin2

φ) = r2

and g12 = g21 = 0, or in matrix form,

gi j =

(
1 0
0 r2

)
.

Then the line element is given by Eq. (8.35),

ds2 = g11(du1)2 +g22(du2)2 = dr2 + r2dφ
2,
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where u1 = r and u2 = φ . Equivalently, the line element can be expressed as

ds2 = (dr dφ)

(
1 0
0 r2

)(
dr
dφ

)
= dr2 + r2dφ

2,

in matrix form.

The form of the line element differs between cartesian and polar coordinates, but for any
two nearby points the distance between them is given by ds, for either coordinate system.
Thus, the line element ds is invariant under coordinate transformations. The distance be-
tween two points that are not nearby can be obtained by integrating ds along the curve, so
the distance interval is invariant under coordinate transformations for metric spaces.4 The
line element, which is specified in terms of the metric tensor, characterizes the geometry
of the space because integrals of the line element define distances and angles can be de-
fined in terms of ratios of distances. Indeed, all the axioms of euclidean geometry could be
verified starting from the line elements (8.37) or (8.38).

8.3.9 Integration and Differentiation

It is important to know how the volume element for integrals behaves under change of
coordinates. This is trivial in euclidean space with orthonormal coordinates, but becomes
non-trivial in curved spaces, or in flat spaces parameterized in non-cartesian coordinates.
We may illustrate in flat 2D space with coordinates (x1,x2) and basis vectors (eee1,eee2),
assuming an angle θ between the basis vectors. The 2D volume (area) element in this case
is

dA =
√

detgdx1dx2, (8.39)

where detg is the determinant of the metric tensor matrix gi j. For orthonormal coordinates
gi j is the unit matrix and (detg)1/2 = 1, but in the general case the (detg)1/2 factor is
not unity and its presence is essential to making integration invariant under change of
coordinates.

Derivatives of vectors in spaces defined by position-dependent metrics are crucial in the
formulation of general relativity. Let us introduce the issue with the simpler case of the
derivative of a vector in a flat euclidean space, but parameterized with a vector basis that
depends on the coordinates. A vector VVV may be expanded in a basis eeei,

VVV =V ieeei. (8.40)

Applying the usual (Leibniz) rule for the derivative of a product, the partial derivative is

∂VVV
∂x j =

∂V i

∂x j eeei +V i ∂eeei

∂x j , (8.41)

4 Mathematically, spaces are equipped with a hierarchy of characteristics and a distance-measuring prescription
(a metric) need not be one of them. If such a prescription is defined, the space is termed a metric space. This
distinction may seem pedantic to a physicist since almost all spaces employed in physics are metric spaces,
but it is important from a fundamental mathematical perspective.
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tFig. 8.4 Rotation of the coordinate system for a vector xxx. The vector is invariant under the rotation
but its components in the original and rotated coordinate systems are different.

where the first term represents the change in the component V i and the second term rep-
resents the change in the basis vectors eeei. In the second term the factor ∂eeei/∂x j is itself a
vector and can be expanded in the vector basis (8.40),

∂eeei

∂x j = Γ
k
i jeeek. (8.42)

The Γk
i j appearing in Eq. (8.42) are called connection coefficients. Later we will see that

the connection coefficients can be evaluated from the metric tensor and and that they may
be used in either curved or flat spacetime to define derivatives and to specify a prescription
for parallel transport of vectors.

8.3.10 Transformations

Often it is essential to be able to express physical quantities in more than one coordinate
system, so we need to understand how to transform between coordinate systems. This issue
is particularly important in both general and special relativity, where it is essential to ensure
that the laws of physics are not altered by transformation between coordinate systems. We
may illustate the principles involved by consider two familiar examples: spatial rotations
and Galilean boosts.

Rotational Transformations

Consider the description of a vector under rotation of a coordinate system about the z axis
by an angle φ , as in Fig. 8.4. The vector xxx has the components x1 and x2 with respect
to basis vectors {eeei} for the original coordinate system before rotation. After rotation of
the coordinate system to give the new basis vectors {eee′i}, the vector xxx has the components
x′1 and x′2 in the new coordinate system. The vector xxx can be expanded in terms of the
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components for either basis:

xxx = xieeei = x′ieee′i, (8.43)

and from the geometry of Fig. 8.4 the components in the two bases are related by (assuming
a clockwise rotation) x′1

x′2

x′3

=

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 x1

x2

x3

 , (8.44)

which may be written compactly as

x′i = Ri
jx

j, (8.45)

where the Ri
j are the elements of the matrix in Eq. (8.44). This transformation law holds

for any vector; indeed, a vector in the x–y plane may be defined by this transformation law.

Galilean Transformations

Another simple example is Galilean transformations between inertial frames in classical
mechanics. Transformations with the same orientation but different relative velocities are
called boosts. In Newtonian physics time t is considered to be the same for all observers
and Galilean boosts for motion along the x axis take the form

xxx′ = xxx′(xxx, t) = xxx− vvvt t ′ = t ′(xxx, t) = t. (8.46)

“Newtonian relativity” asserts that the laws of physics are invariant under Galilean transfor-
mations. The laws of mechanics at low velocity are approximately invariant under (8.46),
but the laws of electromagnetism (Maxwell’s equations) and the laws of mechanics for ve-
locities near that of light are not. Indeed, the failure of Galilean invariance for the Maxwell
equations was a large motivation for Einstein’s belief that the existing laws of mechanics
required modification, leading to the special theory of relativity.

In the absence of gravity, the laws of both special-relativistic mechanics and of electro-
magnetism are invariant under Lorentz transformations but not under Galilean transforma-
tions. In the presence of a gravity, neither Galilean nor Lorentz invariance holds globally
for either electromagnetism or mechanics, and it is necessary to seek a more comprehen-
sive invariance to describe systems subject to gravitational forces. This quest eventually
leads to the theory of general relativity, but that is beyond the scope of these lectures.

Having introduced most of the important concepts in a “toy model” of euclidean space,
let us now turn our attention to application of these ideas to the actual arena of special and
general relativity, 4D spacetime.

8.4 Spacetime Tensors and Covariance

The principle of relativity implies that coordinates should be viewed as arbitrary labels, so
that the laws of physics are independent of the coordinate system in which they are formu-
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lated. We may implement this coordinate independence by formulating the laws of physics
in terms of equations that are covariant with respect to the coordinate transformations.5

The term covariance implies that a set of equations maintains the same mathematical form
under a specified set of transformations. Covariance can be stated most concisely in terms
of tensors, which we may think of as generalizing the idea of vectors. We now give an in-
troduction to tensors, tensor notation, and tensor properties for 4D spacetime, and illustrate
with an application of the tensor formalism to Lorentz covariance, which will lead to the
theory of special relativity.

8.4.1 Spacetime Coordinates

Relativity implies that space and time enter physical descriptions on comparable footings,
so it is useful to unify them into a 4-dimensional continuum termed spacetime. Spacetime
is an example of a differentiable manifold, as described in Box 8.2 (adapted from Ref. [11]).
Spacetime points are defined by coordinates having four components, the first labeling the
time t multiplied by the speed of light c, the other three labeling the spatial coordinates:

x ≡ xµ = (x0,x1,x2,x3) = (ct,xxx), (8.47)

where xxx denotes a 3-vector with components (x1,x2,x3) labeling the spatial position. The
first component x0 is termed timelike and the last three components (x1,x2,x3) are termed
spacelike. As for earlier discussion, the upper or lower placement of indices is meaningful.
Bold symbols will denote (ordinary) vectors defined in the three spatial degrees of freedom,
and 4-component vectors in spacetime will be denoted in non-bold symbols. The modern
convention is to number the indices beginning with zero rather than one. The coordinate
systems of interest will be subject only to the requirements that they assign a coordinate
uniquely and be differentiable to sufficient order at each point of spacetime.

A point in an n-dimensional manifold can be labeled using a coordinate system of n
parameters, but the choice of coordinate system is arbitrary. Points may be relabeled by a
passive coordinate transformation that switches the coordinate labels of the points, xµ →
x′µ , with xµ and x′µ labeling the same point but in two different coordinate systems. Our
generic concern is with a transformation between one set of spacetime coordinates denoted
by (x0,x1,x2,x3), and a new set

x′µ = x′µ(x) (µ = 0,1,2,3), (8.48)

where x = xµ denotes the original (untransformed) coordinates. This notation is an eco-

5 Covariance is defined relative to a particular set of transformations. There is a subtle difference in meaning be-
tween invariance and covariance, with respect to a set of transformations. Invariance means that the physical
observables of the system are not changed by the transformations. Covariance means that the system is for-
mulated mathematically so that the form of the equations does not change under the transformations. Manifest
covariance means that the invariance is manifest in the formulation of the theory (can be “seen at a glance”).
Thus, a system could be invariant under some set of transformations, but not manifestly covariant because the
invariance is obscured by the way the equations are written. This is the case with the Maxwell equations. As
we shall see in Section 9.8, the Maxwell equations written in their usual form (1.1) do not look to be invari-
ant under Lorentz transformation but they are, and they can be transformed so that the Lorentz invariance is
manifest.
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Box 8.2 Manifolds

Loosely, a manifold is a space. More formally, an n-dimensional manifold is a set
that can be parameterized continuously by n independent real coordinates for each
point (member of the set). Physics is usually concerned with differentiable man-
ifolds, which are continuous and differentiable (to a suitable order). Again, more
formally: a manifold is continuous if for every point there are neighboring points
having infinitesimally different coordinates, and differentiable if a scalar field can be
defined on the manifold that is everywhere differentiable. Special and general rela-
tivity assume spacetime to be a Riemannian manifold: a continuous, differentiable
manifold with geometry described by a metric tensor of quadratic form that may
depend on spacetime coordinates.

Coordinates, charts, and atlases
A coordinate system or chart associates n real parameter values (labels) uniquely
with each point of an n-dimensional manifold M through a one-to-one mapping
from Rn (cartesian product of n copies of the real numbers R) to M. For exam-
ple, the set of continuous rotations about a single axis defines a one-dimensional
manifold parameterized by an angle φ ∈R. The one-to-one association of points in
the n-dimensional manifold with the values of their parameter labels is analogous
to mapping points of the manifold to points of an n-dimensional euclidean space.
Thus, locally a manifold looks like euclidean space in its most general properties,
such as dimensionality and differentiability (but not necessarily in geometry, since
this depends on whether the manifold has a metric and its nature).

A single coordinate system is usually insufficient to give a unique correspondence
between points and coordinate labels for all but the simplest manifolds. For example,
the latitude–longitude system for the Earth (viewed as a 2-sphere, S2) is degenerate
at the poles where all values of longitude correspond to a single point. In such cases
the manifold must be parameterized by overlapping coordinate patches (charts),
with transition functions between the different sets of coordinates for points in each
overlap region. An atlas is a collection of charts sufficient to parameterize an entire
manifold. For the latitude–longitude example it may be shown that the atlas must
contain at least two overlapping charts to parameterize the full manifold uniquely.

Curves and surfaces
Subsets of points within a manifold can be used to define curves and surfaces,
which represent submanifolds of the full manifold. Often it is convenient to repre-
sent these parametrically, with an m-dimensional submanifold parameterized by m
parameters. A curve is a one-dimensional submanifold parameterized by a single
parameter, while a hypersurface is a surface of one less dimension than the full
manifold, parameterized by n−1 real numbers.
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nomical form of

x′µ = f µ(x0,x1,x2,x3) (µ = 0,1, . . .), (8.49)

where the single-valued, continuously-differentiable function f µ assigns new (primed) co-
ordinates (x′0,x′1,x′2,x′3) to a point of the manifold with old coordinates (x0,x1,x2,x3),
which may be abbreviated to x′µ = f µ(x) and, even more tersely, to Eq. (8.48). The coor-
dinates in Eq. (8.48) are just labels so the laws of physics cannot depend on them. Hence
the system x′µ is not privileged and Eq. (8.48) should be invertible.

The generalized form of the Einstein summation convention that we introduced earlier
will be assumed for all subsequent equations: for any term on one side of an equation any
index that is repeated, once as a superscript and once as a subscript, implies a summation
over that index. A superscript (subscript) in a denominator counts as a subscript (super-
script) in a numerator. We will use Greek indices (α,β , . . .) to denote the full set of space-
time indices running over 0, 1, 2, 3, while roman indices (i, j, . . .) will denote the indices 1,
2, 3 running only over the spatial coordinates. Thus xµ means any of the components x0,
x1, x2, x3, but xi means any of the components x1, x2, x3.

8.4.2 Vectors in Non-Euclidean Space

Spacetime is characterized by a non-euclidean manifold. In euclidean space we are used
to representing vectors as directed line segments of finite length. This picture will not do
in curved spacetime, which is locally but not globally, euclidean so extended straight lines
have no clear meaning. Thus we need a more general way to define vectors that works in
both euclidean and (possibly curved) non-euclidean manifolds. The standard solution is to
define vectors for an n-dimensional manifold, not in manifold itself, but in n-dimensional
euclidean tangent spaces, with an independent tangent space TP attached to each point P of
the manifold. This is illustrated in Fig. 8.5 for 1D and 2D spheres.6 Just as vectors may be
defined in tangent spaces attached to each point of a manifold, dual vectors my be defined
in cotangent spaces T ∗

P attached to each point of a manifold.
A tangent bundle T M for a manifold M is a manifold constructed from the disjoint union

of all the tangent spaces TP defined on the manifold M. Likewise, a contangent bundle for
a manifold M is the disjoint union of all the cotangent spaces defined on the manifold.
Such bundles and their generalization form the basis of the theory of fiber bundles. We will
sometimes use the bundle terminology but will not use the theory of fiber bundles directly
in our discussion.

8.4.3 Coordinates in Spacetime

A universal coordinate system can be chosen in euclidean space, with basis vectors that
are mutually orthogonal and constant, and these constant basis vectors can be normalized
to unit length for convenience. Much of ordinary physics may be described using such an

6 The idea conveyed by Fig. 8.5 in which planes tangent to a 2D surface are shown embedded in a 3D space
is useful conceptually, but defining the tangent space at each point is an intrinsic process with respect to a
manifold and does not require embedding it in a higher-dimensional manifold, as will be shown below.
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tFig. 8.5 Tangent spaces in curved manifolds, illustrated (a) for the manifold S1 and (b) for the
manifold S2. As illustrated for S2, vectors (indicated by arrows) are defined in the tangent
spaces at each point, not in the curved manifold. Embedding the 1D tangent-space
manifold in 2D euclidean space and the 2D tangent space in 3D euclidean space is for
visualization purposes only; the tangent space has a specification that is intrinsic to the
manifold.

orthonormal basis. The situation is more complicated in non-euclidean (possibly curved)
manifolds. Because of the position-dependent metric of curved spacetime, it is most con-
venient to choose basis vectors that depend on position and that need not be orthogonal,
and it usually is not useful to normalize them since they are position dependent.

The key to specifying vectors in curved space (which will also work in flat space)
is to separate the “directed” part from the “line segment” part of the usual con-
ception of a vector as a directed line segment, because the direction for vectors
of infinitesimal length can be defined consistently in curved or flat spaces using
directional derivatives.

8.4.4 Coordinate and Non-Coordinate Bases

Consider a curve in a differentiable manifold along which one coordinate xµ varies while
all others xν(ν ̸= µ) are held constant. This curve will be termed the coordinate curve
xµ . Four such coordinate curves will pass through any point P in a spacetime manifold,
corresponding to the coordinate curves xµ with µ = (0,1,2,3). A set of position-dependent
basis vectors eµ(µ = 0,1,2,3) can be defined at an arbitrary point P in the manifold by

eµ = Lim
δxµ→0

δ s
δxµ

, (8.50)

where δ s is the infinitesimal distance along the coordinate curve xµ between the point P
with coordinate xµ and a nearby point Q with coordinate xµ + δxµ . For a parameterized



177 Spacetime Tensors and Covariance

P

x1

x2

e
1e

2

T
P

M

tFig. 8.6 Tangent space TP at a point P for a curved 2D manifold M. The vectors tangent to the
coordinate curves at each point define a coordinate or holonomic basis. This figure is a
generalization of Fig. 8.5 to an arbitrary curved 2D manifold with a position-dependent,
non-orthogonal (coordinate) basis. This embedding of M in 3D euclidean space is for
visualization purposes only; the basis vectors e1 and e2 of the tangent space are specified
by directional derivatives of the coordinate curves evaluated entirely in M at the point P, as
described in Eqs. (8.50)–(8.53).

curve xµ(λ ) having a tangent vector t with components tµ = dxµ/dλ ,

t = tµ eµ =
dxµ

dλ
eµ ,

the directional derivative of an arbitrary scalar function f (xµ) defined in the neighborhood
of the curve is

d f
dλ

≡ Lim
ε→0

[
f (xµ(λ + ε))− f (xµ (λ ))

ε

]
=

dxµ

dλ

∂ f
∂xµ

= tµ ∂ f
∂xµ

,

and since f (x) is arbitrary this implies the operator relation

d
dλ

=
dxµ

dλ

∂

∂xµ
= tµ ∂

∂xµ
. (8.51)

Hence the components tµ are associated with a unique directional derivative and the partial
derivative operators ∂/∂xµ may be identified with the basis vectors eµ ,

eµ =
∂

∂xµ
≡ ∂µ , (8.52)

which permits an arbitrary vector to be expanded as

V =V µ eµ =V µ ∂

∂xµ
=V µ

∂µ . (8.53)

Position-dependent basis vectors specified in this way define a coordinate basis or holo-
nomic basis; a basis using orthonormal coordinates is then termed a non-coordinate basis
or an anholonomic basis. A coordinate basis is illustrated schematically in Fig. 8.6 for a
generic curved 2D manifold.
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The definition of a vector in terms of directional derivatives evaluated at a point
of the manifold is valid in any curved or flat differentiable manifold. It replaces
the standard idea of a vector as the analog of a displacement vector between two
points, which does not generalize to curved manifolds.

From Eq. (8.50) the separation between nearby points is ds = eµ(x)dxµ , from which

ds2 = ds ·ds = (eµ · eν)dxµ dxν = gµν dxµ dxν

with the metric tensor gµν defined by,

eµ(x) · eν(x)≡ gµν(x). (8.54)

The scalar product of vectors A and B in a coordinate basis is given by

A ·B = (Aµ eµ) · (Bν eν) = gµν Aµ Bν . (8.55)

Equation (8.54) may be taken as a definition of a vector coordinate basis {eµ}.
The preceding discussion has been specifically for vectors and involves defining a basis

for the tangent space TP at each point P using the tangents ∂/∂xµ to coordinate curves
passing through P. A similar intrinsic procedure can be invoked to construct a basis for
dual vectors in the cotangent space T ∗

P at a point P using gradients to define basis vectors.
This leads to equations analogous to (8.54)–(8.55), but with the indices of the basis vectors
in the upper position. A set of dual basis vectors eµ may be used to expand dual vectors ω

as7

ω = ωµ eµ , (8.56)

allowing the metric tensor with upper indices to be defined through

eµ(x) · eν(x)≡ gµν(x), (8.57)

with the scalar product of arbitrary dual vectors α and β given by

α ·β = gµν
αµ βν . (8.58)

Equation (8.57) may be taken as a definition of a dual-vector coordinate basis {eµ}.
Just as Eqs. (8.54) or (8.57) are characteristic of a coordinate basis, an orthonormalized

non-coordinate basis is specified by the requirement

eµ̂(x) · eν̂(x) = ηµ̂ ν̂ , (8.59)

where η = diag{−1,1,1,1}. In this expression, hats on indices indicate explicitly that this
is an orthonormal and not coordinate basis. Our discussion will seldom require display of
explicit basis vectors but usually we will assume implicitly the use of a coordinate basis
such that Eqs. (8.50)–(8.58) are valid.

7 The same symbol e will be used for vector and dual vector basis vectors, with the index in the lower position
for a vector basis and upper position for a dual vector basis. The justification for this notation is given in
Section 8.3.5.
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8.4.5 Tensors and Coordinate Transformations

In formulating special and general relativity we are interested in how quantities that en-
ter physical descriptions change when the spacetime coordinates are transformed as in Eq.
(8.48). This requires understanding the transformations of fields, their derivatives, and their
integrals. To this end, it is useful to introduce spacetime tensors. These have a fundamental
definition without reference to specific coordinate systems. but it often proves convenient
to view tensors as objects expressed in a basis with components that carry some number
of upper and lower indices, and that change in a specific way under coordinate transforma-
tions. This more practical interpretation of tensors will be developed below.8

The rank of a tensor will be given a more fundamental definition below but practically it
is equal to the total number of indices required to label its components when evaluated in a
basis. Thus scalars are tensors of rank zero and vectors or dual vectors are tensors of rank
one. This may be generalized to tensors carrying more than one index. Tensors carrying
only lower indices are termed covariant tensors, tensors carrying only upper indices are
termed contravariant tensors, and tensors carrying both lower and upper indices are termed
mixed tensors.

Tensor Types: It is convenient to indicate the type of a tensor by the ordered pair
(p,q), where p is the number of contravariant (upper) indices for components,
q is the number of covariant (lower) indices for components, and the rank of
the tensor is p+ q. In principle p and q can take any non-negative value, but
practically most physical applications of tensors involve ranks of four or less.

Thus a dual vector is a tensor of type (0,1) with a rank of one, while the Kronecker delta
δ ν

µ is a mixed tensor of type (1,1) and rank 2.

8.4.6 Tensors as Linear Maps to Real Numbers

The characterization of tensors in terms of their transformation properties in a particular
representtion that will be discussed in Section 8.5 below is the most pragmatic approach to
the mathematics required to solve realistic problems. However, mathematicians prefer to
define tensors in a more abstract manner that makes manifest that they are independent of
representation in a particular coordinate system. This approach, which frequently goes by
the name index-free formalism, is described in this section.

Fundamentally, a tensor of type (n,m) has input slots for n vectors and m dual
vectors, and acts linearly on these inputs to produce a real number.

8 Hermann Minkowski introduced the use of tensors for the theory of special relativity. In his original special
relativity paper, Einstein had not used tensors and at first he dismissed Minkowski’s tensor formulation of
special relativity as needlessly pedantic. However, Einstein soon realized the power of this new (for physicists,
not for mathematicians) approach and adopted the framework of tensors and differential geometry in his later
formulation of general relativity.
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For example, if ω is a (0,1) tensor (that is, a dual vector) and A and B are (1,0) tensors
(that is, vectors), linearity implies

ω(aA+bB) = aω(A)+bω(B) ∈ R, (8.60)

where a and b are arbitrary scalars and R denotes the set of real numbers. This definition
makes no reference to components of the vectors or dual vectors, so the tensor map must
give the same real number, irrespective of any choice of coordinate system.

Thus, a tensor may be viewed as a function of the vectors and dual vectors them-
selves, rather than as a function of their components, or as an operator that ac-
cepts vectors and dual vectors as input and outputs a real number.

Example 8.5 As a warmup exercise, consider a real-valued function of the coordinates
f (x). Since this function takes no vectors or dual vectors as input and yields a real number
(the value of the function at x) as output, it is a tensor of rank zero (a scalar).

Let’s now give a few less-trivial examples of how this approach works, beginning with
vectors and dual vectors.

Vectors and Dual Vectors

Vector spaces are discussed in Box 8.3. Suppose a vector field to be defined on a manifold
such that each point P has associated with it a vector V that may be expanded in a vector
basis eµ ,

V =V µ eµ , (8.61)

and that there is a corresponding dual vector field ω defined at each point P that may be
expanded in a dual-vector basis eµ ,

ω = ωµ eµ , (8.62)

where the basis vectors eµ are defined in the tangent space TP and the basis dual vectors
eµ are defined in the cotangent space T ∗

P at each point P of the manifold, as described in
Section 8.4.2. Hence the eµ are basis vectors in the tangent bundle and the eµ are basis
vectors in the cotangent bundle. As discussed in Section 8.3.5, the vector spaces for V and
ω are said to be dual in the following sense.

Duality of Vectors and Dual Vectors: For a manifold, the space of vectors (tan-
gent bundle) consists of all linear maps of dual vectors to the real numbers; con-
versely, the space of dual vectors (cotangent bundle) consists of all linear maps
of vectors to the real numbers.
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Box 8.3 Vector spaces

A vector space has a precise axiomatic definition in mathematics, but for our pur-
poses it will be sufficient to view it more loosely as a set of objects (the vectors)
that can be multiplied by real numbers and added together in a linear way while
exhibiting closure: any such operations on elements of the set give back a linear
combination of elements. For arbitrary vectors A and B, and arbitrary scalars a and
b, one expects then that expressions like

(a+b)(A+B) = aA+aB+bA+bB

should be satisfied. A few other things are necessary: a zero vector that serves
as an identity under vector addition, an inverse for every vector, and the usual as-
sortment of associativity, distributivity, and commutativity rules, for example; but it
is clear that it isn’t very hard to be a vector space. Vector spaces of use in physics
often have additional structure like a norm and inner product, but that is over and
above the minimal requirements for being a bonafide vector space.

A basis for a vector space is a set of vectors that span the space (any vector is
a linear combination of basis vectors) and that are linearly independent (no basis
vector is a linear combination of other basis vectors). The number of basis vectors
is the dimension of the space. For spacetime the vector spaces of interest will be
defined at each point of the manifold and will be of dimension four.

This duality of vector and dual vector spaces can be implemented systematically by requir-
ing the basis vectors to satisfy

eµ(eν) = eµ · eν = δ
µ

ν , (8.63)

where the Kronecker delta is given by

δ
µ

ν =

{
1 µ = ν

0 µ ̸= ν
.

Note that A(B), which indicates the action of A on B, can be expressed in the alternative
form ⟨A,B⟩, so Eq. (8.63) is also commonly written as ⟨eµ , eν⟩ = δ

µ

ν . From Eqs. (8.60)–
(8.63) it follows that a dual vector ω acts on a vector V in the manner

ω(V ) = ⟨ω,V ⟩= ωµ eµ(V ν eν)

= ωµV ν eµ(eν)

= ωµV ν
δ

µ

ν

= ωµV µ ∈ R, (8.64)

where R denotes the real numbers.9 This illustrates clearly that a dual vector is an operator

9 As has been noted previously, basis vectors are defined in the tangent bundle and basis dual vectors are defined
in the cotangent bundle of the manifold. Thus for applications in spacetime our concern is really with the action
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that accepts a vector as an argument and produces a real number (the scalar product ωµV µ ,
which is unique and independent of basis) as output. By the same token, a vector is an
operator that accepts a dual vector as an argument and produces a real number equal to
the scalar product, V (ω) = ωµV µ . These definitions involve no uncontracted indices, so
the results are independent of any basis choice. This suggests that vectors and dual vectors
may be defined fundamentally in terms of linear maps to the real numbers:

1. A dual vector is an operator that acts linearly on a vector to return a real number.

2. A vector is as an operator that acts linearly on a dual vector to return a real number.

For those having a knowledge of linear algebra or quantum mechanics this may sound
vaguely familiar, as suggested by the following example.

Example 8.6 In the language of linear algebra, vectors may be represented as column
vectors and dual vectors as row vectors, and their matrix product is a number. For example,

A ≡ (a b) B ≡
(

c
d

)
AB = (a b)

(
c
d

)
= ac+bd ∈ R

may be regarded as the dual vector A acting linearly on the vector B to produce the real
number ac+bd: A(B) ∈ R. For Dirac notation in quantum mechanics, |a⟩ may be viewed
as representing a vector and ⟨a| as representing a dual vector in Hilbert space, and mathe-
matically the vector space of ⟨a| is the dual of the vector space of |a⟩ (see Ref. [24]). Thus
the overlap ⟨ f | i⟩ is a number, and a matrix element ⟨ f |M |i⟩ is a map from vectors and
dual vectors of Hilbert space to the real numbers.

8.4.7 Evaluating Components in a Basis

The preceding definitions of vectors and dual vectors are independent of any choice of
basis, but practically it often is convenient to work in a basis. The components of a vec-
tor or dual vector in a specific basis are obtained by evaluating them with respect to the
corresponding basis vectors and dual basis vectors; for example,

V µ =V (eµ) = eµ ·V ωµ = ω(eµ) = eµ ·ω, (8.65)

which follows from Eq. (8.63). Equations such as (8.65) may be interpreted (for example)
as a vector accepting a basis vector eµ as input and acting linearly on it to return a real
number that is the component of the vector evaluated in that basis.

of vector fields on dual vector fields and vice versa, in which case what is returned is not a real number but
rather a scalar field of real numbers defined over the manifold. We trust that the reader is sophisticated enough
at this point to realize when “thing” really means “field of things”.
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Example 8.7 The validity of Eqs. (8.65) may be checked easily:

eµ ·V = eµ · (V α eα) =V α eµ(eα) =V α
δ

µ

α =V µ ,

eµ ·ω = eµ · (ωα eα) = ωα eµ(eα) = ωα δ
α
µ = ωµ ,

where the expansions (8.61)–(8.62), the linearity requirement (8.60), and the orthogonality
condition (8.63) were employed.

Vector and dual vector components as in Eq. (8.65), and more generally tensor components,
are then found to obey the same transformation laws and tensor calculus that will be pre-
sented in following sections as alternative defining characteristics of tensors. Example 8.8
illustrates for dual vectors and vectors.

Example 8.8 Consider a coordinate transformation xµ → x′µ on a dual vector ω =ωµ eµ

and on a vector V =V µ eµ . The basis dual vectors eµ and basis vectors eµ transform as

eµ → e′µ =
∂x′µ

∂xν
eν eµ → e′µ =

∂xν

∂x′µ
eν .

How do the components ωµ transform? This may be determined by noting that the dual
vector ω is a geometrical object having an existence independent of representation in a
specific coordinate system, so it must be invariant under coordinate transformations. This
will be ensured only if the components of ω transform as

ων → ω
′
ν =

∂xα

∂x′ν
ωα ,

since then the dual vector ω is invariant under xµ → x′µ :

ω
′ = ω

′
µ e′µ

=
∂xα

∂x′µ
ωα

∂x′µ

∂xν
eν

=
∂xα

∂x′µ
∂x′µ

∂xν
ωα eν

= ωα eν
δ

α
ν

= ωα eα = ω.

This transformation law for the components ων is the same one that will be used to define
a dual vector in Eq. (8.71). By a similar proof, vector components V µ may be shown to
have the transformation law (8.73).

In later sections, such transformation laws will be offered as a definition of tensors. In the
index-free picture currently under discussion tensors are defined instead as linear maps of
some number of vectors and dual vectors to the real numbers, with the transformation laws
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and associated tensor calculus that will be discussed in Sections 8.5–8.8 following as a
consequence of that definition.

Let us now greatly simplify keeping track of the distinction between upper indices and
lower indices on tensors by demonstrating that the metric tensor map may be used to estab-
lish a one-to-one relationship between a vector in the tangent space and a corresponding
dual vector in the cotangent space.

8.4.8 Identification of Vectors and Dual Vectors

Consider the metric tensor, viewed as a rank-2 covariant tensor that accepts two vector
inputs and acts on them (multi-)linearly to give a real number. Schematically, this may be
written as the operator g(· , ·), where the dots indicate the input slots for the two vectors.
Suppose that a vector V is inserted into only one of the slots, giving g(V, ·). What is this
object? It has one open slot that can accept a vector, on which it will act linearly to return
a real number. But that should sound familiar: it is the definition of a dual vector! Because
it is associated directly with the vector V , let us call this dual vector Ṽ ≡ g(V , ·). The
components of this dual vector may be evaluated by inserting a basis vector as argument in
the usual way,

Vµ ≡ Ṽ (eµ) = g(V,eµ)

= g(V ν eν ,eµ)

=V ν g(eν ,eµ)

= gµνV ν . (8.66)

Likewise, by using that gµν and gµν are matrix inverses, V µ = gµνVν . Summing over
repeated indices in tensor products is called contraction. Thus, the properties of the metric
tensor allow vectors and dual vectors to be treated effectively as if they were both vectors,
one with an upper index and one with a lower index, with the two related by contraction
with the metric tensor,

Vµ = gµνV ν V µ = gµνVν . (8.67)

This is of great practical importance since it allows the same symbol to be used for a
vector and its corresponding dual vector, and it reduces the handling of vectors and dual
vectors to keeping proper track of the vertical position of indices in the Einstein summation
convention. This identification works only for manifolds with metric tensors but that is no
limitation for special or general relativity, which deal only with metric spaces.

Once the operations of raising and lowering indices by contraction with the metric tensor
are established through Eq. (8.67), the scalar product between two vectors U and V can be
calculated as the complete contraction UαV α of one of the vectors with the dual vector
associated with the other vector:

g(U,V ) = gµνU µV ν =UνV ν . (8.68)

The scalar product has no indices left after contraction and is said to be fully contracted.
Because tensors of higher rank are products of vectors and dual vectors, the preceding
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discussion is easily generalized and contraction with the metric tensor can be used to raise
or lower any index for a tensor of any rank. For example,

Aµν = gµα gνβ Aαβ Aµνλσ = gµρ Aρ

νλσ
.

Since indices can be raised or lowered at will by a metric, tensors may be thought of as
objects of a particular tensorial rank, irrespective of their particular vertical arrangement
of indices (for example, the identification of vectors and dual vectors discussed above). Of
course this is true only in the abstract; index placement matters when tensors are evaluated
in a basis.

8.4.9 Index-Free versus Component Transformations

The material in this section has been a brief introduction to the index-free formulation
of tensors favored by mathematicians. The discussion above and that in Section 8.5 indi-
cates that the index-free formalism leads to the same transformation laws for tensors. Thus
the practical outcome will be the same with application of either approach to the issues
addressed in these lectures, but index-free concepts provide a more solid mathematical
foundation for physical results while often the component transformation approach affords
a more direct path to obtaining them.

8.5 Tensors Specified by Transformation Laws

In the preceding discussion tensors have been introduced at a fundamental level through
linear maps from vectors and dual vectors to the real numbers, but it was shown also that
these linear maps imply that when tensors of a given type are expressed in an arbitrary basis
(see Section 8.4.7) their components obey well-defined transformation laws under change
of coordinates. This view of tensors as groups of quantities obeying particular transforma-
tion laws is often the most practical for physical applications because (1) it is less abstract
and requires less new mathematics for the novice, (2) a physical interpretation often re-
quires expression of the problem in a well-chosen basis anyway, and (3) the component
index formalism has a built-in error checking mechanism of great practical utility in solv-
ing problems: failure of indices to balance on the two sides of an equation is a sure sign of
an error.

This section summarizes the use of tensors to formulate invariant equations by exploiting
the transformation properties of their components. Tensors may be viewed as generalizing
the idea of scalars and vectors, so let’s begin with these more familiar quantities. The fol-
lowing discussion is an adaptation to 4-dimensional (possibly curved) spacetime of many
concepts discussed earlier in Section 8.3 for simpler euclidean spaces; you are urged to re-
view that material if any conceptual difficulties are encountered in the following material.
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8.5.1 Scalar Transformation Law

Consider the behavior of fields under the coordinate transformations introduced in Section
8.4.1. The simplest possibility is that the field has a single component at each point of the
manifold, with a value that is unchanged by the transformation (8.48),

φ
′(x′) = φ(x). (8.69)

Quantities such as φ(x) that are unchanged under the coordinate transformation are called
scalars. As the notation indicates, scalar quantities are generally functions of the coordi-
nates but their value at a given point does not change if the coordinate system changes.10

Scalar quantities may be expected to play a central role in physical theories because mea-
surable observables must be scalars if the goal of formulating physical laws such that they
do not depend on the coordinate labels is to be fulfilled.

8.5.2 Dual Vector Transformation Law

In parallel with the discussion of vectors defined in the tangent and dual bases for euclidean
space in Section 8.6, it is useful to define two kinds of spacetime vectors having distinct
transformation laws. Both will be termed vectors because sets of each type separately obey
the axioms to form a vector space, as discussed in Box 8.3, and because of the duality
discussed in Section 8.3.5. By the argument in Section 8.4.8, the same symbol will be used
for both but they will be distinguished by vertical placement of indices. By the rules of
ordinary partial differentiation the gradient of a scalar field φ(x) obeys

∂φ(x)
∂x′µ

=
∂φ(x)
∂xν

∂xν

∂x′µ
. (8.70)

Now consider a vector having a transformation law mimicking that of the scalar field gra-
dient (8.70),

A′
µ(x

′) =
∂xν

∂x′µ
Aν(x) (dual vector). (8.71)

A quantity transforming in this way is termed a dual vector (it also goes by the names
one-form, covariant vector, or covector). Understand clearly that in (8.71) the two sides of
the equation refer to the same point in spacetime. Thus, the argument is x′ on the left side
and x on the right side, and these label the same spacetime point in two different coordinate
systems. Before continuing we stop to note that even the relatively simple expressions that
have been introduced so far emphasize the importance of the compact notation that we are

10 This may be contrasted with the behavior of the components of a vector under coordinate transformation,
which will be discussed shortly. Geometrically the components of a vector are projections of the vector on
particular coordinate axes. Thus, if the coordinate system is changed the components of a vector at a given
point typically change their values, but the length of the vector, which is a scalar, is invariant.
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using. For example, Eq. (8.71) is a concise way to write the matrix equation
A′

0
A′

1
A′

2
A′

3

=


∂x0/∂x′0 ∂x1/∂x′0 ∂x2/∂x′0 ∂x3/∂x′0

∂x0/∂x′1 ∂x1/∂x′1 ∂x2/∂x′1 ∂x3/∂x′1

∂x0/∂x′2 ∂x1/∂x′2 ∂x2/∂x′2 ∂x3/∂x′2

∂x0/∂x′3 ∂x1/∂x′3 ∂x2/∂x′3 ∂x3/∂x′3




A0

A1

A2

A3

 .

Furthermore, although we usually suppress it in the notation, the partial derivatives appear-
ing in these transformation equations depend on spacetime coordinates in the general case
and all partial derivatives are understood implicitly to be evaluated at a specific point P
labeled by x in one coordinate system and x′ in the other.

8.5.3 Vector Transformation Law

Now consider application of the rules of partial differentiation to transformation of the
differential,

dx′µ =
∂x′µ

∂xν
dxν . (8.72)

This suggests a second vector transformation rule,

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector). (8.73)

A quantity behaving in this way is termed a vector.11 Most physical quantities that are
thought of loosely as “vectors” (displacement or velocity, for example) are vectors in the
restricted sense defined by the transformation law (8.73).

Example 8.9 Equations (8.71) and (8.73) may be viewed as matrix equations,

A′
µ(x

′) = Ûν
µ Aν(x) A′µ(x′) =U µ

ν Aν(x), (8.74)

with the matrices U = ∂x′/∂x and Û = ∂x/∂x′ obeying ÛU = I, where I is the unit matrix.
In these transformations the matrix U is called the Jacobian matrix and the matrix Û is
called the inverse Jacobian matrix.

8.5.4 Duality of Vectors and Dual Vectors

The preceding discussion distinguishes two kinds of “vectors”: dual vectors, which carry a
lower index and transform like (8.71), and vectors, which carry an upper index and trans-
form like (8.73). This distinction is analogous to that introduced in Section 8.6 for vectors
and dual vectors in euclidean spaces. In particular instances vectors and dual vectors may

11 Some authors call vectors contravariant vectors, indicating explicitly that when expanded in a basis the com-
ponent index is in the upper position, and call dual vectors covariant vectors, indicating explicitly that the
component index is in the lower position.
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be considered equivalent as a practical matter (albeit with some loss of mathematical rigor),
but generally they are not. However, the duality discussed in Section 8.4.8 allows us to use
the same symbol for vectors and dual vectors, with the distinction between them residing
in upper and lower positioning of indices in the summation convention.

8.6 Scalar Product of Vectors

Just as was found in Section 8.3.4 for euclidean spaces, the introduction of vectors and
dual vectors, and their relationship through the metric tensor, allows a natural definition of
a scalar product

A ·B ≡ Aµ Bµ , (8.75)

where the dual vector Aµ and the corresponding vector Aµ are related through the metric
tensor according to Aµ = gµν Aν . This product transforms as a scalar because from Eqs.
(8.71) and (8.73),

A′ ·B′ = A′
µ B′µ =

∂xν

∂x′µ
Aν

∂x′µ

∂xα
Bα =

∂xν

∂x′µ
∂x′µ

∂xα
Aν Bα

=
∂xν

∂xα
Aν Bα = δ

ν
α Aν Bα = Aα Bα = A ·B, (8.76)

where the Kronecker delta δ ν
µ is given by

δ
µ

ν =
∂x′µ

∂x′ν
=

∂xµ

∂xν
=

{
1 µ = ν

0 µ ̸= ν
, (8.77)

which is a rank-2 tensor with the unusual property that its components take the same value
in all coordinate systems.

8.7 Tensors of Higher Rank

Three types of rank-2 tensors (0,2), (1,1), and (2,0) may be distinguished; they have the
transformation laws

T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ , (8.78)

T ′ν
µ =

∂xα

∂x′µ
∂x′ν

∂xβ
T β

α
, (8.79)

T ′µν
=

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ . (8.80)

These transformation rules may be generalized easily to tensors of any rank. In such a
generalization,
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Table 8.1 Some tensor transformation laws

Tensor Transformation law

Scalar φ ′ = φ

Dual vector A′
µ =

∂xν

∂x′µ
Aν

Vector A′µ =
∂x′µ

∂xν
Aν

Covariant rank-2 T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ

Contravariant rank-2 T ′µν =
∂x′µ

∂xα

∂x′ν

∂xβ
T αβ

Mixed rank-2 T ′ν
µ =

∂xα

∂x′µ
∂x′ν

∂xβ
T β

α

1. Each upper index on the left side requires a right-side “factor” of the form ∂x′µ/∂xν

(prime in the numerator), and

2. each lower index on the left side requires a right-side “factor” of the form ∂xµ/∂x′ν

(prime in the denominator).

This “position of the left-side index equals position of the right-side primed coordinate”
rule for the partial derivative factors is a useful aid in remembering the forms of the tensor
transformation equations. Transformation laws for tensors through rank 2 are summarized
in Table 8.1.

8.8 The Metric Tensor

By analogy with the discussion in Section 8.3.7, a rank-2 tensor of special importance is
the metric tensor gµν , because it is associated with the line element

ds2 = gµν dxµ dxν (8.81)

that determines the geometry of the manifold. The metric tensor is symmetric in its indices
(gµν = gνµ ) and satisfies the (0,2) tensor transformation law

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (8.82)

The contravariant form of the metric tensor gµν is defined by the requirement

gµα gαν = δ
ν
µ , (8.83)
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so gµν and gµν are matrix inverses. Contractions with the metric tensor may be used to
raise and lower (any number of) tensor indices; for example,

Aµ = gµν Aν Aµ = gµν Aν T µ

ν = gνα T µα T α

βγ
= gαµ gγε T ε

µβ
. (8.84)

Thus, the scalar product of vectors may be expressed as

A ·B = gµν Aµ Bν ≡ Aν Bν = gµν Aµ Bν ≡ Aν Bν . (8.85)

Because such products are scalars, they are unchanged by coordinate-system transforma-
tions. A specific example of such a conserved quantity is an invariant length such as the
line element of Eq. (8.81).

In mixed-tensor expressions like the third or fourth ones in Eq. (8.84) the relative hori-
zontal order of upper and lower indices can be important. For example, in T µ

ν = gνα T µα

the notation indicates that the mixed tensor on the left side of the equation was obtained
by lowering the rightmost index of T µα on the right side (since in T µ

ν the lower index ν is
to the right of the upper index µ). This distinction is immaterial if the tensor is symmetric
under exchange of indices but which index is lowered or raised by contraction matters for
tensors that are antisymmetric under index exchange (see Section 8.9): T µ

ν = gνα T µα and
T µ

ν = gνα T αµ are equivalent if T is symmetric, but different if T is antisymmetric.
Vectors and dual vectors are distinct entities that are defined in different spaces (see

Section 8.4.2). However, Eqs. (8.83)–(8.85) and the discussion in Section 8.3.5, and Sec-
tion 8.4.8 make it clear that for the special case of a manifold with metric, indices on any
tensor may be raised or lowered at will by contraction with the metric tensor, as in Eq.
(8.84). Defining a metric establishes a relationship that permits vectors and dual vectors to
be treated as if they were (in effect) different representations of the same vector. Our dis-
cussion will usually proceed as if Aµ and Aµ are different forms of the same vector that are
related by contraction with the metric tensor, while secretly remembering that they really
are different, and that it is only for metric spaces that this conflation is not likely to land us
in trouble.

The preceding discussion makes clear why the convention in much of nonrelativistic
physics to ignore the mathematical distinction between vectors and dual vectors causes few
problems. For example, the gradient operator is commonly termed a vector in elementary
physics but Section 8.5.2 shows that it is in truth a dual vector. However, physics assumes
metric spaces, so vectors and dual vectors are related trivially through the metric tensor and
no lasting harm is done by calling the gradient a vector if the bookkeeping is done correctly
in equations. Specifically, the gradient dual vector may be converted to the corresponding
vector by contracting with the metric tensor to raise the index. The issue is particularly
simple if the problem is formulated in euclidean space using cartesian coordinates, in which
case the metric tensor is just the unit matrix and the components of the vector and dual
vector are the same. The mathematician is required to be more circumspect because the
definition of a manifold does not automatically imply existence of a metric to enable this
identification.
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8.9 Symmetric and Antisymmetric Tensors

The symmetry of tensors under exchanging pairs of indices is often important. An arbi-
trary rank-2 tensor can always be decomposed into a symmetric and antisymmetric part
according to the identity

Tαβ = 1
2 (Tαβ +Tβα)+

1
2 (Tαβ −Tβα), (8.86)

where the first term is clearly symmetric and the second term antisymmetric under ex-
change of indices. For completely symmetric and completely antisymmetric rank-2 tensors

Tαβ =±Tβα T αβ =±T βα ,

where the plus sign holds if the tensor is symmetric and the minus sign if it is antisym-
metric. More generally, a tensor of rank two or higher is said to be symmetric in any two
of its indices if exchanging those indices leaves the tensor invariant and antisymmetric (or
skew-symmetric) in any two indices if it changes sign upon switching those indices.

8.10 Algebraic Tensor Operations

Various algebraic operations are permitted for tensors in equations. These valid operations
include:

1. Multiplication by a scalar: A tensor may be multiplied by a scalar (meaning that each
component is multiplied by the scalar) to produce a tensor of the same rank. For exam-
ple, aAµν = Bµν , where a is a scalar and Aµν and Bµν are rank-2 contravariant tensors.

2. Addition or subtraction: Two tensors of the same type may be added or subtracted
(meaning that their components are added or subtracted) to produce a new tensor of the
same type. For example, Aµ −Bµ =Cµ , where Aµ , Bµ , and Cµ are vectors.

3. Multiplication: Two or more tensors may be multiplied by forming products of their
components. The rank of the resultant tensor will be the product of the ranks of the
tensor factors. For example, Aµν = UµVν , where Aµν is a rank-2 covariant tensor and
Uµ and Vν are dual vectors.

4. Contraction: For a tensor or tensor product with covariant rank n and contravariant
rank m, a tensor of covariant rank n−1 and contravariant rank m−1 may be formed by
setting one upper and one lower index equal and taking the implied sum. For example,
A = Aµ

µ , where A is a scalar and Aµ

ν is a mixed rank-2 tensor, or Aµ = gµν Aν , where
the metric gµν is a rank-2 covariant tensor, Aν is a vector, and Aµ is a dual vector.

In addition to these algebraic manipulations, it will often be necessary to integrate or dif-
ferentiate in tensor expressions. This tensor calculus is addressed in the following section.
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8.11 Tensor Calculus on Curved Manifolds

To formulate physical theories in terms of tensors requires the ability to manipulate ten-
sors mathematically. In addition to the algebraic rules for tensors described in preceding
sections, we must formulate a prescription to integrate tensor equations and one to differ-
entiate them. Tensor calculus is mostly a straightforward generalization of normal calculus
but additional complexity arises for two reasons:

1. It must be ensured that integration and differentiation preserve the symmetries and in-
variances embodied in the tensor equations.

2. To preserve the utility of the tensor formalism, it must be ensured that the results of
these operations on tensor quantities are themselves tensor quantities.

As will now be shown, the first requirement implies a simple modification of the rules for
ordinary integration while the second implies a less-simple modification with far-reaching
mathematical and physical implications for the rules of partial differentiation.

8.11.1 Invariant Integration

Under a change of coordinates the volume element for integration over the spacetime co-
ordinates changes according to

d4x′ = det
(

∂x′

∂x

)
d4x = Jd4x, (8.87)

where d4x ≡ dx0dx1dx2dx3 and J ≡ det(∂x′/∂x) is the Jacobian determinant (determinant
of the 4×4 matrix of partial derivatives relating the x and x′ coordinates; see Example 8.9).
Notice that the right side of Eq. (8.82) may be viewed as a triple matrix product and recall
that the determinant of a matrix product is the product of determinants. Thus Eq. (8.82)
implies that the determinant of the metric tensor g≡ detgµν transforms as g′= J−2g. Hence
J =

√
|g|/
√
|g′|, where the absolute value signs are necessary because the determinant of

gµν is negative in 4D spacetime with Lorentzian metric signature [see Eq. (9.6)], and this
result may be substituted into Eq. (8.87) to give

√
|g′|d4x′ =

√
|g|d4x. This implies that

an invariant volume element,

dV =
√

|g|d4x, (8.88)

must be employed in tensor integration to ensure that the results are invariant under a
change of coordinate system. A simple demonstration of using invariant integration to
determine an area for a 2-dimensional curved manifold is given in Example 8.10.

Example 8.10 The metric for a 2-dimensional spherical surface (the 2-sphere S2) is
specified by the line element dℓ2 = R2dθ 2 +R2 sin2

θdφ 2, which may be written as the
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matrix equation

dℓ2 = (dθ dφ)

(
R2 0
0 R2 sin2

θ

)(
dθ

dφ

)
.

The area of the 2-sphere may then be calculated as

A =
∫ 2π

0
dφ

∫
π

0

√
detgi j dθ

=
∫ 2π

0
dφ

∫
π

0
R2 sinθdθ = 4πR2,

where the metric tensor gi j is the 2×2 matrix in the first equation for the line element. In
this 2-dimensional example the sign of the determinant is positive, so no absolute value is
required under the radical in Eq. (8.88).

Thus, the extension of ordinary integration to integration over tensor fields requires only
that the volume element be made invariant according to the prescription in Eq. (8.88). What
about the derivatives of tensor quantities? This is a more complicated issue that we must
now address.

8.11.2 Partial Derivatives

Before proceeding it will be useful to introduce a more compact way to write partial deriva-
tives. Two shorthand notations are in common use, as illustrated by the following exam-
ples.12

∂µ φ = φ,µ ≡ ∂φ(x)
∂xµ

∂
′
µ φ

′ = φ
′
,µ ≡ ∂φ ′(x′)

∂x′µ
∂

µ
φ = φ

,µ ≡ ∂φ(x)
∂xµ

. (8.89)

All three of the notations exhibited for partial derivatives in these equations will be used
at various places in this book. Let us now consider the covariance of the partial derivative
operation applied to tensors.

The transformation law for the derivative of a scalar is given by Eq. (8.70), which is
just the transformation law (8.71); therefore the derivative of a scalar is a dual vector and
scalars and their first derivatives have well-defined tensorial properties. So far, so good, but
now consider the derivative of a dual vector,

A′
µ,ν ≡

∂A′
µ

∂x′ν
=

∂

∂x′ν

(
Aα

∂xα

∂x′µ

)
=

∂Aα

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν ∂x′µ

=
∂Aα

∂xβ

∂xβ

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν ∂x′µ

= Aα,β
∂xβ

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν ∂x′µ
. (8.90)

12 Higher-order derivatives can be denoted by additional subscripts. For example ∂ 2φ/∂xµ ∂xν = φ,µν .
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The first term in the last line transforms as a (rank-2) tensor but the second term does
not since it involves second derivatives, ultimately because the partial-derivative matrix
implementing the transformation is position dependent in curved spacetime. In flat space it
is possible to choose coordinates where the second term vanishes but in curved spacetime
it cannot be transformed away globally. By a similar procedure it is found that the partial
derivatives of vectors and all higher-order tensors exhibit a similar pathology:

With the exception of derivatives of scalars, ordinary partial differentiation of
tensors is not a covariant operation in curved spacetime because it fails to pre-
serve the tensor structure of equations.

This will complicate the formalism immensely because the utility of the tensor framework
rests on the preservation of tensor structure under transformations. It is desirable to define
a new covariant derivative operation that does this automatically. In general the terms that
violate the tensor transformation laws for partial derivatives of tensors will involve second
derivatives, as in Eq. (8.90). The non-tensorial contributions can be eliminated systemat-
ically by introducing additional fields on the manifold, which can be done in more than
one way, each leading to a different form of covariant differentiation. Three common ap-
proaches are (1) covariant derivatives and (2) absolute derivatives, which use derivatives
of the metric tensor field to cancel non-tensorial terms, and (3) Lie derivatives, which use
derivatives of an auxiliary vector field defined on the manifold to the same end. We will
discuss here only covariant derivatives, which will be introduced in Section 8.11.3

8.11.3 Covariant Derivatives

For the manifolds important in general relativity, the most common approach to converting
partial differentiation into an operation that preserves tensor structure is to use particular
linear combinations of metric-tensor derivatives to create new non-tensorial terms that ex-
actly cancel the non-tensorial terms arising from taking the partial derivative. Notice that
if the Christoffel symbols Γλ

αβ
are introduced and required to obey a transformation law

Γ
′λ
αβ = Γ

κ
µν

∂xµ

∂x′α
∂xν

∂x′β
∂x′λ

∂xκ
+

∂ 2xµ

∂x′α ∂x′β
∂x′λ

∂xµ
, (8.91)

it may be shown that(
A′

µ,ν −Γ
′λ
µν A′

λ

)
=
(

Aα,β −Γ
κ

αβ
Aκ

)
∂xα

∂x′µ
∂xβ

∂x′ν
. (8.92)

Comparing with Eq. (8.78), the quantity in brackets is seen to transform as a rank-2 covari-
ant tensor. This suggests the utility of introducing a new derivative operation: the covariant
derivative of a dual vector is defined to be

Aµ;ν ≡ Aµ,ν −Γ
λ
µν Aλ , (8.93)

where now a subscript comma denotes ordinary partial differentiation and a subscript semi-
colon denotes covariant differentiation with respect to the variables following it. It will be
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useful to introduce also an alternative notation for the covariant derivative,

∇ν Aµ = Aµ;ν ≡ ∂ν Aµ −Γ
λ
µν Aλ . (8.94)

This covariant derivative of a dual vector then transforms as a covariant tensor of rank 2:
neither of its terms is a tensor but their difference is. Likewise, the covariant derivative of
a vector can be introduced in either of the notations

Aλ

;µ = Aλ

,µ +Γ
λ
αµ Aα

∇µ Aλ = ∂µ Aλ +Γ
λ
αµ Aα , (8.95)

where the result of (8.95) is a mixed rank-2 tensor, and the covariant derivatives of the
three possible rank-2 tensors through

Aµν ;λ = Aµν ,λ −Γ
α

µλ
Aαν −Γ

α

νλ
Aµα , (8.96)

Aµ

ν ;λ = Aµ

ν ,λ +Γ
µ

αλ
Aα

ν −Γ
α

νλ
Aµ

α , (8.97)

Aµν

;λ = Aµν

,λ +Γ
µ

αλ
Aαν +Γ

ν

αλ
Aµα , (8.98)

or in alternative notation

∇λ Aµν = ∂λ Aµν −Γ
α

µλ
Aαν −Γ

α

νλ
Aµα , (8.99)

∇λ Aµ

ν = ∂λ Aµ

ν +Γ
µ

αλ
Aα

ν −Γ
α

νλ
Aµ

α , (8.100)

∇λ Aµν = ∂λ Aµν +Γ
µ

αλ
Aαν +Γ

ν

αλ
Aµα , (8.101)

where the derivatives in Eqs. (8.96)–(8.101) define rank-3 tensors. In the general case the
covariant derivative of a tensor is a tensor of one rank higher than the tensor being differ-
entiated and the heuristic for constructing it is to form the ordinary partial derivative and
add one Christoffel symbol term having the sign and form for a dual vector for each lower
index, and one having the sign and form for a vector for each upper index of the tensor (see
Example 8.11).

In general relativity the Christoffel symbols are equivalent to connection coefficients
(hence the same notation will be employed for both), which have a geometrical significance
on the manifold and can be defined in terms of the derivatives of the metric tensor as

Γ
σ

λ µ
= 1

2 gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)
.

Thus the correction terms in Eqs. (8.93)–(8.101) that cancel non-tensorial character are
indeed composed of derivatives of the metric tensor, as promised above.

Rules for covariant differentiation: Most of the rules for partial differentiation carry
over with suitable generalization for covariant differentiation. For instance, the ordinary
(Leibniz) rule for differentiating a product applies also to covariant differentiation,

(Aµ Bν);λ = Aµ;λ Bν +Aµ Bν ;λ . (8.102)

The most important exception concerns the results of successive covariant differentiations.
Partial derivative operators normally commute: if two are applied successively, the out-
come does not depend on the order in which they are applied. However, covariant deriva-
tive operators generally do not commute and two successive covariant differentiations may
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give results that depend on the order in which they are applied. It may be shown that co-
variant derivatives, and their non-commuting nature, arise naturally from a prescription for
parallel transport of vectors in curved spaces.

Example 8.11 The Leibniz differentiation rule for the product of two vectors may be
used to derive the expressions (8.96)–(8.98) for the covariant derivatives of rank-2 tensors
from those given for vectors in Eqs. (8.93) and (8.95). For example,

(UαV β );γ =UαV β

;γ +Uα
;γ V β

=UαV β

,γ +Uα(Γ
β

ργ V ρ)+Uα
,γ V β +(Γα

ργU ρ)V β

= (UαV β ),γ +Γ
β

ργ(UαV ρ)+Γ
α
ργ(U

ρV β ),

where Eq. (8.95) and UαV β

,γ +Uα
,γV β = (UαV β ),γ were used in the second and third

lines, respectively. This is equivalent to

Aαβ

;γ = Aαβ

,γ +Γ
β

ργ Aαρ +Γ
α
ργ Aρβ ,

where Aαβ ≡ UαV β , which is Eq. (8.98) for the covariant derivative of a contravariant
rank-2 tensor.

Carrying out similar manipulations as in this example for the rank-2 tensors Aµν and Aν
µ

suggests the rule given after Eq. (8.101): differentiate in the normal way and add one
Christoffel symbol term having the sign and form for a dual vector for each lower index,
and one having the sign and form for a vector for each upper index of the tensor.

Implications of covariant differentiation: One rather important consequence of requir-
ing that differentiation preserve tensor structure in the manner described above is that the
covariant derivative of the metric tensor vanishes at all points of a manifold,13

∇α gµν = gµν ;α = 0. (8.103)

This means that in manipulating tensor equations the operation of covariant differentiation
commutes with the operation (8.84) of raising or lowering an index by contraction with the
metric tensor. For example,

gαβ ∇γV β = ∇γ(gαβV β ) = ∇γVα .

Thus the order of covariant differentiation and contraction with the metric tensor can be
interchanged without altering the result.

13 The validity of Eq. (8.103) is a consequence of particular assumptions concerning the nature of parallel trans-
port in curved spacetime.
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8.12 Invariant Equations

The properties of tensors elaborated above ensure that any equation will be form-invariant
under general coordinate transformations if it equates tensor components having the same
upper and lower indices. For example, if the quantities Aµ

ν and Bµ

ν each transform as
mixed rank-2 tensors according to Eq. (8.79) and Aµ

ν = Bµ

ν in the x coordinate system,
then in the x′ coordinate system A′µ

ν = B′µ
ν . Likewise, an equation that equates any ten-

sor to zero (that is, sets all its components to zero) in some coordinate system is covariant
under general coordinate transformations, implying that the tensor is equal to zero in all
coordinate systems. However, equations such as Aν

µ = 10 or Aµ =Bµ might hold in partic-
ular coordinate systems but generally are not valid in all coordinate systems because they
equate tensors of different kinds (a mixed rank-2 tensor with a scalar in the first example
and a dual vector with a vector in the second).

The preceding discussion suggests that invariance of a theory under general coordinate
transformations will be guaranteed by carrying out the following steps.

1. Formulate all quantities in terms of tensors, with tensor types matching on the two sides
of any equation, and with all algebraic manipulations corresponding to valid tensor
operations (addition, multiplication, contraction, . . . ).

2. Redefine any integration to be invariant integration, as discussed in Section 8.11.1.
3. Replace all partial derivatives with the covariant derivatives introduced in Section 8.11.3.
4. Take care to remember that a covariant differentiation generally does not commute with

a second covariant differentiation, so the order matters.

This prescription in terms of tensors will provide a powerful formalism for dealing with
mathematical relations that would be much more formidable in standard notation.

Background and Further Reading

Significant parts of this chapter have been adapted from Refs. [11] and [12]. The discussion
of coordinate transformations in euclidean space is based on the presentation of Ref. [5].
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Problems

8.1 Consider the following torus, parameterized by the angles θ and φ .

φ

θ

x

y

z

ba

Points on the torus are defined by

x = (a+bcosφ)cosθ y = (a+bcosφ)sinθ z = bsinφ ,

where a and b are constants. Construct the tangent basis vectors for θ and φ , and the
corresponding metric tensor.

8.2 (a) Verify explicitly that the Lorentz transformation of Eq. (9.25)

cdt ′ = ccoshξ dt + sinhξ dx

dx′ = csinhξ dt + coshξ dx

dy′ = dy

dz′ = dz

leaves invariant the Minkowski line element ds2.
(b) Use the Lorentz transformations (9.31) expressed in differential form to obtain
the velocity transformation rules consistent with Lorentz invariance. Show that for
the special case of two inertial frames moving along the x axis with relative velocity
v, the velocity transformation law is

u′ =
u− v

1−uv/c2 ,

and that this embodies the constancy of the speed of light in all inertial frames, but
reduces to the result expected from Galilean invariance for small v.

8.3 Use tangent and dual basis vectors to construct metric tensor components gi j and gi j,
and the line element, for the coordinate system (u,v,w) of Example 8.3. Verify that
the matrices gi j and gi j found for this problem are inverses of each other.

8.4 Show that if index raising and lowering operations are defined by expressions like

T µ

ν = gνα T µα Tµν = gµα gνβ T αβ ,
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then these are valid tensor operations. That is, show that if these relations are true in
one coordinate system they are true in all coordinate systems.



9 Special Relativity

In this chapter we shall build on the mathematical foundation of Ch. 8 to describe the spe-
cial theory of relativity and use that to demonstate the Lorentz invariance of the Maxwell
equations. Let’s begin by noting the natural scientific and historical affinity of the Maxwell
equations and the special theory of relativity.

9.1 Maxwell’s Equations and Special Relativity

Scientifically, electrical charges may be viewed as classical objects (for example, as having
positions and momenta that are simultaneously well defined) so that quantum mechanics
is not required, but the motion of these classical charges could be described by Newtonian
mechanics at low velocities, or by special relativity at velocities that are significant frac-
tions of the speed of light c.1 Historically, classical electromagnetism and special relativity
have been intertwined because Einstein was influenced strongly by the beauty and symme-
try properties of the Maxwell equations in his formulation of the special theory of relativity.
In particular he was motivated by comparing the Lorentz invariance of the Maxwell equa-
tions with the Galilean invariance of classical mechanics to propose that it was classical
mechanics, not electromagnetism, that required revision if one wanted the laws of elec-
tromagnetism and of classical particle motion to be mutually consistent. This led him to
propose the radical notion that the speed of light is constant in all inertial frames, which is
consistent with Maxwell’s equations but not with Newtonian mechanics, and which forms
the basis of the special theory of relativity.

9.2 Minkowski Space

A manifold equipped with a prescription for measuring distances is termed a metric space
and the mathematical function that specifies distances is termed the metric for the space.
In this section those ideas are applied to flat 4-dimensional spacetime, which is commonly
termed Minkowski space. Although many concepts will be similar to those for euclidean

1 If strong gravity is important, as it would be in various electromagnetic phenomena in astrophysics (for ex-
ample, accretion disks for black holes), one must extend the description of charged-particle motion to curved
spacetime. This requires use of the general theory of relativity. Here we will consider only relativistic electro-
dynamics in flat spacetime, so special but not general relativity will be necessary.

200
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manifolds, fundamentally new features will enter. Many of these new features are associ-
ated with the indefinite metric of Minkowski space.

9.2.1 The Indefinite Metric of Spacetime

Although Minkowski space is flat it is not euclidean, for it does not possess a euclidean
metric. A metric that can be put into a diagonal form in which the signs of the diagonal
entries can all be chosen positive is termed positive definite. In contrast, we have see in Ch.
8 that the Minkowski metric has an essential property that the diagonal entries cannot all be
chosen positive. Such a metric is termed indefinite, and it leads to properties of Minkowski
space differing fundamentally from those of euclidean spaces.

9.2.2 Scalar Products and the Metric Tensor

In a particular inertial frame we may introduce unit vectors e0, e1, e2, and e3 that point
along the t, x, y, and z axes, respectively, such that any 4-vector A may be expressed in the
form,

A = A0e0 +A1e1 +A2e2 +A3e3. (9.1)

Thus (A0,A1,A2,A3) are the (contravariant) components of the 4-vector A.2 The scalar
product of 4-vectors is given by

A ·B = B ·A = (Aµ eµ) · (Bν eν) = eµ · eν Aµ Bν . (9.2)

Introducing the definition

ηµν ≡ eµ · eν , (9.3)

we may express the scalar product as

A ·B = ηµν Aµ Bν . (9.4)

The metric tensor ηµν is just a special case of the general metric tensor for spacetime that
is generally denoted gµν ; however, in flat spacetime gµν is a constant matrix independent
of the coordinates and it is common to denote it by the special symbol ηµν .

9.2.3 The Line Element

The line element ds2 in Minkowski space measures the square of the distance between
points with infinitesimal separation and is given by

ds2 =−c2dτ
2 = ηµν dxµ dxν =−c2dt2 +dx2 +dy2 +dz2, (9.5)

2 Recall that in our notation non-bold symbols are being used to denote 4-vectors and bold symbols are reserved
for 3-vectors, and that a notation such as Aµ may stand either for the full 4-vector, or for a component of it,
depending on the context.
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where τ is the proper time (the time measured by a clock carried in an inertial frame; thus,
it is the time measured between events that are at the same spatial point), and where the
metric tensor of flat spacetime may be represented by the constant diagonal matrix

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

≡ diag (−1,1,1,1). (9.6)

Then Eq. (9.5) for the line element may be written as the matrix equation

ds2 = (cdt dx dy dz)


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




cdt
dx
dy
dz

 , (9.7)

where ds2 represents the square of the spacetime interval between x and x+dx with

x = (x0,x1,x2,x3) = (ct,x1,x2,x3). (9.8)

A point in Minkowski space defines an event and the path followed by an object in space-
time is termed the worldline for the object. This 4-dimensional spacetime with indefinite
metric is termed a Lorentzian manifold (or sometimes a pseudo-euclidean manifold).

Example 9.1 Given a Minkowski vector with components (A0,A1,A2,A3), what are
the components of the corresponding dual vector? From Eq. (8.84) with ηµν substituted
for the metric tensor, the indices may be lowered through the contraction Aµ = ηµν Aν .
Therefore, using the metric tensor (9.6) the elements of the corresponding dual vector are
Aµ = (−A0,A1,A2,A3). This illustrates explicitly that vectors and dual vectors generally
are not equivalent in non-euclidean manifolds, but that they are in one-to-one correspon-
dence though contraction with the metric tensor.

9.2.4 Invariance of the Spacetime Interval

Special relativity follows from two assumptions: (1) the speed of light is constant for all
observers and (2) the laws of physics cannot depend on spacetime coordinates. The pos-
tulate that the speed of light is a constant is equivalent to a statement that the spacetime
interval ds2 of Eq. (9.5) is an invariant that is unchanged by transformations between in-
ertial systems (the Lorentz transformations to be discussed below). This is not true for the
euclidean spatial interval dx2 + dy2 + dz2, nor is it true for the time interval c2dt2; it is
true only for the particular combination of spatial and time intervals defined by Eq. (9.5).
Because of this invariance, Minkowski space is the natural manifold for the formulation of
special relativity.
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Example 9.2 The metric can be used to determine the relationship between the time
coordinate t and the proper time τ . From Eq. (9.5)

dτ
2 =

−ds2

c2 =
1
c2 (c

2dt2 −dx2 −dy2 −dz2)

= dt2

{
1− 1

c2

[(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2
]}

=

(
1− v2

c2

)
dt2. (9.9)

where v is the magnitude of the velocity. Therefore, the proper time that elapses between
coordinate times t1 and t2 is

τ12 =

∫ t2

t1

(
1− v2

c2

)1/2

dt . (9.10)

The proper time interval τ12 is shorter than the coordinate time interval t2 − t1 because
the square root in the integrand of Eq. (9.10) is always less than one. This is the special-
relativistic time dilation effect, stated in general form. For the special case of constant
velocity, (9.10) yields

∆τ =

(
1− v2

c2

)1/2

∆t, (9.11)

which is the formulation of special-relativistic time dilation that is found commonly in
textbooks. From this example it is clear that the origin of time dilation in special relativity
lies in the geometry of spacetime, specifically in the indefinite nature of the Minkowski
metric.

The first postulate of special relativity (constant speed of light for all observers) is ensured
by the invariance of the interval (9.5) under transformations between inertial frames. As
was suggested by the discussion in Ch. 8, the second postulate (coordinate invariance of
physical law) can be ensured by formulating the equations of special relativity in terms of
tensors defined in Minkowski space, which we now address.

9.3 Tensors in Minkowski space

In Minkowski space the transformations between coordinate systems are particularly sim-
ple because they are independent of spacetime coordinates. Furthermore, in flat space
the correction terms disappear and partial derivatives are equivalent to covariant deriva-
tives. Therefore, the derivatives appearing in the general definitions of Table 8.1 for ten-
sors are constants and the transformation of a coordinate vector xµ may be expressed as
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x′µ = Λ
µ

ν xν , where the matrix Λ
µ

ν does not depend on the spacetime coordinates. Hence,
for flat spacetime the tensor transformation laws simplify to

φ
′ = φ Scalar (9.12)

A′µ = Λ
µ

ν Aν Vector (9.13)

A′
µ = Λ

ν

µ Aν Dual vector (9.14)

T ′µν = Λ
µ

γ Λ
ν

δ
T γδ Contravariant rank-2 tensor (9.15)

T ′
µν = Λ

γ

µ Λ
δ

ν Tγδ Covariant rank-2 tensor (9.16)

T ′µ
ν = Λ

µ

γ Λ
δ

ν T γ

δ
Mixed rank-2 tensor (9.17)

and so on. In addition, for flat spacetime it is possible to choose a coordinate system for
which non-tensorial terms like the second term of Eq. (8.90) can be transformed away
so covariant derivatives are equivalent to partial derivatives in Minkowski space. In the
transformation laws (9.17) the Λ

µ

ν are elements of Lorentz transformations that we will
now discuss in more detail.

9.4 Lorentz Transformations

Inertial frames enjoy a privileged role in Newtonian mechanics. Newton’s first law is un-
changed in special relativity and inertial frames can be constructed in the same way as for
Newtonian mechanics. What is different about the inertial frames of special relativity is that
because of the requirements imposed by the constant speed of light and principle of rel-
ativity postulates, the transformations between inertial frames are no longer the Galilean
transformations of Newtonian mechanics but rather the Lorentz transformations. Hence,
the inertial frames of special relativity are often termed Lorentz frames. Rotations are an
important class of transformations in euclidean space because they change the direction
but preserve the length of an arbitrary 3-vector. It is desirable to generalize this idea to
investigate abstract rotations in the 4-dimensional Minkowski space that change the direc-
tion but preserve the length of 4-vectors. As we will now demonstrate, such rotations in
Minkowski space are just the Lorentz transformations alluded to above.

9.4.1 Rotations in Euclidean Space

First we consider a rotation of the coordinate system in euclidean space, as illustrated in
Fig. 8.4. The condition that the length of an arbitrary vector be unchanged by this transfor-
mation corresponds to the requirement that the transformation matrix R implementing the
rotation [see Eq. (8.45)] act on the metric tensor gi j in the following way

Rgi jRT = gi j, (9.18)

where RT denotes the transpose of R. For euclidean space the metric tensor is just the
unit matrix so the requirement (9.18) reduces to RRT = 1, which is the condition that R
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be an orthogonal matrix. Thus, we have obtained the well-known result that rotations in
euclidean space are implemented by orthogonal matrices in a rather pedantic manner. But
Eq. (9.18) is valid generally, not just for euclidean spaces. Therefore, it may be used as
guidance for constructing more general rotations in Minkowski space.

9.4.2 Generalized 4D Minkowski Rotations

By analogy with the above discussion of rotations in euclidean space, which left the length
of 3-vectors invariant, let us now seek a set of transformations that leave the length of a
4-vector invariant in the Minkowski space. The coordinate transformation may be written
in matrix form,

dx′µ = Λ
µ

ν dxν , (9.19)

where the transformation matrix Λ
µ

ν is expected to satisfy the analog of Eq. (9.18) for the
Minkowski metric ηµν ,

Ληµν Λ
T = ηµν , (9.20)

or explicitly in terms of components, Λ
ρ

µ Λσ
ν ηρσ = ηµν .3 This property may now be used

to construct the elements of the transformation matrix Λ
µ

ν . The possible transformations
include rotations about the spatial axes (corresponding to rotations within inertial systems)
and transformations between inertial systems moving at different constant velocities that
are termed Lorentz boosts.

Two inertial frames may differ in displacement, rotational orientation, and uniform ve-
locity. This corresponds to 10 possible transformations between inertial frames: three ve-
locity boosts along the spatial axes, three rotations about the three spatial axes, and four
translations in the space and time directions. These 10 transformations form a group called
the Poincaré group (see Box 9.1). The six Lorentz transformations correspond to the ve-
locity boosts and spatial rotations, and they form a group called the Lorentz group that is a
subgroup of the Poincaré group, also discussed in Box 9.1. Consider first the simple case
of rotations about the z axis.

9.4.3 Lorentz Spatial Rotations

Rotations about a single spatial axis in Minkowski space correspond to a 2-dimensional
problem with euclidean metric, so the condition (9.18) may be written as(

a b
c d

)(
1 0
0 1

)(
a c
b d

)
=

(
1 0
0 1

)
, (9.21)

3 Note that in this discussion we are using the (common) convention that ηµν is either a symbol standing for the
full tensor or a specific component of the tensor distinguished by indices µ and ν , depending on context. In
a matrix equation like (9.20) the order of the factors matters because matrices don’t generally commute, but
when the matrix equation is written out in terms of sums over component products as in Λ

ρ

µ Λσ
ν ηρσ = ηµν

the order of factors can be rearranged at will, since the components of the matrices are just numbers that
commute with each other. The matrices Λ are symmetric so horizontal placement of indices isn’t crucial, but
a typical convention is to define Λ

µ

ν = ∂x′µ/∂xν and Λ
ν

µ = ∂xν/∂x′µ (compare Table 8.1).



206 Special Relativity

Box 9.1 Symmetries and groups

A group is a set G = {x,y, . . .} for which a binary operation a · b = c called group
multiplication is defined that has the following properties

(i) Closure: If x and y are elements of G, then x · y is an element of G also.
(ii) Identity: An identity element e exists such that e · x = x · e = x for x ∈ G.
(iii) Existence of an Inverse: For every group element x there is an inverse x−1 in

the set such that xx−1 = e.
(iv) Associativity: Multiplication is associative: (x · y) · z = x · (y · z) for x,y,z ∈ G.

For groups of transformations multiplication corresponds to applying first one and
then the other transformation. The group definition requires associativity but not
commutivity. A group consisting of commutative elements only is abelian; otherwise,
it is nonabelian.

Example: The Lorentz group
There are six independent Lorentz transformations: three rotations about the spatial
axes parameterized by real angles, and three boosts along the spatial axes param-
eterized by boost velocities. Because rotation angles and boost velocities can take
continuous real values, the set of Lorentz transformations is infinite. The Lorentz
transformations form a group:

1. Two successive transformations are equivalent to some other transformation.
2. Every Lorentz transformation has an inverse that is the transformation in the

opposite direction (for example, v →−v for boosts).
3. The identity corresponds to no transformation.
4. It doesn’t matter how three successive transformations are grouped, so multipli-

cation is associative, but the order matters, so the Lorentz group is nonabelian.

An important class of groups corresponds to transformations that are continuous
(analytical) in their parameters. These are called Lie groups. The Lorentz group
is a Lie group. Groups also can be classified according to whether their parameter
spaces are closed and bounded (compact groups) or not (noncompact groups). Be-
cause boost velocities can approach c asymptotically but never reach it, the Lorentz-
group parameter space is not closed (the limit v = c is not part of the set) and the
group is noncompact.

Example: The Poincaré group
The Poincaré group is formed by adding to the Lorentz transformations the uniform
translations along the four spacetime axes. It is a non-abelian, noncompact Lie
group, and contains the Lorentz group as a subgroup (a subset of group elements
that satisfy the same group postulates as the parent group).
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v

x' xtFig. 9.1 A Lorentz boost along the positive x axis by a velocity v.

where a, b, c, and d parameterize the transformation matrices. Carrying out the matrix
multiplications explicitly on the left side gives(

a2 +b2 ac+bd
ac+bd c2 +d2

)
=

(
1 0
0 1

)
,

and comparison of the two sides of the equation implies the conditions

a2 +b2 = 1 c2 +d2 = 1 ac+bd = 0.

Obviously one choice of parameters that satisfies these conditions is

a = cosφ b = sinφ c =−sinφ d = cosφ .

This leads to the standard result(
x′1

x′2

)
= R

(
x1

x2

)
=

(
cosφ sinφ

−sinφ cosφ

)(
x1

x2

)
, (9.22)

which is Eq. (8.44) restricted to rotations about a single axis. Now we shall apply this same
technique to determine the elements of a Lorentz boost transformation.

9.4.4 Lorentz Boost Transformations

Consider a boost from one inertial system to a second one moving in the positive direction
at uniform velocity along the x axis, as illustrated in Fig. 9.1. Since the y and z coordinates
will not be affected, this is a 2-dimensional problem in the time coordinate t and the spatial
coordinate x. The transformation is of the general form(

cdt ′

dx′

)
=

(
a b
c d

)(
cdt
dx

)
, (9.23)

and the condition (9.20) can be written out explicitly as(
a b
c d

)(
−1 0
0 1

)(
a c
b d

)
=

(
−1 0
0 1

)
, (9.24)

which is identical in form to the rotation case, except for the indefinite metric. Multiplying
the matrices on the left side and comparing with the right side gives the conditions

a2 −b2 = 1 − c2 +d2 = 1 −ac+bd = 0,
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Box 9.2 Minkowski rotations

The respective derivations make clear that the appearance of hyperbolic functions
in Eq. (9.25) instead of trigonometric functions as in Eq. (9.22) traces to the role of
the indefinite metric diag(−1,1) in Eq. (9.24) relative to the positive-definite met-
ric diag(1,1) in Eq. (9.21). The boost transformations are in a sense “rotations”
in Minkowski space, but these rotations have unusual properties relative to normal
rotations in euclidean space since they mix space and time, and may be viewed
as rotations through imaginary angles. These properties follow from the metric be-
cause the invariant interval is neither the length of vectors in space nor the length
of time intervals, but rather the specific mixture of space and time intervals implied
by the Minkowski line element (9.5) with indefinite metric (9.6). This is quite differ-
ent from Newtonian mechanics, where time is a universal parameter common to all
observers and the Galilean transformations conserve only the space interval.

which clearly are satisfied by the parameterization

a = coshξ b = sinhξ c = sinhξ d = coshξ ,

where ξ is a hyperbolic variable taking the values −∞ ≤ ξ ≤ ∞. Therefore, we may write
the boost transformation as(

cdt ′

dx′

)
=

(
coshξ sinhξ

sinhξ coshξ

)(
cdt
dx

)
. (9.25)

A geometrical interpretation of this result is discussed in Box 9.2.
The Lorentz boost transformation (9.25) can be put into a more familiar form by ex-

changing the boost parameter ξ for the boost velocity. For convenience, let’s replace the
differentials in Eq. (9.25) with finite space and time intervals (dt → t and dx → x). The ve-
locity of the boosted system is v = x/t. From Eq. (9.25), the origin (x′ = 0) of the boosted
system is given by

x′ = ct sinhξ + xcoshξ = 0.

Therefore, x/t =−csinhξ/coshξ , from which it may be concluded that

β ≡ v
c
=

x
ct

=− sinhξ

coshξ
=− tanhξ . (9.26)

This relationship between ξ and β is plotted in Fig. 9.2. Utilizing the identity 1= cosh2
ξ −

sinh2
ξ and the definition

γ ≡
(

1− v2

c2

)−1/2

(9.27)
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tFig. 9.2 Dependence of the Lorentz parameter ξ on β = v/c.

of the Lorentz γ-factor, we may write

coshξ =

√
cosh2

ξ

1
=

1√
1− sinh2

ξ/cosh2
ξ

=
1√

1− v2/c2
= γ, (9.28)

and from this result and (9.26),

sinhξ =−β coshξ =−βγ. (9.29)

Inserting (9.28)–(9.29) into (9.25) for finite intervals gives(
ct ′

x′

)
= γ

(
1 −β

−β 1

)(
ct
x

)
(9.30)

and writing this matrix expression out explicitly gives the Lorentz boost equations (for the
specific case of a positive boost along the x axis) in standard textbook form,

t ′ = γ

(
t − vx

c2

)
x′ = γ(x− vt) y′ = y z′ = z, (9.31)

with the inverse transformation corresponding to the replacement v →−v. By inspection,
these reduce to the Galilean boost equations (8.46) if v/c → 0 and it is easy to verify that
the Lorentz transformations leave invariant the spacetime interval ds2.

9.5 Lightcone Diagrams

The line element (9.5) defines a cone, implying that Minkowski spacetime may be clas-
sified according to the lightcone diagram exhibited in Fig. 9.3. The lightcone is a 3-
dimensional surface in the 4-dimensional spacetime and intervals relative to the origin may
be characterized according to whether they are inside of, outside of, or on the lightcone.
Assuming the metric signature (− + ++) employed here, the standard terminology is

• If ds2 < 0 the interval is termed timelike.
• If ds2 > 0 the interval is termed spacelike.
• If ds2 = 0 the interval is called lightlike (or null).
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Timelike

Timelike

Spacelike

Spacelike

F
u
tu
re

P
a
s
t

Now

ct

x

y

tFig. 9.3 Lightcone diagram for flat spacetime in two space and one time dimensions. The future
lightcone is the surface swept out by a spherical light pulse emitted from the origin.

These regions for flat spacetime are labeled in Fig. 9.3. This classification can be extended
also to surfaces. For example, a spacelike surface is a collection of points for which any
pair of points has a spacelike separation and a lightlike surface is a collection of points
for which any pair of points has a lightlike separation. The lightcone classification makes
clear the distinction between Minkowski spacetime and a mere 4-dimensional euclidean
space in that two points in the Minkowski spacetime may be separated by a distance that
when squared could be positive, negative, or zero. This is not possible in a euclidean met-
ric. Notice in particular that for lightlike particles, which have worldlines confined to the
lightcone, the square of the spacetime interval between any two points on a worldline is
zero.

Example 9.3 The Minkowski line element (9.5) in one space and one time dimension
[which often is termed (1+ 1) dimensions] is given by ds2 = −c2dt2 + dx2. Thus, if the
spacetime interval is lightlike, ds2 = 0 and

−c2dt2 +dx2 = 0 −→
(

dx
dt

)2

= c2 −→ v =±c.

This result can be generalized easily to the full space, leading to the conclusion that events
in Minkowski space separated by a null interval (ds2 = 0) are connected by signals moving
at light velocity, v = c. If the time axis (ct) and space axes have the same scales, this means
that the worldline of a freely-propagating photon (or any massless particle, necessarily
moving at light velocity) always makes ±45◦ angles in the lightcone diagram. By similar
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tFig. 9.4 Lightcones are local concepts. Each point of spacetime should be imagined to have its
own lightcone.
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ct
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tFig. 9.5 Worldlines for (a) massive (timelike) particles and (b) massless (lightlike) particles. For
massive particles the trajectory must always lie inside the local light cone at each point; for
massless particles it must always lie on the lightcone at each point.

arguments, events at timelike separations (inside the lightcone) are connected by signals
with v < c, and those with spacelike separations (outside the lightcone) could be connected
only by causality-violating signals with v > c.

The lightcone illustrated in Fig. 9.3 was placed at the origin for illustration but each
point in the spacetime has its own lightcone, as illustrated in Fig. 9.4. From Example 9.3,
the tangent to the worldline of any particle at a point defines the local velocity of the particle
at that point and constant velocity implies straight worldlines. Therefore, as illustrated in
Fig. 9.5(b), light travels in a straight line in flat spacetime and always on the lightcone
because it has constant local velocity, v = c, while the worldline for any massive particle
must lie inside the local lightcone because it must always have v ≤ c (in the jargon, a
worldline for a massive particle is always timelike). The worldline for the massive particle
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in Fig. 9.5(a) is curved, indicating an acceleration since the velocity is changing with time.
For non-accelerated massive particles the worldline would be straight, but always within
the local lightcone.

In the Galilean relativity of Newtonian mechanics an event picks out a hyperplane of
simultaneity in the spacetime diagram consisting of all events occurring at the same time
as the event. All observers agree on what constitutes this set of simultaneous events because
in Galilean relativity simultaneity is independent of the observer. In Einstein’s relativity,
simultaneity depends on the observer and hyperplanes of constant coordinate time have no
invariant meaning. However, all observers agree on the lightcones associated with events,
because the speed of light is an invariant for all observers. Thus, the lightcones define an
invariant spacetime structure permitting unambiguous causal classification of events.

9.6 The Causal Structure of Spacetime

The causal properties of Minkowski spacetime are encoded in its invariant lightcone struc-
ture. Each spacetime point lies at the apex of its lightcone (“Now” in Fig. 9.3), as illustrated
in Fig. 9.4. From Example 9.3, the lightcone defines a set of points that are connected to
the origin by signals moving at light velocity c, events inside the lightcone may be con-
nected to the origin by signals moving at v < c, and events outside the lightcone may be
connected to the origin only by signals having v > c. Thus, the event at the origin of a
local lightcone may influence any event within its forward lightcone (“Future” in Fig. 9.3)
through signals propagating at v < c. Likewise, the event at the origin may be influenced
by events within its backward lightcone (“Past” in Fig. 9.3) through signals with speeds
less than that of light. Conversely, events at spacelike separations may not be influenced,
or have an influence on, the event at the origin except by signals that require v > c. Finally,
events on the lightcone are connected by signals that travel exactly at c. Thus, events at
spacelike separations are causally disconnected and the lightcone is a surface separating
the knowable from the unknowable for an observer at the apex of the lightcone.

This lightcone structure of spacetime ensures that all velocities obey locally the con-
straint v ≤ c. Since velocities are defined and measured locally, covariant field theories in
either flat or curved spacetime are guaranteed to respect the speed limit v ≤ c, irrespective
of whether velocities appear to exceed c globally. For example, in the Hubble expansion of
the Universe galaxies beyond a certain distance (the horizon) appear to recede at velocities
in excess of c because of the expansion of space, and light coming to us from near the
horizon is stretched in wavelength and takes longer to propagate to us than it would in a
flat, non-expanding spacetime. However, all local measurements in that expanding, possi-
bly curved spacetime would determine the velocity of light to be c, in accordance with the
axioms of special relativity and the associated lightcone structure of spacetime.

Example 9.4 Time machines are of enduring interest in science fiction and in the public
imagination. The local lightcones of Minkowski spacetime embody the causal structure of
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Box 9.3 Time Machines and Causality Paradoxes

When time travel comes up it is usually about going backward in time. Traveling
forward in time requires no special talent and it is easy to arrange various scenarios
consistent with relativity where a person could travel into a future time even faster
than normal (at least as thought experiments; I leave procurement and engineering
details to you!) {har03} [13]. For example, in the twin paradox it is possible to arrange
for the traveler (whether twin or not) to arrive back at Earth centuries in the future
relative to clocks that remain on Earth—a kind of time travel. Similar options exist
using the gravitational time dilation in strong gravity. (You’ll need a black hole and an
unlimited fuel budget, or a planet-size batch of incredibly strong and thin material;
but again I leave procurement and engineering to you!) However, the real question
is, could you go back in time to explore your earlier history?

No! Not according to current understanding. To bend a forward-going timelike
worldline continuously into a backward-going one requires going outside the local
lightcone, requiring that v > c. If closed timelike loops were permitted, travel to ear-
lier times might be possible. However, they are forbidden if there are no negative en-
ergy densities and the Universe has the topology in evidence. Thus, the determined
time traveler has two options: find some negative energy, or find structures with an
exotic spacetime topology allowing closed timelike loops. However, negative energy
is probably forbidden in classical gravity (it is unclear whether quantum mechanics
could provide any loopholes), and there is no evidence at present for exotic space-
time topologies with closed timelike loops. Hence, I would advise against taking a
strong investment position in (if you will) time-travel futures! These statements are
based entirely on classical gravity considerations; it is unknown at present whether
they could be modified by some future understanding of quantum gravity.

special relativity, and it will be seen later that general relativity inherits the local lightcone
structure of Minkowski space. Therefore, as explored further in Box 9.3, lightcone dia-
grams provide a simple way to answer the question of whether special or general relativity
allow going back in time to prevent your own birth, which in turns prevents you from going
back in time to prevent your own birth, . . . .

From the preceding discussion we may conclude that the axioms of special relativity
are fundamentally at odds with the Newtonian concept of absolute simultaneity, since the
demand that light have the same speed for all observers necessarily means that the apparent
temporal order of two events depends upon the observer. However, the abolishment of
absolute simultaneity introduces no causal ambiguity because all observers agree on the
lightcone structure of spacetime and hence all observers will agree that event A can cause
event B only if A lies in the past lightcone of B, for example.
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9.7 Lorentz Transformations in Spacetime Diagrams

It is instructive to examine the action of Lorentz transformations in the spacetime (light-
cone) diagram. If consideration is restricted to boosts only in the x direction, the relevant
part of the spacetime diagram in some inertial frame corresponds to a plot with axes ct and
x, as illustrated in Fig. 9.6.

9.7.1 Lorentz Boosts and the Lightcone

What happens to the axes in Fig. 9.6 under a Lorentz boost? From the first two of Eqs.
(9.31),

ct ′ = cγ

(
t − vx

c2

)
x′ = γ(x− vt). (9.32)

The t ′ axis corresponds to x′ = 0, which implies from the second of Eqs. (9.32) that ct =
xβ−1, with β = v/c, is the equation of the t ′ axis in the (ct,x) coordinate system. Likewise,
the x′ axis corresponds to t ′ = 0, which implies from the first of Eqs. (9.32) that ct =
xβ . The x′ and ct ′ axes for the boosted system are also shown in Fig. 9.6(a) for a boost
corresponding to a positive value of β . The time and space axes are rotated by the same
angle, but in opposite directions by the boost (a consequence of the indefinite Minkowski
metric). The angle of rotation is related to the boost velocity through tanφ = v/c.

Many characteristic features of special relativity are apparent from Fig. 9.6. For exam-
ple, relativity of simultaneity follows directly, as illustrated in Fig. 9.6(b). Points A and B
lie on the same t ′ line, so they are simultaneous in the boosted frame. But from the dashed
projections on the ct axis, in the unboosted frame event A occurs before event B. Likewise,
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points C and D lie at the same value of x′ in the boosted frame and so are spatially congru-
ent, but in the unboosted frame xC ̸= xD. Relativistic time dilation and space contraction
effects follow rather directly from these observations, as illustrated in the example below.

Example 9.5 Consider the following schematic representation of the spacetime diagram
illustrated in Fig. 9.6, where a rod of length L0, as measured in its own rest frame (t,x), is
oriented along the x axis.

x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

The frame (t ′,x′) is boosted by a velocity v along the +x axis relative to the (t,x) frame.
Therefore, in the primed frame the rod will have a velocity v in the negative x′ direc-
tion. Determining the length L observed in the primed frame requires that the positions
of the ends of the rod be measured simultaneously in that frame. The axis labeled x′ cor-
responds to constant t ′ [see Fig. 9.6(b)], so the distance marked as L is the length in the
primed frame. This distance seems longer than L0, but this is deceiving because a slice
of Minkowski spacetime is being represented on a piece of euclidean paper. Much as a
Mercator projection of the globe onto a euclidean sheet of paper gives misleading distance
information (Greenland isn’t really larger than Brazil), the metric must be trusted to deter-
mine the correct distance in a space. From the Minkowski indefinite metric and the triangle
in the figure above, L2 = L2

0 − (c∆t)2. But from Eq. (9.32) it was found that the equation
for the x′ axis is c∆t = (v/c)L0, from which it follows that

L = (L2
0 − (c∆t)2)1/2 =

(
L2

0 −
(v

c
L0

)2
)1/2

= L0(1− v2/c2)1/2,

which is the familiar length-contraction formula of special relativity: L is shorter than L0,
even though it appears to be longer in the figure above.

9.7.2 Spacelike and Timelike Intervals

As noted previously, the spacetime interval between any two events may be classified in a
relativistically invariant way as timelike, lightlike, or spacelike by constructing the light-
cone at one of the points, as illustrated in Fig. 9.7(a). This geometry and that of Fig. 9.6
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transformation that brings the timelike separated points A and C of (a) into spatial
congruence (they lie along a line of constant x′ in the primed coordinate system). (c) A
Lorentz transformation that brings the spacelike separated points A and B of (a) into
coincidence in time (they lie along a line of constant t ′ in the primed coordinate system).

then suggest another important distinction between events at spacelike separations [the line
AB in Fig. 9.7(a)] and timelike separations [the line AC in Fig. 9.7(a)]:

(i) If two events have a timelike separation, a Lorentz transformation exists that can bring
them into spatial congruence. Figure 9.7(b) illustrates geometrically a coordinate sys-
tem (ct ′,x′), related to the original system by an x-axis Lorentz boost of v/c = tanφ1,
in which A and C have the same coordinate x′.

(ii) If two events have a spacelike separation, a Lorentz transformation exists that can
synchronize the events. Figure 9.7(c) illustrates an x-axis Lorentz boost by v/c= tanφ2

to a system in which A and B have the same time t ′.

Maximum values of φ1 and φ2 are limited by the v = c line. The Lorentz transformation to
bring A into spatial congruence with C exists only if C lies to the left of v = c (C separated
by a timelike interval from A). Likewise, the Lorentz transformation to synchronize A with
B exists only if B lies to the right of v = c (B separated by a spacelike interval from A).

9.8 Lorentz Invariance of Maxwell’s Equations

We conclude this chapter by examining the Lorentz invariance of the Maxwell equations
that describe classical electromagnetism. There are several motivations. First, it provides
a nice example of how useful Lorentz invariance and Lorentz tensors can be. Second, the
properties of the Maxwell equations influenced Einstein strongly in his development of
the special theory of relativity. Finally, there are many useful parallels between general
relativity and the Maxwell theory, particularly for weak gravity where the Einstein field
equations may be linearized.



217 Lorentz Invariance of Maxwell’s Equations

9.8.1 Maxwell Equations in Non-Covariant Form

In free space, using Heaviside–Lorentz, c= 1 units (see Appendix B.3), the Maxwell equa-
tions may be written as

∇∇∇ ·EEE = ρ (9.33)

∂BBB
∂ t

+∇∇∇×EEE = 0 (9.34)

∇∇∇ ·BBB = 0 (9.35)

∇∇∇×BBB− ∂EEE
∂ t

= jjj, (9.36)

where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, and jjj is the
current vector, with the density and current required to satisfy the equation of continuity

∂ρ

∂ t
+∇∇∇ · jjj = 0. (9.37)

The Maxwell equations are consistent with the special theory of relativity. However, in the
form (9.33)–(9.37) this covariance is not manifest, since these equations are formulated in
terms of 3-vectors and separate derivatives with respect to space and time, not in terms
of Minkowski tensors. It is useful in a number of contexts to reformulate the Maxwell
equations in a manner that is manifestly covariant with respect to Lorentz transformations.
The usual route to accomplishing this begins by replacing the electric and magnetic fields
by new variables.

9.8.2 Scalar and Vector Potentials

The electric and magnetic fields appearing in the Maxwell equations may be eliminated in
favor of a vector potential AAA and a scalar potential φ through the definitions

BBB ≡ ∇∇∇×AAA EEE ≡−∇∇∇φ − ∂AAA
∂ t

. (9.38)

The vector identities

∇∇∇ · (∇∇∇×BBB) = 0 ∇∇∇×∇∇∇φ = 0, (9.39)

may then be used to show that the second and third Maxwell equations are satisfied identi-
cally, and the identity

∇∇∇×(∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇
2AAA, (9.40)

may be used to write the remaining two Maxwell equations as the coupled second-order
equations

∇∇∇
2
φ +

∂

∂ t
∇∇∇ ·AAA =−ρ (9.41)

∇∇∇
2AAA− ∂ 2AAA

∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

∂φ

∂ t

)
=− jjj. (9.42)
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These equations may then be decoupled by exploiting a fundamental symmetry of electro-
magnetism termed gauge invariance.

9.8.3 Gauge Transformations

Because of the identity ∇∇∇×∇∇∇φ = 0, the simultaneous transformations

AAA → AAA+∇∇∇χ φ → φ − ∂ χ

∂ t
(9.43)

for an arbitrary scalar function χ do not change the EEE and BBB fields; thus, they leave
the Maxwell equations invariant. The transformations (9.43) are termed (classical) gauge
transformations. This freedom of gauge transformation may be used to decouple Eqs.
(9.41)–(9.42). For example, if a set of potentials (AAA,φ) that satisfy

∇∇∇ ·AAA+
∂φ

∂ t
= 0, (9.44)

is chosen, the equations decouple to yield

∇∇∇
2
φ − ∂ 2φ

∂ t2 =−ρ ∇∇∇
2AAA− ∂ 2AAA

∂ t2 =− jjj, (9.45)

which may be solved independently for AAA and φ .
A constraint of the sort (9.44) is termed a gauge condition and the imposition of such

a constraint is termed fixing the gauge. This particular choice of gauge that leads to the
decoupled equations (9.45) is termed the Lorentz gauge. Another common gauge is the
Coulomb gauge, with a gauge-fixing condition

∇∇∇ ·AAA = 0, (9.46)

which leads to the equations

∇∇∇
2
φ =−ρ ∇∇∇

2AAA− ∂ 2AAA
∂ 2t

= ∇∇∇
∂φ

∂ t
− jjj. (9.47)

Let us utilize the shorthand notation for derivatives introduced in Eq. (8.89):

∂ µ ≡ ∂

∂xµ

= (∂ 0,∂ 1,∂ 2,∂ 3) =

(
− ∂

∂x0 , ∇∇∇

)
,

∂µ ≡ ∂

∂xµ
= (∂0,∂1,∂2,∂3) =

(
∂

∂x0 , ∇∇∇

)
,

(9.48)

where, for example, ∂1 = ∂/∂x1 and

∇∇∇ ≡ (∂ 1,∂ 2,∂ 3) (9.49)

is the 3-divergence. A compact and covariant formalism then results from introducing the
4-vector potential Aµ , the 4-current jµ , and the d’Alembertian operator □ through

Aµ ≡ (φ ,AAA) = (A0,AAA) jµ ≡ (ρ, jjj) □≡ ∂µ ∂
µ . (9.50)

Then a gauge transformation takes the form

Aµ → Aµ −∂
µ

χ ≡ A′µ (9.51)
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and the preceding examples of gauge-fixing constraints become4

∂µ Aµ = 0 (Lorentz gauge) ∇∇∇ ·AAA = 0 (Coulomb gauge). (9.52)

The operator □ is Lorentz invariant since

□′ = ∂
′
µ ∂

′µ = Λ
ν

µ Λ
µ

λ
∂ν ∂

λ = ∂µ ∂
µ =□.

Thus, the Lorentz-gauge wave equation may be expressed in the manifestly covariant form

□Aµ = jµ (9.53)

and the continuity equation (9.37) becomes

∂µ jµ = 0. (9.54)

The covariance of the Maxwell wave equation (9.53) in the Lorentz gauge, coupled with the
gauge invariance of electromagnetism, ensures that the Maxwell equations are covariant in
all gauges. However, as was seen in the example of the Coulomb gauge, the covariance
may not be manifest for a particular choice of gauge.

9.8.4 Maxwell Equations in Manifestly Covariant Form

The Maxwell equations may be cast in a form that is manifestly covariant by appealing to
Eqs. (9.38) to construct the components of the electric and magnetic fields in terms of the
potentials. Proceeding in this manner, we find that the six independent components of the
3-vectors EEE and BBB are elements of an antisymmetric rank-2 electromagnetic field tensor

Fµν =−Fνµ = ∂
µ Aν −∂

ν Aµ , (9.55)

which may be expressed in matrix form as

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (9.56)

That is, the electric field EEE and the magnetic field BBB are vectors in three-dimensional eu-
clidean space but in Minkowski space their six components together form an antisymmetric
rank-2 tensor. Now let us employ the Levi–Civita symbol εαβγδ , which has the value +1
for αβγδ = 0123 and cyclic permutations, −1 for odd permutations, and zero if any two
indices are equal, and which further satisfies εαβγδ =−εαβγδ . If the dual field tensor F µν

is then defined by

F µν = 1
2 ε

µνγδ Fγδ =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 , (9.57)

4 This notation shows explicitly that the Lorentz condition is a covariant constraint because it is formulated in
terms of 4-vectors; however, the Coulomb gauge condition is not covariant because it is formulated in terms
of only three of the components of a 4-vector.
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the Maxwell equations (9.33) and (9.36) may be written

∂µ Fµν = jν , (9.58)

and the Maxwell equations (9.34) and (9.35) may be written as

∂µF µν = 0. (9.59)

The Maxwell equations in this form are manifestly covariant because they are formulated
exclusively in terms of Lorentz tensors.
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Problems

9.1 The primed axes (x′, t ′) plotted in the coordinate system of the unprimed axes in Fig.
9.6 do not appear to be orthogonal, but they must be since the unprimed axes are
orthogonal (their scalar product vanishes) and the scalar product is preserved under
Lorentz transformations. Show generally that two vectors in a spacetime diagram are
orthogonal if each makes the same angle with respect to the lightcone. Use this result
to show that a lightlike vector is necessarily orthogonal to itself.

9.2 If a Lorentz transformation is denoted by Λ
µ

ν , prove that the Lorentz transformation
given by Λ

ν

µ = ηµα ηνβ Λα

β
is its inverse.

9.3 (a) Prove that the Maxwell field tensor Fµν is invariant under a gauge transformation
of the 4-vector potential Aµ . (b) By appealing to the definitions (9.38), show that the
Maxwell field tensor Fµν has components given by Eqs. (9.55) and (9.56).

9.4 Show that the Maxwell equations written in the covariant form (9.58) and (9.59) are
equivalent to the non-covariant form of the Maxwell equations given by Eqs. (9.33)–
(9.36).
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A Appendix A Mathematics Review

This Appendix reviews mathematics required in this book. Readers are assumed to have
some prior acquaintance with this and mostly we list equations and concepts without proof.
A book such as Griffiths [8] may be consulted for proofs and more detail.

A.1 Vectors and other Tensors

Every physics student learns at her mother’s knee that vectors have magnitude and direc-
tion, so they are specified by more than one number, and that this is indicated graphically
by an arrow, with length indicating magnitude and orientation indicating direction. This
view of vectors as directed line segments works in introductory physics but it can lead to
erroneous views. For example, the directed line segment invites one to think of vectors as
connecting two points in a manifold. This is wrong: a vector is defined at a single point; it
does not connect two points. We can often get away with this sloppy thinking for flat man-
ifolds, but how is one to interpret an extended straight line segment in a curved manifold?
A more rigorous definition is required for advanced applications, particularly if the space
is curved and/or described by non-cartesian coordinates.

At a somewhat more rigorous level, vectors are a special case of tensors, which we may
think of (with the naive pragmatism of physicists unconstrained by rigorous mathematical
training) as objects that obey particular transformation laws under a change of coordinate
system, and that require n indices when expanded in a basis, with n termed the rank of the
tensor. General transformation laws for 4D spacetime tensors with n < 3 are

φ
′(x′) = φ(x) (scalar), (A.1a)

V ′µ(x′) =
∂x′µ

∂xν
V ν(x) (vector), (A.1b)

V ′
µ(x

′) =
∂xν

∂x′µ
Vν(x) (dual vector), (A.1c)

T ′
µν(x′) =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ (x) (covariant rank-2 tensor), (A.1d)

T ′ν
µ(x

′) =
∂xα

∂x′µ
∂x′ν

∂xβ
T β

α
(x) (mixed rank-2 tensor), (A.1e)

T ′µν
(x′) =

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ (x) (contravariant rank-2 tensor). (A.1f)

In these equations, unprimed coordinates refer to the original coordinate system, primed
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coordinates refer to the transformed coordinate system, and all partial derivatives in the
general case depend on the spacetime coordinates and are understood to be evaluated at a
specific spacetime point labeled by x in one coordinate system and by x′ in the other coor-
dinate system.1 Note that we are using the usual conventions of special relativity, where the
manifold is considered to be 4D spacetime [Minkowski space with coordinates ct,x,y,z)]
and the use of greek indices signifies that the index can range over the time and all three
spatial components.

Furthermore, in Eqs. (A.1) (and in various other places in these lectures) we employ
the Einstein summation convention, where a repeated index, once in an upper position and
once in a lower position signifies an implicit summation on that index. For example, from
Eqs. (A.1) for vectors and contravariant rank-2 tensors, respectively,

V ′µ(x′) =
∂x′µ

∂xν
V ν(x)≡ ∑

ν

∂x′µ

∂xν
V ν(x),

T ′µν
(x′) =

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ (x)≡ ∑

α

∑
β

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ (x).

Note that a repeated index on the right side does not appear on the left side of the equation
because it has been summed over, and indices that aren’t repeated on the right side of the
equation appear in the same positions (upper or lower) on the left side of the equation.

Before proceeding, let us concede that we are being rather sloppy mathematically by
referring to objects carrying indices and obeying particular transformation laws as ten-
sors. The indexed quantities appearing in Eqs. (A.1) are actually tensor components that
have been expressed in a particular basis. Tensors are geometrical objects, meaning that
their properties are independent of expression in a particular basis, as explained further in
Box A.1. For example,

1. A rank-0 tensor or scalar transforms as φ ′(x′) = φ(x) (it is unchanged by a coordinate
transformation) and requires a single real number to specify it. “Ordinary numbers”,
such the age of your dog in years, are scalars.

2. There are two kinds of rank-1 tensors. Loosely in physics applications they are often
both termed vectors, and the distinction is not of much practical importance for carte-
sian coordinates in non-curved spaces. However, in the general case of non-cartesian
coordinate systems in possibly curved spaces, mathematical consistency requires that
one must distinguish

a. vectors (also called contravariant vectors), which transform as Eq. (A.1b),

V ′µ(x′) =
∂x′µ

∂xν
V ν(x)≡ ∑

ν

∂x′µ

∂xν
V ν(x),

and require a single index in an upper position, V α , when expanding in a basis, from
1 The partial derivatives in Eqs. (A.1) are generally functions of the spacetime coordinate but for the special

case of flat Minkowski space and special relativity they are constants taking the same value at each spacetime
point. A transformation where points in spacetime are merely relabeled in a new coordinate system is termed a
passive transformation. A simple example is a plot displayed in cartesian coordinates (x,y,z) that is replotted
in spherical polar coordinates (r,θ ,φ). The physical content is unchanged but each point formerly labeled by
values of the old coordinates (x,y,z) is now labeled by values of the new coordinates (r,θ ,φ).
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b. dual vectors (also called covariant vectors or 1-forms), which transform as Eq.
(A.1c),

V ′
µ(x

′) =
∂xν

∂x′µ
Vν(x),

and require a single index in a lower position, Vα , when expanded in a basis.

3. Rank-2 tensors require two indices, when expanding in a basis. Generalizing the distinc-
tion between vectors and dual vectors for rank-1 tensors when expanding in a basis, the
two indices required for rank-2 tensor components can be in upper or lower positions,
so there are three kinds of rank-2 tensors.

a. Contravariant rank-2 tensors, which transform as Eq. (A.1f),

T ′µν
=

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ ,

and require two indices in an upper position, T αβ , when expanding in a basis.
b. Covariant rank-2 tensors, which transform as Eq. (A.1d),

T ′
µν =

∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ ,

and require a two indices in a lower position, Tαβ , when expanding in a basis.
c. Mixed rank-2 tensors, which transform as Eq. (A.1e),

T ′ν
µ =

∂xα

∂x′µ
∂x′ν

∂xβ
T β

α
,

and require a one index in a lower position and one in an upper position, T β

α
, when

expanding in a basis.

In a similar way, tensors of higher rank can be defined. For most physics applications ten-
sors of rank 0, 1, and 2 are sufficient, but some applications require tensors of rank greater
than two. For example, the curvature of 4D spacetime in general relativity is described by
a rank-4 tensor called the Riemann curvature tensor, which may be viewed as the general-
ization of gaussian curvature from 2D space to 4D spacetime.

A.2 Vector Algebra

The scalar product of two vectors is

AAA ·BBB = ABcosθ (scalar product), (A.2)

where θ is the angle between the vectors AAA and BBB. The vector product or cross product of
two vectors is

AAA×BBB = ABsinθ n̂nn =

∣∣∣∣∣∣
x̂xx ŷyy ẑzz

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ (vector or cross product), (A.3)
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Box A.1 Geometrical Definition of Tensors

Tensors in Eqs. (A.1) were introduced in terms of the the transformation properties
of their components when they are expressed a basis. For real physics or engineer-
ing problems it is often simplest to work with the components of tensors expressed
in a basis rather than with the tensors themselves, so this is of practical utility. How-
ever, viewing tensors in terms of basis components obscures considerable mathe-
matical beauty and elegance associated with tensor properties being independent
of expression in any particular basis. Thus mathematicians prefer to define tensors
geometrically (independent of expression in a particular basis), in terms of linear
maps to the real numbers. For example,

1. a dual vector is mathematically an operator that accepts a vector as input and
returns a real number, or

2. a dual vector is an object with components (when expanded in a basis) that
transforms as Eq. (A.1c),

V ′
µ
(x′) =

∂xν

∂x′µ
Vν(x),

at a point labeled by x in one coordinate system and by x′ in a second coordinate
system.

The two approaches embody different tradeoffs between utility and elegance, but
lead to the same physical results if manipulated correctly. A more extensive dis-
cussion of these ideas and a general introduction to spacetime tensors in possibly
curved spacetime as the basis for describing special and general relativity may be
found in Ref. [11].

where | | indicates the determinant, n̂nn is a unit vector perpendicular to the plane containing
AAA and BBB (with ambiguity of up and down resolved by the right-hand rule), θ is the angle
between AAA and BBB, and the cartesian unit vectors are denoted by (x̂xx, ŷyy, ẑzz). Note: The cross
product doesn’t commute: AAA×BBB ̸= BBB×AAA, but the scalar product does: AAA ·BBB = BBB ·AAA.

The scalar triple product is

AAA · (BBB×CCC) = BBB · (CCC×AAA) =CCC · (AAA×BBB) =

∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣ . (A.4)

The vector triple product is

AAA× (BBB×CCC) = BBB(AAA ·CCC)−CCC (AAA ·BBB). (A.5)
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A.3 Useful Vector Identities

Some identities that are useful in manipulating vector equations are collected here, with AAA
assumed to be an arbitrary vector and f assumed to be an arbitrary scalar.

∇∇∇ · (∇∇∇×AAA) = 0, (A.6)

∇∇∇× (∇∇∇ f ) = 0, (A.7)

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇
2AAA. (A.8)

Proofs may be found in standard books such as Griffiths [8].

A.4 Vector Calculus

Let’s now consider the extension of the principles of calculus to vector equations, first for
derivatives and then for integrals.

A.4.1 First Derivatives

The gradient ∇∇∇ of a scalar function F ,

∇∇∇F =
∂F
∂x

x̂xx+
∂F
∂y

ŷyy+
∂F
∂ z

ẑzz (gradient), (A.9)

is a vector quantity. The gradient can be viewed as a vector operator

∇∇∇ = x̂xx
∂

∂x
+ ŷyy

∂

∂y
+ ẑzz

∂

∂ z
(gradient operator) (A.10)

that acts upon a scalar argument following it. The notation ∇∇∇x means explicitly that the
gradient acts on the coordinate xxx while ∇∇∇x′ means that the gradient acts on the coordinates
xxx′. (In the text we will often use the abbreviations ∇∇∇ ≡ ∇∇∇x and ∇∇∇

′ ≡ ∇∇∇x′ . Useful identities
involving the gradient and Laplacian:

∇∇∇x

(
1

|xxx− xxx′|

)
=− xxx− xxx′

|xxx− xxx′|3
, (A.11a)

∇∇∇x′

(
1

|xxx− xxx′|

)
=

xxx− xxx′

|xxx− xxx′|3
, (A.11b)

∇∇∇x

(
xxx− xxx′

|xxx− xxx′|3

)
= 4πδ (xxx− xxx′), (A.11c)

∇∇∇x′

(
xxx− xxx′

|xxx− xxx′|3

)
=−4πδ (xxx− xxx′), (A.11d)

∇∇∇
2
x

(
1

|xxx− xxx′|

)
= ∇∇∇

2
x′

(
1

|xxx− xxx′|

)
=−4πδ (xxx− xxx′), (A.11e)
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It will be useful to define the completely antisymmetric rank-3 tensor (Levi–Civita sym-
bol) by

εi jk =


1 ( if i, j,k is cyclic permutation of 1,2,3),

−1 (if i, j,k is cyclic permutation of 1,2,3),

0 (otherwise),

(A.12)

The εi jk obey two important identities

εi jkεlmn = δilδ jmδkn +δ jlδkmδin +δklδimδ jn

−δ jlδimδkn −δklδ jmδin −δilδkmδ jn, (A.13)

and

∑
i

εi jkεimn = δ jmδkn −δkmδ jn. (A.14)

The divergence of a vector VVV is

∇∇∇ ·V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂ z
(divergence). (A.15)

Note: The divergence of a vector is a scalar.
The curl (∇∇∇×) of a vector VVV is

∇∇∇×VVV =

∣∣∣∣∣∣∣
x̂xx ŷyy ẑzz
∂

∂x
∂

∂y
∂

∂ z
Vx Vy Vz

∣∣∣∣∣∣∣
=

(
∂Vz

∂y
−

∂Vy

∂ z

)
x̂xx+
(

∂Vx

∂ z
− ∂Vz

∂x

)
ŷyy+
(

∂Vy

∂x
− ∂Vx

∂y

)
ẑzz (curl), (A.16)

which can also be written as

(AAA×BBB)i = ∑
jk

εi jkA jBk (A.17)

Note: The curl of a vector is a vector.
Derivatives of products are common in realistic problems and product rules for vector

derivatives can be proved that are analogous to product rules for ordinary derivatives. For
example,

∇∇∇( f g) = f ∇∇∇g+g∇∇∇ f , (A.18a)

∇∇∇(AAA ·BBB) = AAA× (∇∇∇×BBB)+BBB× (∇∇∇×AAA)+(AAA ·∇∇∇)BBB+(BBB ·∇∇∇)AAA, (A.18b)

∇∇∇ · ( f AAA) = f (∇∇∇ ·AAA)+AAA · (∇∇∇ f ), (A.18c)

∇∇∇ · (AAA×BBB) = BBB · (∇∇∇×AAA)−AAA · (∇∇∇×BBB), (A.18d)

∇∇∇× ( f AAA) = f (∇∇∇×AAA)−AAA× (∇∇∇ f ), (A.18e)

∇∇∇× (AAA×BBB) = (BBB ·∇∇∇)AAA− (AAA ·∇∇∇)BBB+AAA(∇∇∇ ·BBB)−BBB(∇∇∇ ·AAA), (A.18f)

where AAA and BBB are arbitrary vectors and f and g are arbitrary scalar functions,
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A.4.2 Second Derivatives

As shown above in Section A.4.1, the first derivatives that can be constructed using the
operator ∇∇∇ defined in Eq. (A.10) are

1. the gradient of a scalar, ∇∇∇ f ,
2. the divergence of a vector, ∇∇∇ ·AAA, and
3. the curl of a vector, ∇∇∇×AAA.

Second derivatives can be constructed by applying two first-derivative operators in succes-
sion. Lets consider the possibilities for second derivatives in vector equations.

1. The divergence of a gradient, ∇∇∇ · (∇∇∇ f ), gives in cartesian coordinates

∇∇∇ · (∇∇∇ f ) =
(

x̂xx
∂

∂x
+ ŷyy

∂

∂y
+ ẑzz

∂

∂ z

)
·
(

x̂xx
∂ f
∂x

+ ŷyy
∂ f
∂y

+ ẑzz
∂ f
∂ z

)
=

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .

This second derivative operator appears often and it is useful to define it as ∇2; this is
called the Laplacian operator, and we rewrite the preceding result as

∇
2 f =

∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 . (A.19)

Notice that the Laplacian applied to a scalar gives a scalar.

2. The curl of a gradient is always equal to zero, ∇∇∇× (∇∇∇ f ) = 0, by the identity (A.7).

3. The gradient of a divergence ∇∇∇(∇∇∇ ·AAA) is a valid mathematical operation but it is rela-
tively uncommon in physical problems and has no special name.

4. The divergence of a curl always vanishes, ∇∇∇ · (∇∇∇×AAA) = 0, by the identity (A.6).

5. The curl of a curl evaluates to

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇
2AAA

[see identity (A.8)], which gives nothing new since the first term on the right is just a
number and the second is the Laplacian of a vector, which we considered in Eq. (A.19).

Thus we need consider only two kinds of second derivatives: (1) the Laplacian in Eq.
(A.19), which will play a fundamental role in electromagnetism, and the gradient of the di-
vergence, which isn’t very common. By similar procedures we could evaluate third deriva-
tives in vector equations, but we will omit them since they seldom occur for the types of
problems that we shall encounter.

A.4.3 Integrals

A line integral (or path integral) of a vector function VVV between points AAA and BBB is given by∫ BBB

AAA
VVV ·dlll dlll ≡ x̂xxdx+ ŷyydy+ ẑzzdz (line integral). (A.20)
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The integral is carried out over a prescribed path from AAA to BBB, with dlll the infinitesimal
displacement vector along the specified path (with magnitude equal to the length of the
infinitesimal displacement and direction tangent to the path at that point). If the line integral
is carried out over a closed loop (BBB = AAA), the line integral is called a cyclic integral and
denoted ∮

VVV ·dlll (closed line integral). (A.21)

A surface integral of a vector function VVV over a surface S is denoted by∫
S
VVV ·dsss (surface integral), (A.22)

where dsss ≡ nnnds is a vector associated with an infinitesimal patch of surface area having
magnitude equal to the area of the patch and direction given by the normal nnn to the surface
at the patch (implying that the sign is ambiguous since, there are two normals—“up” and
“down”—at each point). If the surface is closed, the surface integral is denoted∮

S
VVV ·dsss (integral over closed surface), (A.23)

A volume integral of a scalar function over a volume V is indicated by∫
V

Fdτ (scalar volume integral), (A.24)

where F is a scalar function and dτ is an infinitesimal volume element. (For example, in
cartesian coordinates dτ = dxdydz.) A volume integral for a vector function FFF is given by∫

FFF dτ =
∫

V
(Fxx̂xx+Fyŷyy+Fzẑzz)

= x̂xx
∫

V
Fx dτ + ŷyy

∫
Fy dτ + ẑzz

∫
Fz dτ (vector volume integral), (A.25)

where the unit vectors (x̂xx, ŷyy, ẑzz) have been pulled out of the integrals in the last step because
they are constants.

A.5 Fundamental Theorems

Let us now list some fundamental theorems of calculus and of vector calculus that will be
of use. The fundamental theorem of (ordinary) calculus is∫ b

a

(
∂ f
∂x

)
dx =

∫ b

a
F(x)dx = f (b)− f (a) (fundamental theorem of calculus), (A.26)

where F(x) ≡ d f/dx. Thus the fundamental theorem of calculus tells us how to integrate
F(x): find a function f (x) that has a derivative equal to F(x), which implies that integration
and differentiation are inverse operations. In vector calculus there are three fundamental
types of derivatives:

1. the gradient of Eq. (A.9),
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2. the divergence of Eq. (A.15), and
3. the curl of Eq. (A.16).

For each type of vector derivative one can formulate a “fundamental theorem” having the
same general structure as the fundamental theorem of calculus given in Eq. (A.26):

The integral of a derivative of a function over some region is determined by the
values of the function on the boundaries of the region.

For gradients, this takes the form∫ BBB

AAA
(∇∇∇F) ·dlll = F(BBB)−F(AAA) (fundamental theorem for gradients), (A.27)

for a scalar function F(x,y,z) evaluated on a path from AAA to BBB. Notice that Eq. (A.27) has
the same structure as Eq. (A.26): the integral (a line integral here) of a derivative (a gradient
here) is determined by the values of the function at the boundaries (AAA and BBB here).

For divergences, the fundamental theorem takes the form [see Eqs. (A.23) and (A.24)],∫
V
(∇∇∇ ·AAA)dτ =

∮
S

AAA ·dsss (divergence theorem), (A.28)

where AAA is a vector field and dsss= nnnda with nnn the normal to the surface. This may be termed
the fundamental theorem for divergences2 but, as we have indicated, it is commonly termed
the divergence theorem in the literature and we will typically adopt that terminology.

The fundamental theorem for curls is given by∫
S
(∇∇∇×AAA) ·dsss =

∮
P

AAA ·dlll (Stokes’ theorem), (A.29)

where the left side is a surface integral over S and the right side is a line integral on the
perimeter of the surface. This is the fundamental theorem for curls3 but, as we have indi-
cated, this is commonly called Stokes’ theorem in the literature. We will typically use that
terminology. Further discussion of Stokes’ theorem is given in Box 2.3.

A.6 Laws, Theorems, and Definitions

Some important laws, theorems, and definitions of classical electromagnetism are listed
here. In some cases both the integral and differential forms of the laws are given. Unless
otherwise noted, SI units are assumed in all equations.

2 Note that it has the same structure as Eq. (A.26): the integral of a derivative (here the divergence) over a region
(here the volume V ) is determined by the value of the function on the boundaries (the boundary of the volume
V is the surface S. In this case the boundary term is a surface integral.

3 Analogous to Eq. (A.26), the integral of a derivative (here the curl) over a region (here a patch of surface S) is
determined by the value of the function on the boundary (the perimeter P of the surface patch). Notice that the
boundary term in this case is itself an integral.
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Coulomb’s law (forces): The force between two charges is

FFF =
q1q2

4πε0

xxx1 − xxx2

|xxx1 − xxx2|3
(A.30)

where the charges q1 and q2 are located at the points xxx1 and xxx2, respectively.

Coulomb’s law (electric fields): For a continuous charge distribution,

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3
d3x′, (A.31)

where ρ(xxx) is the charge density.

Gauss’s law: For a continuous charge distribution ρ(xxx),

∇∇∇ ·EEE =
ρ

ε0

∮
EEE ·nnnda =

1
ε0

∫
V

ρ(xxx)d3x, (A.32)

where the integration is over the volume V contained within the surface S (see Fig. 2.3).

Divergence theorem: For a vector field defined within a volume V that is enclosed by a
surface S, ∮

S
AAA ·nnnda =

∫
V

∇∇∇ ·AAAd3x, (A.33)

where the left side is the surface integral of the outwardly directed normal component of
the vector AAA and the right side is the volume integral of the divergence of AAA [equivalent to
fundamental theorem for divergences given in Eq. (A.28)].

Stokes’ theorem: For a 3D vector field AAA (see Box 2.3),∮
C

AAA ·drrr =
∫

S
(∇∇∇×AAA) ·nnnds ≡

∫
S
(∇∇∇×AAA) ·dsss, (A.34)

where S is the 2D surface enclosed by the 1D boundary C and the outward normal to the
surface is nnn [equivalent to fundamental theorem for curls given in Eq. (A.29)].

Scalar potential: For an electric field EEE and scalar potential Φ,

EEE =−∇∇∇Φ Φ(xxx) =−
∫ xxx

O
EEE(xxx) ·dlll, (A.35)

where O is an arbitrary reference point.

Vector potential: The vector potential AAA is defined through

BBB = ∇∇∇×AAA, (A.36)

where BBB is the magnetic field. Eqs. (A.35) and (A.36) then allow the electric and magnetic
fields to be eliminated in favor of vector and scalar potentials.

Poisson’s equation: For a scalar field Φ,

∇
2
Φ =− ρ

ε0
, (A.37)

where the charge density is ρ .
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Laplace’s equation: For a scalar field Φ,

∇
2
Φ = 0. (A.38)

This is Poisson’s equation with zero charge density.

Lorentz force: For electric field EEE and magnetic field BBB,

FFF = q(EEE + vvv×BBB), (A.39)

where q is the charge and vvv is the velocity of the particle.

A.7 Curvilinear Coordinate Systems

It is often advantageous to formulate electromagnetic problems in non-cartesian coordi-
nates. We include some relevant equations in this Appendix for spherical coordinates and
cylindrical coordinates.

A.7.1 Spherical Coordinates

The standard spherical coordinates (r,θ ,φ) are related to cartesian coordinates (x,y,z) by

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ . (A.40)

Spherical unit vectors are related to cartesian unit vectors by

r̂rr = sinθ cosφ x̂xx+ sinθ sinφ ŷyy+ cosθ ẑzz,

θ̂θθ = cosθ cosφ x̂xx+ cosθ sinφ ŷyy− sinθ ẑzz, (A.41)

φ̂φφ =−sinφ x̂xx+ cosφ ŷyy,

or in matrix form, the transformation from cartesian to spherical coordinates is r̂rr
θ̂θθ

φ̂φφ

=

sinθ cosφ sinθ sinφ cosθ

cosθ cosφ cosθ sinφ −sinθ

−sinφ cosφ 0

x̂xx
ŷyy
ẑzz

 . (A.42)

The transformation matrix is orthogonal so the inverse matrix is the transpose (interchange
rows and columns) and the matrix transformation from spherical to cartesian coordinates
is given by x̂xx

ŷyy
ẑzz

=

sinθ cosφ cosθ cosφ −sinφ

sinθ sinφ cosθ sinφ cosφ

cosθ −sinθ 0

 r̂rr
θ̂θθ

φ̂φφ

 . (A.43)

This means that an arbitrarary vector VVV can be decomposed as

VVV = (r̂rr ·VVV )r̂rr+(θ̂θθ ·VVV )θ̂θθ +(φ̂φφ ·VVV )φ̂φφ . (A.44)
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The spherical line element is

dlll = dr r̂rr+ r dθθ̂θθ + r sinθdφ φ̂φφ , (A.45)

and the spherical volume element is

dτ = r2 sinθdr dθ dφ . (A.46)

The vector derivatives are given by

Gradient: ∇∇∇F =
∂F
∂ r

r̂rr+
1
r

∂F
∂θ

θ̂θθ +
1

r sinθ

∂F
∂θ

φ̂φφ , (A.47)

Divergence: ∇∇∇ ·VVV =
1
r2

∂

∂ r
(r2Vr)+

1
r sinθ

∂

∂θ
(sinθVθ )+

1
r sinθ

∂Vφ

∂φ
, (A.48)

Curl: ∇∇∇×VVV =
1

r sinθ

[
∂

∂θ
(sinθVφ )−

∂Vθ

∂φ

]
r̂rr

+
1
r

[
1

sinθ

∂Vr

∂φ
− ∂

∂ r
(rVφ )

]
θ̂θθ +

1
r

[
∂

∂ r
(rVθ −

∂Vr

∂θ

]
φ̂φφ , (A.49)

Laplacian: ∇
2F =

1
r2

∂

∂ r

(
r2 ∂F

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂F
∂θ

)
+

1
r2 sin2

θ

∂ 2F
∂φ 2 , (A.50)

when expressed in spherical coordinates.

A.7.2 Cylindrical Coordinates

Standard cylindrical coordinates (ρ,φ ,z) are related to cartesian coordinates (x,y,z) by

x = ρ cosφ y = ρ sinφ z = z, (A.51)

the line element is

dlll = dρρ̂ρρ +ρdφ φ̂φφ +dz ẑzz, (A.52)

and the volume element is

dτ = ρdρ dφ dz. (A.53)
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The vector derivatives are given by

Gradient: ∇∇∇F =
∂F
∂ρ

ρ̂ρρ +
1
ρ

∂F
∂φ

φ̂φφ +
∂F
∂ z

ẑzz, (A.54)

Divergence: ∇∇∇ ·VVV =
1
ρ

∂

∂ρ
(ρVρ)+

1
ρ

∂Vφ

∂φ
+

∂Vz

∂ z
, (A.55)

Curl: ∇∇∇×VVV =

(
1
ρ

∂Vz

∂φ
−

∂Vφ

∂ z

)
ρ̂ρρ

+

(
∂Vρ

∂ z
− ∂Vz

∂ρ

)
φ̂φφ +

1
ρ

[
∂

∂ρ
(ρVφ −

∂Vρ

∂φ

]
ẑzz, (A.56)

Laplacian: ∇
2F =

1
ρ

∂

∂ρ

(
ρ

∂F
∂ρ

)
+

1
ρ2

∂ 2F
∂φ 2 +

∂ 2F
∂ z2 , (A.57)

when expressed in cylindrical coordinates.

A.8 Miscellaneous Equations

LAW OF COSINES:

θ

B

A
C

C2 = A2 +B2 −2ABcosθ (Law of Cosines). (A.58)

INTEGRATION BY PARTS:∫ b

a
f
(

dg
dx

)
dx = f g|ba −

∫ b

a
g
(

d f
dx

)
dx. (A.59)

A.9 The Dirac Delta Function

In one dimension the Dirac delta function is a (mathematically improper) function written
δ (x−a) and having the properties that

δ (x−a) =
{

0 (if x ̸= a),
∞ (if x = a),

(A.60)

with the normalization ∫ +∞

−∞

δ (x−a)dx = 1. (A.61)
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The Dirac delta function can be viewed intuitively (but non-rigorously) as the limit of
a peaked curve that becomes higher and higher as it is made narrower and narrower, in
such as way that the area under the curve remains constant.4 For an arbitrary continuous
function f (x),

f (x)δ (x−a) = f (a)δ (x−a) (A.62)

and insertion of a Dirac delta function in an integral over a function picks out the value of
the integrand at x = a, ∫ +∞

−∞

f (x)δ (x−a)dx = f (a). (A.63)

In n dimensions the Dirac delta function δ n(xxx−XXX) can be written as a product of n 1D
delta functions; for example, in a 3D space parameterized by cartesian coordinates xxx =

(x1,x2,x3),

δ
3(xxx−XXX)≡ δ (x1 −X1)δ (x2 −X2)δ (x3 −X3). (A.64)

This vanishes everywhere except at xxx = XXX , and generalizing Eqs. (A.60) and (A.61) to 3D,∫
∆V

δ
3(xxx−XXX)d3x =

{
1 (if ∆V contains xxx = XXX),
0 (if ∆V doesn’t contain xxx = XXX),

(A.65)

where ∆V is the integration volume over d3x, while Eq. (A.63) generalizes to∫
∆V

f (xxx)δ
3(xxx−aaa)d3x = f (aaa). (A.66)

Thus, just as in 1D the 3D Dirac delta function δ 3(xxx−aaa) picks out the point xxx= aaa in the in-
tegration. Notice from the preceding definitions that a Dirac delta function in n dimensions
has the dimensionality of inverse volume in n-dimensional space. Applying the Laplacian
operator ∇2 to |xxx− xxx′|−1 gives a result proportional to a 3D δ -function,

∇
2
(

1
|xxx− xxx′|

)
=−4πδ

3(xxx− xxx′), (A.67)

which can be of considerable utility in evaluating electrostatic integrals (see Example 2.5).
By evaluating ∫ b

a

dδ (x)
dx

f (x)dx

by “parts” for f (x) an arbitrary function, one can show that the delta function anticommutes
with derivative operators such as ∇∇∇ under an integral; schematically,

d
dx

δ =−δ
d
dx

. (A.68)

4 The Dirac delta function was first introduced by Dirac to aid in normalization of probability integrals in quan-
tum mechanics. It was met by considerable initial skepticism from mathematicians. However, contrary to what
might be inferred from our loose discussion here, the Dirac delta function can be placed on a mathematically
rigorous footing by viewing it as a generalized function or distribution (meaning a quantity that only makes
sense when it is integrated over) over the real numbers, which has a value of zero everywhere except at zero,
and has an integral over the entire real number line that is equal to one. See Lighthill [20] for a more complete
exposition.
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(One can show that this “parts” operation is legitimate, even though δ is not a true func-
tion.)



B Appendix B Electromagnetic Units

We have systematically tended to use SI units throughout this book. In this Appendix we
give examples of important equations expressed in other units, most notably in the gaussian
or CGS system.

B.1 Maxwell Equations in SI Units

In SI units the vacuum Maxwell equations are

∇∇∇ ·EEE =
ρ

ε0
(Gauss’s law), (B.1a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (B.1b)

∇∇∇ ·BBB = 0 (No magnetic charges), (B.1c)

∇∇∇×BBB− 1
c2

∂EEE
∂ t

= µ0JJJ (Ampère–Maxwell law), (B.1d)

where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, JJJ is the current
vector, ε0 is the permittivity of free space [defined for SI units in Eq. (2.3)], and µ0 is the
permeability of free space (which are related by ε0µ0 = 1/c2). The corresponding Lorentz
force in SI units is

FFF = q(EEE + vvv×BBB) (Lorentz force), (B.2)

where q is the charge and bbb the velocity of a test charge.

B.2 Maxwell Equations in Gaussian (CGS) Units

In gaussian (CGS) units the vacuum Maxwell equations are

∇∇∇ ·EEE = 4πρ (Gauss’s law), (B.3a)

∇∇∇×EEE +
1
c

∂BBB
∂ t

= 0 (Faraday’s law), (B.3b)

∇∇∇ ·BBB = 0 (No magnetic charges), (B.3c)

∇∇∇×BBB− 1
c

∂EEE
∂ t

=
4π

c
JJJ (Ampère–Maxwell law), (B.3d)

238
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where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, and JJJ is the
current vector. The corresponding Lorentz force in CGS units is

FFF = q
(

EEE +
1
c

vvv×BBB
)

(Lorentz force), (B.4)

where q is the charge and vvv the velocity of a test charge.

B.3 Maxwell Equations in Heaviside–Lorentz Units

In Heaviside–Lorentz units (common in high energy physics) the vacuum Maxwell equa-
tions are given by

∇∇∇ ·EEE = ρ (Gauss’s law), (B.5a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (B.5b)

∇∇∇ ·BBB = 0 (No magnetic charges), (B.5c)

∇∇∇×BBB− ∂EEE
∂ t

= JJJ (Ampère–Maxwell law), (B.5d)

where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, and JJJ is the
current vector. The corresponding Lorentz force in CGS units is

FFF = q
(

EEE +
1
c

vvv×BBB
)

(Lorentz force), (B.6)

where q is the charge and vvv the velocity of a test charge.
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Index

absolute derivatives, 194
action at a distance, 14
aether, 155
aether drift, 155
Aharonov–Bohm effect, 121
amber, 1
Ampère’s law, see also Ampère–Maxwell law

and magnetic field of solenoid, 111
compared with Ampére–Maxwell law, 138
derived from Biot–Savart law, 110, 111
in magnetized matter, 119
modified by Maxwell, 3, 138, 141

Ampère–Maxwell law
consistency with continuity equation, 141
far-reaching implications, 3, 138, 141
in medium, 91
in vacuum, 1
integral form, 92
integral form in medium, 92
Maxwell’s modification, 3, 138, 141

anholonomic basis, see non-coordinate basis
associated Legendre polynomials

relation to spherical harmonics, 61
atlas, 174
atomic polarizability, 72, 78
atomic polarizability (table), 80

ball
closed, 17
open, 17

baryon (definition), 6
basis

and directional derivatives, 176–178
anholonomic, 176–178
coordinate, 171, 176–178
dual, 162
for a vector space, 181
holonomic, 176–178
non-coordinate, 176–178
orthonormal, 162, 175
tangent, 161

Biot–Savart law
definition, 106
differential form, 109
integral form, 106, 109
magnetic field of circular current loop, 108
starting point for magnetostatics, 109

boost transformations, 207
bound charge, see also free charge

definition, 75
surface, 86
volume, 86

boundary conditions
Cauchy, 41, 42
Dirichlet, 38, 41, 42
discontinuities at charge layers, 35
matching at interface of different media, 86, 93–95
matching tangential and normal components, 96
mixed, 41
Neumann, 38, 41, 42
overdetermined, 41
physically acceptable, 2

capacitance
definition, 33
effect of dielectrics, 34, 73–75
energy stored in capacitor, 34
parallel-plate capacitor, 34
work done in charging a capacitor, 34

capacitor, see capacitance
Cauchy theorem, 149
causal structure of spacetime, 212
Cavendish, H., 1
charge

and gauge invariance, 4
bound, 75, 86
conservation of, 3, 4, 140
free, 75
is conserved locally, 140
quantization of, 5
surface, 88
volume, 88

charge conservation, 138, 141
Christoffel symbols

are not tensors, 194
definition, 194
transformation law, 194

closed timelike loops, 213
closure, 181
commutator, 178
conductivity, 134
conductors, 31, 72
conservative force, 27
constituitive relationship
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in electrostatics, 85
in magnetostatics, 121
non-linear for ferromagnets, 123

continuity equation, 2, 138, 140, 141
contravariant vectors, see vectors
convective derivative, 135
coordinate basis, 176–178
coordinate curve, 176–178
coordinate patches, 174
coordinate systems

basis vectors, 159
dual basis, 162
euclidean, 158
non-orthogonal, 162
orthogonal, 162
parameterizing, 159
spacelike components, 173
tangent basis, 161
timelike components, 173

cotangent bundles, 175
Coulomb excitation, 68
Coulomb gauge, 114, 145
Coulomb potential

acts instantaneously, 152
solution in Coulomb gauge, 145, 152

Coulomb’s Law, 10
Coulomb’s law, 232

deviations from, 12
starting point for electrostatics, 109

Coulomb, C.-A., 1
covariance, 172

manifest, 219
of Maxwell equations, 219

covariant derivative, 170, 192, 194
and Christoffel symbols, 194
and parallel transport, 196
implications, 196
is non-commuting operation, 195, 197
Leibniz rule for derivative of product, 196
of metric tensor vanishes, 196
rules for, 195

covariant vectors, see dual vectors (one-forms)
covectors, see dual vectors (one-forms)
Curie temperature, see ferromagnetism
curl

and the Helmholtz theorem, 42
definition, 228

curvature
and tangent spaces, 175
vectors in curved space, 175

cyclotron motion, 107

d’Alembertian operator
for electromagnetic waves, 218

derivative product rules, 228
diamagnetic material, see diamagnets
diamagnets

definition, 119
magnetic field lines, 122
physical explanation, 121, 122

dielectric constant, 85
dielectrics

definition, 31
dielectric constant, 85
properties, 72

differentiation
absolute, 194
covariant, 194
in spaces with position-dependent metrics, 170
of tensors, 187, 192
partial, 187, 193

dipole moment
definition, 62
in multipole expansion, 60, 61, 63
intrinsic, 72
sources in matter, 72

Dirac delta function
anticommutes with derivative operator, 236
as a distribution or generalized function, 235, 236
definition in 1D, 235, 236
definition in 3D, 235, 236
dimensionality, 236

Dirac monopoles, 5
directional derivatives, 176–178
discontinuity equations, 95
displacement, 85, 121
displacement current, 3, 138, 141
divergence

and Helmholtz theorem, 42
definition, 228

divergence theorem, 16, 91, 232
dual vectors (one-forms)

and row vectors, 182
as maps to real numbers, 165, 180
defining in curved space, 165, 175
duality with vectors, 165, 180, 187
transformation law, 186

Einstein summation convention, 164, 175, 224
electric field, 11

discontinuous at charge layer, 35
intrinsic strength relative to magnetic field, 105

electric permittivity, 85
electric potential, see scalar potential
electric susceptibility, 72, 85
electromagnetic waves, 3, 138, 141
electromotive force (EMF)

definition, 133, 134
proportional to time derivative of flux, 135
relationship with magnetic flux change, 134

electrostatics, 10
EMF, see electromotive force
energy, see also work

of charge distribution in external field, 67
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stored in capacitor, 34
equivalence classes

and gauge transformations, 143
definition, 143

farad (unit), 33
Faraday’s law

differential form, 136
Faraday’s experiments, 132
generalized as a relationship between fields, 135
in medium, 91
in vacuum, 1
integral form, 92, 135
integral form in medium, 92
production of transient current, 132

Faraday, M., 1, 132
ferroelectricity, 105
ferromagnetism

and permanent magnetism, 119
Curie temperature, 123
definition, 119
depends on magnetic history, 119, 123
hard ferromagnets, 125
hysteresis, 123
microscopic alignment of spins, 105
non-linear constituitive relationship, 123
spontaneously broken symmetry, 105

ferromagnets, see ferromagnetism
fiber bundle

cotangent bundle, 175, 180
example of non-metric space, 170
tangent bundle, 175, 180

field
electric, 11
importance in modern physics, 14

Fourier transforms
conversion of PDE to algebraic equation, 147
definition, 147
inverse transform, 147
of distributions, 147
of functions, 147
to obtain Green functions, 147, 148

free charge, see also bound charge
definition, 75

Galilean invariance
and Maxwell equations, 134
in Faraday’s law at low velocity, 136

gauge bosons, 6
mediators of force, 14
quanta of gauge fields, 14

gauge fields, 14
gauge invariance, see gauge symmetry
gauge symmetry

abelian, 5
and charge conservation, 3, 4, 138, 141
and decoupling of Maxwell equations, 143, 145
and quantum electrodynamics, 3, 138, 141

and the Standard Model, 3, 138, 141
and unification of fundamental interactions, 5
definition (classical, non-relativistic), 113
fixing the gauge, 143, 145
gauge transformations, 113
gauge-fixing condition, 143, 145
Lorenz gauge, 143, 145
non-abelian, 5

gauge transformations, see also gauge symmetry
Coulomb gauge, 114
definition (classical, non-relativistic), 113
gauge-fixing constraint, 218
in electromagnetism, 218
invariance of electromagnetism under, 113
to Coulomb gauge, 114
to Lorenz gauge, 145

gauss (unit), 106
Gauss’s law, 15–17, 232

in medium, 91
in vacuum, 1
integral form, 92
integral form in medium, 92

Gaussian surface, 17
general relativity

gravitational waves, 152
the speed of gravity, 152

geometrical object, 159, 183
geometry

and metric tensor, 170
euclidean, 158

gradient
definition, 227
identities, 227, 228
with respect to x, 110, 227
with respect to x′, 110, 227

Green functions
boundary-value problems, 43
definition, 43
of free space, 43
retarded, 147, 149
solution of electrostatics problems, 43

Green’s first identity, 40
Green’s second identity, see Green’s theorem
Green’s theorem (Green’s second identity), 40
Gupta–Bleuler mechanism, 147

hadron (definition), 6
Hall effect, 107
Heaviside, O., 1
Helmholtz decomposition, see Helmholtz theorem
Helmholtz theorem, 42, 114, 146
Herz, H., 1
Higgs mechanism, 122
holonomic basis, see coordinate basis
hypersurface, 174
hysteresis, see ferromagnetism

images, method of, 44, 45
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indefinite metric, 201
induced charge, 31
insulators, see dielectrics
integration

area of 2-sphere by invariant integration, 192
by parts, 235
covariant volume element, 192
invariant, 170, 192
of tensors, 192

irrotational current, 146

Jacobian determinant, 192
Jacobian matrix, 187

Kronecker delta, 167, 168, 179, 180, 188

Laplace’s equation
definition, 233
in cartesian coordinates, 25
linearity of, 26, 49–51

Laplacian operator
applied to 1/r, 26, 236
in cartesian coordinates, 26
in cylindrical coordinates, 26, 235
in spherical coordinates, 26, 234

Legendre polynomial
(table), 57
definition, 56
multipole expansions, 59
orthogonality relation, 57
spherical harmonic addition theorem, 60

Legendre’s equation, 56
lepton (definition), 6
Levi–Civita symbol, see completely antisymmetric

4th-rank tensor, 228
Lie bracket, 178
Lie derivative

and covariant differentiation, 194
contrasted with covariant derivative, 194

lightcone, 209
and causality, 150, 212
and simultaneity, 212
and the constant speed of light, 212
lightlike intervals, 215
null intervals, 215
spacelike intervals, 215

lightlike intervals, see lightcone, null intervals
line element, 168

euclidean, 169
for plane polar coordinates, 169

line integral, 229
lodestone, 1
London penetration depth, see superconductors
longitudinal current, 146
Lorentz covariance

of Maxwell equations, 216
Lorentz factor

in special relativity, 209
Lorentz force, 2, 106, 107, 140, 233

Lorentz invariance, see also special relativity
and electromagnetism, 105
in Lorenz gauge, 143

Lorentz transformations, 204
and Maxwell equations, 134
and spacetime diagrams, 214
and special relativity, 156
as rotations in Minkowski space, 205
boosts between inertial systems, 205, 207, 209, 214
Lorentz group, 206
spatial rotations, 205

Lorentzian manifold, 202
Lorenz gauge, 143, 145

macroscopic (averaged) quantities
for electric fields, 84
for magnetic fields, 120
preserves BBB = ∇∇∇×AAA for magnetic fields, 120
preserves EEE =−∇∇∇Φ for electric fields, 84

magnetic charges
absence of, 1, 91, 92, 110, 115
Dirac monopoles, 5

magnetic dipole
and quantum nature of spin, 117
averaged over small volume, 119
classical relation to orbital angular momentum, 117
definition, 115
in matter, 119
in multipole expansion, 115

magnetic field
Biot–Savart law, 106
in matter, 119
intrinsic strength relative to electric field, 105
of localized current distribution, 114
produced by circular current loop, 108
terminology, 121
units, 106

magnetic force, see Lorentz force
magnetic moment, see magnetic dipole
magnetic moment density, see magnetization
magnetic monopoles, see Dirac monopoles
magnetic permeability, 121
magnetic scalar potential, 113, 125
magnetic shielding, 132
magnetic susceptibility, 121, 122
magnetization

approximately constant for hard ferromagnets, 125
definition, 115, 119
in diamagnetic media, 122
in ferromagnets, 123
in paramagnetic media, 122
linear for paramagnets and diamagnets, 122

magnetization currents, 105
magnetized matter, 119
magnetostatics

and special relativity, 105
definition, 104, 105
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first law, 110
second law, 110

manifold
atlas, 174
charts, 174
coordinate patches, 174
definition, 174
differential, 174
Riemannian, 174
spacetime, 173

mapping, 165
Maxwell equations, 216

and aether, 155
and causality, 152
and Galilean invariance, 155
covariance, 219
gauge transformations, 218
in gaussian units, 238
in Heaviside–Lorentz units, 216, 239
in medium, 91
in SI units, 1, 238
in vacuum, 1, 238, 239
integral form, 92, 93
integral form in polarizable media, 92
Lorentz covariance, 2, 216
scalar and vector potentials, 217
symmetries, 4

Maxwell, J. C., 138
Maxwell, J. C. , 1
Meissner effect, see superconductors
Mercator projection, 215
metric

indefinite, 202, 208
signature, 157

metric space, 170
metric tensor, 189, 190

and geometry of space, 170
and line element, 168, 189
and scalar products, 201
contravariant components, 167
covariant components, 167
covariant derivative vanishes, 196
in euclidean space, 167
in Minkowski space, 201
indefinite metric, 201
properties, 167
signature, 202
used to raise and lower indices, 189, 190, 202

Michelson–Morley experiment, 155
microscopic quantities, 84
minimal coupling prescription, 121
Minkowski space

and causality, 212
definition, 200
event, 202
indefinite metric, 201

invariance of spacetime interval, 202
lightcone structure, 209
lightlike intervals, 215
line element, 157, 179, 201
Lorentz transformations, 204
metric signature, 157, 202
metric tensor, 157, 179, 201
null (lightlike) intervals, 209, 215
rotations, 208
scalar product, 201
spacelike intervals, 209, 215
spacetime, 156
tensors, 203
timelike intervals, 209
worldline, 202

Minkowski, Hermann, 156
monopole (electric)

in multipole expansion, 60, 63
multipole expansion, see also multipole moments

cartesian coordinates, 62, 63
electric field components, 67
in Legendre polynomials, 59
in spherical harmonics, 59, 60
molecular charge distribution, 77
spherical coordinates, 61
Taylor series, 59

multipole moments, see also multipole expansion
cartesian vs. spherical definition, 63
definition may depend on coordinate system, 63
dipole potential, 61
in atomic nuclei, 68
quadrupole potential, 61
reducible and irreducible representations, 63

neutrinos
flavors in Standard Model, 6

non-coordinate basis, 176–178

Ohm’s law, 133, 134
ohmic conductors, 134
ohms Ω (unit), 134
one-forms, see dual vectors (one-forms)
ordinary differential equation (ODE), 36
overdetermined system, 42

paramagnetic material, see paramagnets
paramagnets

definition, 119
magnetic field lines, 122
physical explanation, 121, 122

parameterization
of curves, 159
of surfaces, 159

partial differential equation (PDE), 36
passive transformation, 224
path integral, see line integral
permeability of free space µ0, 106
permittivity of free space ε0, 11
photon
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mass of, 12
mass through the Higgs mechanism, 122

Poincaré transformations, 206
Poisson’s equation

definition, 25, 232
for continuous 3D charge distribution, 26
for vector potential in Coulomb gauge, 114
in cartesian coordinates, 25
magnetic, 125

polar molecules, 79
polarization

and induced dipole moment, 99
asymmetric, 79
definition, 81, 99
density of dipole moments, 81, 84, 99
non-uniform, 85, 88
polarization tensor, 79
polarization-charge density, 81, 85
uniformly polarized ball, 88, 99

potential, see scalar potential
principle of relativity, 172
proper time, 201
pseudo-euclidean manifold, see Lorentzian manifold

quadrupole moment
as rank-2 tensor, 62
in multipole expansion, 60, 63
traceless, 62

quantum chromodynamics
confinement, 7
gauge symmetry, 5

quantum electrodynamics (QED), 3, 5, 138, 141, 146
quarks

electrical charge, 7
flavors in Standard Model, 6
quantum numbers, 7

radiation gauge, see Coulomb gauge
relativity principle, see principle of relativity
repeated indices, see Einstein summation convention
resistance, 134
resistivity, 134

scalar potential
and the vector potential, 113
definition, 20, 141, 232
for point charge, 59
magnetic scalar potential, 113
solving Maxwell equations, 141

separation of variables, 53
cartesian coordinates, 49
spherical coordinates, 54

solenoidal current, 146
space

metric, 170
Minkowski, 157, 200
non-metric, 170

spacelike surface, 210
special relativity, see also Lorentz invariance

and causality, 152
and electric and magnetic fields, 105
and electromagnetism, 105
event, 202
limiting speed for signals, 14, 140, 152
Lorentz invariance, 4
Lorentz transformations, 204
proper time, 201
relativity of simultaneity, 212, 214
space contraction, 214
time dilation, 203, 214
twin paradox, 215
worldline, 202

speed of gravity, 152
spherical harmonic

addition theorem, 60
completeness relation, 61
multipole expansion, 60, 63
orthogonality condition, 61
relation to associated Legendre polynomials, 61

spontaneous symmetry breaking, 122, 123
Standard Electroweak Model, see Standard Model
Standard Model (of elementary particle physics)

and gauge symmetry, 3, 5, 138, 141
generations, 6
Higgs mechanism, 122
particles of, 6, 7

Stokes’ theorem, 91
and the scalar potential, 20
definition, 20, 232
physical interpretation, 21

summation convention, see Einstein summation
convention

superconductors
and diamagnetism, 122
London penetration, 122
Meissner effect, 122

superposition principle, 13
surface charge

discontinuity of electric field, 35, 36
surface integral, 230
surface-charge density, 86
symmetries

group theory, 206
Lorentz group, 206
Poincaré group, 206

tangent bundles, 175
tangent space

and parallel transport, 175
and vectors in curved space, 175

tensors
and covariance, 172
and form invariance of equations, 197
antisymmetric (skew symmetric), 191
antisymmetrizing operation, 191
as geometrical objects, 224, 226



248 Index

as linear maps, 179, 180
as operators, 179
calculus, 192
completely antisymmetric 4th-rank tensor, 189
contravariant, 179
covariant, 179
defined by their transformation law, 179, 185, 189
differentiation, 192
dual vectors (one-forms), 186
Einstein summation convention, 164, 175
higher-rank, 189
horizontal placement of indices, 190
in linear algebra, 182
in Minkowski space, 203
in quantum mechanics, 182
index-free formalism, 179, 180
integration, 192
Kronecker delta, 179
Lorentz, 226
metric tensor, 189, 190
mixed, 179
rank, 179
rank of, 223
rank-2, 188
Riemann curvature, 189
scalars, 185
spacetime, 226
symmetric, 191
symmetrizing operation, 191
tensor fields, 226
transformation laws, 223
transformation laws (table), 189
type, 179
vectors, 185, 187
vertical placement of indices, 162, 164, 173, 175

teslas (unit), 106
time machines, see time travel
time travel, 212, 213
total time derivative, 135
transformations

between coordinate systems, 171
boosts, 207
Galilean, 134, 172
gauge, 113
gauge in electromagnetism, 218
Lorentz, 134, 156, 172
of derivatives, 179
of fields, 179
of integrals, 179
of scalars, 186
of vectors, 186
passive, 173, 224
Poincaré, 206
rotations, 171
rotations in euclidean space, 204
rotations in Minkowski space, 205

spacetime, 173
symmetry under, 158
vectors, 186

transverse current, 146
transverse gauge, see Coulomb gauge
twin paradox, 215

uniqueness theorem, 38, 41, 42, 45
units

esu (CGS or Gaussian), 11
Heaviside–Lorentz, 11
SI, 11

vacuum polarization, 13
vector field

longitudinal, 42
transverse, 42

vector identities, 227
vector potential

and minimal coupling prescription, 121
definition, 113, 141, 232
hard ferromagnets, 126
in Coulomb gauge, 114
multipole expansion, 114, 115
solving Maxwell equations, 141

vector space
definition, 181
for vectors or dual vectors, 165

vector spherical harmonics, 115, 116
vectors

and column vectors, 182
and tangent spaces, 175
as geometrical objects, 159
as maps to real numbers, 165, 180
defining in curved space, 165, 175
dual vector spaces, 165, 180
dual vectors, 186
duality with dual vectors, 165, 180, 187
expansion in basis, 164
scalar product, 164, 188
transformation law, 187
vector space, 165, 180, 181

vertical position of indices, see Einstein summation
convention

volume integral, 230

work, see also energy
done in charging a capacitor, 34
done in electrical field, 27
energy of charge distribution in external field, 67
independent of path in electric field, 27
no work done by magnetic field, 106


