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Preface

The material contained in these lecture notes represents an introduction to classical elec-
tromagnetism, written approximately at the level of classical texts such as Jackson [19]. It
is suitable for a graduate course in classical electrodynamics and assumes students to have
a basic familiarity with the material summarized in Appendix A, which would typically
be covered in advanced undergraduate courses in electromagnetism (for example, mate-
rial in the book by Griffiths [13]). These lectures are a work in progress, so please do not
distribute them without notifying me.

Solutions to all problems at the ends of chapters are contained in the Instructor Solu-
tions Manual, which is available only to instructors. A number of problems at the ends
of chapters are marked ***, indicating that those problems are contained in the Student’s
Solutions Manual, available to any students taking the course.

Mike Guidry
Knoxville, Tennessee
June 14, 2025



1 Overview

The first inkling of the properties that we now attribute to electricity and magnetism traces
to the distant past when humans began to realize and remark upon observed physical phe-
nomena such as the behavior of naturally occurring electricity in amber and the properties
of naturally occurring magnetism in lodestones. Although these phenomena were known
qualitatively to the ancient Greeks, they remained mysterious for centuries and the modern
quantitative understanding of electricity and magnetism emerged over a period of only a
little over a century, beginning in the late 1700s.

1.1 The Synthesis of Classical Electromagnetism

At the risk of slighting the contributions of many, one could say that the explosion in
knowledge of electricity and magnetism beginning in the late 18th century, and the forging
of that knowledge into a theoretically and mathematically coherent framework that we
now call electromagnetism over the next century or so, can be illustrated by citing a few
landmark achievements.

1. Henry Cavendish (1731-1810) did pioneering experiments on electrostatics in the early
1770s, including establishing that electrical forces varied as one over the square of the
distance. However, his work was not widely published until after Coulomb’s publication
in 1785.

2. Charles-Augustin de Coulomb (1736-1806) published his extensive work on electro-
statics beginning in 1785, including the eponymous inverse-square law for electrical
interaction between charges.

3. Hans Christian Ørsted (1777-1827) discovered the magnetic effect of the electric cur-
rent, establishing the first connection between electric and magnetic phenomena.

4. André–Marie Ampère (1775-1827) extended the work of Ørsted, finding in 1823 the
circuit law between electric current passing through a loop and magnetic field around
the loop, and establishing the formula describing the interaction of two currents.

5. Michael Faraday (1791-1867) did his highly influential work studying time-varying
currents and fields in the mid-1800s. He discovered electromagnetic induction in 1831,
which proved to be a crucial step in Maxwell’s unification of electric and magnetic
phenomena into modern electromagnetism.

6. James Clerk Maxwell (1831-1879) published his famous 1865 paper (read to the Royal
Society in 1864), which unified electricity and magnetism and synthesized in equations
a dynamical theory of what could now be termed the electromagnetic field [27, 30].

1



2 Overview

7. Oliver Heaviside (1850-1925) reformulated Maxwell’s equations in their more modern
vector calculus form in the late 1800s.

8. Heinrich Rudolph Herz (1857-1894) produced the transverse electromagnetic waves
predicted by Maxwell’s theory in the laboratory in 1888, and studied their wave prop-
erties (refraction, reflection, . . . ) This placed Maxwell’s theory on firm experimental
footing and established experimentally the connection between electromagnetism and
optics suggested by Maxwell’s theory.

9. Joseph John Thomson (1856-1940) discovered the electron in 1897. This was the first
step in elaborating how electromagnetic waves interacted with matter at a microscopic
level, though a full microscopic theory of atoms and molecules awaited the inven-
tion of quantum mechanics in ∼1925-1926. This, for example, allowed the classical
Drude model for conduction electrons described in Section 7.3.2 to be constructed,
even though there wasn’t yet (in the year 1900) a theory of atoms in any modern form.

10. Albert Einstein (1879-1955) published his special theory of relativity in 1905. It was
inspired by Maxwell’s theory, since Einstein was strongly motivated by a desire to unify
particle motion and electromagnetism, which he realized could be accomplished only
if both were described by Lorentz-invariant theories.

One could add to this list the invention of quantum mechanics in 1925-1926, which pro-
vided a firm basis for describing electromagnetism interacting with matter. But this book
is about classical electromagnetism, and the quantum revolution that shook physics begin-
ning in 1925 is primarily part of a quantum theory of electromagnetism, which merits a
separate book and is necessarily beyond our present scope.

1.2 The Maxwell Equations

Thus, by the late 1800s the basics of classical electromagnetic theory could be summarized
concisely in the Maxwell equations,1 which may be written in free space as

∇∇∇ ·EEE =
ρ
ε0

(Gauss’s law), (1.1a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (1.1b)

∇∇∇ ·BBB = 0 (No magnetic charges), (1.1c)

∇∇∇×BBB− 1
c2

∂EEE
∂ t

= µ0JJJ (Ampère’s law, as modified by Maxwell), (1.1d)

1 Maxwell’s original formulation of what we now call the Maxwell equations was in terms of the vector and
scalar potentials instead of the electric and magnetic fields (see Sections 2.6 and 8.6 for the relationship
between the potentials and the fields), required 20 equations instead of four, and did not use the modern vector
calculus notation of Eqs. (1.1), which was invented later by Oliver Heaviside and independently by J. Willard
Gibbs. Heaviside reduced Maxwell’s 20 equations to the four in Eqs. (1.1), by writing them entirely in terms
of the electric and magnetic fields in the new vector calculus notation. One cannot overstate the importance
of compact, concise, and evocative notion in the advancement of mathematical physics, and Ref. [18] may be
consulted for the history of this important evolution in notation for electromagnetic equations.



3 Charge Conservation

using modern notation and SI units (see the discussion of units in Section 2.1), where

1. EEE is the electric field,
2. BBB is the magnetic field,
3. ρ is the charge density,
4. JJJ the current vector,
5. ε0 is the permittivity of free space [defined for SI units in Eq. (2.3)], and
6. µ0 is the permeability of free space, which takes the value

µ0 = 4π×10−7 N A−2, (1.2)

when expressed in SI units, where N is newtons and A is amperes. It should be noted that
the SI-system constants ε0 and µ0 are not independent but are constrained by µ0ε0 =

1/c2, where c is the speed of light.2

An important property of the Maxwell equations is that they obey a set of symmetries,
which are summarized in Box 1.1. In Ch. 12 we shall elaborate on the relationship of these
symmetries to the conservation laws obeyed by classical electromagnetism.

1.3 Charge Conservation

The charge density ρ and the current vector JJJ appearing in the Maxwell equations are not
independent but are constrained by the continuity equation,

∂ρ
∂ t

+∇∇∇ · JJJ = 0 (Continuity equation), (1.3)

which ensures conservation of charge by requiring that variation of electrical charge in
some arbitrary volume is caused by flow of electrical current through the surface of that
volume. The local conservation of charge implied by Eq. (1.3) is not a separate feature,
but is implied by the Maxwell equations themselves (see Problem 1.1). As indicated in
Box 1.1, this conservation of charge by the equations of electromagnetism is associated
with the gauge symmetry of electromagnetism, which will enter our later discussion in a
number of forms.

1.4 Maxwell and the Displacement Current

A feature of the Maxwell equations with profound implications is that Maxwell realized
that the original form of Ampére’s law (which lacked the ∂EEE/∂ t term of Eq. (1.1d)) was
inconsistent with Eq. (1.3) because it was valid only for stationary charge densities. As

2 This relationship between ε0 and µ0 is a consequence of the units chosen for the electric field and magnetic
field in the SI system.
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Box 1.1 Symmetries of the Maxwell Equations

Symmetry plays a fundamental role in physics [17]. The Maxwell equations (1.1)
exhibit some symmetries that have important implications for electromagnetism.

1. Invariance under Space and Time Translations: Invariance under translations
in space and time is associated with conservation of momentum and energy,
respectively. Satisfaction of these invariances by the Maxwell equations implies
that energy and momentum can be assigned to the electromagnetic field.

2. Invariance under Rotations: The formulation of the Maxwell equations as vector
equations ensures rotational invariance (isotropy of space), which in turn implies
conservation of angular momentum by the electromagnetic field.

The association of invariance under space translations, time translations,
and rotations with conservation of linear momentum, energy, and angular
momentum, respectively, is a general consequence of Noether’s theo-
rem: For every continuous symmetry of a field theory Lagrangian there
is a corresponding conserved quantity. See Section 16.2 of Ref. [17].

3. Symmetry under Space Inversion (Parity) P: In the presence of rotational invari-
ance, parity is equivalent to mirror reflection. Under inversion EEE→−EEE, which is
the transformation law for a polar vector (normal 3-vector), but under inversion
BBB→ BBB, which is the transformation law for a pseudovector or axial vector.

4. Symmetry under Time Reversal (T): A motion picture of electromagnetic events
would be consistent with the Maxwell equations if run backward or forward.

5. Lorentz Invariance: Electromagnetism isn’t Galilean invariant but is Lorentz in-
variant (it is consistent with special relativity), while Newtonian mechanics is
Galilean invariant but not Lorentz invariant (it is inconsistent with special relativ-
ity). The Maxwell equations (1.1) are Lorentz covariant (their validity is unaltered
by Lorentz transformations). However, this isn’t clear from the notation because
space and time enter on an equal footing in special relativity and the use in Eqs.
(1.1) of 3-vectors instead of 4-vectors, and of separate derivatives for space and
time, obscures this covariance. Later we will re-write the Maxwell equations in a
manifestly Lorentz-covariant form.

6. Gauge Invariance: Consistency of the Maxwell equations with Eq. (1.3) requires
charge to be conserved locally, which implies local gauge invariance of the elec-
tromagnetic field (see Section 1.3). We shall have much to say about gauge
symmetry and its far-reaching implications in later chapters.

7. Electric and Magnetic Field Asymmetry: The Maxwell equations exhibit a large
asymmetry between electric and magnetic fields [most obvious in CGS units;
see Appendix B.2]. If a magnetic charge 4πρm were added to the right side of
Eq. (B.3c) and a magnetic current (4π/c)JJJm added to the right side of Eq. (B.3b),
the Maxwell equations would become symmetric under EEE → BBB and BBB→−EEE.
However, no magnetic charges have ever been observed.



5 Classical Electromagnetic Forces

discussed in Section 11.1.1, Maxwell then added the ∂EEE/∂ t term (which is called the dis-
placement current) to Ampère’s law in Eq. (1.1d); this brought the full set of equations
(1.1) into harmony with Eq. (1.3), and effectively brought together the previously separate
subjects of electricity and magnetism. As a result, Eq. (1.1d) is also called the Ampère–
Maxwell law. The addition of the displacement current to Eq. (1.1d) has a number of far-
reaching implications. (1) We may now speak of the unified subject of electromagnetism.
(2) The fundamental equations of electromagnetism are now consistent with charge conser-
vation. (3) This modification will lead eventually to the interpretation of electromagnetic
waves as light. (4) That Maxwell’s equation obey the continuity equation and thus con-
serve charge will lead to the idea of classical electromagnetic gauge invariance, which
will underlie a quantum field theory of electromagnetism (quantum electrodynamics or
QED). (5) Electromagnetic gauge invariance will eventually be generalized to more com-
plex gauge invariance in the weak and strong interactions, resulting in the quantum field
theory that we term the Standard Model of elementary particle physics.

1.5 Classical Electromagnetic Forces

The four Maxwell equations of Eqs. (1.1), supplemented by appropriate boundary condi-
tions,3 may be solved for the fields EEE and BBB, if the charge density ρ and current JJJ are
known. However, these equations make no reference to forces, which are often the tangible
connection to experimental results in classical physics. This is remedied by introducing the
empirically justified Lorentz force law,

FFF = q(EEE + vvv×BBB) (Lorentz force), (1.4)

which implies that the electromagnetic force acting on a particle having charge q and ve-
locity vvv at the point xxx is determined completely by the instantaneous values of the fields EEE
and BBB at xxx. Then Newton’s second law relating momentum change to force,

d ppp
dt

= FFF , (1.5)

allows calculating the complete motion of charges in an electromagnetic field.

1.6 Internal Consistency of Electromagnetism

Classical mechanics is internally self-consistent, in the sense that there are phenomena
outside its domain (the very small requires quantum theory; the very fast requires special
relativity; strong gravity requires general relativity), but it gives internally consistent results

3 We will have much more to say about this later but, loosely, physically acceptable boundary conditions in
static problems require fields to vanish rapidly enough at infinity, while in dynamical problems fields must
represent outgoing solutions so that there is no unphysical flow of energy from infinity into regions of interest.
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when restricted to it domain of validity. Classical electromagnetism is different. In Eq.
(2.45) we shall show that the energy U of a continuous charge distribution ρ(xxx) is the
work W required to assemble it,

U =W =
ε0

2

∫
E2dτ,

where EEE is the electric field associated with the charge distribution and the integration is
over all of space. But from Eq. (2.9) the electric field of a continuous charge distribution
behaves as

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3 d3x′,

and U diverges as |xxx− xxx′|−4 upon approaching a point charge located at xxx′. This infinite
self-energy of a classical point charge may be viewed as resulting from the charge acting
on itself and is clearly unphysical; the first thought is that it must be excluded from the
energy of a charge distribution. But further problems arise if one considers accelerated
charges, which radiate electromagnetic waves and must lose energy; this can be thought
of most simply as a radiative damping force acting on the charged particle, but this again
forces us to think of the charge acting on itself, with the short-range limit diverging.

We conclude that there is no consistent way to deal with such self-energies in classical
electromagnetism and the theory is internally inconsistent.4 However, as a practical matter
we may ask at what order of magnitude for distance and time scales does one expect such
inconsistencies lead to actual problems? Consider the self-energy of an electron. As far as
is known experimentally elementary particle like electrons are point-like, without spatial
extent. But if the electron is assumed to have a finite radius re, the electrostatic energy
becomes of order e2/re, where e is the electron charge. The only other energy scale in the
problem is the electron restmass energy mec2, and if we equate these two energy scales and
solve for re,

re =
e2

mc2 = 2.82×10−13 cm, (1.6)

which is known as the classical radius of the electron. (In comparison, the Bohr radius of
the hydrogen atom is 0.529×10−8 cm.) A corresponding timescale is given by the time for
light to travel this distance,

τe =
re

c
=

e2

mc3 ≃ 10−21 s, (1.7)

Unless we consider motion of charges that changes over a length scale of order re, or a
timescale of order τe, the infinities associated with self energies are of no practical signif-
icance. In fact, one expects quantum effects to become important on a length given by the

4 Similar problems with infinities associated with matrix elements evaluated at a point (such as the infinite self-
energies of point particles) arise in quantum field theory. There a scheme called the renormalization program
has been developed to systematically subtract away the infinities in observable quantities and bury them in
quantities that are not observable. Not everyone is comfortable philosophically with the “sweeping under the
rug” nature of the quantum renormalization scheme, but everyone agrees that renormalization succeeds in
removing infinities from observables, and that the resulting (finite) predictions of quantum field theory are in
spectacular agreement with experimental observables.
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Compton wavelength rC = h̄/mc, which is

rC

re
=

h̄/mc
e2/mc2 =

h̄c
e2 ≃ 137

times larger than the classical electron radius. We conclude that inconsistencies associated
with self-energies of charged particles are irrelevant for our discussion.

1.7 Classical Electromagnetic Solutions

Thus the understanding of classical electromagnetism can be summarized in a succinct
admonition: to be blunt, “shut up and calculate”, or to be less blunt and more precise,

Solve Maxwell’s equations with appropriate boundary conditions for the electric
and magnetic fields, and use those to compute forces and observables.

While this admonition is not wrong, it risks leaving two things at loose ends.

1. The solution of Maxwell’s equations with appropriate boundary conditions can be highly
non-trivial, often requiring considerable mathematical and computational prowess.

2. Although classical electromagnetism itself has changed little since the late 1800s, the
context in which we view classical electromagnetism has been altered dramatically by
modern advances in quantum field theory (which were often inspired and guided by the
theoretical understanding of classical electrodynamics).

The following chapters will address the first point at a practical level, by providing a variety
of mathematical and computational tools to facilitate solution of Maxwell’s equations in
various physically important contexts. The remainder of the current chapter will address
the second point at a more philosophical level, by setting electromagnetism more broadly
in the context of modern theoretical physics.

1.8 Electromagnetism in Modern Physics

Let us make some general remarks about the relationship of classical electromagnetism
with modern theoretical physics.

1.8.1 Gauge Symmetry

One of the remarkable findings of modern physics is that the already beautiful edifice of
Maxwell’s equations for electromagnetism that we shall elaborate in these lectures hides
within it a deceptively powerful symmetry called (local) gauge invariance—in essence a
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symmetry under local phase transformations—that was introduced in Box 1.1 and, with
suitable exposition, explains the origin of both classical and quantum theories of electro-
magnetism. But that is not all! The local gauge symmetry describing electromagnetism
can be generalized mathematically into a more powerful theory that can partially unify the
electromagnetic and weak nuclear forces into a single electroweak interaction, and this
can be generalized into the Standard Model (of elementary particle physics) that partially
unifies the electromagnetic, weak, and strong interactions in a single non-abelian gauge
theory.

In quantum field theory local gauge symmetries are generated by a set of quantum oper-
ators. If the quantum operators all commute among themselves, the gauge symmetry is said
to be abelian; if they do not all commute, the gauge symmetry is said to be non-abelian
(see the discussion of symmetries and group theory in Box 16.1). Because of the constraints
arising from non-zero commutators among operators, non-abelian gauge symmetries have
the potential to engender more complex behavior than abelian gauge symmetries. Elec-
tromagnetism corresponds to an abelian local gauge symmetry (with the quantum version
known as quantum electrodynamics or QED). In Ch. 18 we shall explore in more depth this
view of classical electromagnetism as an abelian gauge field theory and its relationship to
quantum electrodynamics. The Standard Electroweak Model and its generalization to the
Standard Model incorporating the strong interactions (quantum chromodynamics or QCD)
generally correspond to more complex non-abelian local gauge symmetries. Non-abelian
models of elementary particles are also known as Yang–Mills field theories.

1.8.2 Quantization of Electrical Charge

The basic unit of electrical charge is given by the magnitude of the charge on an electron,
which is measured to be

e≡ |qe|= 1.60217733×10−19 C [in SI units]. (1.8)

The charges on protons, and all presently known particles or systems of particles, are found
to be integral multiples of this unit (with positive or negative signs for non-zero charges).
It is known experimentally that the ratios of charges between different particles are inte-
gers to one part in 1020. Indeed, the stability of the atomic matter all around us would be
compromised by even a tiny difference in the absolute values of the electron and proton
charges, so the very existence of ourselves and the visible Universe is strong evidence for
quantization of electrical charge.

Dirac proposed long ago that, if fundamental magnetic charges (magnetic
monopoles) existed, there could be a topological reason for charge quantization.
However, no reproducible observations of magnetic monopoles have ever been
reported, so Dirac’s idea remains only conjecture. As we have noted in Box 1.1, if
magnetic monopoles did exist the Maxwell equations (1.1) would require mod-
ifications that would make them more symmetric with respect to electric and
magnetic fields.
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Elementary particles of the Standard Model. Photons are labeled by γ and gluons by G.
Elementary particles of half-integer spin that don’t undergo strong interactions are called
leptons; electrons and electron neutrinos are examples. Particles made from quarks,
antiquarks, and gluons (and thus that undergo strong interactions) are called hadrons;
pions (pi mesons) and protons are examples. A subset of hadrons corresponding to more
massive particles containing three quarks are called baryons; protons and neutrons are
examples. The different types of neutrinos (νe,νµ , . . .) and the different types of quarks (u,
d, s, . . . ) are called flavors. For simplicity the largely parallel classification of antiparticles
has been omitted in this diagram.

Since there is no evidence for the existence of free magnetic charge (magnetic monopoles),
we must conclude that there is presently no convincing fundamental explanation for the
observed quantization of electrical charge in integer multiples of the electron charge.

1.8.3 Charges of Known Elementary Particles

Our modern view is that matter in the Universe consists of the fermions in the Standard
Model (of elementary particle physics). The elementary particles of the Standard Model
are summarized in Fig. 1.1. In the Standard Model all matter is formed from fermions
(e,νe,u, . . .), while interactions between elementary particles are mediated by the exchange
of gauge bosons (γ,G,W±,Z0), and masses for bare (that is, non-interacting) particles arise
from couplings to the Higgs boson H. For reasons that remain elusive, the fermions (matter
fields) of the Standard Model may be divided into three generations (or families), I, II,
and III, with the fermions of each generation being successively more massive than in
the preceding generation, and with many properties repeating themselves in successive
generations. To give one example, the muon µ in generation II acts in many respects as if
it were a heavier version of the electron e in generation I. Table 1.1 gives Standard Model
quark quantum number assignments for the six known quark flavors displayed in Fig. 1.1.
As indicated in Table 1.1, the (electrical) charge Q of each quark is given by
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Table 1.1 Quantum number assignments for quarks [14]

Up Down Strange Charm Bottom Top

Symbol u d s c b t

Baryon number (B) 1
3

1
3

1
3

1
3

1
3

1
3

Spin 1
2

1
2

1
2

1
2

1
2

1
2

Charge (Q) 2
3 e − 1

3 e − 1
3 e 2

3 e − 1
3 e 2

3 e

Isospin (T ) 1
2

1
2 0 0 0 0

Projection of isospin (T3) 1
2 − 1

2 0 0 0 0

Strangeness number (S) 0 0 −1 0 0 0

Charm number (c) 0 0 0 1 0 0

Bottom number (b) 0 0 0 0 −1 0

Top number (t) 0 0 0 0 0 1

The additive quantum numbers Q, T3, S, c, B, b, and t of the corresponding antiquarks are
the negative of those for quarks. The charge is given by Q/e = T3 +

1
2 (B+S+ c+b+ t),

where e the absolute value of the electron charge.

Q/e = T3 +
1
2
(B+S+ c+b+ t), (1.9)

which leads to third-integer charges for all the quarks (row 4 of Table 1.1).

Example 1.1 From Eq. (1.9) and Table 1.1, the charge of the down quark d is

Qd/e = T3 +
1
2
(B+S+ c+b+ t)

=−1
2
+

1
2

(
1
3
+0+0+0+0

)

=−1
3
.

This quantization of charge in integer multiples of ± 1
3 of the absolute value of the electron

charge is characteristic of quarks, as may be seen from Table 1.1.

However, the non-abelian gauge field theory of the strong interactions (quantum chromo-
dynamics) predicts that quarks are confined and can never appear as free particles,5 and

5 More precisely, the gauge theory of the strong interactions, quantum chromodynamics (QCD), is thought to
exhibit color confinement: particles carrying the strong-interaction gauge charge (called whimsically “color”,
with no relationship to the usual meaning of color) are confined to the interior of the hadrons such as neutrons
and protons, and can never appear as free particles. Finding solutions for the equations of QCD is extremely
difficult because it is a strongly interacting, highly non-linear field theory in the limit that would lead to con-
finement. Thus it is not simple to prove that QCD is color-confining. However, modern large-scale computer
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indeed no free particles with fractional charges have ever been observed reproducibly in
experiments.

Example 1.2 A proton has a udu quark structure (two up quarks and one down quark)
and charge is an additive quantum number, so the charge of the proton is the sum of the
charges of its quarks. From Table 1.1, the charge of a proton is

Qp = 2Qu +Qd =

(
2
3
+

2
3
− 1

3

)
e =+1e,

in terms of the fundamental charge unit e given by Eq. (1.8), while a neutron has a udd
quark structure and

Qn = Qu +2Qd =

(
2
3
− 1

3
− 1

3

)
e = 0e,

so neutrons have zero net electrical charge.

Thus both neutrons and protons carry integer charges, even though their constituent quarks
have fractional charges.

Modern high energy physics proposes a variety of elementary particles, some of
which have electrical charges that are fractions of the fundamental unit (1.8) set
by the charge on the electron. However, the physically observable particles en-
tering into classical electromagnetism (and into relativistic quantum field theory)
all appear to have electrical charges that are integer multiples of the fundamental
charge unit given by Eq. (1.8).

Hence we shall develop the theory of classical electromagnetism assuming that charged
particles carry an electrical charge quantized in integer units of the electron charge, even
though we presently have scant fundamental explanation for why this should be so.

Background and Further Reading

The history of classical electromagnetism is summarized in various parts of Jackson [19]. A
view of classical electromagnetism with emphasis on the relationship of modern quantum
field theory to classical electromagnetism may be found in Wald [40]. Introductions to the
Standard Model of elementary particle physics and the origin of the particle and quantum
number assignments in Fig. 1.1 and Table 1.1 may be found in many places; for example,
in Refs. [14, 17].

simulations of QCD (a discipline called lattice gauge theory) have increasingly converged on the conclusion
that QCD exhibits confinement of particles like quarks carrying a color charge.
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Problems

1.1 Prove that Maxwell’s equations (1.1) are consistent with the continuity equation (1.3)
that ensures local conservation of electrical charge.

1.2 Use Eq. (1.9) and Table 1.1 to confirm that the top quark is expected to carry an
electrical charge of 2

3 . Should you worry about seeing a particle with charge 2
3 in

your experimental apparatus? ***
1.3 A family of subatomic particles called the ∆-resonance has four distinct members

(∆++, ∆+, ∆0, ∆−), which have a valence quark stucture (uuu, uud, udd, ddd), re-
spectively, where u is the up quark and d is the down quark, with properties summa-
rized in Table 1.1. Use this table to confirm the electrical charge assigments

Q(∆++) = +2e Q(∆+) = +1e Q(∆0) = 0e Q(∆−) =−1e

for these particles. Thus, show that the four members of the ∆-resonance (each of
which is observable in high-energy physics experiments) have charges that are inte-
ger multiples of e, even though each consists of valence quarks having charges that
are fractions of e (which are not observable because of color confinement for quarks).



2 Electrostatics in Vacuum

The fundamental problem that is to be solved in electrodynamics is illustrated schemati-
cally in Fig. 2.1(b). If we have a distribution of n distinct source charges q1, q2, q3, . . . qn,
what net force do they exert on a test charge Q? In the most general case both the source
charges and test charges may be in motion but we shall begin with basics and consider the
simpler case of electrostatics, where the source charges are assumed to be fixed in spatial
position (but the test charge may move). Electrostatics problems can be divided into two
broad categories [34, 42]:

• summation problems, and
• boundary value problems

In a summation problem the charge density ρ(xxx) is specified initially at every point in
space at a given time, reducing the task of solving the electrostatics problem to evaluating
an integral. The integral might be easy or difficult to evaluate but conceptually a summation
problem has a clearly defined solution. If the charge density cannot be specified initially
at every point in space, one is dealing with a more challenging boundary value problem.
This will be the case if matter in any form is present, because the Coulomb force [see Eq.
(2.1)] will cause charge to redistribute itself in the matter until equilibrium is reached.1 It
is remarkable that the electrostatics problem can be solved uniquely for every spatial point
even in this latter case, provided that a model of the polarizable matter is specified, with an
adequate model specifying both the behavior of the electric field in matter, and boundary
or matching conditions for the Maxwell equations. This chapter will introduce summation
problems for electrostatics, while Ch. 3 will address boundary value problems and their
solutions.

2.1 Coulomb’s Law

Let us assume initially that the source charges and the test charges in Fig. 2.1(b) are em-
bedded in vacuum, so that it isn’t necessary to worry about a polarized medium altering
the interactions between charges (that will be the subject of extensive discussion in later
chapters). Let us now consider a quantitative description of this idealized electrostatics
problem, utilizing experimental data, physical intuition, and mathematics for guidance.

Consider first the force acting between two isolated charges at rest with respect to each

1 For historical reasons, in conductors this charge redistribution is called electrostatic induction and in non-
conductors it is called electrostatic polarization.

13
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(a) Coulomb interaction between two isolated and stationary test charges. (b) The
prototype electrostatics problem: interaction in vacuum of a test charge Q with a set of
stationary source charges qn.

other, as illustrated in Fig. 2.1(a). The force exerted on a single charge q1 located at position
xxx1 by a single charge q2 located at position xxx2 may be measured experimentally and is
found to be given by Coulomb’s law,

FFF = kq1q2
xxx1− xxx2

|xxx1− xxx2|3
(Coulomb’s law), (2.1)

where the charges qn are algebraic quantities that may be positive or negative, the force
points along the line from q1 to q2 and is attractive if the signs of the changes are opposite
and repulsive if they are the same. The constant k appearing in Coulomb’s law depends on
the system of units that is in use. Three common choices are the SI system, Gaussian or
electrostatic units, and Heaviside–Lorentz units.

1. In the SI system of units,

k =
1

4πε0
, (2.2)

where the constant ε0 is called the permittivity of free space. In the SI system the unit
of force is the Newton (N), the unit of distance is the meter (m), the unit of charge is
the coulomb (C), and

ε0 ≃ 8.85×10−12 C2

N m2 = 8.85×10−12 F
m
, (2.3)

where the farad (F) is the derived SI unit of electrical capacitance. The constants µ0, ε0,
and the speed of light c that may appear in SI units are related by2

µ0ε0 =
1
c2 . (2.4)

2 The three constants that enter into SI units, the permeability of free space µ0 defined in Eq. (1.2), the per-
mittivity of free space ε0 defined in Eq. (2.3), and the speed of light c, are related by Eq. (2.4). This has
the potentially confusing implication that the form of equations written in SI units can be changed by using
µ0ε0c2 = 1 to interchange constants appearing in them. As will be discussed in Section 8.2, SI units also
partially obscure that under typical laboratory conditions magnetic phenomena are intrinsically much weaker
than electrostatic phenomena, but that the two become comparable in strength if the characteristic speeds of
charged particles approach that of light.
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Thus Coulomb’s law (2.1) written explicitly in SI units is

FFF =
q1q2

4πε0

xxx1− xxx2

|xxx1− xxx2|3
(Coulomb’s law, SI units). (2.5)

The Maxwell equations and the Lorentz force law in SI units are summarized in Ap-
pendix B.1. We will use SI units in these lectures by default, specifying explicitly if we
choose other units in a few limited situations.

2. In Gaussian or CGS units, also termed electrostatic units (esu), k = 1 and unit charge
is chosen such that it exerts a force of one dyne on an equivalent point charge located
one centimeter away. In the Gaussian system the unit charge is called a statcoulomb.
The Maxwell equations and the Lorentz force law are expressed in Gaussian units in
Appendix B.2. There are some advantages to Gaussian units and many older books use
them often, but more modern books tend to use SI units because of the affinity with
standardized MKS units for non-electromagnetic quantities.

3. In some disciplines (for example, elementary particle physics) Heaviside–Lorentz units
may be used, where k = 1/4π . The Maxwell equations and the Lorentz force law are
given in Heaviside–Lorentz units in Appendix B.3.

In some cases one may encounter specialized variations on units where fundamental con-
stants like the speed of light c or Planck’s constant h̄ (in quantum problems) are set to one,
though that is probably more common in quantum field theory than in classical field theory.

Beginning with the time of Cavendish and Coulomb, the empirical validity of Coulomb’s
law (2.5) has been tested by a variety of techniques applied over a range of distance scales.
As discussed in Box 2.1, well-established experimental limits suggest that for classical
electromagnetism we can safely assume the photon to be massless and the deviation from
Coulomb’s law to be negligible.

2.2 The Electric Field

In experiments investigating the interaction of charges one typically measures a force, as
implied by Eq. (2.1). However, much of the power of theoretical physics derives from ab-
stracting broader implications from measurements. Perhaps no abstraction has been more
powerful in the development of physics than that of a field, which is simply an instance of
something that is defined at every point of spacetime. Let us introduce an electric field EEE
acting on a test charge q by defining the force FFF acting on the test charge to be

FFF = qEEE. (2.6)

Thus an electric field EEE = FFF/q may be interpreted as an object that can exert a force per
unit test charge for a test charge located at any point in in spacetime. The electric field is
a function of position, but it doesn’t depend on whether there is a test charge located at
P. The field exists, independent of whether there is a test charge exists upon which it acts.
Since force is a vector and charge is a scalar, the electric field is a vector field EEE(t,xxx) defined
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Box 2.1 Deviations from the Inverse-Square Force Law

As established in the original experiments of Cavendish and Coulomb, the elec-
trostatic force between two charges in vacuum obeys an inverse square law (2.1).
Since those early experiments, the precision of testing for possible deviations from
the inverse square law has improved substantially. It is common to report possible
experimental deviation from the inverse square law in one of two ways.

1. Assume that the electrostatic force has the dependence F ∼ 1/r2+ε and report
an upper experimental limit on ε .

2. Assume that the electrostatic potential has the Yukawa form

V ∼ r−1e−µr = r−1e−(mγ c/h̄)r µ ≡ mγc
h̄

,

where mγ is the photon mass (zero for an inverse square force). Then deviations
from the inverse square law may be reported as an upper limit on µ or mγ .

The original experiments of Cavendish using concentric spheres in 1772 estab-
lished an upper limit |ε| ≤ 0.02.

1. Greatly improved modern determinations based on Gauss’s law have pushed
this limit to ε = (2.7±3.1)×10−16 [41].

2. The best limits on the mass of the photon come from measuring planetary
magnetic fields. Such measurements place a limit on the photon mass of
mγ < 4×10−51 kg [12, 19, 22].

Hence the photon mass can be assumed to be zero for the entire regime of classical
electrodynamics, implying no significant deviation from the inverse square law.

at each point of spacetime (t,xxx), but we ignore any time dependence for now. Comparing
Eqs. (2.6) and (2.1), the electric field at a point P(xxx) produced by a point charge q1 at xxx1 is

EEE(xxx) = kq1
xxx− xxx1

|xxx− xxx1|3
, (2.7)

as illustrated in Fig. 2.2. In the SI system the unit of charge is the coulomb (C) and the
electric field EEE has units of volts per meter. The importance of the field concept in the
development of modern physics is elaborated in Box 2.2.

2.3 The Principle of Superposition

Now let us address the more general case in Fig. 2.1(b) of the interaction of a test charge
with a set of n source charges. In principle this could be a quite complicated problem, but
it is an experimentally verified fact that
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Box 2.2 Significance of Fields in Electromagnetism

Equation (2.6) suggests measuring forces to infer fields, implying that fields are
derivative. But modern physics places strong emphasis directly on the fields. In-
deed, Maxwell’s equations (1.1) are formulated in terms of electric and magnetic
fields, which are the central concepts of classical electromagnetism. The impor-
tance of fields is most obvious in relativistic quantum field theory (QFT) , which is
not our subject here, but the field concept traces historically to the introduction of
electric and magnetic fields in classical electromagnetism, which is our subject.

Action at a Distance
Originally it was believed that forces associated with charges, currents, and mag-
nets acted instantaneously over any distance (this was termed action at a dis-
tance).a The modern view—shaped by experimental measurement and the devel-
opment of relativistic QFT—is that fields are every bit as fundamental as particles.
In this picture, forces are mediated by fields, and the lightspeed limit of special
relativity means that no signal can transmit a force faster than the speed of light,
relegating action at a distance to the dustbin.

Actions Mediated by Fields
For example, if a charge moves the fields associated with the charge change,
but the change isn’t felt immediately at every point (xxx, t) of spacetime. Maxwell’s
equations (1.1) describing electromagnetism require the change to be propagated
through changes in two vector fields, the electric field EEE(xxx, t) and the magnetic field
BBB(xxx, t), defined at each point of spacetime, and those changes can propagate only
at a finite speed (less than or equal to the speed of light).

This abstract view was resisted initially because fields could exist in vacuum,
and did not describe tangible matter. Modern physics takes quite a different view.
The introduction of electric and magnetic fields allows a simple mathematical de-
scription of electromagnetic phenomena, but the fields are not just mathematical
abstractions; they are real physical entities (“as real as a rinoceros” [11]), carrying
concrete physical properties such as energy, momentum, and angular momentum.
This is most clear in QFT, where these physical attributes become properties of
quanta of the field (photons) and electromagnetic interactions are viewed as be-
ing mediated by exchange of virtual photons. These photons associated with the
electromagnetic field have observable consequences: at high enough energy the
collision of two photons can produce matter in the form of an electron and positron
pair; real as a rinoceros indeed! Relativistic QFT implies that all non-gravitational
fundamental interactions (electromagnetic, strong, and weak) are mediated by the
gauge bosons of Fig. 1.1, which are the quanta of fields that generalize the gauge
symmetry of photons. Such is the rich legacy of classical electromagnetic fields.

a Likewise, Newtonian physics assumes gravity to act instantaneously on a distant object. Replacement
of Newtonian gravity with general relativity (a field theory consistent with the limiting speed of light)
eliminated action at a distance for gravity, just as relativistic QFT eliminated it for electromagnetism.
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The electric field vector EEE at a point P(xxx) that is generated by a charge q1 located at
position xxx1.

1. if the charged-particle interactions are not too large, and
2. if quantum effects can be ignored,

then the interaction between any two charges is unaffected by the presence of all other
charges.3

Thus, the total force acting on the test charge Q in Fig. 2.1(a) can be obtained
to excellent approximation by summing the interactions of the charges pairwise,
while holding all other charges constant. This is termed the principle of linear
superposition (of forces). The ultimate source of this linearity may be traced to
the linear dependence of the Maxwell equations (1.1) on the electric field EEE and
magnetic field BBB.

Since the principle of linear superposition applies to the forces computed from Eq. (2.1)
it applies also to the electric fields calculated from Eq. (2.7), by virtue of the linear rela-
tionship (2.6). Therefore, the electric field acting at position xxx in Fig. 2.1(a) is given by a
vector sum of contributions from all the source charges qi,

EEE(xxx) =
1

4πε0

n

∑
i=1

qi
xxx− xxxi

|xxx− xxxi|3
, (2.8)

where we have used Eq. (2.7) expressed in SI units. In most practical problems we will
be able to assume that the charges are sufficiently small and numerous that they can be
approximated by a continuous charge density ρ(xxx′), such that the charge contained in a
small 3D volume element d3x′ ≡ dx′dy′dz′ centered at xxx′ is ∆q = ρ(xxx′)∆x∆y∆z. Then the

3 In the presence of strong electric fields such as those generated by powerful lasers, and in various vacuum
polarization phenomena observed in quantum field theory experiments, this linear superposition principle may
fail. However, we shall restrict ourselves to the classical linear regime, where such effects may be neglected
by hypothesis. It is fortunate for development of electromagnetic theory that the experiments that laid the
foundations for the classical theory of electricity and magnetism were all performed under conditions where
linear superposition holds very precisely, which greatly expedited their original physical interpretation.
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sum over discrete charges in Eq. (2.8) may be replaced by an integral over a continuous
charge distribution,

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3 d3x′ =
1

4πε0

∫
ρ(xxx′)

R2 R̂RRd3x′ (2.9)

where in the last step a compact notation

RRR≡ xxx− xxx′ R = |RRR|=
∣∣xxx− xxx′

∣∣ R̂RR =
RRR
|RRR| =

RRR
R
=

xxx− xxx′

|xxx− xxx′| (2.10)

such that

xxx− xxx′

|xxx− xxx′|3 =
1

|xxx− xxx′|2
· xxx− xxx′

|xxx− xxx′| =
1

R2 R̂RR, (2.11)

has been introduced that will prove useful in solving problems. We will generally be work-
ing with continuous charge distributions in one, two, or three spatial dimensions.

1. If the charge is spread along a line in 1D with a charge per unit length of λ , then the
volume element in Eq. (2.9) becomes a line charge λdl′, where dl′ is an infinitesimal
length element.

2. If the charge is spread over an area in 2D with a charge density per unit area of σ , the
volume element becomes a surface charge σda′, where da′ is a differential element of
area.

3. If the charge is spread over a volume in 3D with charge per unit volume ρ , the volume
element is a volume charge ρd3x′, which we sometimes abbreviate as ρdτ ′.

Thus, for continuous charge distributions in three, two, and one dimensions, respectively,
the electric field is given explicitly by

EEE(xxx)3D =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3 d3x′ =
1

4πε0

∫
ρ(xxx′)

R2 R̂RRd3x′, (2.12a)

EEE(xxx)2D =
1

4πε0

∫
σ(xxx′)

xxx− xxx′

|xxx− xxx′|3 da′ =
1

4πε0

∫
σ(xxx′)

R2 R̂RRda′, (2.12b)

EEE(xxx)1D =
1

4πε0

∫
λ (xxx′)

xxx− xxx′

|xxx− xxx′|3 dl′ =
1

4πε0

∫
λ (xxx′)

R2 R̂RRdl′, (2.12c)

in terms of volume densities ρ(xxx′), surface densities σ(xxx′), and line densities λ (xxx′), re-
spectively.

Example 2.1 Let us determine the electric field produced by a straight line charge with
uniform charge density λ . First consider the field produced at the point P of Fig. 2.3 if the
line charge is of finite length 2L. As shown in Problem 2.10, from Eq. (2.12c) the electric
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field produced at the point P is

EEE =
1

4πε0

∫ +L

−L

λ
R2 R̂RRdx′

=
1

4πε0

∫ +L

−L

λ
x2 + z2 ·

zẑzz− xx̂xx√
x2 + z2

dx

=
1

2πε0

λL
z(z2 +L2)1/2 ẑzz, (2.13)

where the compact notation of Eq. (2.10) has been used. If we identify this charge segment
with a straight wire, the electric field produced by a wire of infinite length can be obtained
by taking the limit L→ ∞ of Eq. (2.13), which gives

EEE =
1

4πε0

2λ
z

ẑzz (2.14)

for the electric field produced by an infinitely long straight wire oriented along the x axis.
The electric field is perpendicular to the wire, with magnitude proportional to the inverse
of the distance from the wire.

Finally, before leaving this discussion of continuous charge distributions let us note that
a discrete set of charges also can be described by a continuous charge distribution ρ(xxx)
if the Dirac delta function δ (xxx−XXX) described in Appendix A.12 is used to pick out the
locations of each of the discrete charges qi,

ρ(xxx) =
n

∑
i=1

q1δ (xxx−XXX), (2.15)

since substitution of the charge density (2.15) in Eq. (2.9) and integrating using the proper-
ties of the delta function is equivalent to the sum over contributions from discrete charges
to the electric field in Eq. (2.8).

2.4 Gauss’s Law

The electric field for a continuous charge distribution may be calculated from Eq. (2.9).
However, evaluating the integral in this equation isn’t always the easiest way to solve for
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S

E
n

θ

q

tFig. 2.4 Closed surface S illustrating Gauss’s law. The electric field generated by the charge q is EEE,
the normal vector to the surface is nnn, and da is an element of surface area.

the electric field. If a problem has some degree of symmetry, often another integral result
called Gauss’s law can lead to an easier solution. In Fig. 2.4 we indicate a charge q enclosed
by a surface S. The normal component of EEE times a surface area element da is

EEE ·nnnda =
q

4πε0

cosθ
r2 da =

q
4πε0

dΩ, (2.16)

where the last step used cosθ da = r2 dΩ, with dΩ being the solid angle subtended by da
at the position of the charge. If the normal component of EEE is now integrated over the entire
surface S,

∮

S
EEE ·nnnda =

{
q/ε0 (for q inside S)

0 (for q outside S)
(Gauss’s law), (2.17)

where
∮

S EEE ·nnnda is called the flux through the surface S. Equation (2.17) is Gauss’s law in
integral form for a single charge. For a set of discrete charges Gauss’s law can be general-
ized to the form, ∮

S
EEE ·nnnda =

1
ε0

∑
i

qi, (2.18)

where the summation over i is restricted to charges qi that are inside the surface S. If the
charge distribution is continuous, Gauss’s law takes the form

∮

S
EEE ·nnnda =

1
ε0

∫

V
ρ(xxx)d3x, (Gauss’s law) (2.19)

where the integration is over the volume V contained within the surface S.4 Gauss’s law
in the form of Eqs. (2.17)-(2.19) may be viewed as integral formulation of the law of
4 Gauss’s law (2.19) is a consequence of (1) inverse-square forces between charges, (2) the central nature of

the force, and (3) linear superposition of charges. Newtonian gravity obeys similar conditions, so one can
construct a Gauss’s law for Newtonian gravity, where the gravitational “charge” is mass and mass density
replaces charge density. Of course there is only one sign for the gravitational charge in Newtonian gravity,
since the gravitational force is always attractive. (In the absence of dark energy, which can effectively turn
gravity repulsive on cosmological scales.)
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Gaussian
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Gaussian surfacetFig. 2.5 Examples of applying Gauss’s law to find the electric field. (a) A ball of uniformly
distributed charge with radius R, used in Example 2.2. (b) A cylinder carrying a charge
density proportional to the distance s from the cylindrical axis, used in Example 2.3.
Gauss’s law is often effective for examples like this that have a high degree of symmetry.

electrostatics. Corresponding differential forms of Gauss’s law may be obtained using the
divergence theorem of Eq. (A.33).

Divergence theorem: For a vector field defined within a volume V that is en-
closed by a surface S, ∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x, (2.20)

where the left side is the surface integral of the outwardly directed normal com-
ponent of the vector AAA and the right side is the volume integral of the divergence
of AAA.

The divergence theorem (2.20) allows Eq. (2.19) to be written in the form

∫

V

(
∇∇∇ ·EEE− ρ

ε0

)
d3x = 0.

But this can be true generally only if the integrand vanishes, giving

∇∇∇ ·EEE =
ρ
ε0

(Gauss’s law), (2.21)

which is the differential form of Gauss’s law (2.19) for continuous charge distributions.
Thus, we have now obtained the first of Maxwell’s equations (1.1). Before proceeding,
let’s look at two examples of Gauss’s law in action [13].
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Example 2.2 Figure 2.5(a) shows a charged solid 2-sphere (a ball)5 of radius R, for
which the total charge Q is assumed to be evenly distributed. What is the electric field
outside the ball? We may solve this easily using Gauss’s law in integral form. Imagine
surrounding the charged ball with a 2-sphere of radius r > R (this is called a Gaussian
surface). Applying Gauss’s law (2.18)

∮
EEE ·nnnda =

1
ε0

Q.

Because of the spherical symmetry, EEE and nnnda point radially outward so that the scalar
product is trivial to evaluate:

∮
EEE ·nnnda =

∮
|EEE|da,

and the magnitude |EEE| is constant over the surface by symmetry, so it can be pulled out of
the integral,

∮
|EEE|da = |EEE|

∮
da = 4πr2|EEE|.

Combining the preceding results,

4πr2|EEE|= 1
ε0

Q,

or finally,

EEE =
1

4πε0

Q
r2 r̂rr,

where r̂rr is a unit vector in the radial direction. Notice the well-known result that the field
external to the charge distribution is the same that would have been obtained by putting all
charge at the center of the ball.6

Example 2.3 Consider Fig. 2.5(b), where a long cylinder carries a charge density pro-
portional to the distance s′ from the axis of the cylinder, ρ = ks′, where k is a constant.
What is the electric field inside the cylinder? Let’s draw a Gaussian surface in the form of
a cylinder of radius s and length L, as illustrated in Fig. 2.5(b). From Eq. (2.19), Gauss’s
law for this surface is ∮

EEE ·nnnda =
1
ε0

Q,

where Q is the total charge enclosed by the Gaussian surface, which is given by integrat-
ing the charge over the volume within the Gaussian surface using cylindrical coordinates

5 A 2-sphere is hollow when displayed in 3D space, consisting only of the 2D spherical surface. Mathematically,
a “solid 2-sphere”, which includes the interior of a 2-sphere, is called a ball (an open ball if the surface points
are not included and a closed ball if they are).

6 By similar arguments applied to Newtonian gravity, one finds that for a sphere containing gravitating matter the
gravitational field external to the sphere is the same as if all mass were concentrated at the center of the sphere.
This similarity is of course because both Newtonian gravity and Coulomb’s law correspond to inverse-square
forces.
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(Appendix A.7.2) with a cylindrical volume element dτ = sdsdφ dz

Q =
∫

ρdτ

= k
∫ s

0
s′2ds′

∫ 2π

0
dφ
∫ L

0
dz

= 2πkL
∫ s

0
s′2ds′

=
2
3

πkLs3.

By symmetry EEE must point radially outward from the cylinder’s central axis, as indicated
in Fig. 2.5(b), so for the curved portion of the Gaussian cylinder

∫
EEE ·nnnda =

∫
|EEE|da = |EEE|

∫
da = 2πsL |EEE|,

while the two ends contribute zero because EEE is perpendicular to nnnda. Thus, from Gauss’s
law,

2πsL |EEE|= 1
ε0

2
3

πkLs3

and the electric field is given by

EEE =
1

3ε0
ks2ŝss,

where ŝss is a unit vector pointing radially from the central axis of the cylinder.

Quite generally, one sees from such examples that using Gauss’s theorem to determine the
electric field is a useful approach when there is a high degree of symmetry that can be
exploited to simplify the evaluation of integrals. Typically, the goal in applying Gauss’s
law is to simplify the integral on the left side of Eqs. (2.18) or (2.19). Often this can be
done if we can choose a gaussian surface such that one or more of the following conditions
holds.

1. The electric field is zero over the surface.

2. The electric field is constant over the surface, by symmetry arguments.

3. The integrand EEE ·nnnda reduces to the algebraic product |EEE|da because the vectors EEE and
nnn are parallel.

4. The integrand EEE ·nnnda is zero because the vectors EEE and nnn are orthogonal.

For example, in the problems solved above the third condition was used in Example 2.2
and the third and fourth conditions were used in Example 2.3. If none of these conditions
are satisfied, Gauss’s law is still valid but there may be easier ways to determine the electric
field.
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QtFig. 2.6 Path for a line integral in an electric field that is generated by a charge Q located at the
origin.

2.5 The Scalar Potential

Consider a line integral between two points AAA and BBB in a field generated by a single charge
at the origin, as illustrated in Fig. 2.6. In spherical coordinates (Appendix A.7.1) the electric
field EEE and line element dlll are

EEE =
1

4πε0

Q
r2 r̂rr dlll = dr r̂rr+ r dθθ̂θθ + r sinθdφ φ̂φφ , (2.22)

where r̂rr, θ̂θθ , and φ̂φφ are unit vectors. Therefore, the line integral is
∫ BBB

AAA
EEE ·dlll =

1
4πε0

∫ BBB

AAA

Q
r2 dr

=
−Q

4πε0r

∣∣∣∣
RB

RA

=
1

4πε0

(
Q
RA
− Q

RB

)
. (2.23)

The integral around a closed path is then zero,
∮

EEE ·dlll = 0, (2.24)

since RA = RB in that case. Now we may invoke Stokes’ theorem [Eq. (A.29)]:

Stokes’ theorem: If AAA is a vector field and S is an arbitrary open surface bounded
by a closed curve C, then

∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll (Stokes’ theorem), (2.25)

where nnn is the normal to S, the line element on the curve C is dlll, and the path
in the line integration is traversed in a right-hand screw sense relative to nnn. A
geometrical interpretation of Stokes’ theorem is given in Box 2.3.
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Box 2.3 Geometrical Interpretation of Stokes’ Theorem

For a vector field AAA, Stokes’ theorem relates a surface integral of the curl vector field
∇∇∇×AAA to a line integral around the (smooth) boundary of that surface:

∮

C
AAA ·drrr =

∫

S
(∇∇∇×AAA) ·nnnds≡

∫

S
(∇∇∇×AAA) ·dsss (Stokes’ theorem),

where S is the 2D surface enclosed by the 1D boundary C, the outward normal to
the surface is nnn, and the curl ∇∇∇×AAA may be expressed explicitly by

∇∇∇×AAA =

(
∂Az

∂y
− ∂Ay

∂ z

)
x̂xx+
(

∂Ax

∂ z
− ∂Az

∂x

)
ŷyy+
(

∂Ay

∂x
− ∂Ax

∂y

)
ẑzz,

in cartesian coordinates. The orientation of the surface nnn and the direction of the
integration path around the boundary curve that are illustrated in the following figure

n

S

C
dl

da

are related by the following right-hand rule:

Point the thumb of your right hand in the direction of a unit normal vector
near the edge of the surface S and curl your fingers; the direction that
your fingers point indicates the integration direction around C.

The physical content of Stokes’ theorem may be understood geometrically if one
divides the surface up into plaquettes:

n

Cancel

in interior

(a)

(b) (c)

For the darker gray plaquettes in (b) of (a) the circulating currents cancel in the
interior, leaving only the contribution from the boundary (c). Generalizing to the
whole surface, as plaquette size tends to zero all interior contributions to the surface
integral may be expected to cancel, leaving only the boundary contributions.
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This implies that
∫

S
(∇∇∇×EEE) ·nnnda =

∮

P
EEE ·dlll = 0, (2.26)

and since this must be valid for any closed path, the integrand on the left side must vanish,

∇∇∇×EEE = 000. (2.27)

Thus, we have shown that the curl of an electric field EEE is zero.7

Because of Eq. (2.27) and Stokes’ theorem, the line integral of the electric field around
any closed loop is zero, which implies that the line integral between points AAA and BBB in
Fig. 2.6 has the same value for all possible paths. Thus we can define a function Φ(xxx) by

Φ(xxx) =−
∫ xxx

O
EEE(xxx) ·dlll, (2.28)

where O is a chosen standard reference point. The function Φ(xxx) is called the scalar po-
tential or the electric potential. The scalar potential associated with a point charge q at the
origin is given by

Φ(rrr) =
1

4πε0

(q
r

)
, (2.29)

where r is the separation between charge and point, and invoking superposition the poten-
tial generated by a collection of n charges is

Φ(rrr) =
1

4πε0

n

∑
i=1

qi

ri
. (2.30)

For a continuous charge distribution in one, two, or three spatial dimensions the potential
evaluates to

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d

3x′ (3D volume charge), (2.31a)

Φ(xxx) =
1

4πε0

∫
σ(xxx′)
|xxx− xxx′| da′ (2D surface charge), (2.31b)

Φ(xxx) =
1

4πε0

∫
λ (xxx′)
|xxx− xxx′| dl′ (1D line charge), (2.31c)

where ρ is a volume charge density, σ is a surface charge density, and λ is a line charge
density.

2.6 The Electric Field and the Scalar Potential

The electric field is a special vector field because it has vanishing curl. We shall now use
this to reduce finding the electric field, which is a vector problem, to a simpler scalar

7 Note that this is true for static electric fields, but may no longer hold for time-dependent problems. For exam-
ple, see Eq. (10.9).
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problem. The potential difference between points AAA and BBB in Fig. 2.6 is given by

Φ(B)−Φ(A) =−
∫ BBB

O
EEE ·dlll +

∫ AAA

O
EEE ·dlll

=−
∫ BBB

O
EEE ·dlll−

∫ O

AAA
EEE ·dlll

=−
∫ BBB

AAA
EEE ·dlll. (2.32)

Applying the fundamental theorem for gradients (A.27) to the left side gives,

Φ(BBB)−Φ(AAA) =
∫ BBB

AAA
(∇∇∇Φ) ·dlll, (2.33)

and therefore from Eqs. (2.32) and (2.33),
∫ BBB

AAA
(∇∇∇Φ) ·dlll =−

∫ BBB

AAA
EEE ·dlll. (2.34)

But since Eq. (2.34) must be true for arbitrary points AAA and BBB, the integrands of the integrals
on the two sides of Eq. (2.34) must be equal and we obtain

EEE =−∇∇∇Φ, (2.35)

which is a differential version of Eq. (2.28).

The electric field vector EEE may be obtained by taking minus the gradient of the
scalar potential Φ.

In SI units force is measured in newtons and charge in coulombs, so electric fields EEE
have units of newtons per coulomb. Then the potential Φ has units of newton-meters per
coulomb, or joules per coulomb, where a joule per coulomb is defined to be a volt.

A major advantage of the potential formulation is that it is usually easier to construct the
scalar potential than the electric field, but if one knows the potential Φ, the electric field
can be obtained simply by taking the gradient, as in Eq. (2.35). This is perhaps surprising
because Φ is a scalar with only one component, while EEE is a vector with three components.
The source of this seeming miracle is the set of restrictions placed on the components EEE by
the vanishing of the curl in Eq. (2.27), since expansion of ∇∇∇×EEE = 0 leads to the constraint
equations

∂Ex

∂y
=

∂Ey

∂x
∂Ez

∂y
=

∂Ey

∂ z
∂Ex

∂ z
=

∂Ez

∂x
, (2.36)

as you are asked to show in Problem 2.5.
Changing the arbitrary reference point O appearing in Eq. (2.28) shifts the potential by

a constant amount, implying that there is an essential ambiguity in defining Φ. It follows
that the potential itself has no clear physical meaning, but as long as we choose the same
reference O for all potentials,

1. differences between potentials (Φ(xxxi)−Φ(xxx j) are independent of O , and



29 Work and Energy for Electric Fields
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tFig. 2.7
Moving an electrical test charge Q on a path between endpoints AAA and BBB in an electric
field generated by a static set of source charges. The work done is independent of the
path, depending only on the endpoints AAA and BBB, indicating that the electric field is
conservative. Alternatively, if the path is closed by the dashed curve from BBB to AAA, the work
done by the electric field over the closed path AAA to BBB and back to AAA is identically zero.

2. gradients of the potential ∇∇∇Φ are unaffected by shifting the reference point a constant
amount, since the derivative of a constant is zero.

Thus, potential differences and potential gradients have physical meaning. The selection of
the reference point O for the potential is in principle arbitrary, but the most common choice
in electrostatics is to take O to be an infinite distance away from the (assumed localized)
charges, where the potential is taken to drop to zero.8

2.7 Work and Energy for Electric Fields

A question of fundamental importance in electrostatics is illustrated in Fig. 2.7: if we have
a stationary configuration of source charges and a test charge Q is moved along some path
between two points AAA and BBB, how much work will be done on the test charge by the field
produced by the source charges?

2.7.1 Work Required to Move a Test Charge

The electrical force exerted on the charge Q is the product of Q and the electric field EEE
generated by the source charges, FFF = QEEE. Thus a minimal force −QEEE must be exerted at
each point to move the charge along the path and the total work W done is given by the
line integral

W =
∫ BBB

AAA
FFF ·dlll =−Q

∫ BBB

AAA
EEE ·dlll = Q [Φ(BBB)−Φ(AAA)], (2.37)

8 This prescription requires more thought if a problem hypothesizes a charge distribution that extends to infinity.
In that case a different reference point O must be used. We won’t worry about that here, since in real-world
problems charge distributions are typically bounded spatially.
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where Eq. (2.32) has been used. Because the work was done against an electric field, it is
independent of path. An alternative statement is that over a closed path

Therefore the electrostatic force is conservative, meaning that the work depends
only on the difference in potentials between the endpoints of the path and not on
the details of the path followed. An alternative statements is that the work done
on a closed path in a field is identically zero if the field is conservative.

If we wish to move the charge from an infinite distance away to a point BBB,

W = Q [Φ(BBB)−Φ(∞)], (2.38)

so the work done in moving a test charge from infinity to a point xxx≡ BBB is

W = QΦ(xxx), (2.39)

if the standard choice is made that the reference point for the potential is Φ(∞) = 0,

Thus Φ(xxx) =W/Q and the scalar potential Φ(xxx) is the work per unit charge re-
quired to move a test charge from infinity to the position xxx in an electric field.
It is also the potential energy stored in the fields of the assembled charge con-
figuration that could be released by moving all the assembled charges back to
infinity.

Example 2.4 illustrates using Eq. (2.39) to calculate the total work done in assembling a
local set of charges.

Example 2.4 Let’s use Eq. (2.39) to calculate the total work done in assembling a set
of n charges qi, by bringing them from infinity to their final positions in a local assembly
of charges. The first charge costs nothing to move, since there are no assembled charges
and no electric field to fight against. Adding each additional charge will require the work
specified in Eq. (2.39) summed pairwise over contributions from all charges. Therefore the
total work required to assemble the final distribution of n charges is

W =
1
2

1
4πε0

n

∑
i=1

n

∑
j ̸=i

qiq j

ri j

=
1
2

n

∑
i=1

qi

(
n

∑
j ̸=i

1
4πε0

q j

ri j

)

=
1
2

n

∑
i=1

qi Φ(rrri), (2.40)

where ri j is the distance between charges i and j, the restriction i ̸= j omits infinite self-
energies of a charge interacting with itself (see the discussion in Section 1.6 of infinite self
energies of point particles), the initial factor of 1

2 is to correct for the double counting of
pairs in the double summation, and the factor in parentheses on the second line represents
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the potential Φ(rrri) at the position rrri of charge qi generated by all the other charges [see
Eq. (2.30)].

Equation (2.40) represents the work required to assemble the n charges into some local
configuration. Therefore, Eq. (2.40) also represents a total (potential) energy stored in the
electric fields of the final assembly of charges, which could be released by moving all of
the charges back to infinity.

2.7.2 Energy of a Continuous Charge Distribution

Previous sections have shown how to calculate the energy of a discrete set of charges.
Let’s now address determining the energy of a continuous distribution of charge. From Eq.
(2.40) we infer that assembling a continuous volume charge requires an amount of work

W =
1
2

∫
ρ Φdτ, (2.41)

where dτ is a volume element. This can be rewritten to eliminate the charge density ρ and
the scalar potential Φ in favor of the electric field EEE in the following way. Use Gauss’s law
ρ = ε0∇∇∇ ·EEE from Eq. (2.21) to express ρ in terms of EEE,

W =
ε0

2

∫
(∇∇∇ ·EEE)Φdτ, (2.42)

and integrate this by parts (see Appendix A.11) to give

W =
ε0

2

(
−
∫

V
EEE · (∇∇∇Φ)dτ +

∮

S
ΦEEE ·daaa

)
, (2.43)

where daaa≡ nnnda. But from Eq. (2.35), ∇∇∇Φ =−EEE, so

W =
ε0

2

(∫

V
E2 dτ +

∮

S
ΦEEE ·daaa,

)
(2.44)

where E ≡ |EEE|, and the integration volume V in the first term is large enough to enclose
all charge. If we let V → ∞ then the second (surface) term tends to zero relative to the first
term, giving

W =
ε0

2

∫
E2dτ, (2.45)

where it is understood that the integration is over all space. The use of Eq. (2.45) is illus-
trated in Example 2.5.

Example 2.5 Let’s calculate the energy of a uniformly charged spherical shell of total
charge Q and radius R. From the solution of Problem 2.4, inside the sphere EEE = 0 and
outside

EEE =
1

4πε0

Q
r2 r̂rr −→ E2 =

Q2

(4πε0)2r4 ,
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where we work in spherical coordinates. Therefore, from Eq. (2.45),

W =
Q2

8πε0

∫ ∞

R

dr
r2 =

1
8πε0

Q2

R
,

where all contributions to the energy have come from fields outside the sphere.

2.8 Equipotential Surfaces and Field Lines

The equation Φ(xxx) = Φ0 defines a family of 2D surfaces having constant potential Φ0 in
3D space that are called equipotential surfaces. By virtue of Eq. (2.37), it takes no work
to move charges on such equipotential surfaces. It is often useful to visualize the potential
in an electrostatics problem by displaying equipotential contours graphically. Likewise,
it is useful to visualize the electric field associated with the potential. The potential is a
scalar, having one value at a given coordinate. The electric field is a vector field; it can be
represented by an arrow at a given point, indicating a magnitude by the length (or color in
a color plot) and a direction by an orientation angle for the arrow.

2.8.1 Equipotential Contours and Vector Fields

Figure 2.8 illustrates a 2D projection of equipotential contours (the solid lines) superposed
on vectors indicating the magnitude and direction of the corresponding electric field for a
static dipole charge configuration (see Box 3.3). Note that in Fig. 2.8 the vectors represent-
ing the electric field are generally perpendicular to the potential contours where they cross.
We can see that this must be so immediately by considering an equipotential contour. From
Eq. (2.37), for any path lying entirely on an equipotential surface,

∫ xxx2

xxx1

EEE ·dlll = 0, (2.46)

which indicates either that EEE = 0 along the entire path, or that the direction of EEE is or-
thogonal to the equipotential surface at every point. Thus when any non-vanishing electric
field lies on an equipotential surface the field vector must be oriented at right angles to the
equipotential surface.

2.8.2 Electric Field Lines

Rather than drawing the full projection in 2D of the vector field, as has been done in
Fig. 2.8, it is often useful to construct electric field lines, which are continuous curves
drawn connecting points corresponding to the same magnitude of the electric field, drawn
such that a differential element of arc length on the field line dlll points in the direction of
EEE(xxx) at each point; that is

dlll = λEEE, (2.47)
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tFig. 2.8 Equipotential contours (solid curves) and the electric vector field (arrows) originating in a
dipole charge distribution (see Box 3.3). For clarity, plotting of contours and vectors has
been suppressed near the two charges. Notice that the field vectors cross equipotential
contours at right angles, and must reverse from outward-going around the positive charge
to inward-going around the negative charge. To avoid clutter the equipotentials are not
labeled, but they are negative on the right side of the diagram (x < 0), as indicated by
dashed contours, and positive on the left side x > 0, as indicated by solid contours.

where λ is a constant. Thus, from the discussion in Section 2.8.1, every electric field line is
locally normal to an equipotential surface,9 except at points where EEE = 0. The differential
equations defining the electric field lines correspond to writing out the components of Eq.
(2.47); in cartesian coordinates they take the form

dx
dEx

=
dy

dEy
=

dz
dEz

= λ . (2.48)

An example of electric field lines for an electric dipole charge distribution is given in
Fig. 2.9. Each field line connects points having a constant electric field strength, with the
direction of EEE given by the tangent to the curve at that point. Representative electric field
vectors are shown at various points. For example, two vectors are drawn on the uppermost
lobe, both of the same length since they are on the same field line, but with different
directions corresponding to tangents to the field line where they are drawn. Figure 2.10
9 Notice that this is consistent with the usual geometrical interpretation of the gradient in EEE = −∇∇∇Φ being

related to a direction of steepest descent in a potential surface.
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tFig. 2.9 Electric field lines for an electric dipole charge distribution with charges ±q. Notice the
convention reflected in the field lines that the electric field points away from positive
charges and toward negative charges. Some representative vectors EEE are shown at
several points, with length proportional to the field strength on that curve, and direction
tangent to the field line at that point.

illustrates plotting electric field lines and electric potential contours on the same graph for
an electric dipole. Figure 2.11 displays electric field lines and electric potential contours
for a charge distribution consisting of two nearby charges of the same sign.

Notice in these plots that since EEE has a unique direction at every spatial point, electric
field lines cannot cross (except at a null point where the field is tending to zero). The
number density of field lines passing through a differential element of an equipotential
surface is assumed to be proportional to the magnitude of EEE at that point. This implies that
the total number of field lines passing through a surface S is proportional to the electric
flux FE,

FE =
∫

S
n̂nn ·EEEdS. (2.49)

As you are asked to show in Problem 2.8, if the surface S is closed, charge conservation
demands that the flux through the surface must be proportional to the charge enclosed by
the surface,

FE =
QV

ε0
, (2.50)

which means that the net number of electric field lines crossing S is proportional to the net
charge enclosed by S. As a corollary, if no charge is enclosed in the volume V , every field
line that enters V must also leave V .
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+q −q

tFig. 2.10 Electric field lines (black with arrows) and equipotential contours (gray, no arrows) for an
electric dipole with charges ±q. Notice that the field lines are always locally perpendicular
to the potential contours.

2.8.3 2D Projections of 3D Physics

Two-dimensional representations of (usually 3D) electric fields and potentials can be very
useful in visualizing an electrostatics problem, but 2D projections can distort the actual
physical situation in a 3D problem. This is particularly true in interpreting the density of
field lines as indicating the local strength of the field, since projection from 3D to 2D can
give misleading information about the actual density of field lines in 3D. On the other
hand, more realistic 3D volume rendering is technically more demanding, and may present
its own problems of visual interpretation when displayed in static 2D media.

2.9 Superposition of Scalar Potentials

We introduced the principle of linear superposition in Section 2.3 with the hypothesis that
the forces acting on a test charge Q are the vector sum of contributions from each source
charge qi,

FFF = FFF1 +FFF2 +FFF3 + . . . (2.51)

and since FFF = QEEE, dividing the terms in Eq. (2.51) by Q implies linearity for the electric
fields EEE also,

EEE = EEE1 +EEE2 +EEE3 + . . . (2.52)
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+q +q

tFig. 2.11 Electric field lines (black with arrows) and equipotential contours (gray, no arrows) for two
nearby charges of the same sign +q.

Likewise, from the preceding definitions the scalar potential Φ may be expected to obey
linear superposition,

Φ = Φ1 +Φ2 +Φ3 + . . . , (2.53)

meaning that the potential at a point xxx is the sum of the potentials due to all source charges
considered separately. However, there is a fundamental difference between linear superpo-
sition for potentials and linear superposition for forces and electric fields.

Linear superposition of electrostatic forces and electric fields in Eqs. (2.51) and
(2.52) corresponds to vector sums, but linear superposition of potentials in Eq.
(2.53) entails an ordinary arithmetic sum over scalar quantities Φi, which is typ-
ically easier to deal with than a sum over vectors.

Examples 2.6 and 2.7 illustrate calculating the potential Φ of a charge distribution and then
taking its gradient to give the electric field.

Example 2.6 Let’s calculate the potential and corresponding electric field for the elec-
tric dipole charge configuration displayed in Fig. 2.12(a) at the point P, and also also ap-
proximate the result for a very large distance x≫ a along the x axis from the charges. At
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-q +q
a a

r

R x

dr

P Px

x

y(a)

(b)

tFig. 2.12 (a) An electric dipole charge configuration used in Example 2.6. (b) Uniformly charged disk
of radius R and surface charge density σ used in Example 2.7.

the point P the potential Φ is the sum of contributions from the two charges,

Φ =
1

4πε0

(
q

x−a
+
−q

x+a

)
=

1
2πε0

(
qa

x2−a2

)
.

The electric field is then oriented along the x axis with magnitude given by minus the
gradient of the potential

Ex =−∇∇∇Φ =−dΦ
dx

=
1

πε0

[
aqx

(x2−a2)2

]
.

The scalar potential and electric field may be approximated as

Φ≃ 1
2πε0

(aq
x2

)
Ex ≃−

dΦ
dx

=
1

πε0

(aq
x3

)
,

if x≫ a, so that x2−a2 ∼ x2.

Example 2.7 Let’s calculate the electric field at the point P along the x axis for the
charged disk of radius R and uniform surface charge density σ illustrated in Fig. 2.12(b).
For a ring of radius r and width dr the charge element at a distance (r2 + x2)1/2 from the
point P is dq = (2πrdr)σ . Then

dΦ =
1

2ε0

(
σrdr√
x2 + r2

)

and since the potential obeys the superposition principle the total Φ at the point P is ob-
tained by integration over the disk,

Φ =
∫

dΦ =
∫ R

0

1
2ε0

(
σrdr√
x2 + r2

)

=
σ

2ε0

∫ R

0

r dr√
x2 + r2

=
σ

2ε0

[√
x2 + r2

]R

0

=
σ

2ε0

(√
x2 +R2− x

)
.
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Then the electric field at P is minus the gradient of the potential,

Ex =−
dΦ
dx

=
σ

2ε0

(
1− x√

x2 +R2

)
,

where by symmetry EEE has only x components.

For relatively simple charge distributions like those in Examples 2.6 and 2.7, the potentials
can be worked out easily and then the electric field is determined by taking the gradient of
the potential. However, more complex situations may require more powerful and system-
atic ways to determine potentials. In the next section we show that the problem of finding
potentials can be cast in the form of solving a second-order partial differential equation.
Although it can become mathematically involved, this approach may be preferred over the
ones we have examined so far, particularly for problems with complicated boundary con-
ditions, because it provides a systematic procedure that may be applied to a broad range of
complex problems.

2.10 The Poisson and Laplace Equations

We have already found in Eq. (2.27) that the curl ∇∇∇×EEE of the electric field vanishes. It is
of interest then to ask, what is the divergence ∇∇∇ ·EEE of the electric field? From Eq. (2.35),

∇∇∇ ·EEE = ∇∇∇ · (−∇∇∇Φ) =−∇2Φ,

and comparing this result with Gauss’s law (2.21) gives Poisson’s equation,

∇2Φ =− ρ
ε0

(Poisson’s equation), (2.54)

where the Laplacian operator ∇2 in cartesian coordinates is given by [see Eq. (A.19)]10

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 , (2.55)

which operates on a scalar to return a scalar. We will need the Laplacian operator at times
in other coordinate systems, so let’s go ahead and write it in spherical coordinates (r,θ ,φ),

∇2 =
1
r2

∂
∂ r

(
r2 ∂

∂ r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂
∂θ

)
+

1
r2 sin2 θ

∂ 2

∂φ 2 , (2.56)

[see Eq. (A.50)], and in cylindrical coordinates (ρ,φ ,z),

∇2 =
1
ρ

∂
∂ρ

(
ρ

∂
∂ρ

)
+

1
ρ2

∂ 2

∂φ 2 +
∂ 2

∂ z2 . (2.57)

10 Some author use the symbol ∆ instead of ∇2 for the Laplacian operator. The Poisson and Laplace equations are
partial differential equations (PDEs), which are typically more difficult to deal with than ordinary differential
equations (ODEs). We shall address methods of solution for the Poisson and Laplace equations shortly.
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[see Eq. (A.57)].
For regions where there is no charge density ρ = 0 and Poisson’s equation reduces to

Laplace’s equation,

∇2Φ = 0 (Laplace’s equation). (2.58)

By construction, solving Poisson’s equation (or Laplace’s equation if ρ = 0) is equivalent
physically to solving for the potential Φ using Eq. (2.28), and once Φ has been determined
by either means the electric field can be calculated from Eq. (2.35).

An important property of Laplace’s equation (2.58) is that it is linear: if each of
a set of potentials {Φ1,Φ2,Φ3, . . . ,Φn} satisfy (2.58), then a linear combination
of them,

Φ≡ a1Φ1 +a2Φ2 +a3Φ3,+ . . .+Φn,

with arbitrary constants ai is also a solution.

Example 2.8 Earlier it was asserted that Eq. (2.31a) gives the scalar potential Φ(xxx) for
a 3D continuous charge distribution, which means that Φ(xxx) should be a solution of the 3D
Poisson equation (2.54). Let’s check that it is. From Eq. (2.31a),

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d

3x′,

and applying the Laplacian operator to both sides of this equation gives

∇2Φ(xxx) =
1

4πε0

∫
ρ(xxx′)∇2

(
1

|xxx− xxx′|

)
d3x′.

Evaluating the right side is potentially tricky as the integrand is singular as xxx′→ xxx, but this
may be handled simply using that from Eq. (A.75) the Laplacian of |xxx− xxx′|−1 is propor-
tional to a Dirac delta function.

∇2
(

1
|xxx− xxx′|

)
=−4πδ (xxx− xxx′),

giving immediately

∇2Φ(xxx) =− 1
ε0

∫
ρ(xxx′)δ (xxx− xxx′)d3x′ =−ρ(xxx)

ε0
,

which is Poisson’s equation (2.54).

A more involved solution for Example 2.8 that doesn’t invoke the Dirac δ -function may be
found in Ch. 1 of Jackson [19].
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Background and Further Reading

Introductions to the material of this chapter may be found in Corson and Lorrain [7], Grif-
fiths [13], Kamberaj [21], Lorrain and Corson [26], and Purcell and Morin [32]. More ad-
vanced treatments may be found in Jackson [19], Garg [11], Chaichian et al [5], Zangwill
[42], and Wald [40].
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Problems

2.1 Find the electric field produced by an infinite plane that carries a uniform surface
charge density σ .

2.2 Two infinite parallel planes have equal but opposite charge densities ±σ .

I II III

+σ −σ

Find the electric fields in regions I, II, and III.
2.3 Prove that an isolated good conductor in electrostatic equilibrium (no net motion of

charge carriers) has the following properties.

1. The interior electric field is zero.
2. Any excess charge resides on the surface.
3. The electric field just outside a charged conductor is perpendicular to the surface

with a magnitude σ/ε0, where σ is the surface charge density at that point.
4. If the conductor is of irregular shape, the surface charge density σ is greatest

where the surface has the largest local curvature (smallest radius of curvature).

Hint: Gauss’s law will be extremely useful. ***
2.4 A thin spherical shell of radius a has a total charge of Q distributed uniformly over

its surface, as illustrated in the following figure.

a

r

ar

(a) (b)

Gaussian

surfaces

Find the electric field inside and outside the spherical shell using the Gaussian sur-
faces indicated by dashed circles.

2.5 (a) Use Stokes’ theorem to prove that an electric field is conservative by examining
the work done on a test charge moved over a closed path. (b) Prove that the compo-
nents of an electric field EEE satisfy the constraints imposed by Eq. (2.36).
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2.6 Two charge distributions ρA(xxx) and ρB(xxx) are related by a change of scale: ρB(αxxx) =
ρA(xxx), where α is a constant. What is the relationship of the scalar potentials and the
electric fields for these two charge distributions?

2.7 Consider a 1D line segment of length 2L, shown in the following figure,

z
+L-L

x

ρ
r-

r+

P(z,ρ)

which carries a uniform charge density per unit length of λ . What is the electric
potential at an arbitrary point P(z,ρ)? ***

2.8 Use Gauss’s law to show that if an equipotential contour corresponds to a closed sur-
face S, the electric flux (2.49) through the surface must satisfy FE = QV/ε0, where
QV is the charge contained within the volume V bounded by the surface S.

2.9 A uniform electric field EEE of strength 4× 104 V m−1 is directed along the positive
x-axis. A proton (Q = 1.6×10−19 C) is released from rest at point A and is found to
undergo a displacement of d = 0.5 m in the direction of EEE to point B. (a) What is the
difference in electrical potential between points A and B? (b) How much does the
potential energy of the proton change over this displacement?

2.10 Consider the electric dipole configuration

P(x,z)

d

x

+Q

−Q

θ

r+

r-

r

z

where the distance to the point P(x,z) is much larger than the separation of the two
charges. What is the electric potential Φ and what are the components of the electric
field Ex and Ez evaluated at P(x,z), expressed as functions of the distance r = |rrr| and
the angle θ?

2.11 (a) Show that the general formula for the electric field produced by an infinite line
charge of uniform density λ at a perpendicular distance z from the line charge is

E =
λ

2πε0z
ẑzz,

by finding the electric field at the point P in the following figure,
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x

+L-L

z

P(x)

x - x'z

x'

Line

charge

produced by a line charge λ of length 2L, and then taking the limit L→∞. (b) Show
that in the limit z≫ L, the electric field looks like that of a point charge of magnitude
2λL. ***



3 Electrostatic Boundary Value Problems

In Ch. 2 we introduced the Poisson equation (2.54), with solutions corresponding to scalar
potentials Φ(xxx) in the presence of a charge density, and the Laplace equation (2.58), with
solutions corresponding to scalar potentials Φ(xxx) in regions having no charge density, with
the electric field then obtained in either case by taking a gradient of the potential. Those
solutions result from solving the corresponding partial differential equations subject to
boundary conditions, which can be a highly nontrivial undertaking. This chapter addresses
the nature of the solutions of the Poisson and Laplace equations, and some means of obtain-
ing those solutions without necessarily solving the differential equations directly. However,
many problems are sufficiently complicated that the simplest approach is to grasp the nettle
and solve the Poisson and Laplace partial differential equations directly. We shall consider
such direct solutions in Ch. 4.

3.1 Electric Fields and Surface Charge Layers

Let us now demonstrate that an electric field necessarily exhibits a discontinuity if a surface
charge layer is crossed. Consider Fig. 3.1, which shows a small piece of a surface having
a surface charge density σ . We place a very thin rectangular Gaussian box of height ε that
extends vertically just below and just above the surface. From Gauss’s law,

∮

S
EEE ·daaa =

ε0
=

σA
ε0

,

where Q = σA is the enclosed charge and daaa = nnna. In the limit that ε → 0 the sides of the
box contribute no flux. The electric fields arising from the surface charge are perpendicular
to the local plane and parallel to nnn, so

∮

S
EEE ·daaa = E

∫
da = EA

ε

A σ

tFig. 3.1 Discontinuous normal of EEE at surface of a conductor. The surface charge density is σ and
the rectangular Gaussian surface has a top area of A and height of ε .

44
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and therefore

EEE =
σ

2ε0
n̂nn, (3.1)

where n̂nn is a unit vector perpendicular to the surface and pointing away from it in Fig. 3.1.
Then the difference between electric fields above and below the plane is

EEEabove−EEEbelow =
σ
ε0

n̂nn, (3.2)

An electric field is necessarily discontinuous at a boundary charge layer: it
points in the same direction on either side of the boundary, but its magnitude
changes by σ/ε0 when the boundary is crossed.

On the other hand, the scalar potential is continuous across the boundary, since if AAA is a
point just below the surface and BBB is a point just above it,

Φabove−Φbelow =−
∫ BBB

AAA
EEE ·dlll, (3.3)

which tends to zero as the distance between AAA and BBB is decreased. The gradient of Φ
and EEE are related by ∇∇∇Φ = −EEE, so the scalar potential is continuous but ∇∇∇Φ inherits the
discontinuity in EEE at the boundary,

∇∇∇Φabove−∇∇∇Φbelow =− σ
ε0

n̂nn. (3.4)

This can also be rewritten as

∂Φabove

∂n
− ∂Φbelow

∂n
=− σ

ε0

∂Φ
∂n

= ∇∇∇Φ · n̂nn, (3.5)

where ∂Φ/∂n is the normal derivative (directional derivative evaluated in a direction per-
pendicular to the surface). These boundary conditions are valid only just above and just
below the surface, so the above equations are valid only in the limit that the surface in
Fig. 3.1 is approached very closely from the top or bottom.

3.2 Properties of Poisson and Laplace Solutions

Since the Poisson or Laplace equations can be difficult to solve with appropriate boundary
conditions for many real-world problems, it is useful to catalog those features of the solu-
tions that are generic. Let us consider one-dimensional equations first before tackling 2D
and 3D versions.
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3.2.1 The Laplace Equation in 1D

Laplace’s equation in one dimension is a function of a single variable, which we choose to
be x,

∇2Φ = 0 −→ ∂ 2Φ
∂x2 = 0 −→ d 2Φ

dx2 = 0, (3.6)

the last step indicates explicitly that the usual partial differential equation (PDE) reduces
to an ordinary differential equation (ODE), if there is only one variable. The ODE (3.6)
has a general solution

Φ(x) = ax+b, (3.7)

which graphs as a straight line parameterized by the constants a and b (there are two pa-
rameters because it is a solution to a second-order ordinary differential equation). The
values of the parameters are determined by imposing boundary conditions. Two bound-
ary conditions are required, since there are two undetermined parameters. In this example,
the boundary conditions could consist of specifying Φ(x) at two different values of x. The
boundary conditions in actual applications reflect the detailed physics of the system being
modeled by Eq. (3.6), and can be considerably more involved than this simple example.
This solution of the 1D Laplace equation has two unique features (which will carry over in
suitable form to 2D and 3D).

1. A solution Φ(x) is an average of Φ(x− c) and Φ(x+ c),

Φ(x) =
1
2
[Φ(x+ c)+Φ(x− c)] , (3.8)

for arbitrary c.
2. There can be no local maxima or minima for the solution as a function of the parameter

x, which is a corollary of the first point.

This latter point is sometimes called Earnshaw’s theorem, which may be viewed as the
mean value theorem applied to electrostatics.1 An alternative statement of Point 2 is that
the average of the scalar potential Φ over any sphere that lies entirely in a charge-free
region is equal to the value of the potential at the center of the sphere (see Problem 4.2).

Point 2 implies that maxima or minima of a 1D Laplace solution can occur only at the
endpoints of the plot, since if there were a local maximum or minimum of Φ at some
value other of x not an endpoint, it could not be the average of points on either side of it,
contradicting the requirement of Eq. (3.8). Illustrations of this absence of local maxima or
minima will be given later in Figs. 4.2 and 4.4 for 2D Laplace solutions. One implication of

1 Mean Value Theorem (MVT): For a continuous and differentiable function, the average rate of change over a
closed interval is equal to the instantaneous rate of change at some point in the interval. An illustrative example
of applying the MVT concerns detection of automobile speeds with police radar. Suppose the speed limit on
a long stretch of road to be 60 miles per hour (MPH). A car is measured by radar at Point A to have a speed
of 55 MPH, and a half hour later and 40 miles down the road at Point B the same car is measured to have a
speed of 58 MPH. For both local measurements at A and B the car was traveling below the speed limit of 60
MPH, but globally the average speed between A and B was 40 miles/0.5 hours = 80 MPH. By the MVT, it is
necessarily true that at some point between A and B the car had a speed of exactly 80 MPH, which exceeds
the speed limit by 20 MPH.
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x

z

y

R

da

d

r

θ

Q

tFig. 3.2 Averaging Φ over a sphere of radius R with a single point charge q lying on the z-axis,
external to the sphere and a distance r from its center (used in Example 3.1).

Earnshaw’s theorem is that no configuration of electrical charges can be held in equilibrium
by purely electrostatic forces, because there can be no local minima in energy (which varies
as the square of the electric field).

3.2.2 2D and 3D Laplace Equations

Let us now move to 2D and 3D versions of Laplace’s equation, where it is necessary to
solve partial differential equations that take the form

∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 = 0

∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 +

∂ 2Φ
∂ z2 = 0, (3.9)

in cartesian coordinates. This introduces a higher level of difficulty than for the 1D case
because solution of PDE’s with boundary conditions are typically more complex than so-
lution of ODEs with boundary conditions. We will illustrate for 3D. The solutions of the
Laplace and Poisson equations have two unique features that generalize those found in 1D.

1. The solution Φ(xxx) at a point xxx is an average of values over a sphere centered at xxx.

Φ(xxx) =
1

4πR2

∮
Φda, (3.10)

where the integral is over the surface of a sphere of radius R centered at xxx.
2. Because of Point 1, the solution cannot have local minima or maxima, so extrema can

occur only on the boundaries.

(See illustrations of Point 2 in Figs. 4.2 and 4.4.)

Example 3.1 Let’s check Point 1 for a single point charge Q outside a sphere that is a
distance r from the center of the sphere, as illustrated in Fig. 3.2. From this figure the law
of cosines gives for the distance d from the charge Q to the patch da,

d2 = r2 +R2−2rRcosθ .
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At a single point on the surface of the sphere the potential is (see Fig. 3.2),

Φ =
1

4πε0

Q
d
=

1
4πε0

Q√
r2 +R2−2rRcosθ

,

and from Eq. (3.10) the average over the sphere is

Φavg =
1

4πR2
Q

4πε0

∫
(r2 +R2−2rRcosθ)−1/2R2 sinθ dθ dφ

=
Q

4πε0

1
2rR

(r2 +R2−2rRcosθ)1/2
∣∣∣
π

0

=
Q

4πε0

1
2rR

[(r+R)− (r−R)] =
1

4πε0

q
r
,

which is the potential that would be produced by placing Q at the center of the sphere (see
Eq. (2.29)).

3.3 Uniqueness Theorems

Use of the Poisson or Laplace equations to determine the potential Φ requires the solu-
tion of partial differential equations with boundary conditions. A simple example of such a
problem is illustrated in Fig. 3.3, where the task is to solve for the scalar potential in some
volume V bounded by a surface S with parts held at constant potentials. For partial differ-
ential equations it is often not immediately obvious what constitutes appropriate boundary
conditions (meaning that they allow a solution and that it is physically well-behaved). The
proof that a given set of boundary conditions fits the bill is called a uniqueness theorem.
Two categories of boundary conditions are most common in electrostatics problems.2

1. Dirichlet boundary conditions correspond to specification the potential on a closed sur-
face.

2. Neumann boundary conditions correspond to specification of the electric field at every
point on the surface (which is equivalent to specifying the normal derivative of the
potential, or the surface charge density, everywhere the surface).

This leads to two uniqueness theorems.

2 From a laboratory perspective, the Dirichlet criteria are typically the simplest and most natural way to set
boundary conditions. For example, in the lab one often has conductors connected to batteries, which maintain
a fixed finite potential on the conductor, or connected to ground, which corresponds effectively to maintaining
Φ = 0. But there may be other situations in which we do not know the potential on the boundaries, but we do
know the total charge on each bounding surface. Then Neumann boundary conditions become more natural.
Practically, Neumann boundary conditions are seldom natural when only perfect conductors and dielectric
matter are present; they can arise in applications such as the theory of waveguides or when steady currents
flow through an ohmic medium [42]. As will be mentioned later, in principle mixed conditions can result if
Dirichlet constraints are applied to parts of a boundary and Neumann constraints to other parts, but that is
typically mathematically complex. Hence we shall emphasize Dirichlet boundary conditions when examples
are needed in our discussion.
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V

S

Φ=Φ
0

Φ=0
Φ=0

Φ=0

Φ=0

Φ=0tFig. 3.3 Generic example of an electrostatics problem formulated in a 3D volume V that is bounded
by a 2D surface S. In this case the (finite) volume V is surrounded by a rectangular
conducting box S with boundary conditions corresponding to five of the six conducting box
faces held at zero potential, Φ = 0, and one face at a finite potential, Φ = Φ0. Since the
potential is being specified on the bounding surface S, this is an example of Dirichlet
boundary conditions. The problem would typically be to solve for the electrostatic potential
Φ(x,y,z) in the volume V , subject to the boundary conditions on S. If the charge density
ρ(x,y,z) is zero in the volume V , this would correspond to solving the Laplace equation,
subject to the boundary conditions.

Uniqueness Theorem I: The solution of Poisson’s or Laplace’s equations in
some volume V is uniquely determined if Φ is specified everywhere on the
boundary surface S of the volume V .

The simplest way to set boundary conditions is to specify the value of the scalar field Φ on
all surfaces surrounding the region (which corresponds to Dirichlet boundary conditions).
Then the first uniqueness theorem applies. However, in some situations we may not know
the potential at the boundaries but we do know the total charge on conducting surfaces.
This permits formulation of a second uniqueness theorem.

Uniqueness Theorem II: If a volume V is surrounded by conductors of having
charge densities ρ , the electric field is uniquely determined if the total charge on
each conductor is specified.

Thus the second uniqueness theorem is appropriate for Neumann boundary conditions. Let
us now turn to proof and a deeper look at these uniqueness theorems.

3.3.1 Uniqueness Theorems by Green’s Methods

From a formal point of view, the solution of the Laplace or Poisson equation in a volume
V bounded by a surface S with either Dirichlet or Neumann boundary conditions on S
(for example, Fig. 3.3) can be obtained using Green function methods [19]. These may be
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derived beginning with the divergence theorem,
∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x (Divergence theorem), (3.11)

which is valid for any well-behaved vector field AAA in a volume V bounded by the closed
surface S. Let AAA = φ∇∇∇ψ where φ and ψ are arbitrary scalar fields. Then

∇∇∇ · (φ∇∇∇ψ) = φ∇2ψ +∇∇∇φ ·∇∇∇ψ (3.12)

φ∇∇∇ψ ·nnn = φ
∂ψ
∂n

, (3.13)

where ∂/∂n is the normal derivative at the surface, directed from inside to outside the
volume V . Substitution of Eqs. (3.12) and (3.13) into the divergence theorem (3.11) then
gives Green’s first identity

∫

V
(φ∇2ψ +∇∇∇φ ·∇∇∇ψ)d3x =

∮

S

∂ψ
∂n

da (Green’s first identity). (3.14)

If we then subtract from Eq. (3.14) the same expression but with φ and ψ interchanged,
the ∇∇∇φ ·∇∇∇ψ terms cancel, giving Green’s theorem (also termed Green’s second identity)

∫

V
(φ∇2ψ−ψ∇2φ)d3x =

∮

S

[
φ

∂ψ
∂n
−ψ

∂φ
∂n

]
da (Green’s theorem). (3.15)

Let us now choose a particular function for ψ ,

ψ ≡ 1
R
=

1
xxx− xxx′

,

where xxx is the observation point and xxx′ is the integration variable, set φ equal to the scalar
potential φ = Φ, use Poisson’s equation

∇2Φ =− ρ
ε0

and use that from Eq. (A.75)

∇2
(

1
R

)
= 4πδ (xxx− xxx′),

so that Eq. (3.15) becomes
∫

V

[
−4πΦ(xxx′)δ (xxx− xxx′)+

1
ε0R

ρ(xxx′)
]

d3x′ =

∮

S

[
Φ

∂
∂n′

(
1
R

)
− 1

R
∂Φ
∂n′

da′
]
. (3.16)

Then, if xxx lies within the volume V , this becomes

Φ(xxx) =
1

4πε0

∫

V

ρ(xxx′)
R

d3x′+
1

4π

∮

S

[
1
R

∂Φ
∂n′
−Φ

∂
∂n′

(
1
R

)]
da′. (3.17)

Notice two important implications of this result.
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1. If the surface S is at infinity and the electric field on S falls off faster than R−1, the
surface term in Eq. (3.17) vanishes and we recover

Φ(xxx) =
1

4πε0

∫ ρ(xxx′)
|xxx− xxx′| d

3x′,

which is the usual result of Eq. (2.31a),
2. In the second (surface) term both the the scalar potential Φ and the normal derivative of

the scalar potential ∂Φ/∂n′ appear.

• The first is associated with Dirichlet boundary conditions and
• the second with Neumann boundary conditions.

Thus Eq. (3.17) is overdetermined because it isn’t permitted to impose both types of bound-
ary conditions on the same closed surface.3 Since it is overdetermined, Eq. (3.17) is not a
valid solution. In Section 3.4 we shall address how to correct this deficiency.

3.3.2 Proof of Uniqueness

Let us now demonstrate explicitly that the use of either (but not both) Dirichlet or Neu-
mann boundary conditions defines a unique potential problem, following the presentation
in Jackson [19]. Assume the contrary proposition that the solution is not unique and that
there are two potentials, Φ1 and Φ2 that satisfy the Laplace equation with the same bound-
ary conditions. Let the difference between the two hypothesized solutions be defined by
U = Φ2−Φ1. Then by Laplace

∇2U = ∇2Φ2−∇2Φ1 = 0

inside the volume V , while on the boundary S either

1. U = 0 (Dirichlet boundary conditions) or
2. ∂U/∂n = 0 (Neumann boundary conditions).

Setting φ = ψ =U and applying Green’s first identity (3.14) gives
∫

V
(U∇2U +∇∇∇U ·∇∇∇U)d3x =

∮

S
U

∂U
∂n

da. (3.18)

For either Dirichlet or Neumann of boundary conditions the surface integral on the right
vanishes, as does the first term in the volume integral on the left, and this reduces to

∫

V
|∇∇∇U |2 d3x = 0, (3.19)

which implies that U is constant inside V , since ∇∇∇U = 0. For Dirichlet boundary conditions
U = 0 on S (the two purported solutions must be equal on the boundary since they are
assumed to have the same boundary conditions). Furthermore, solutions of the Laplace or
Poisson equation must have any extrema on the boundaries (see Sections 3.2.1 and 3.2.2),

3 Mathematically, an overdetermined system effectively has more equation constraints than unknowns. Such a
system is typically inconsistent (no set of values for parameters satisfies all equations), and contradictory (its
equations can be manipulated to obtain different incompatible results).
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so since U = 0 on the boundary, U is also zero inside V , implying that Φ1 = Φ2 and the
solution is unique. Likewise, for Neumann boundary conditions the solution is unique, up
to an arbitrary additive constant. For simplicity this uniqueness proof was for the Laplace
equation, but a similar proof of uniqueness follows for the Poisson equation (see Problem
3.9).

Thus we have shown that for either Dirichlet or Neumann boundary conditions
the solution of the Laplace equation is unique.

By similar proofs the solution is unique if the closed surface S has mixed boundary con-
ditions (part with Dirichlet boundary conditions and part with Neumann boundary condi-
tions).4 However, since Dirichlet and Neumann boundary conditions each define a unique
solution, imposing both Dirichlet and Neumann conditions on the same boundary surface
will overdetermine the system and no reliable solution will exist. Let us conclude this
section by summarizing some general statements about Dirichlet and Neumann boundary
conditions in electrostatics problems gleaned from the preceding discussion.

1. One can specify either Dirichlet or Neumann constraints at each point on a boundary,
but not both. If both are specified the system is overdetermined.

2. It is legitimate to specify parts of a boundary using Dirichlet conditions and other parts
using Neumann conditions (as long as Dirichlet and Neumann conditions don’t overlap
on any part of the boundary).

3. The uniqueness property means that a solution obtained by any method is the correct
solution, if it satisfies the equations and implements the correct boundary conditions.

Much of the uniqueness of solutions for the Poisson and Laplace equations follows the
Helmholtz Theorem, which is described in Box 3.1.

3.4 Boundary-Value Problems by Green Functions

In obtaining the result of Eq. (3.17) (recall: it is not a valid solution because the boundary
conditions are overdetermined) we chose the function ψ to be 1/|xxx− xxx′|, which satisfies

∇∇∇′2
(

1
|xxx− xxx′|

)
=−4πδ 3(xxx− xxx′), (3.20)

where ∇∇∇′2 is the Laplace operator ∇2 acting on xxx′ rather than xxx. The function 1/|xxx− xxx′| is
a specific example of a class of functions called Green functions that satisfy Eq. (3.20). A
Green function is a solution to an inhomogeneous differential equation with a δ -function

4 Although non-overlapping mixed boundary conditions are legitimate, they can be difficult to deal with relative
to problems with a single type of boundary condition. An example of solving a problem using mixed boundary
conditions may be found in Section 3.13 of Ref. [19].
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Box 3.1 The Helmholtz Theorem

Let FFF(rrr) be any continuous vector field with continuous first partial derivatives.
Then FFF(rrr) can be uniquely expressed in terms of the negative gradient of a scalar
potential Φ(rrr) and the curl of a vector potential AAA(rrr),

FFF(rrr) =−∇∇∇Φ(rrr)+∇∇∇×AAA(rrr).

This can also be written as the Helmholtz decomposition,

FFF(rrr) = FFFL(rrr)+FFFT(rrr),

where L denotes a longitudinal component and T a transverse component of a
vector field. The theorem is sometimes paraphrased as a uniqueness statement:

A vector field with its curl and divergence specified everywhere is
uniquely determined, provided that the sources vanish at infinity, and that
the field vanishes at infinity at least as fast as r−2.

EXAMPLE: It isn’t a coincidence that the Maxwell equations (1.1) in the
absence of a magnetic field BBB satisfy the electrostatic equations

∇∇∇×EEE(xxx) = 0 ∇∇∇ ·EEE(xxx) = ρ(xxx)
ε0

,

insuring by the Helmholtz theorem that the electric field EEE(xxx) is uniquely
defined at all points because its curl and divergence are defined at all
points.

We will have more to say about this in later discussion of gauge invariance and
transverse and longitudinal components of the electromagnetic field.

source term.5 It provides a convenient method for solving more complicated inhomogenous
differential equations through superposition, because general solutions for inhomogeneous
differential equations can be approximated by a superposition of δ -functions evaluated at
different spacetime points. See the example of computing a Green function for a driven
harmonic oscillator in Box 3.2, and the evaluation of the retarded Green function for elec-
tromagnetic wave propagation in Section 11.4.

Generally a Green function G(xxx,xxx′) satisfies

∇∇∇′2G(xxx,xxx′) =−4πδ (xxx− xxx′) (3.21)

5 An inhomogeneous differential equation is one with a function on its right side, as opposed to a homogeneous
differential equation, which has a zero on its right side. Green functions are applied to classical electromag-
netism in the present discussion; they also find extensive use in other areas of mathematical physics such as
quantum field theory, but that is a topic for another day.
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Box 3.2 Green Function for a Driven Harmonic Oscillator

Before diving into the complexities of Green functions applied to electromagnetism,
it is useful to see the method in action for a more transparent problem. We may
illustrate by finding a solution for the mechanical problem of a 1D driven harmonic
oscillator illustrated in the following figure.

Fs f(t)

Fd
m

x

For driving force f (t), spring force Fs =−mω2
0 x, and drag force Fd =−2mγ ẋ,(

d 2

dt 2 +2γ
d
dt

+ω2
0

)
x(t) =

f (t)
m

(Equation of motion).

First consider (
∂ 2

∂ t2 +2γ
∂
∂ t

+ω2
0

)
G(t, t ′) = δ (t− t ′),

where G(t, t ′) is a Green function that describes an oscillator subject to a δ -function
driving force. The solution of this equation is (see Problem 3.8),

x(t) =
∫ ∞

−∞
G(t, t ′)

f (t ′)
m

dt ′,

The Green function method assumes that f (t) can be decomposed into a super-
position of δ -function pulses centered at different times. One way to find the Green
function is by Fourier transforms (Section 11.4). The Fourier transform of G(t, t ′) is

G(ω, t ′) =
∫ ∞

−∞
eiωtG(t, t ′)dt.

Applying the Fourier transform to both sides of the Green function equation gives
(
−ω2−2iγω +ω2

0

)
G(ω, t ′) =

∫ ∞

−∞
eiωtδ (t− t ′) = eiωt ′

and thus,

G(ω, t ′) =− eiωt ′

ω2 +2iγω−ω2
0
.

The inverse transform is

G(t, t ′) =
∫ ∞

−∞

dω
2π

e−iωtG(ω, t ′) =−
∫ ∞

−∞

dω
2π

e−iω(t−t ′)

(ω−ω+)(ω−ω−)
,

where ω±=−iγ±(ω2
0−γ2)1/2. There are two poles in the negative complex plane.

An integration contour may be closed in the upper half-plane for t < t ′ (enclosing
no poles) and the lower half-plane for t > t (enclosing both poles), giving solutions

G(t, t ′)=Θ(t−t ′)e−γ(t−t ′)×
{(

ω2
0 − γ2

)−1/2 sin
[(

ω2
0 − γ2

)1/2
(t− t ′)

]
(γ < ω0),(

γ2−ω2
0

)−1/2 sinh
[(

γ2−ω2
0

)1/2
(t− t ′)

]
(γ > ω0),

where Θ is the unit step function.
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where we define

G(xxx,xxx′) =
1

|xxx− xxx′| +F(xxx,xxx′), (3.22)

where F(xxx,xxx′) satisfies the Laplace equation inside the volume V ,

∇∇∇′2F(xxx,xxx′) = 0. (3.23)

The first term on the right side of Eq. (3.22) is the simplest Green function and is called the
Green function of free space (physically it gives the response at a point xxx to a unit charge
placed at xxx′),

G0(xxx,xxx′) =
1

|xxx− xxx′| . (3.24)

Recall that Eq. (3.17) was derived by substituting G0(xxx,xxx′) into Green’s theorem (3.15),
but we concluded that Eq. (3.17) is not a valid solution because it mixes Dirichlet and
Neumann boundary terms in the surface integral. The additional term F(xxx,xxx′) in the gen-
eralized Green function (3.22) raises the possibility that if we substitute Eq. (3.22) into
Green’s theorem, the function F(xxx,xxx′) can be chosen to eliminate from the resulting sur-
face integral either the Dirichlet or the Neumann terms, thus leaving a result with consistent
boundary conditions.

Indeed, substitution of φ = Φ and ψ = G(xxx,xxx′) into Green’s theorem (3.15) and use of
Eq. (3.21) generalizes Eq. (3.17) to

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′

+
1

4π

∮

S

[
G(xxx,xxx′)

∂Φ
∂n′
−Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′. (3.25)

Now the freedom to choose F(xxx,xxx′) in the definition (3.22) of the Green function means
that we can make the surface integral in Eq. (3.25) depend on a specific type of boundary
condition.

1. If Dirichlet boundary conditions are desired, we may require that

G(xxx,xxx′) = 0 (Dirichlet) (3.26)

for xxx′ on S. Then the first term in the surface integral of Eq. (3.25) vanishes and the solution
with Dirichlet boundary conditions is

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′− 1

4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′. (3.27)

2. If instead Neumann boundary conditions are desired, the obvious choice ∂G(xxx,xxx′)/∂n′=
0 for xxx′ on S makes the second term in the surface integral of Eq. (3.25) vanish. But appli-
cation of Gauss’s theorem to Eq. (3.21) indicates that

∮

S

∂G
∂n′

da′ =−4π,
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implying that the simplest allowable boundary condition is

∂G(xxx,xxx′)
∂n′

=−4π
Σ

(Neumann), (3.28)

for xxx′ on S, where Σ is the total area of the bounding surface S.6 Then the solution with
Neumann boundary conditions is

Φ(xxx) = ⟨Φ⟩S +
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′+

1
4π

∮

S

∂Φ
∂n′

Gda′, (3.29)

where ⟨Φ⟩S is the average of the potential over the entire surface.

Thus, we have shown formally in Eqs. (3.26) and (3.28) how to determine the
scalar potential by imposing consistent boundary conditions in an electrostatic
boundary-value problem.

The Green functions G(xxx,xxx′) satisfy the rather simple boundary conditions (3.26) or (3.28).
Nevertheless, they may be difficult to determine in many cases because of the dependence
on the shape of the surface S.

3.5 The Method of Images

Various tricks and clever algorithms have been devised to find solutions for the Poisson
or Laplace equations without actually solving the differential equations themselves. These
methods are generally applicable when certain special features are present in a problem,
and can often lead to much easier solutions than solving the relevant differential equation
with boundary conditions. One such approach is the method of images, where the actual
Poisson or Laplace problem is replaced with a different one (the analog problem) that is
easier to solve, but that is tailored to have boundary conditions equivalent to those of the
actual problem. Then, since the analog problem has the same boundary conditions and
is a solution of the Laplace or Poisson equation just as the actual problem, Uniqueness
Theorem I or II given in Section 3.3 guarantees that the solution of the analog problem is
also the solution of the original problem.

Let us illustrate this approach by solving a simple electrostatics problem using the image
method. In Fig. 3.4(a) we consider a charge q placed at a distance d above an infinite
conducting plane that is grounded (held at the potential Φ = 0). What is the potential in
the region z > 0? The presence of the charge will polarize the conducting plane, so the
potential will have a part associated with the charge q and a part generated by the polarized
infinite conducting plane. How can the field in the region above the conducting plane be

6 A typical Neumann problem has a volume V bounded by two surfaces, one closed and finite, and the other
at infinity [19]. Thus the surface area Σ is infinite, the term ⟨Φ⟩S in Eq. (3.29) vanishes, and the right side
of the boundary condition (3.28) is zero. Then both the Dirichlet boundary condition Eq. (3.26) and and the
Neumann boundary condition Eq. (3.28) become homogeneous (zeros on the right side of the equations).
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tFig. 3.4 (a) Charge q a distance d above an infinite, grounded, conducting plane at zero potential.
(b) An analogous image-charge configuration with the charge −q on the negative z axis,
and no infinite conducting plane.

determined when the distribution of the polarized charge isn’t known beforehand? One
way is to solve Poisson’s equation for z > 0 with the boundary conditions,

1. Φ = 0 at z = 0, since the conducting plane is grounded, and
2. Φ→ 0 at very large distances from the charge.

But before rushing off to try to solve the Poisson equation with these boundary conditions,
recall Uniqueness Theorem I from Section 3.3, which indicates that there can be only one
independent solution of the Poisson equation with precisely these boundary conditions.
Thus, if we can find such a solution by any means (including guessing!), it must be correct.

This motivates us to consider the completely different problem illustrated in Fig. 3.4(b).
This problem has the original charge q at a distance d above the origin, but also has an
additional charge −q at a distance d below the origin (this is called an image charge, and
the conducting plane of the original problem has been removed. The problem in Fig. 3.4(b)
is simple compared with that of Fig. 3.4(a) and can be solved easily using Coulomb’s
law. For an arbitrary point P(x,y,z) at z > 0, the distances from P to the two charges are,
respectively,

r+ =
√

x2 + y2 +(z−d)2 r− =
√

x2 + y2 +(z+d)2,

and the potential at the point P(x,y,z) generated by the two charges is

Φ(x,y,z) =
1

4πε0

(
q

r+
− q

r−

)

=
1

4πε0

(
q√

x2 + y2 +(z−d)2
− q√

x2 + y2 +(z+d)2

)
. (3.30)

Now we notice that the boundary conditions are the same for the two problems: in the
analog problem there is a single charge q in the region z > 0 (which is where we seek a
solution), and from Eq. (3.30),

1. the potential Φ is equal to zero in the x− y plane, and
2. at large distances from the charges, Φ→ 0,
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which are precisely the boundary conditions for the original problem in Fig. 3.4(a). To be
sure there is an extra charge −q in the z < 0 region for the analog problem, but that is
irrelevant because we restricted the solution to the region z > 0 in the original problem.
Thus, we conclude from Uniqueness Theorem I that the solution of our original problem in
Fig. 3.4(a) is given by Eq. (3.30), which is the solution of the much simpler analog problem
shown in Fig. 3.4(b). This approach can be a powerful one, but it is useful only if we can
conjure a solvable analog problem that has the same boundary conditions as the original
problem.

In using the method of images the image charges must be placed in a region that
is not in the domain of the original problem. In this example we accomplished
that by putting the image charge in the region z < 0, but required a solution only
for z > 0.

Now that the potential has been found in Eq. (3.30) for the upper half plane we can go
further and determine the induced charge in the conducting plane caused by the positive
charge at z= d. From Eq. (3.5) for the effect of charge layers, keeping only the contribution
from above the layer,

σ =−ε0
∂Φ
∂n

. (3.31)

The normal derivative of Φ at the surface is in the z direction, so

σ = −ε0
∂Φ
∂ z

∣∣∣∣
z=0

. (3.32)

The derivative may be evaluated from Eq. (3.30) as,

∂Φ
∂ z

∣∣∣∣
z=0

=
1

4πε0

( −q(z−d)
[x2 + y2 +(z−d)2]3/2 +

q(z+d)
[x2 + y2 +(z+d)2]3/2

)∣∣∣∣
z=0

,

=
1

4πε0

(
qd

[x2 + y2 +d2]3/2 +
qd

[x2 + y2 +d2]3/2

)

=
1

2πε0

qd
[x2 + y2 +d2]3/2 ,

and from Eq. (3.32)

σ =− ε0
∂Φ
∂n

∣∣∣∣
z=0

=− qd
2π[x2 + y2 +d2]3/2 . (3.33)

The total induced charge Q then follows by integration. Using polar coordinates (r,φ) with
r2 = x2 + y2 and da = r dr dφ ,

Q =
∫ 2π

0

∫ ∞

0

−qd
2π[x2 + y2 +d2]3/2 r dr dφ =

qd√
r2 +d2

∣∣∣∣
∞

0
=−q. (3.34)

So the total induced charge in the infinite sheet has the same magnitude as the polarizing
charge q, but with the opposite sign.

Let us also calculate the force FFF on q produced by the induced charge on the grounded
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conducting plate. This force must be the same as the force in the analog problem between
the charges q and −q separated by a distance 2d, because the charge q cannot tell whether
it is seeing a point charge at a distance 2d or a grounded conducting plane at a distance d.
Thus from the analog problem Coulomb’s law gives for the force between the charge q and
the conducting plane,

FFF =− 1
4πε0

q2

(2d)2 ẑzz, (3.35)

where ẑzz is a unit vector in the z direction. It will always be the case that in an image charge
problem such as that in Fig. 3.4, the force between a point charge and the conductor is
given by the force between the charge and image charge.

3.6 Green Function for the Conducting Sphere

As discussed in Section 3.4, solution of the Laplace or Poisson equations in a finite volume
V with either Dirichlet or Neumann boundary conditions on the bounding surface S of V
can be obtained using Green functions. For example, Eq. (3.27) solves for the potential Φ
in terms of a Green function with Dirichlet boundary conditions and Eq. (3.29) solves for
the potential in terms of a Green function with Neumann boundary conditions. However,
choosing an appropriate Green function for a given problem can be difficult.

The physical meaning of F(xxx,xxx′) in Eq. (3.23) is that it is a solution of the Laplace
equation inside the volume V , so it represents the potential due to charges external to V .
It may be thought of as resulting from an external distribution of charges chosen to satisfy
the Dirichlet boundary conditions (3.26) or the Neumann boundary conditions (3.28). But
this arrangement of charges to satisfy boundary conditions suggests a connection to the
method of images described in Section 3.5. As discussed by Jackson (see Section 1.10 of
Ref. [19]):

Determining the proper F(xxx,xxx′) in Eq. (3.22) to satisfy the boundary conditions
(3.26) or (3.28) is physically equivalent to using the method of images. Thus for
image problems the potential due to a unit source and its image charge that satisfy
homogeneous boundary conditions is just the Green function of Eq. (3.27) for
Dirichlet boundary conditions, or Eq. (3.29) for Neumann boundary conditions.

As an example, consider the problem of a charge outside a conducting sphere that is solved
by the image method in Problem 3.1 and is illustrated in Fig. 3.5(a). In the Green function
G(xxx,xxx′), our usual convention is that the variable xxx′ refers to the location of the unit source
and the variable xxx is the point P at which the potential is being evaluated. These coordinates
and a sphere of radius a are illustrated in Fig. 3.5(b). For Dirichlet boundary conditions on
the sphere of radius a, the Green function defined by Eq. (3.21),

∇∇∇′2G(xxx,xxx′) =−4πδ (xxx− xxx′),
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tFig. 3.5 (a) Geometry of image charge method for a charge q indicated by a solid dot outside a
conducting sphere, with an image charge q′ indicated by an open dot inside the sphere.
(b) Coordinates associated with the Green function G(xxx,xxx′) for a conducting sphere.

for a unit source and its image, the scalar potential is given by [see Fig. 3.5(a)]

Φ(xxx) =
1

4πε0

(
q

|xxx− yyy| +
q′

|xxx− yyy′|

)
, (3.36)

with q′ and yyy′ chosen such that the potential vanishes on the surface of the sphere in
Fig. 3.5(a) (|xxx|= a), which requires that

q′ =−a
y

q y′ =
a2

y
. (3.37)

Using (3.37), replacing q by 4πε0 (to give unit source charge), and replacing y with x′ in
Eq. (3.36), the required Green function is then

G(xxx,xxx′) =
1

|xxx− xxx′| −
a

x′ |xxx− (a2/x′2)xxx′| , (3.38)

which can be expressed in spherical coordinates as [19]

G(xxx,xxx′) =
1

(x2 + x′2−2xx′ cosγ)1/2 −
1

(x2x′2/a2 +a2−2xx′ cosγ)1/2 , (3.39)

where γ is the angle between xxx and xxx′ that is illustrated in Fig. 3.5(b). From Eq. (3.39) it is
clear that

1. G(xxx,xxx′) is symmetric in xxx and xxx, as it should be,7 and
2. G(xxx,xxx′) = 0 if either xxx or xxx′ approaches the spherical radius a, as required by the Dirich-

let boundary condition (3.26).

7 For Dirichlet boundary conditions, the Green function G(xxx,xxx′) viewed as a function of one of its variables
represents a potential produced by a unit point source. Then symmetry in xxx and xxx′ implies physical inter-
changeability of source point and observation point.
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Φ = -VtFig. 3.6 Two hemispheres of radius a separated by an insulating band lying in the z = 0 plane, with
the upper hemisphere held at potential +V and the lower hemisphere held at potential
−V . Used in Example 3.2.

For the solution (3.27), of the Poisson equation with Dirichlet boundary conditions,

Φ(xxx) =
1

4πε0

∫

V
ρ(xxx′)G(xxx,xxx′)d3x′− 1

4π

∮

S

[
Φ(xxx′)

∂G(xxx,xxx′)
∂n′

]
da′,

the second term requires the normal derivative ∂G/∂n′. Recall our standard convention
that nnn′ is the unit normal vector outward from the volume of interest. Thus, for the solution
outside the sphere in Fig. 3.5(a), it is inward along xxx′, toward the origin and

∂G
∂n′

∣∣∣∣
x′=a

=− x2−a2

a(x2 +a2−2axcosγ)3/2 . (3.40)

Therefore, from Eq. (3.27) quoted above, if there is no charge distribution ρ(xxx′) in the prob-
lem, the solution outside the conducting sphere of the Laplace equation with the potential
specified on its surface (Dirichlet boundary conditions) is

Φ(xxx) =
1

4π

∫
Φ(a,θ ′,φ ′)

a(x2−a2)

(x2 +a2−2axcosγ)3/2 dΩ′ (Exterior), (3.41)

where dΩ′ is the element of solid angle at the point (a,θ ′,φ ′), and

cosγ = cosθ cosθ ′+ sinθ sinθ ′ cos(φ −φ ′). (3.42)

For the solution interior to the sphere the only thing that changes is that the normal deriva-
tive is radially outward, so the sign on the right side of Eq. (3.40) changes. Thus the interior
solution is

Φ(xxx) =
1

4π

∫
Φ(a,θ ′,φ ′)

a(a2− x2)

(x2 +a2−2axcosγ)3/2 dΩ′ (Interior). (3.43)

If there is a charge distribution ρ(xxx′), then one must add to Eqs. (3.41) and (3.43) the first
term of Eq. (3.27) with the associated Green function (3.39).
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Example 3.2 Let’s illustrate use of the exterior solution (3.41) by considering a con-
ducting sphere of radius a, divided into two hemispherical shells separated by an insulating
ring, as illustrated in Fig. 3.6. From Eq. (3.41) the solution for Φ(x,θ ,φ) is

Φ(x,θ ,φ) =
V
4π

∫ 2π

0
dφ ′
(∫ 1

0
d(cosθ ′)−

∫ 0

−1
d(cosθ ′)

)
a(x2−a2)

(x2 +a2−2axcosγ)3/2 .

By a change of variables in the second integral

θ ′→ π−θ ′ φ ′→ φ ′+π,

this can be put in the form

Φ(x,θ ,φ) =
Va(x2−a2)

4π

∫ 2π

0
dφ ′

×
∫ 1

0
d(cosθ ′)

[
(a2 + x2−2ax cosγ)−3/2− (a2 + x2 +2ax cosγ)−3/2

]
. (3.44)

Because of the complicated dependence among the angles in Eq. (3.42) this cannot be
integrated easily in closed form. If one restricts to the positive z axis the integrals can be
done, with the result [19]

Φ(z) =V
[

1− z2−a2

z
√

z2 +a2

]
(Valid on positive z-axis), (3.45)

which correctly reduces to Φ = V at z = a. Of potentially more use is to expand the de-
nominator of Eq. (3.44) in a power series and integrate term by term, which yields

Φ(x,θ ,φ) =
3Va2

2x2

[
cosθ − 7a2

12x2

(
5
2

cos2 θ − 3
2

cosθ
)
+ · · ·

]
. (3.46)

This expansion has been shown to converge rapidly for large x/a, and agrees with the
special solution (3.45) for cosθ = 1 [19].

3.7 Approximate Solutions

In a complicated electrostatics problem it may be sufficient to approximate the solution,
as we have done in Eq. (3.46). Often this approximation takes the form of an expansion in
some naturally small parameter, with the first few terms of the expansion giving sufficient
accuracy for the problem at hand.

3.7.1 Spherical Harmonic Expansions of the Potential

The 3D volume charge density ρ(xxx) appearing in the expression Eq. (2.31a) for the scalar
potential,

Φ(xxx) =
1

4πε0

∫
ρ(xxx′)
|xxx− xxx′| d

3x′, (3.47)
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tFig. 3.7 Geometry for the Legendre polynomials and the spherical harmonics in Eqs. (3.48)-(3.51).

describes a distribution of charge localized in some finite volume V . In many situations
we are interested in the potential Φ(xxx) resulting from this localized charge at distances
sufficiently far away that |xxx| ≫ |xxx′| may be assumed, which suggests a series expansion of
1/ |xxx− xxx′|. Two types of expansions are commonly employed:

1. a Taylor series expansion in the cartesian coordinates (x,y.z), or

2. an expansion in terms of spherical harmonics, associated Legendre polynomials, or
Legendre polynomials that depends on the spherical coordinates (r,θ ,φ).

We will discuss here the multipole expansion in terms of Legendre polynomials or spheri-
cal harmonics. For a potential due to a unit point charge at xxx′, we may expand |xxx−xxx′|−1 as

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ), (3.48)

where Pl(cosθ) is a Legendre polynomial [solution (4.36) of the Legendre equation (4.35)],
r< is the smaller and r> the larger of |xxx| and |xxx′|,8 and θ is the angle between xxx and xxx′ (see
Fig. 3.7). Equation (3.48) is termed a multipole expansion. In this expression

• the l = 0 term is called the monopole term,

• the l = 1 term is called the dipole term,

• the l = 2 term is called the quadrupole term, and so on.

The reason for this terminology is suggested by the point-charge distributions discussed
in Box 3.3. Comparison of these expressions with the terms in Eq. (3.48) using r> = r
and r< = d (since r ≫ d) suggests why Eq. (3.48) is called a multipole expansion: the
l = 1 term is of the dipole form P1(cosθ)/r2 and the l = 2 term is of the quadrupole form
P2(cosθ)/r3. (And the l = 0 term is 1/r, which is termed the monopole term.)

Equation (3.48) can be expressed in terms of spherical harmonics using the spherical

8 The factor rl
</rl+1

> in Eq. (3.48) allows the expansion to be made in terms of either r/r′ or r′/r, whichever is
smaller.
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Box 3.3 Multipole moments

What is the electric potential generated atthe point P by the following static charge
distributions?

P

d

+q

−q

θ

r+

r-

r

P

d

d

+q

-2q

+q

θ

r

(a) Dipole

rb

ra
(b) Linear

quadrupole

(a) Dipole Potential
For the dipole at P in Fig. (a), the potential is given by

Φ =
q

4πε0

(
1
r+
− 1

r−

)
.

From the law of cosines (A.62), the distances are

r2
± = r2 +

(
d
2

)2

∓ rd cosθ = r2
(

1∓ d
r

cosθ +
d2

4r2

)
≃ r2

(
1∓ d

r
cosθ

)
,

where r = |rrr| and the term d2/4r2 was dropped, since we assume that r≫ d. Thus,

1
r±
≃ 1

r

(
1∓ d

r
cosθ

)−1/2

≃ 1
r

(
1± d

2r
cosθ

)
,

where a binomial expansion was used in the last step. Therefore,

Φdipole =
q

4πε0

(
1
r+
− 1

r−

)
=

q
4πε0

d cosθ
r2 =

(
qd

4πε0

)
P1(cosθ)

r2 (r≫ d).

Hence the electric dipole potential is proportional to the Legendre polynomial
P1(cosθ), and falls off at large distance as 1/r2. The potential contours and electric
field vectors for a dipole are illustrated in Fig. 3.8.

(b) Quadrupole Potential
Carrying out a similar analysis for the linear quadrupole in Fig. (b) above (see Prob-
lem 3.3), the linear quadrupole potential is given by

Φquadrupole =

(
2Qd2

4πε0

)
P2(cosθ)

r3 (r≫ d),

which is proportional to Legendre polynomial P2(cosθ) and varies as the cube of
the inverse distance.
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tFig. 3.8 Equipotential contours (curves) and the electric vector field (arrows) for the dipole charge
distribution discussed in Box 3.3. For clarity, plotting of field lines and vectors has been
suppressed very near the charges.

harmonic addition theorem

Pl(cosγ) =
4π

2l +1

l

∑
m=−l

Y ∗lm(θ
′,φ ′)Ylm(θ ,φ), (3.49)

where Pl(cosθ) is a Legendre polynomial, Ylm(θ ,φ) is a spherical harmonic, xxx has the
spherical coordinates (r,θ ,φ), xxx′ has the spherical coordinates (r′,θ ′,φ ′), and the angle γ
between the vectors xxx and xxx′ is given by

cosγ = cosθ cosθ ′+ sinθ sinθ ′ cos(φ −φ ′). (3.50)

The spherical harmonic addition theorem (3.49) may then be used to express the expansion
(3.48) of the potential at xxx due to a unit charge at xxx′ as

1
|xxx− xxx′| = 4π

∞

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗lm(θ
′,φ ′)Ylm(θ ,φ), (3.51)
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where angles are defined in Fig. 3.7. This expression gives the potential completely factor-
ized in the coordinates xxx and xxx′.

If the localized distribution of charge ρ(xxx′) in Eq. (3.47) is assumed to vanish outside
of a small sphere of radius R centered on the origin, the potential generated by that charge
outside the radius R can be expanded in spherical harmonics as

Φ(xxx) =
1

4πε0

∞

∑
l=0

l

∑
m=−l

4π
2l +1

qlm
Ylm(θ ,φ)

rl+1 (3.52)

The expansion coefficients qlm are given by

qlm =
∫

Y ∗lm(θ
′,φ ′)(r′)lρ(xxx′)d3x′ (3.53)

and are called multipole moments. Spherical harmonics are related to associated Legendre
polynomials Pm

l (cosθ) by

Ylm(θ ,φ) = (−1)m

√
2l +1

4π
(l−m)!
(l +m)!

Pm
l (cosθ)eimφ . (3.54)

They behave under complex conjugation as

Y ∗lm(θ ,φ) = (−1)m Yl−m(θ ,φ), (3.55)

and obey the orthogonality condition
∫ 2π

0
dφ
∫ π

0
Y ∗l′m′(θ ,φ)Ylm(θ ,φ)sinθdθ = δl′lδm′m, (3.56)

and the completeness relation

∞

∑
l=0

l

∑
m=−l

Y ∗lm(θ
′,φ ′)Ylm(θ ,φ) = δ (φ −φ ′)δ (cosθ − cosθ ′). (3.57)

The utility of a multipole expansion like Eqs. (3.52) or (3.48) is that the terms in
the expansion of the source-charge distribution fall off with distance r as r−(l+1),
justifying an approximation that retains only the first few terms in the multipole
expansion.

If we define

1. a total charge Q (monopole moment),
2. the electric dipole moment vector ppp by

ppp≡
∫

xxx′ρ(xxx′)d3x′, (3.58)
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3. and the traceless quadrupole moment tensor Qi j by9

Qi j ≡
∫
(3x′ix

′
j− r′2δi j)ρ(xxx′)d3x′, (3.59)

where r′2 ≡ |xxx′|2,

the spherical multipole moments in Eq. (3.53) may be expressed in cartesian coordinates
as [19]

q00 =
1√
4π

∫
ρ(xxx′)d3x′ =

1√
4π

Q, (3.60a)

q11 =−
√

3
8π

∫
(x′− iy′)ρ(xxx′)d3x′ =−

√
3

8π
(px− ipy), (3.60b)

q10 =

√
3

4π

∫
z′ρ(xxx′)d3x′ =

√
3

4π
pz, (3.60c)

q22 =
1
4

√
15
2π

∫
(x′− iy′)2 ρ(xxx′)d3x′ =

1
12

√
15
2π

(Q11−2iQ12−Q22), (3.60d)

q21 =−
√

15
8π

∫
z′(x′− iy′)ρ(xxx′)d3x′ =−1

3

√
15
8π

(Q13− iQ23), (3.60e)

q20 =
1
2

√
5

4π

∫
(3z′2− r′2)ρ(xxx′)d3x′ =

1
2

√
5

4π
Q33, (3.60f)

where corresponding moments with m < 0 may be obtained using ql−m = (−1)mq∗lm. An
expansion of Φ(xxx) in cartesian coordinates may be obtained by a direct Taylor series ex-
pansion of 1/ |xxx− xxx′| (see Appendix A.8). The result

Φ(xxx) =
1

4πε0

[
Q
r
+

ppp · xxx
r3 +

1
2 ∑

i, j
Qi j

xix j

r5 + · · ·
]
. (3.61)

is quoted without proof.10

The spherical multipole moments like Eq. (3.53) and the corresponding cartesian multi-
pole moments like Eq. (3.58) generally have different numbers of components for a given
multipole order. For multipole order l there are (l +1)(l +2)/2 cartesian components but
only 2l + 1 spherical components, which differs for l > 1. At a technical level (a con-
sequence of group theory; see Box 18.1) the source of this difference is that the spherical
moments are irreducible representations of the rotation group (they are said to transform as
irreducible spherical tensors) while the cartesian moments are reducible under rotational
9 With this definition Qi j is traceless (see Problem 3.6). A quadrupole moment definition without the trace-

lessness property Qi j =
1
2
∫

ρ (⃗x′)x′ix′j d3x′ is also sometimes encountered. (The traceless form arises naturally
in a spherical harmonic multipole expansion; the other form arises in a different multipole expansion.) The
quadrupole moment is a rank-2 tensor, which can be expressed as a 3×3 matrix, implying nine components.
However, it is symmetric in its indices, which reduces the independent components to six, and the traceless
constraint reduces the number of independent components to five.

10 The mathematical difference between the cartesian multipole expansion and spherical multipole moment ex-
pansion is that the former is obtained by expanding 1/ |xxx− xxx′| in a Taylor series (see Appendix A.8), while
the latter is obtained by expanding 1/ |xxx− xxx′| in a a binomial series (see Appendix A.9 and Problem 3.2). The
spherical moment expansion is favored in fields like atomic or nuclear physics, where angular momentum
conservation is important.
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transformations. Physically this means that spherical multipole moments define compo-
nents of definite angular momentum, while cartesian moments are mixtures of components
with different angular momenta.

Another technical point is that the coefficients in a multipole moment expansion may
depend on choice of origin for the coefficients. In general it can be shown that the value
of qlm in Eq. (3.53) for the lowest-order non-vanishing multipole moment of a charge
distribution is independent of origin for the coordinates, but higher-order moments will
generally depend on the location of the origin for the coordinate system [19].

Example 3.3 Consider a localized charge density

ρ(rrr) =
1

64π
r2e−r sin2 θ .

Let’s make a multipole expansion of the potential associated with this charge density and
determine all the non-vanishing multipole moments. The charge distribution is axially sym-
metric, so only Ylm with m = 0 are non-zero. From Eq. (3.53), the moments may be written

qlm =
∫

Y ∗l0(θ ,φ)r
lρ(xxx)d3x

=
∫

Y ∗l0(θ ,φ)r
lρ(r,θ)r2dr dφ d(cosθ)

= 2π
√

2l +1
4π

∫
Pl(cosθ)rlρ(r,θ)r2dr d(cosθ)

=
2π

64π

√
2l +1

4π

∫ ∞

0
rl+4e−rdr

∫ +1

−1
Pl(cosθ)sin2 θd(cosθ)

=
2π

64π
2
3

√
2l +1

4π

∫ ∞

0
rl+4e−rdr

∫ +1

−1
Pl(cosθ) [P0(cosθ)−P2(cosθ)]d(cosθ)

=
1

48

√
2l +1

4π
Γ(l +5)

(
2δl0−

2
5

δl2

)
.

where we have used in the third line,

Yl0(θ ,φ) =
√

2l +1
4π

Pl(cosθ)

and used in the fifth line,

sin2 θ = 1− cos2 θ =
2
3
[P0(cosθ)−P2(cosθ)]

used in the last step
∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn,

and the radial integral was evaluated using the tabulated definite integral
∫ ∞

0
rn−1e−(a+1)rdr =

Γ(n)
(a+1)n .
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tFig. 3.9 Figure for Example 3.4: a spherical surface has a uniform surface charge of density
σ = Q/4πR2, except for a spherical cap at the north pole defined by a cone with opening
θ = α where σ = 0.

Thus the multipole moments are

qlm =
1
48

√
2l +1

4π
Γ(l +5)

(
2δl0−

2
5

δl2

)

and the delta functions allow reading off the only non-vanishing multipole moments as

q00 =

√
1

4π
Q q20 =−6

√
5

4π
Q33.

where the values were taken from Eq. (3.60).

Example 3.4 A spherical surface of radius R has a uniform surface charge of density
σ = Q/4πR2, except for a spherical cap at the north pole defined by a cone with opening
θ = α where σ = 0, as illustrated in Fig. 3.9. Use the jump condition at a charge layer of
Eq. (3.2) for the electric field

Eout
r |r=R = E in

r |r=R +
σ
ε0
,

to show that the potential inside the spherical surface can be expressed as

Φ =
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
rl

Rl+1 Pl(cosθ).

What is the potential outside the sphere?
The surface charge density specifies a jump condition on the normal component of the

electric field (see Section 3.1),

Eout
r |r=R = E in

r |r=R +
σ
ε0
,

which allows us to solve for the potential Φ(r,θ). Because of the axial symmetry about the
z axis we may expand the potential in Legendre polynomials according to Eqs. (3.47) and
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(3.48),

Φin =

∞

∑
l=0

Al

( r
R

)l
Pl(cosθ) Φout =

∞

∑
l=0

Al

(
R
r

)l

Pl(cosθ),

where the expansion coefficients Al are the same for Φin and Φout because we require Φ
to be continuous at the surface r = R. The radial components of the interior and exterior
electric fields follow from Er =−∂Φ/∂ r,

E in
r =−

∞

∑
l=0

lAl

R

( r
R

)l−1
Pl(cosθ),

Eout
r =

∞

∑
l=0

(l +1)Al

R

(
R
r

)l+2

Pl(cosθ).

Substituting this into the jump condition given above for Er leads to

σ(cosθ) = ε0
[
Eout

r −E in
r
]

r=R =

∞

∑
l=0

(2l +1)ε0Al

R
Pl(cosθ).

Multiply both sides by Pk(cosθ), integrate over d(cosθ), and use

∫ +1

−1
Pn(x)Pm(x)dx =

2
2n+1

δnm

to give

(2l +1)ε0Al

R
=

2l +1
2

∫ +1

−1
σ(cosθ)Pl(cosθ)d(cosθ),

implying that

Al =
R

2ε0

∫ +1

−1
σ(cosθ)Pl(cosθ)d(cosθ).

Then using that the surface is covered uniformly with charge except within the cone,

σ(cosθ) =





Q
4πR2 (cosθ < cosα),

0 (cosθ > cosα),

leads to

Al =
Q

8πε0R

∫ cosα

−1
Pl(cosθ)d(cosθ).

This can be integrated by using [2]

Pl(x) =
1

2l +1
[
P′l+1(x)−P′l−1(x)

]
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(where the primes indicate derivatives), which gives

Al =
Q

8πε0R

∫ cosα

−1
Pl(cosθ)d(cosθ)

=
Q

8πε0R
1

2l +1

∫ cosα

−1

[
dPl+1(cosθ)

d(cosθ)
− dPl−1(cosθ)

d(cosθ)

]
d(cosθ)

=
Q

8πε0R
1

2l +1

∫ cosα

−1
[dPl+1(cosθ)−dPl−1(cosθ)]

=
Q

8πε0R
1

2l +1
[Pl+1(cosθ)−Pl−1(cosθ)]cosα

−1

=
Q

8πε0R
1

2l +1
[Pl+1(cosα)−Pl−1(cosα)] ,

where in the last step Pl(−1) = (−1)l was used. Substituting in the original expansions,

Φin =

∞

∑
l=0

Al

( r
R

)l
Pl(cosθ)

=
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
rl

Rl+1 Pl(cosθ).

for the inside solution, and for the outside solution,

Φout =

∞

∑
l=0

Al

(
R
r

)l

Pl(cosθ)

=
Q

8πε0

∞

∑
l=0

1
2l +1

[Pl+1(cosα)−Pl−1(cosα)]
Rl−1

rl Pl(cosθ).

The preceding example illustrates many techniques that can be used in solving electrostatic
problems by multipole expansions.

3.7.2 Multipole Components of the Electric Field

We have expanded the potential in multipole moments so the corresponding electric fields
can be expanded in a similar way. It is easiest to express the components of the electric
field EEE = −∇∇∇Φ in spherical coordinates. For a term in Eq. (3.52) with definite (l,m) the
spherical electric field components are [19]

Er =
l +1

(2l +1)ε0
qlm

1
rl+2 Ylm(θ ,φ), (3.62a)

Eθ =− 1
(2l +1)ε0

qlm
1

rl+2
∂

∂θ
Ylm(θ ,φ), (3.62b)

Eφ =
1

(2l +1)ε0
qlm

1
rl+2

im
sinθ

Ylm(θ ,φ), (3.62c)
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with the multipole moments qlm defined in Eq. (3.60).

Example 3.5 For a dipole ppp oriented along the z axis, one finds

Er =
2pcosθ
4πε0r3 Eθ =

psinθ
4πε0r3 Eφ = 0,

for the electric-field components (3.62).

3.7.3 Energy of a Charge Distribution in an External Field

If a localized charge distribution ρ(xxx) is subject to an external potential Φ(xxx),11 the elec-
trostatic energy is

W =
∫

ρ(xxx)Φ(xxx)d3x. (3.63)

If the potential varies slowly over the extent of ρ(xxx), it can be expanded in a Taylor series,

Φ(xxx) = Φ(0)+ xxx ·∇∇∇Φ(0)+
1
2 ∑

i
∑

j
xix j

∂ 2Φ
∂xi∂x j

(0)+ · · ·

= Φ(0)− xxx ·EEE(0)− 1
2 ∑

i
∑

j
xix j

∂E j

∂xi
(0)+ · · ·

= Φ(0)− xxx ·EEE(0)− 1
6 ∑

i
∑

j

(
3xix j− r2δi j

) ∂E j

∂xi
(0)+ · · · , (3.64)

where in line 2 the definition of the electric field EEE = −∇∇∇Φ was used and in the last line
1
6 r2∇∇∇ ·EEE(0) was subtracted from the last term since ∇∇∇ ·EEE = 0 for the external field. Inserting
the expansion (3.64) in Eq. (3.63), the energy takes the form

W = qΦ(0)− ppp ·EEE(0)− 1
6 ∑

i
∑

j
Qi j

∂E j

∂xi
(0)+ · · · , (3.65)

where q is the total charge, the dipole moment ppp is defined in Eq. (3.58), and the quadrupole
moment Qi j is defined in Eq. (3.59).

Example 3.6 Many atomic nuclei have charge distributions exhibiting a quadrupole de-
formation. Such nuclei will have a contribution to the energy from the quadrupole term in
the expansion (3.65) if they are subject to an external electric field. Such an “external” field
can be provided by the electrons of the atom containing the nucleus, or by a crystal lattice
in which the nucleus is embedded, and coupling to these external field leads to small energy
shifts and breaking of degeneracies for nuclear states that can be detected experimentally.

11 For example, this could be the charge distribution of an atomic nucleus subject to an external electric field
generated by the electrons of that atom, or to the external electric field of another nucleus in a collision
between the two nuclei.
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(The energy shifts are small, corresponding typically to radiofrequency wavelengths.) Such
methods allow the quadrupole moments of nuclei to be measured, which provide important
clues to the details of nuclear structure and interactions. In collisions between heavy ions
at nuclear accelerators, the electric field of one nucleus can cause excited states to be pop-
ulated in the other nucleus, in a process called Coulomb excitation. The study of the rates
at which those excited states are populated (for example by detecting the de-excitation by
emission of γ-rays) is another way in which nuclear quadrupole deformations can be mea-
sured by analyzing their response to an applied electric field.

The expansion (3.65) manifests the characteristic way in which various multipoles of a
charge distribution interact with an external electric field:

1. the charge interacts with the potential in the first term,
2. the dipole moment interacts with the electric field in the second term,
3. the quadrupole moment interacts with the gradient of the electric field in the third term,

and so on.

Thus multipole expansions serve a pedagogical as well as practical purpose in understand-
ing electrostatic interactions.

Background and Further Reading

An introduction to the material of this chapter may be found in Griffiths [13] or Purcell and
Morin [32]. More advanced treatments may be found in Jackson [19], Garg [11], Chaichian
et al [5], and Zangwill [42].
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Problems

3.1 A charge q is placed outside a grounded (Φ = 0) conducting sphere:

R

a

Φ = 0

q

Use the method of images described in Section 3.5 to find the scalar potential Φ
outside the sphere, and calculate the force exerted by the sphere on the charge q.

3.2 Assuming that |xxx| ≫ |xxx′| in the following figure,

P
dτ

Charge

distribution

|x - x'|

θ xx'

prove that 1/ |xxx− xxx′| can be expanded in the power series

1
|xxx− xxx′| =

1
r

(
1− 1

2
ε +

3
8

ε2− 5
16

ε3 + · · ·
)
,

where r = |xxx| and r′ = |xxx′|, and

ε ≡ r′

r

(
r′

r
−2cosθ

)
,

and that this is a series expansion in terms of Legendre polynomials that is equivalent
to Eq. (3.51). Finally, show that

Φ(xxx) =
1

4πε0

∞

∑
l=0

r−(l+1)
∫
(r′)lPl(cosθ)ρ(xxx′)d3x′

is the scalar potential at the point P.
3.3 The following charge distribution is called a linear quadrupole.

P

d

d

+q

-2q

+q

θ

rb

ra

r

Linear

quadrupole

What is the potential generated at the point P assuming that r≫ d? ***
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3.4 For the charge distribution shown below,

x

y

-Q

+Q -Q

+Q

0.1 m

0.1 m

calculate the components of the dipole moment vector ppp assuming that |Q|= 3 µC.
3.5 A point dipole with dipole moment ppp is located at xxx0. Show that for calculations of

potential Φ or energy density W of a dipole in an external field, the dipole can be
described by an effective charge density

ρeff(xxx) =−ppp ·∇∇∇δ (xxx− xxx0),

where δ (xxx− xxx′) is the 3D Dirac delta function. Hint: See Eq. (A.76).
3.6 The quadrupole moment tensor is given by Eq. (3.59) as

Qi j ≡
∫
(3x′ix

′
j− r′2δi j)ρ(xxx′)d3x′,

where r′2 ≡ |xxx′|2. Evaluate Qi j for a discrete set of N static charges qi and show that
it is traceless.

3.7 For the discrete charge distribution displayed in Problem 3.4, calculate the nine
cartesian components Qi j = Qxx,Qxy, · · · of the quadruple moment tensor starting
from Eq. (3.59). Assume the origin of the coordinate system to be at the lower left
charge and that |Q|= 3 µC.

3.8 Prove that in the Green function problem described in Box 3.2,

x(t) =
∫ ∞

−∞
dt ′G(t, t ′)

f (t ′)
m

is a solution of the equation of motion
(

d 2

dt 2 +2γ
d
dt

+ω2
0

)
x(t) =

f (t)
m

,

for a driven mechanical oscillator. ***
3.9 Show that the uniqueness proof for solutions of the Laplace equation given in Section

3.3.2 carries through in similar fashion for the Poisson equation.
3.10 Prove Uniqueness Theorem II given in Section 3.3 by showing that if two different

electric fields are assumed to correspond to solutions of the Poisson equation with
the same boundary conditions, then the difference between them must be zero. Hint:
Gauss’s law in differential and integral form, general properties of conductors, and
some vector calculus voodoo will do the job. ***



4
Solving the Poisson and Laplace

Equations

For relatively simple electrostatics problems solutions may be found using Coulomb’s law
directly, Gauss’s theorem, image methods, and so on, as we have shown in Chs. 2 and 3. For
more complicated problems these methods may be difficult to apply and a more straightfor-
ward way to proceed may be to solve the Poisson or Laplace differential equations directly.
This chapter discusses some means to obtain solutions for those equations.

4.1 Solutions by Separation of Variables

It is more difficult to find systematic solutions for the Poisson and Laplace partial dif-
ferential equations than for ordinary differential equations. A typical case to be solved is
where the potential or the charge density is specified on the boundaries of a region, and we
wish to find the potential at arbitrary points in the interior. A standard approach to such a
problem is to solve the Laplace or Poisson equation subject to boundary conditions by the
separation of variables method.

4.1.1 Separation of Variables in Cartesian Coordinates

Let us introduce the separation of variables method using cartesian coordinates. The basic
idea is to assume that the solution can be written in the product form

Φ(x,y,z) = X(x)Y (y)Z(z), (4.1)

where X(x), Y (y), and Z(z) are functions only of x, y, and z, respectively. Let us illustrate
the method by considering the problem corresponding to Fig. 4.1 [7], where it is necessary
to solve for the scalar potential Φ subject to boundary conditions given by specifying Φ on
three conducting surfaces. The problem is independent of the z direction, and we assume
that there is no charge density between the plates. Therefore, we wish to solve the 2D
Laplace equation in cartesian coordinates,

∂ 2Φ
∂x2 +

∂ 2Φ
∂y2 = 0, (4.2)

subject to the boundary conditions

Φ = 0 (y = 0, y = a), (4.3a)

Φ = Φ0 (x = 0), (4.3b)

Φ→ 0 (x→ ∞). (4.3c)

76
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y

x

z

Φ = 0

Φ
0

Φ = 0

a

tFig. 4.1 Grounded (Φ = 0) semi-infinite plane-parallel electrodes terminated by a planar electrode
at potential Φ0. The electrodes are assumed to extend infinitely to the right and to be
infinite in the direction perpendicular to the page. (Maintaining the difference in potential
between the plates at Φ = 0 and Φ = Φ0 requires a strip of insulator at the joints.)
Adapted from Ref. [7].

Inserting the 2D product function

Φ(x,y) = X(x)Y (y) (4.4)

into Eq. (4.2) and dividing through by Φ = X(x)Y (y) gives

1
X

d 2X
dx2 +

1
Y

d 2Y
dy2 = 0, (4.5)

where we write the derivatives as ordinary derivatives since X(x) and Y (y) are functions of
a single variable. Now the second term of Eq. (4.5) is independent of x and the first term
is independent of y, and the two terms must always sum to zero. Thus each term must be
equal to a constant Cn,

1
X

d 2X
dx2 =C1

1
Y

d 2Y
dy2 =C2. (4.6)

Equation (4.5) then implies that C1 +C2 = 0, so for later convenience we introduce a new
constant k and set C1 = k2 and C2 = −k2. Therefore, the problem has been reduced to
solving two ordinary differential equations

d 2X
dx2 − k2X = 0 (4.7a)

d 2Y
dy2 + k2Y = 0. (4.7b)

As can be verified by substitution, the second equation (4.7b) has a solution

Y = Asin(ky)+Bcos(ky), (4.8)

where A and B are arbitrary constants. We may determine constants by imposing the bound-
ary conditions (4.3). From Eq. (4.3a), Φ= 0 at y= 0 requires that B= 0, and Φ= 0 at y= a
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requires that

k =
nπ
a

(n = 1,2,3, · · ·). (4.9)

Therefore,

Y = Asin
(nπy

a

)
(n = 1,2,3, · · ·). (4.10)

The equation for X in Eq. (4.7a) now takes the form

d 2X
dx2 −

(nπ
a

)2
X = 0, (4.11)

which has a solution

X = Genπx/a +He−nπx/a, (4.12)

as may be verified by substitution. However, the boundary condition Φ→ 0 as x→ ∞ of
Eq. (4.3c) can be satisfied only if G = 0, so we discard the first term of Eq. (4.12) and insert
Eqs. (4.10) and (4.12) into Eq. (4.4) to give

Φ(x,y) =C sin
(nπy

b

)
e−nπx/a, (4.13)

with C another arbitrary constant.
The solution (4.13) satisfies the boundary conditions (4.3a) and (4.3c), but does not

satisfy the boundary condition (4.3b). However, the Laplace equation is linear, meaning
that if {Φ1,Φ2,Φ3, · · · ,Φn} satisfy it, then the linear combination

Φ = a1Φ1 +a2Φ2 +a3Φ3 + · · ·+anΦn

where an are arbitrary constants, satisfies it also. Therefore, we take as a better approxima-
tion a linear combination of solutions (4.13) in the form

Φ(x,y) =
∞

∑
n=1

cn sin
(nπy

a

)
e−nπx/a, (4.14)

The boundary condition (4.3b) at x = 0 implies that

Φ(0,y) = Φ0 =
∞

∑
n=0

cn sin
(nπy

a

)
, (4.15)

which is a Fourier sine series, so we can exploit the corresponding orthogonality prop-
erties to evaluate the coefficients cn. Specifically, multiply both sides of Eq. (4.15) by
sin[(pxy)/a], where p is an integer, and integrate from y = 0 to y = a,

∫ a

0
Φ0 sin

( pπy
a

)
dy =

∫ a

0

∞

∑
n=1

cn sin
(nπy

a

)
sin
( pπy

a

)
dy. (4.16)

For the integral on the left side of this equation

∫ a

0
Φ0 sin

( pπy
a

)
dy =





2aΦ0

pπ
( if p is odd),

0 (if p is even),
(4.17)



79 Solutions by Separation of Variables

 0

 0.2

 0.4

 0.6

 0.8

 1.0

 0
 0.2

 0.4
 0.6

 0.8
 0

 0.2

 0.4

 0.6

 0.8

 1

x
y

Φ/Φ
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tFig. 4.2 Solution (4.21) of the 2D Laplace equation for the problem in Fig. 4.1, obtained by
separation of variables.

while for the integral on the right side,

∫ a

0
cn sin

(nπy
a

)
sin
( pπy

a

)
dy =





0 ( if p ̸= n),
a
2

cn (if p = n),
(4.18)

Comparing Eqs. (4.17) and (4.18), we conclude that the expansion coefficients are given
by

cn =





4Φ0

nπ
( if n is odd),

0 (if n is even),
(4.19)

and the potential as a function of x and y is

Φ(x,y) =
4Φ0

nπ

∞

∑
n=1,3,5,···

1
n

sin
(nxy

a

)
e−nπx/a. (4.20)

This series should converge quickly because of the rapid decrease of the factor e−nπx/a/n
with n. A convergent power series is a perfectly adequate way to define a solution, but it
happens that the series (4.20) can be summed exactly to give the more convenient closed
form [13],

Φ(x,y) =
2Φ0

π
tan−1

(
sin(πy/a)

sinh(πx/a)

)
, (4.21)

This solution is plotted in Fig. 4.2.

Example 4.1 Consider Fig. 4.3, where we wish to calculate the electrostatic potential
in the region between the parallel-plane electrodes [7]. There is no z dependence so again
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y

x

z

Φ = 0

Φ
1

Φ
2

Φ = 0

b

atFig. 4.3 Grounded (Φ = 0) parallel-plane electrodes of width a and separated by a distance b are
terminated on two sides with plane electrodes at potentials Φ1 and Φ2. The electrodes are
assumed to be infinite in the direction perpendicular to the page. Adapted from Ref. [7].

let’s solve the 2D Laplace equation by separation of variables. This problem has much in
common with the example from Fig. 4.1 just worked out, but the boundary conditions are
different.

Φ = 0 (y = 0, y = b), (4.22a)

Φ = Φ1 (x = 0), (4.22b)

Φ = Φ2 (x = a), (4.22c)

The most general solution is of the form

Φ(x,y) =
∞

∑
n=1

(
Ane−nπx/b +Bnenπx/b

)
sin
(nπy

b

)
, (4.23)

where the constants An and Bn may be determined using the boundary conditions. As you
are asked to show in Problem 4.3, the coefficients An and Bn are given by

An =
4

nπ

(
Φ1−Φ2e−nπa/b

1− e−2nπa/b

)
Bn =

4e−nπa/b

nπ

(
Φ2−Φ1e−nπa/b

1− e−2nπa/b

)
, (4.24)

where n= 1,3,5, · · · . This gives Φ(x,y) when inserted in Eq. (4.23). This solution is plotted
in Fig. 4.4.

Notice in Figs. 4.2 and 4.4 the property asserted in Section 3.2.2 that solutions of the
Laplace or Poisson equations can have maxima or minima only on the boundaries of the
domain, with no local maxima or minima permitted within the volume of the solution.

4.1.2 Separation of Variables in Spherical Coordinates

In the preceding examples of solving the Laplace equation by separation of variables the
geometry was rectangular and cartesian coordinates were appropriate. However, for some
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Φ

Φ0

tFig. 4.4 Solution the 2D Laplace equation for the problem in Fig. 4.3 by separation of
variables.(Excuse quality; temporary placeholder).

problems other coordinate systems such as spherical or cylindrical may be more natural.
In this section we consider solution of Laplace’s equation in spherical coordinates. The
Laplace equation in spherical coordinates (r,θ ,φ) is

1
r2

∂
∂ r

(
r2 ∂Φ

∂ r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂Φ
∂θ

)
+

1
r2 sin2 θ

∂ 2Φ
∂φ 2 = 0, (4.25)

To illustrate we will consider problems having axial symmetry (no dependence on φ ), in
which case the Laplacian equation reduces to

∂
∂ r

(
r2 ∂Φ

∂ r

)
+

1
sinθ

∂
∂θ

(
sinθ

∂Φ
∂θ

)
= 0. (4.26)

Just as in the cartesian coordinate examples we seek product solutions in which the vari-
ables (r,θ) are separated,

Φ(r,θ) = R(r)Θ(θ), (4.27)

where R(r) is a function only of r and Θ(θ) is a function only of θ . Substituting Eq. (4.27)
into Eq. (4.26) and dividing through by RΘ gives,

1
R

d
dr

(
r2 dR

dr

)
+

1
Θsinθ

d
dθ

(
sinθ

dΘ
dθ

)
= 0, (4.28)

where now we use total derivatives rather than partial derivatives since the functions being
differentiated are functions of a single variable. By similar logic as in the cartesian case,
the second term in Eq. (4.28) is independent of r so the first term must also be independent
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of r. Thus we write the separated equations as two ordinary differential equations

1
R

d
dr

(
r2 dR

dr

)
= k (4.29a)

1
Θsinθ

d
dθ

(
sinθ

dΘ
dθ

)
=−k (4.29b)

where the constants are written as k and −k, since the sum of the two equations must be
zero.

Consider first the R equation in Eq. (4.29a). Multiplying both sides by R and carrying
out the leftmost d/dr operation gives

r2 d 2R
dr2 +2r

dR
dr
− kR = 0, (4.30)

which has a solution

R = Arn +
B

rn+1 , (4.31)

that when inserted in Eq. (4.29a) requires n and k to be related by,

n(n+1) = k. (4.32)

Now consider the Θ equation (4.29b). Multiplying by Θsinθ and using Eq. (4.32), it
may be written

d
dθ

(
sinθ

dΘ
dθ

)
+n(n+1)sinθ Θ = 0 (4.33)

It is convenient to change variables by letting µ = cosθ . By the chain rule, for any function
f (µ) of µ ,

d f
dθ

=
d f
dµ

dµ
dθ

=−sinθ
d f
dµ

=−
√

1−µ2 d f
dµ

(4.34)

where we have used dµ/dθ =−sinθ and 1−µ2 = sin2 θ . Then, Eq. (4.33) becomes

d
dµ

[
(1−µ2)

dΘ
dµ

]
+n(n+1)Θ = 0 (Legendre’s equation). (4.35)

This is called Legendre’s equation and its solutions are polynomials in cosθ called Legen-
dre polynomials, designated by Pn(cosθ), where n is termed the order of the polynomial. 1

Letting cosθ ≡ x, normalized Legendre polynomials2 are typically defined by Rodrique’s
formula

Pn(x) =
1

2nn!
dn

dxn (x
2−1)n. (4.36)

1 Mathematically, Legendre’s differential equation (4.35) arises naturally from solution of the Laplace and re-
lated partial differential equations using separation of variables in spherical coordinates. The eigenfunctions of
the angular part of the Laplacian operator acting on Φ on the left side of Eq. (4.25) are spherical harmonics (see
Section 3.7.1); modulo multiplicative constants, Legendre polynomials are the subset of spherical harmonics
left invariant by rotations about the polar axis. Viewed in this way, the Legendre polynomials are intimately
connected to rotational symmetry. Indeed, many of their properties are found most easily using symmetry and
group theory methods, which in turn implies that they have deep physical and geometrical meaning.

2 The normalization is chosen to make all Legendre polynomials equal to one at cosθ = 1.
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Table 4.1 Legendre polynomials Pn(cosθ)

n Pn(cosθ)

0 1

1 cosθ

2 1
2 (3cos2 θ −1)

3 1
2 (5cos3 θ −3cosθ)

4 1
8 (35cos4 θ −30cos2 θ +3)

5 1
8 (63cos5 θ −70cos3 θ +15cosθ)

Some low-order Legendre polynomials are tabulated in Table 4.1. A general solution of
Laplace’s equation in spherical coordinates assuming axial symmetry is then given by

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ) (4.37)

The Legendre polynomials form a complete set, so arbitrary boundary conditions for prob-
lems with axial symmetry can be satisfied using them. Furthermore, they satisfy the or-
thogonality condition

∫ +1

−1
Pm(x)Pn(x)dx =

2
2n+1

δmn, (4.38)

or expressed explicitly in spherical coordinates,

∫ +1

−1
Pm(cosθ)Pn(cosθ)d(cosθ) =

∫ π

0
Pm(cosθ)Pn(cosθ)sinθdθ

=
2

2n+1
δmb =





2
2n+1

( if m = n,)

0 (if m ̸= n),
(4.39)

which are important in evaluating the coefficients in the expansion Eq. (4.37).

Example 4.2 Consider the conducting ball of radius a in an electric field illustrated in
Fig. 4.5. Inside the ball the field will be zero and far outside it will be the undisturbed field
EEE0. Near the ball the field will be distorted by polarization. Let’s solve the 2D Laplace
equation for the exterior field by separation of variables in spherical coordinates, assuming
axial symmetry. We take as boundary conditions

Φ = 0 (r = a) (4.40)

Φ =−E0r cosθ (r = ∞) (4.41)
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z

a

E
0

tFig. 4.5 A conducting ball of radius a in an external electric field EEE0 directed along the zzz axis, with
axial symmetry assumed around the z axis.

At the radius of the ball r = a, from Eqs. (4.37) and (4.40)

Φ(r,θ) =
∞

∑
n=0

AnrnPn(cosθ)+
∞

∑
n=0

Bnr−(n+1)Pn(cosθ) = 0. (4.42)

The coefficients An and Bn may be evaluated using the orthogonality relation (4.39) for the
Legendre polynomials. Multiplying Eq. (4.42) by Pm(cosθ) and integrating over d(cosθ ),
from Eq. (4.39) the only non-vanishing terms are those for which n = m, implying that

0 = Anan
∫ +1

−1
P2

n (cosθ)d(cosθ)+Bna−(n+1)
∫ +1

−1
P2

n (cosθ)d(cosθ)

= Anan
(

2
2n+1

)
+Bna−(n+1)

(
2

2n+1

)
,

which requires the coefficients to be related by

Bn =−Ana2n+1. (4.43)

Therefore, from Eqs. (4.42) and (4.43),

Φ(r,θ) =
∞

∑
n=0

An

(
rn− a2n+1

rn+1

)
Pn(cosθ). (4.44)

Now as r→ ∞ the second term in parentheses in Eq. (4.44) becomes negligible compared
with the first and the boundary condition (4.41) requires that

−E0r cosθ =−E0rP1(cosθ) =
∞

∑
n=0

AnrnPn(cosθ), (4.45)

where we have used P1(cosθ) = cosθ from Table 4.1. Thus, the only non-zero term on the
right side is n = 1, implying that

A1 =−E0,

with all other An = 0. Then from Eq. (4.43) all the Bn are zero except for

B1 =−A1a3 = E0a3,



85 Variational Methods

and the potential at any point (r,θ) is given by

Φ(r,θ) =−E0r cosθ +E0
a3 cosθ

r2

=−E0

(
1− a3

r3

)
r cosθ , (4.46)

where the first term is the potential corresponding to the applied field E0 and the second
term is the induced polarization potential. The electric field components follow from Eq.
(4.46) by taking the gradient [see Eq. (A.47) for the gradient in spherical coordinates],

Er =−
∂Φ
∂ r

= E0

(
1+

2a3

r3

)
cosθ , (4.47)

Eθ =−1
r

∂Φ
∂θ

=−E0

(
1− a3

r3

)
sinθ . (4.48)

At the surface of the conductor we know that

Er|r=a =
σ
ε0
,

so solving for σ and using Eq. (4.47) with r = a gives

σ = 3ε0E0 cosθ , (4.49)

for the induced charge density.

4.1.3 Separation of Variables in Cylindrical Coordinates

Material to follow.

4.2 Variational Methods

Material to follow.

Background and Further Reading

An introduction to the material of this chapter may be found in Griffiths [13] or Purcell and
Morin [32]. More advanced treatments may be found in Jackson [19], Garg [11], Chaichian
et al [5], and Zangwill [42].
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Problems

4.1 A surface charge density specified by a function σ(θ) is pasted onto an empty 3D
spherical shell of radius R. Assume axial symmetry and use separation of variables
in the Laplace equation to derive a general formula for the potential Φ as a function
of σ(θ) inside and outside the shell radius R.

4.2 One form of Earnshaw’s theorem (see Section 3.2.1) states that, for any electric field
EEE, the average of the scalar potential Φ over any sphere that lies entirely in a charge-
free region is equal to the value of the potential at the center of the sphere. For a
charge Q outside a sphere of radius r0 = |rrr| as in the following diagram,

Q
R

r

R - r

the potential averaged over the sphere ⟨Φ⟩ is given by

⟨Φ⟩= 1
4πr2

0

∫
1

4πε0

Q
|RRR− rrr| r

2δ (r− r0)dr dΩ.

This could be integrated directly, but instead prove Earnshaw’s theorem by evaluating
the integral using the spherical harmonic expansion

1
|xxx− xxx′| = 4π

∞

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗lm(θ
′,φ ′)Ylm(θ ,φ),

given in Eq. (3.51). ***
4.3 Consider the following figure ,

y

x

z

Φ = 0

Φ
1

Φ
2

Φ = 0

b

a

which illustrates grounded (Φ= 0) parallel-plane electrodes of width a and separated
by a distance b, which are terminated on the left and right sides with plane electrodes
at potentials Φ1 and Φ2, and the top and bottom sides are held at potentials Φ = 0.
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The electrodes are assumed to be infinite in the direction perpendicular to the page.
Calculate the potential in the region between the parallel-plane electrodes.

4.4 Assume a sphere of radius R parameterized by spherical coordinates (r,θ ,φ), with a
surface charge layer of density

σ(θ) = kP1(cosθ) = k cosθ ,

where k is a constant and P1(cosθ) is a Legendre polynomial. Use the Laplace equa-
tion assuming axial symmetry (no φ dependence) to find expressions for the potential
Φ(r,θ) inside and outside of R. Hint: This problem will be easy if you work Problem
4.1 first. ***



5 Electrostatics in Conducting Matter

There are a number of categories for the classification of matter in materials science. One
of the most fundamental distinctions is between1

1. insulators (often termed dielectrics in electromagnetism) which correspond to matter
having charge carriers that are tightly bound and do not transport electrical charge well,
and

2. conductors, which have delocalized charge carriers that are free to transport electrical
charge efficiently; conductors are also often called metals.

In atomic matter the charge carriers are typically electrons, electron holes, or ions, but
for purposes of being definite in discussion, we shall normally assume electrons to be the
charge carriers, unless otherwise stated.

5.1 Properties of Conductors

The high mobility of charge carriers in good conductors underlies many of their basic prop-
erties. A good conductor in electrostatic equilibrium is expected to exhibit the following
properties (see Problem 2.3)

5.1.1 Electric Fields Inside a Conductor Vanish

Intuitively EEE = 0 inside a conductor because if there were an electric field inside the con-
ductor it would accelerate electrons, violating the assumption of electrostatic equilibrium.
More precisely, consider Fig. 5.1(a) where a conducting slab is immersed in an external
electric field EEE oriented horizontally. Initially the external field will attract negative charges
to the left side of the slab, leaving a net positive charge on the right side. This polarization
of charge within the slab will create an internal electric field EEE ′ that opposes the external
field EEE (remember the convention that the electric field vector points from positive to neg-
ative charge). This piling up of negative charges on one side and positive charges on the
opposite side in response to application of an external electric field is called an induced

1 There are also things in between such as semimetals or semiconductors that transport charge poorly, or only
under certain conditions, some materials like Mott insulators having different mechanisms than simple insula-
tors, or superconductors that do a super job of carrying current without resistance. We will leave finer details
of classification to materials science for now and concentrate on the electromagnetic behavior of simple and
idealized conductors and insulators.
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tFig. 5.1 (a) Conducting slab in a uniform electric field EEE. (b) Gaussian surface (dashed curve)
inside a conductor. (c) Cylindrical Gaussian surface perpendicular to the surface of a
conductor.

charge. Charge will continue to flow within the slab until the induced internal electric field
EEE ′ exactly cancels the external field EEE, leaving a net zero electric field inside the conduc-
tor. Because this is a conductor the charge carriers are extremely mobile and the generation
of internal fields that oppose and cancel the external field typically occurs on a timescale
sufficiently short that it can be assumed to be instantaneous for most considerations.

5.1.2 The Charge Density Is Zero Inside a Conductor

Just as the electric field vanishes inside a conductor, the charge density ρ is also zero.
Consider the Gaussian surface shown in Fig. 5.1(b). From Gauss’s law with zero internal
electric field (Point 1 above),

∮

S
EEE ·nnnda =

∮

S
000 ·nnnda = 0 =

Q
ε0
,

where Q is the total charge enclosed by the surface. Hence the absence of an electric field
means necessarily that the charge density ρ = 0 inside a conductor.

5.1.3 Excess Charge Resides on the Surface of a Conductor

That excess charge must reside at the surface of the conductor is a consequence of Gauss’s
law and follows immediately from the requirement that ρ = 0 inside the conductor. Since
the Gaussian surface (dashed curve) in Fig. 5.1(b) can be place arbitrarily close to the
surface, it follows that any excess charge can exist only at the surface of a conductor.

5.1.4 Any Exterior Electric Field is Normal to the Surface

No electric field exists inside a conductor; if any electric field exists outside the conductor
it is necessarily
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• generated by the excess surface charge, and is
• perpendicular to the surface of the conductor.

Consider Fig. 5.1(c), where we construct a cylindrical Gaussian surface with the end faces
parallel to the surface of the conductor that is partially inside and partially outside the
conductor. If at a point on the surface the electric field EEE had a component tangent to the
surface of the conductor, this would cause electrons to move along the surface and disturb
electrostatic equilibrium. Thus EEE is perpendicular the the surface of the conductor and there
is no flux through the curved part of the Gaussian cylinder. There also is no flux through the
flat face of the cylinder inside the conductor, because EEE is zero there. Hence any net flux
passes only through the flat face of the Gaussian cylinder outside the conductor. Applying
Gauss’s law to this surface,

∮

S
EEE ·nnnda =

∫

base
|EEE|da = EA =

Q
ε0

=
σ
ε0
,

where σ is the surface charge density and A is the area of the endplate of the cylinder. It
follows that any electric field must (1) be outside the conductor, (2) have a magnitude pro-
portional to the surface charge density, and (3) have an orientation normal to the surface.

5.1.5 A Conductor is an Equipotential

A conductor necessarily has the same same potential Φ at each point in the conductor. This
follows because for any two points either within the conductor or on its surface,

Φ(AAA)−Φ(BBB) =−
∫ BBB

AAA
EEE ·dlll = 0,

because EEE = 0 in the interior and on the surface.

5.1.6 Surface Charge Accumulates Where Curvature Is Large

If a conductor is of irregular shape, the surface charge density σ will be greatest where
the surface has the largest local curvature (that is, the smallest radius of curvature). Con-
sider an irregularly shaped conductor, as in Fig. 5.1(b), and partition the surface into small
elements of area dai subtending equal angles measured from the center of the conductor.
Points 1 and 3 above then require that σi dai be constant, and since dai depends on the
radius of curvature, the smaller the radius of curvature (the larger the curvature) the greater
the local surface charge density σ .

5.2 Capacitance

From the equations of electrostatics the source charge Q is proportional to the scalar po-
tential Φ, with the constant proportionality termed the capacitance C. For an isolated con-
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s
C = 

ε0A
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Charge +Q

Charge -Q

Φ+

Φ-

Area = A

tFig. 5.2
A parallel plate capacitor.

ductor carrying a charge Q with potential Φ, the capacitance is

C =
Q
Φ
. (5.1)

In the SI system of units the charge is measured in coulombs, the potential in volts, and the
capacitance in farads (F),2 with 1F≡ 1coulomb/volt.

5.2.1 Parallel Plate Capacitors

Capacitance is also a useful concept in dealing with the charges and potentials associated
with more than one conductor. The generic example is the parallel plate capacitor illus-
trated in Fig. 5.2. For two conductors the capacitance is defined to be the charge on the
positive plate divided by the difference in potential between the two plates. If the differ-
ence in potential for two conductors denoted by V ,

V ≡Φ+−Φ−, (5.2)

the capacitance for a parallel plate capacitor is given by

C =
Q
V

(Two conductors). (5.3)

For the capacitor in Fig. 5.2 the capacitance depends only on its geometry,

C =
ε0A

s
(Parallel plate capacitor), (5.4)

where A is the surface area of a plate and s is the separation between the plates (which we
assume to be parallel to each other, and of equal area) .

As will be discussed in Section 6.1, the capacitance of a parallel plate capacitor like that
shown in Fig. 5.2 can be increased significantly by replacing the gap between the electrodes
with a layer of insulating (dielectric) material, such as teflon. This is a consequence of the
electric field polarizing the charge distribution in the dielectric layer lying between the
plates (see Box 6.1).

2 The farad is a very large unit for typical phenomena, so it is common to use microfarads (1 µF = 10−6 F) and
picofarads (1pF = 10−9 F) as units of capacitance in practical calculations.
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5.2.2 Energy Stored in a Capacitor

Charging a capacitor (for example, by connecting the two plates in Fig. 5.2 to the poles of
a battery) stores energy in the electric field that is created between the oppositely-charged
electrodes of the device. The amount of energy in the field may be determined by comput-
ing the work done to charge the capacitor to a particular level. Consider the parallelplate
capacitor of Fig. 5.2. If at some point in the charging process the charge on the positive
plate is q, from Eqs. (2.37) and (5.3) the work increment dW required to add the next
charge increment dq is given by

dW =
( q

C

)
dq, (5.5)

and the total work that must be done to charge the plate from q = 0 to q = Q is given by
integration,

W =
∫

dW =
∫ Q

0

( q
C

)
dq =

Q2

2C
. (5.6)

Therefore, using Q =CV from Eq. (5.3), the work required to charge to a potential differ-
ence V between the electrodes is

W =
1
2

CV 2, (5.7)

From Eq. (5.4), this takes the specific form

W =
1
2

Aε0

d
V 2, (5.8)

for a parallel plate capacitor, where A is the area of a plate and d is the separation of the
plates.
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Problems

5.1 Consider a sphere containing a single point charge Q located a distance r′ from the
origin along the z-axis.

R

Q

P
θ r'

r1

r

z

dτ1

dτ2

dr

Calculate the average electric field inside the sphere. Hint: Separate the volume of
the sphere τ into the part outside Q plus the part inside Q, as indicated by the dashed
circle in the figure, and show by qualitative argument that the contribution from
outside the dashed circle is zero.

5.2 Consider the spherical capacitor shown in the following figure,

b

a

Q

-Q

where the outer spherical conducting shell has radius b and charge −Q, and the
innner spherical conducting shell has radius a and charge +Q. What is the capaci-
tance of this device? ***

5.3 A capacitor consists of concentric cylinders with radii a for the inner cylinder and b
for the outer cylinder.



94 Electrostatics in Conducting Matter

a

b

Derive a formula for the capacitance per unit length assuming the inner cylinder to
be positively charged with a charge density of λ coulombs per unit length.



6 Electrostatics in Dielectric Matter

To this point we have considered electrostatics primarily in vacuum, except for the presence
of electrical charges, and of conducting matter in a few instances. But many important
applications of electromagnetic theory involve interactions in non-conducting (dielectric)
matter. There are two fundamental differences between conductors and dielectrics, and
their electrostatic behavior.

1. Conductors have available many electrons that are not bound to atoms or molecules,
and thus are very mobile. In constrast, ideal dielectrics have no free electrons.

2. Dielectrics typically can have electric fields in their interior, but conductors suppress
any internal electric fields.

Therefore, this chapter begins to address how the properties of dielectric matter influence
the equations of electrostatics. We will find that electric fields in matter are largely dipole
fields, with the the net dipole moment having two basic sources:

1. Some molecules have an intrinsic dipole moment, and an external electric field exerts a
torque that tends to align those moments with the field.

2. An electric field produces dipoles by polarizing matter, even if the atoms or molecules
have no significant dipole moment in the absence of the applied field. This polarization
effect is characterized by a quantity called the atomic polarizability.

In either case the material my be characterized in terms of a polarization P and an electric
susceptibility, which is proportional to the ratio of P to the electric field. The primary
effect of the polarization is to create a surface charge density in dielectric material. A
considerable amount can be learned about the nature of dielectrics by examining the effect
of this induced surface charge density on capacitors.

6.1 Dielectrics

As illustrated in Box 6.1, a capacitor with dielectric material between the metal plates
has increased capacitance because of this induced surface charge (with the practical im-
plications of reducing the size of the capacitor, or increasing its working voltage). Let us
investigate in more depth the effect of a dielectric on a capacitor. A parallel-plate capacitor
with no material between the plates has a capacitance C defined by

C =
Q

Φ12
=

ε0A
s

, (6.1)
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Box 6.1 Capacitors and Dielectrics

The simplest parallel-plate capacitor has two separated parallel metal plates with
nothing in between, as illustrated in Fig. (a) below.

s

(a) No dielectric (b) With dielectric

Dielectric

A A

s

C = 
ε
0

A

s
C > 

ε
0

A

s

Inserting a dielectric between the plates of the capacitor as in Fig. (b) increases
the capacitance because the induced surface charge on the dielectric produced by
the electric field between the plates partially cancels the opposite charge on the
adjacent plate. Understanding this mechanism leads to fundamental insight into the
role of an electric field in a dielectric, as described in Section 6.1.1.

where Q is the magnitude of the charge on the plates (positive Q on one plate and negative
Q on the other), Φ12 is the difference in electrical potential between the two plates, A is the
surface area of a plate, and s is the separation of the plates.

6.1.1 Capacitors and Dielectrics

Now suppose that a layer of dielectric material is placed between the capacitor plates, as
illustrated in Box 6.1. The capacitance may still be defined by the ratio of the charge to
the potential difference between the plates, C = Q/Φ12, but now the actual value of C
will be increased over that found for no dielectric between the plates. The presence of
the dielectric between the plates allows more charge Q to accumulate on the plates and
therefore greater capacitance, for the same potential difference, plate area, and separation
of the plates. Qualitatively, this influence of the dielectric on the capacitance is not difficult
to understand. The material of the dielectric consists of atoms or molecules with negatively
charged electrons and positively charged nuclei.

1. The electric field between the plates polarizes the charge distribution of the dielectric.
2. Assuming the charge on the upper plate to be positive, negative charges in the dielectric

will be pulled upward and positive charges pushed down, as illustrated in Fig. 6.1.
3. This exposes a layer of uncompensated negative charge near the top and a layer of

uncompensated positive charge near the bottom of the dielectric.1

1 As will be quantified shortly, this displacement of charge is very small. Remember that we are dealing with a
dielectric where the electrons are bound up in atoms and molecules. There is no significant population of free
charge carriers, as would be the case with a metallic conductor.
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tFig. 6.1 Effect on capacitor of a dielectric between the plates. (a) No dielectric. (b) With dielectric.
The switch allows charging and discharging the capacitor. Adapted from Ref. [32].

4. The charge Q on the upper plate will increase because of the induced top layer of neg-
ative charge below it in the dielectric.

5. We shall show later that Q increases until the algebraic sum of Q and the induced charge
in the upper layer is equal to the total charge on the top plate Q0 before the dielectric
was inserted.

6. It follows that the total charge Q in the top layer is larger than the charge Q0 of the top
plate in Fig. 6.1(a) before the dielectric was inserted.

7. Thus, the charge is the Q that appears in Eq. (6.1) and is, in the circuit of Fig. 6.1, the
charge supplied by the battery to charge the capacitor.

The induced charge layer is not part of the charge Q appearing in Eq. (6.1). If the
switch in the circuit of Fig. 6.1 is used to discharge the fully-charged capacitor
though the resistance R, the charge Q will be dissipated.

Thus the induced charge present in the charged capacitor is absorbed back into the normal
structure of the dielectric in the discharged capacitor.

6.1.2 Dielectric Constants

Different dielectric materials would be expected to have different efficiencies for increas-
ing the charge capacity of a capacitor, according to the ease with which electrons can be
displaced with respect to the atomic nuclei in the dielectric matter by the applied electric
field. The factor Q/Q0 by which the charge and thus the capacitance is increased by insert-
ing a particular material between the capacitor plates is called the dielectric constant κ of
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Table 6.1 Dielectric constants κ for some substances

Substance Conditions κ

Vacuum (Definition) 1.00000
Air gas, 0◦ C, 1 atm 1.00059
Water vapor gas, 110◦ C, 1 atm 1.0126
Liquid water liquid, 20◦ C 80.4
Silicon solid 20◦ C 11.7
Polyethelene solid, 20◦ C 2.25−2.3
Porcelain solid 20◦ C 6.0−8.0

that material:

Q = κQ0 ←→ C = κC0. (6.2)

Dielectric constants are ratios of charges and thus dimensionless; a few values of κ are
given in Table 6.1 for some representative substances. The dielectric constant of the vac-
uum is defined to be κ = 1, typical gases have κ slightly larger than one, and liquids and
solids can have dielectric constants varying widely in the range κ ∼ 1−100. The remark-
ably large value κ = 80.4 for water merits an explanation that will be given later.

6.1.3 Bound Charge and Free Charge

In considering the effect of a dielectric on a capacitor, it is useful to introduce some ter-
minology distinguishing between the charge associated with the dielectric itself and the
mobile charges that can charge the plates. Those charges associated intrinsically with the
dielectric are termed bound charges; those charges that are mobile and not bound in the
dielectric are termed free charges. The bound charges are not mobile because they are at-
tached physically to the atoms and molecules making up the dielectric.2 Bound charges
can be polarized by electric fields causing tiny charge displacements in the charged capac-
itor, but if the capacitor is discharged the bound charges remain with the dielectric, which
becomes unpolarized as the electric field vanishes (assuming no permanent dipole moment
for the substance of the dielectric); the bound charges are not part of the charge Q on the
capacitor plates. Conversely, the free charges may be viewed as those charges that we have
some agency over in an experiment (for example, through manipulation of the electrical
circuit in Fig. 6.1 by using the switch to charge or discharge the capacitor).

2 We assume that fields are not large enough to cause ionization and breakdown of the dielectric (possibly
accompanied by smoke and fire, which would be unseemly in a theoretical discusssion).
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tFig. 6.2 Diagram for calculation of the potential at point P produced by a molecular charge
distribution.

6.2 Moments of a Molecular Charge Distribution

Let’s consider the potential ΦP at a distant point P produced by the molecular electrical
charge distribution of Fig. 6.2,

ΦP =
1

4πε0

∫ ρ(xxx′)
R

dτ ′, (6.3)

where the integral is over all of the charge distribution. From the law of cosines (A.62) the
distance R is given by

R = (r2 + r′2−2rr′ cosθ)1/2, (6.4)

where we define r = |xxx| and r′ = |xxx′|, and Eq. (6.3) becomes

ΦP =
1

4πε0

∫
(r2 + r′2−2rr′ cosθ)−1/2ρ(xxx′)dτ ′. (6.5)

Let us now expand this expression for the potential in multipole moments.

6.2.1 Multipole Expansion of the Potential

For a distant point P we have r≫ r′ and a binomial expansion gives (see Problem 3.2)

1
R
= (r2 + r′2−2rr′ cosθ)−1/2 =

1
r

[
1+

r′

r
cosθ

+

(
r′

r

)2 3cos2 θ −1
2

+O

([
r′

r

]3
)]

. (6.6)

Then from Eqs. (6.3) and (6.6) the potential can be written as

ΦP =
1

4πε0

[
1
r

∫
ρdτ ′+

1
r2

∫
r′ cosθρdτ ′+

1
r3

∫
r′2

3cos2 θ −1
2

ρ dτ ′+ · · ·
]
, (6.7)
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where the constant r = |xxx| has been brought outside the integrals (the integration variable
is xxx′). Now this is a power series in 1/r with coefficients that are constants depending only
on integrals over the charge distribution and independent of the distance to P. Thus the
potential can be written as a power series (multipole expansion) with constant coefficients

ΦP =
1

4πε0

[
C0

r
+

C1

r2 +
C2

r3 + · · ·
]
, (6.8)

where the coefficients Ci are the integrals over the internal charge distribution in Eq. (6.7).
The electric field then follows from EEE =−∇∇∇ΦP.

6.2.2 Dominence of Monopole and Dipole Terms

At large distance from the source, the rapid convergence of terms in Eq. (6.8) implies that
only low-order multipoles dominate. Behavior of the electric potential Φ at large distance
from the source typically will be dominated by the first term that has a non-zero coeffi-
cient in the multipole expansion (6.8). Let us examine the coefficients in Eq. (6.8). The
monopole coefficient C0 =

∫
ρ(xxx′)dτ ′ is the total charge. For a neutral atom or molecule,

C0 = 0. If the atom or molecules is ionized so that ρ ̸= 0, the monopole term will always
dominate at large enough distance. If the atom or molecule is charge-neutral so that ρ = 0,
the dipole term with C1 =

∫
r′ cosθρ(xxx′)dτ ′ dominates since C0 = 0. Furthermore, if the

charge distribution is charge-neutral the value of C1 is independent of the choice of origin.3

As we shall see, for our main task here of understanding the behavior of di-
electrics, in a multipole expansion only the monopole strength (the total charge)
and the dipole strength of the molecular building blocks of the dielectric are
important in determining its electric-field properties. Thus, for the properties of
dielectrics all multipole moments of the charge distribution of order beyond the
dipole can usually be ignored.

As noted in the introduction to this chapter, a net dipole moment can come about because
of induced polarization by an electric field, or because of molecules that have a permanent
dipole moment. We shall now consider induced moments in Section 6.3 and permanent
dipole moments in Section 6.4.

6.3 Induced Dipole Moments

The simplest atom is hydrogen, consisting of one nucleus (a proton) and one electron. The
nucleus is so small compared with the electron cloud that in hydrogen and in more com-
plicated atoms and molecules the nuclei can be approximated as point charges. Quantum
3 Generally, the value of a multipole moment may depend on the origin chosen for the coordinate system. But

for the special case of a dipole moment in a charge-neutral dielectric, the value of the dipole moment is always
independent of the choice of origin.
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mechanically the electron in hydrogen must be viewed as a cloud of negative charge with
smoothly varying density (with the integrated charge equal to the electron charge e). The
density falls off exponentially on the boundaries, so it makes sense to view the charge
clouds of atoms and molecules as having approximate classical radii and shapes.

6.3.1 Polarization of the Electron Cloud

The electron cloud of the undisturbed hydrogen atom is spherically symmetric, but if it
is placed in an electric field pointing upward along a z-axis the atomic charge cloud will
be polarized, with the negative electrons pulled down and the positive nucleus pushed up.
This distorted atom will have an electric dipole moment because the center of mass of the
electron cloud will be displaced a small amount ∆z from the nucleus, giving a net dipole
moment of magnitude ∼ e∆z, where e is the total electron charge. Example 6.1 estimates
the size of this distortion in actual atoms.

Example 6.1 A very rough estimate of how much distortion will be caused by a field
of strength E may be made by noting that a strong electric field already exists holding the
unperturbed H atom together, which may be estimated as

E ≃ e
4πε0a2 ,

where a is a characteristic atomic length scale (for example, some multiple of the Bohr
radius). If it is assumed that a field of the same order of magnitude would be required to
produce significant distortion, the distortion may be estimated to be

∆z
a
≃ E

e/4πε0a2 .

Typically, e/4πε0a2 ∼ 1011 volts/m, which is enormous (thousands of times larger than
any field that can be produced at present in a laboratory); the distortion of the atom ∆z/a
induced by electrical polarization will be tiny indeed!

The dipole moment vector ppp induced by an electric field EEE will point in the direction of
the field and the magnitude of the induced dipole moment is generally proportional to the
electric field (at least if the field is not too strong, which we assume to be the case).

6.3.2 Atomic Polarizabilities

The factor relating the dipole moment vector ppp to EEE is termed the atomic polarizability α ,

ppp = αEEE. (6.9)

More generally, in a molecules the polarization may be asymmetric with respect to different
axes and the scalar coefficient α in this equation must be replaced by a polarizability ten-
sor, as described in Box 6.2. It is common to report atomic polarizabilities as the quantity
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α/4πε0 (which has units of volume) rather than as α itself.4 Some atomic polarizabilities
are given in Table 6.2, listed in order of atoms with increasing total electron number. The
large variations in polarizabilities that are evident in Table 6.2 may be attributed to differ-
ences in total electron number and in valence electronic structure. For example, the noble
gas elements He, Ne, and Ar have small polarizabilities because their outer electrons are
more tightly bound than for other elements, but the polarizabilities increase in the sequence
He to Ne to Ar because of an increase in the total electron number. As another example,
the elements Na and K each have one loosely bound electron outside a closed electronic
shell and that electron is very susceptible to perturbation by an electric field. As a result,
Na and K have very large polarizabilities (κ = 27 and κ = 34, respectively).

Example 6.2 Let’s estimate the amount of charge displacement in an atom induced by
a typical electric field. From the polarizability of atomic hydrogen given in Table 6.2,
the magnitude of the dipole moment induced by an electric field of strength one mega-
volt / meter is p < 10−34 coulomb-meters.

Thus the characteristic atomic and molecular polarizations induced by applied electric
fields are extremely small.

6.4 Permanent Dipole Moments of Polar Molecules

Some molecules have asymmetric shapes and exhibit permanent dipole moments in their
normal ground state, even in the absence of an external field; a few examples are shown
in Fig. 6.3. Molecules that have a permanent dipole moment are termed polar molecules.
As a rule, the intrinsic dipole moments of polar molecules are much larger than the dipole
moments induced by laboratory electric fields for either non-polar or polar molecules.

4 Beware: both α and α/4πε0 are sometimes called the “atomic polarizability” in the literature.

|p| = 3.43

Hydrogen chloride (HCl) Water (H2O) Ammonia (NH3)

|p| = 4.76|p| = 6.13tFig. 6.3
Approximate geometry of the electron cloud and the observed dipole moment vector ppp for
some polar molecules. Magnitudes p = |ppp| of the dipole moment vector are in units of
10−30 coulomb-meters (adapted from Ref. [32]).
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Box 6.2 Asymmetric Polarization

Molecules can be very asymmetric and may have different polarizabilities along
different axes. For example, the linear molecule carbon dioxide (CO2) illustrated in
the following figure

O OC

has a polarizability more than twice as large if the field is applied along its long
axis than if it is applied perpendicular to that. In the most general case of a highly
asymmetric molecule the simple relation (6.9) between the polarization vector and
the electric field vector must be replaced by a tensor equation that can be expressed
as a matrix–vector multiply,

ppp =




px

py

pz


=




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz







Ex

Ey

Ez


 ,

which is equivalent to the simultaneous equations

px = αxxEx +αxyEy +αxzEz,

py = αyxEx +αyyEy +αyzEz,

pz = αzxEx +αzyEy +αzzEz.

Thus the scalar coefficient α in Eq. (6.9) has been replaced by a polarizability tensor
A that has the components

A =




αxx αxy αxz

αyx αyy αyz

αzx αzy αzz


 ,

expressed as a matrix in the current basis.

Example 6.3 As shown in Fig. 6.3, the magnitude of the (permanent) dipole moment for
the polar molecule HCl is p = |ppp|= 3.43×10−30 coulomb-meters (which is equivalent to
shifting the charge of one electron by a distance of 2×10−9 cm [32]). From Example 6.2,
the magnitude of the dipole moment in hydrogen induced by an electric field of magnitude
one megavolt per meter is p < 10−34 coulomb-meters. This result is a characteristic one
and permanent dipole moments are typically multiple orders of magnitude larger than those
induced by laboratory electric fields.
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Table 6.2 Atomic polarizabilities (α/4πε0) in units of 10−30 m3

Element: H He Li Be C Ne Na Ar K
0.66 0.21 12 9.3 1.5 0.4 27 1.6 34

F+

F−

d

-q

+q

E

E

p
θtFig. 6.4

Torque applied to a molecule with an intrinsic dipole moment in a uniform electric field.

In a uniform electric field polar molecules will have their dipole vectors partially aligned
with the field. The net force on the dipole vanishes, because the force on the negative end
exactly cancels the force on the positive end (see Fig. 6.4), but the torque NNN acting on the
dipole is

NNN = ppp×EEE, (6.10)

where ppp is the dipole moment vector. The direction of NNN is so as to align the dipole moment
of a polar molecule with the electric field. Perturbations such as thermal fluctuations tend
to inhibit this alignment, so the typical physical outcome is an equilbrium with the dipoles
partially aligned with the field.

6.5 Polarization Density

We have discussed two basic mechanism that lead to polarization of a dielectric: (1) distor-
tion of the charge distribution by an electric field, which induces many tiny dipoles pointing
in the same direction as the field if the dielectric substance consists of atoms or non-polar
molecules, and (2) alignment of the existing intrinsic dipole moments by an electric field
if the substance consists of polar molecules.5 The net effect of either is to produce a set
of dipoles aligned or partially aligned with the electric field. Our primary interest here is
in the effect of this polarization, without regard to the mechanism by which it was pro-
duced. Therefore, a measure of polarization for matter can be formed by asking how many
dipoles N of average dipole moment ppp there are in a unit volume, without regard to their

5 An applied field induces polarization for polar and non-polar molecules. However, any induced polarization
for a polar molecule is usually very small compared with its intrinsic polarization and can be neglected.
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tFig. 6.5 (a) A column of polarized material with cross section da observed at a distant point A
produces the same field as two charges, one at each end of (b). Adapted from Ref. [32].

source. The total dipole strength of an infinitesimal volume element is then pppNdτ and the
polarization density PPP can be defined by

PPP≡ pppN =

(
Number of dipole moments

Unit volume

)
, (6.11)

which has units of C-m/m3 = C/m2. The polarization-charge density ρpol is given by minus
the divergence of the polarization density,

ρpol(xxx) =−∇∇∇ ·PPP(xxx). (6.12)

The electric field is discontinuous across the surface of the dielectric (see Sections 6.9 and
6.11), so there must be a surface charge density given by the difference between the density
(6.12) evaluated for the two media at the boundary that is given by

σpol =−(PPP2−PPP1) · n̂nn (6.13)

where PPPi is the polarization in Medium i and n̂nn is a unit vector that is normal to the boundary
and points from Medium 1 to Medium 2.

6.6 Field Outside Polarized Dielectric Matter

Let’s now estimate the electric potential associated with the polarized dielectric material,
considering separately the regions outside and inside of the dielectric matter. If it is as-
sumed that the dielectric was assembled from neutral matter so that there is no net charge,
there will be no monopole term in the multipole expansion (6.8). Therefore to good ap-
proximation only the dipole moments need be considered as sources of a field. Consider a
thin vertical cylinder of dielectric matter in an electric field, as illustrated in Fig. 6.5. The
polarization PPP is uniform and points in the positive z direction, and we wish to calculate
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the electric potential at the point A. An element of the cylinder of height dz in Fig. 6.5(a)
has a dipole moment

ppp = PPPdτ = PPPdadz, (6.14)

and its contribution to the potential at point A is

dΦA =
P cosθdadz

4πε0r2 . (6.15)

Then the potential at the point A produced by the entire column of polarized matter is
obtained by integration,

ΦA =
Pda
4πε0

∫ z2

z1

dzcosθ
r2

=
−Pda
4πε0

∫ z2

z1

dr
r2

=
Pda
4πε0

(
1
r2
− 1

r1

)
. (6.16)

But this the same as a potential produced by a positive point charge Pda at the top of the
column at a distance r2 from A and a negative point charge −Pda placed at the bottom of
the column a distance r1 from A (see the dipole potential example in Box 3.3). A column
of uniformly polarized matter produces the same potential and thus the same electric field
at an external point A as a dipole consisting of two concentrated charges of magnitude Pda
at the two ends of the column.

We can make Eq. (6.16) plausible by the heuristic argument illustrated in Fig. 6.5(b).
Consider making the cylinder shown in Fig. 6.5(a) by stacking on top of each other small
cylinder segments of height dz, with a charge of +Pda on its top face and −Pda on
its bottom face. But now within the column the + charge on the top of a segment will
be cancelled by the − charge on the bottom of the next segment up, except for the top-
most segment, which will have an uncompensated charge on its top face of +Pda, and
the bottom-most segment, which will have an uncompensated charge on its bottom face
of −Pda. Thus the column of tiny dipoles will appear to be a single large dipole with
end charges +Pda and −Pda, separated by a distance z2− z1. Note that nowhere in this
derivation have we assumed that A is particularly distant; we have only assumed that the
distance to A is much larger than the lengths of the individual microscopic dipoles and
much larger than the width of the column in Fig. 6.5(a), both of which are very small.

We can take a slab of dielectric and divide it up infinitesimally into such columns and
integrate over them to conclude that the electric field outside the slab is the same as if two
sheets of surface charge were located at the positions of the top and bottom of the slab,
carrying constant surface charge density σ =+P and σ =−P, respectively. See Fig. 6.6.
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(a) Block of polarized dielectric (b) Top and bottom layers of surface charge

σ = +P

σ = −P

z

tFig. 6.6 (a) A block of dielectric polarized by an electric field in the z direction. (b) Two sheets of
charge ±P at the positions of the top and bottom surfaces of the block in (a).

6.7 Field Inside Polarized Dielectric Matter

It may be expected that the field inside polarized dielectric matter could be quite com-
plicated. Inside the dielectric we cannot assume that a point is at a much larger distance
than the size of the dipoles. However, we may surmise that the electrostatic properties are
governed by averages rather than the detailed local microscopic structure. Therefore, let us
average over a region that is macroscopically small but microscopically large.6 The spatial
average of EEE over a volume V inside the polarized matter is given by

⟨EEE⟩V =

∫
EEE dτ∫
dτ

=
1
V

∫
EEE dτ, (6.17)

where the volume V =
∫

dτ . This average field ⟨EEE⟩V is a macroscopic quantity formed
from a spatial average of the microscopic quantity EEE(xxx) appearing in the integrand of Eq.
(6.17). Let us summarize some important properties of the macroscopic (that is, averaged)
electric field.

1. The fundamental relation (2.27) that is obeyed by the microscopic electric field,

∇∇∇×EEE = 0 (6.18)

remains valid for the macroscopic electric field.
2. This implies that the macroscopic electric field is still derivable from a scalar potential,

through EEE =−∇∇∇ΦΦΦ (see Section 2.5).
3. If an electric field is applied to a medium consisting of a large number of atoms or

molecules. The dominant multipole mode response to the applied field is again dipole,

6 That is, a region that is large enough to suppress statistical sampling fluctuations, but small enough that PPP
doesn’t vary substantially over the averaging volume. If d is the characteristic size of atoms, L is the averaging
scale, and R is the size of the sample, then a suitable macroscopic description of averaged field quantities
requires that d ≪ L≪. The basic reason that the averaging procedure preserves important properties of the
fields such as ∇∇∇×EEE = 0 is that derivative operations commute with averaging operations. A more detailed
discussion of the procedure of averaging microscopic quantities to produce macroscopic quantities may be
found in Section 6.6 of Jackson [19] and Section 3.1 of Wald [40].
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with an electric polarization PPP corresponding to the density of dipoles in Eq. (6.11),

PPP(xxx) = ∑
i

Ni⟨pppi⟩,

where pppi is the dipole moment of the ith species (atoms or molecules), the average
⟨ · · · ⟩ is taken over a small volume centered on xxx, and Ni is the average number per unit
volume of the ith species at xxx.

6.8 The Electric Displacement DDD

The macroscopic potential or field can be built up by linear superposition of contributions
from each macroscopically small volume element ∆V at the variable point xxx′. If there are
no macroscopic multipole moments higher than dipole, then from Eq. (3.61), the macro-
scopically averaged potential is

∆Φ(xxx,xxx′) =
1

4πε0

[
ρ(xxx′)
|xxx− xxx′|∆V +

PPP(xxx′) · (xxx− xxx′)

|xxx− xxx′|3
∆V

]
, (6.19)

assuming xxx to lie outside ∆V . Setting ∆V → d3x′ and integrating over all space gives the
potential

Φ(xxx) =
1

4πε0

∫
d3x′

[
ρ(xxx′)
|xxx− xxx′| +PPP(xxx′) ·∇∇∇′

(
1

|xxx− xxx′|

)]
, (6.20)

where the prime on ∇∇∇′ indicates that the ∇∇∇ operator acts on xxx′ instead of xxx. An integration
of the second term by parts leads to

Φ(xxx) =
1

4πε0

∫
d3x′

1
|xxx− xxx′|

[
ρ(xxx′)−∇∇∇′ ·PPP(xxx′)

]
, (6.21)

which represents the potential generated by an effective charge distribution ρ̃(xxx′)= ρ(xxx′)−
∇∇∇′ ·PPP(xxx′).7 Then Gauss’s law (1.1a) reads

∇∇∇ ·EEE =
1
ε0

[
ρ−∇∇∇′ ·PPP(xxx′)

]
, (6.22)

which reduces to Eq. (1.1a) in the absence of polarization. If we define the electric dis-
placement DDD by

DDD≡ ε0EEE +PPP, (6.23)

Eq. (6.22) can be written as

∇∇∇ ·DDD = ρ. (6.24)

Solution for potentials or fields requires that the relations that connect the displacement DDD
and the electric field EEE be specified.

7 The divergence term appears in the effective charge density ρ̃ because for non-uniform polarization there can
be a net increase or decrease of charge within any small volume; see Section 6.9. As was noted in Eq. (6.12),
the polarization-charge density at a point xxx in polarized media is given by ρpol(xxx) =−∇∇∇ ·PPP(xxx).
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6.8.1 Constituitive Relationships

The relationships that connect D and E are called constitutive relations. It is common to
make two assumptions in these relationships.

1. The response to the applied field is linear, PPP ∝ EEE.
2. The medium is isotropic, so that PPP is parallel to EEE and the coefficient of proportionality

has no angular dependence,

PPP = ε0χeEEE, (6.25)

where χe is termed the electric susceptibility of the medium.

With these assumptions the displacement DDD and the electric field EEE are related by

DDD = εEEE ε ≡ ε0(1+χe), (6.26)

where ε is the electric permittivity and

κ ≡ ε
ε0

= 1+χe (6.27)

is called the dielectric constant. Then the polarization can be written

PPP = (ε− ε0)EEE. (6.28)

If the dielectric medium is uniform in addition to being isotropic, then ε is independent of
position and the divergence equation (6.24) can be written

∇∇∇ ·EEE =
ρ
ε
, (6.29)

which is Gauss’s law (1.1a) with ε0 replaced by ε = ε0(1 + χe). Equations (6.24) and
(6.18) are the macroscopic counterparts of the microscopic equations (1.1a) and (2.27),
respectively.

For a medium fulfilling all the conditions specified above, solutions for electro-
statics problems in that medium are equivalent to the corresponding solutions
found previously for vacuum, except that the electric fields must be reduced by
a factor ε0/ε . Physically this reduction is a consequence of polarized atoms pro-
ducing fields in the medium that oppose the applied field.

One consequence of immediate relevance to our prior discussion is that the capacitance
of a parallel-plate capacitor is increased by a factor ε/ε0 if the empty space between the
electrodes is filled with a material having dielectric constant ε/ε0 (neglecting the effect of
fringing fields). Example 6.4 illustrates.

Example 6.4 From Eq. (6.26), inserting a dielectric layer in a parallel-plate capacitor
alters the electric field, changing the capacitance from C0 to

C = κC0 =
ε
ε0

C0 = (1−χe)C0. (6.30)
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For the capacitor described in Section 5.2.1, the capacitance with a dielectric layer between
the plates is

C =
ε
ε0

C0 =
ε
ε0

Aε0

d
=

Aε
d
. (6.31)

The corresponding work required to charge a parallel-plate capacitor that was given in
Section 5.2.2 is modified to

W =
Q2

2C
=

1
2

CV 2 =
1
2

Aε
d

V 2, (6.32)

which is ε/ε0 times the work required to charge the capacitor without the dielectric layer
that was given in Eq. (5.8).

6.8.2 Boundary Conditions

If a system contains different media, boundary conditions must be considered for both DDD
and EEE at all interfaces between different media. This will be addressed in more depth in
Section 6.11, but the results for electrostatics are that the normal components of DDD, and the
tangential components of EEE on either side of an interface between Medium 1 and Medium
2, must satisfy the boundary conditions (for either static or time-varying fields)

(DDD2−DDD1) ·nnn = σ , (6.33a)

(EEE2−EEE1)×nnn = 0, (6.33b)

where nnn is a unit normal to the surface pointing from Medium 1 to Medium 2, and σ is the
macroscopic surface-charge density on the boundary surface (which does not include the
polarization charge discussed in following sections).

6.9 Surface and Volume Bound Charges

The potential created by a single dipole can be written

Φ(xxx) =
1

4πε0

ppp · r̂rr
r2 , (6.34)

where from Fig. 6.7, r = |rrr| where rrr = xxx−xxx′, and ppp is the dipole moment vector. The total
potential contributed by dipoles then follows by integration,

Φ(xxx) =
1

4πε0

∫

V

PPP(xxx′) · r̂rr
r2 dτ ′, (6.35)

where dτ ′ ≡ d3x′ and PPP is the dipole moment density. This can be rewritten using

∇∇∇′
(

1
r

)
=

r̂rr
r2 (6.36)
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in the form

Φ(xxx) =
1

4πε0

∫

V
PPP ·∇∇∇′

(
1
r

)
dτ ′, (6.37)

which can be integrated using the product rule in Eq. (A.18c)

∇∇∇′ · ( f AAA) = f (∇∇∇′ ·AAA)+AAA · (∇∇∇′ f ).

Setting f = 1/r and AAA = PPP, and integrating both sides over the volume V , the product rule
becomes

∫

V
∇∇∇′ ·
(

PPP
r

)
dτ ′ =

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′+

∫

V
(PPP ·∇∇∇′)1

r
dτ ′. (6.38)

Now apply the divergence theorem (A.33)
∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

to the term on the left side of Eq. (6.38) to give
∮

S

1
r

PPP ·nnnda′ =
∫

V

1
r
(∇∇∇′ ·PPP)dτ ′+

∫

V
(PPP ·∇∇∇′)1

r
dτ ′, (6.39)

multiply both sides by 1/4πε0 and rearrange to give

1
4πε0

∫

V
(PPP ·∇∇∇′)1

r
dτ ′ =

1
4πε0

∮

S

1
r

PPP ·nnnda′− 1
4πε0

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′, (6.40)

and finally, upon comparing with Eq. (6.37),

Φ(xxx) =
1

4πε0

∮

S

1
r

PPP ·nnnda′− 1
4πε0

∫

V

1
r
(∇∇∇′ ·PPP)dτ ′. (6.41)

Thus we see that

1. The first term of Eq. (6.41) looks like the potential generated by a surface charge

σb ≡ PPP · n̂nn, (6.42)

with n̂nn the unit vector normal to the surface and the subscript “b” indicating that it
originates in the bound charges.
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2. The second term of Eq. (6.41) looks like the potential generated by a volume charge of
magnitude

ρb =−∇∇∇ ·PPP. (6.43)

Hence Eq. (6.41) can be written

Φ =
1

4πε0

∮

S

σb

r
da′+

1
4πε0

∫

V

ρb

r
dτ ′, (6.44)

and the potential Φ and electric field EEE of a polarized object are equivalent to that produced
by a volume charge density ρb =−∇∇∇ ·PPP plus a surface charge density σb =PPP · n̂nn. Notice that
the volume charge density ρb involves derivatives of the polarization PPP; thus it contributes
only if the polarization is spatially non-uniform [see Eq. (6.21)].

Example 6.5 Let’s use the result of Eq. (6.44) to determine the potential inside and
outside a uniformly polarized sphere of radius R. Since we assume uniform polarization the
second (volume-charge) term, which is non-zero only if the derivative of the polarization
density is finite, makes no contribution and the potential is generated entirely by the surface
charge defined in Eq. (6.42),

σb = PPP · n̂nn = Pcosθ , (6.45)

where the z-axis has been chosen as the direction of polarization. Thus, we need to evaluate
the potential for a sphere with the surface charge (6.45) painted on it. This problem was
already solved in Problems 4.1 and 4.4, with the result that

Φ(r,θ) =





Pr
3ε0

cosθ (r ≤ R),

PR3

3ε0r2 cosθ (r ≥ R).
(6.46)

The electric field is then given by EEE =−∇∇∇Φ. Note that since r cosθ = z, inside the sphere
the field is uniform:

EEE =−∇∇∇Φ =− P
3ε0

ẑzz =− 1
3ε0

PPP (r < R). (6.47)

Outside the sphere the field has a dipole form

Φ =
1

4πε0

ppp · r̂rr
r2 (r ≥ R), (6.48)

where the dipole moment is equal to the total dipole moment of the sphere,

ppp =
4
3

πR3PPP, (6.49)

since PPP is the dipole moment density.

Curves of constant electric field strength for the electric field of the uniformly polarized
sphere computed in Example 6.5 are plotted in Fig. 6.8.
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tFig. 6.8 Electric field for a uniformly polarized sphere determined in Example 6.5.
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drtFig. 6.9 A point charge Q located at a distance r′ from the center of a sphere of radius R.

6.10 Average Electric Fields in Matter

The influence of matter on electrostatics will in most cases require some amount of av-
eraging over the detailed and complex microscopic interactions in the matter. Hence one
fundamental task will be to compute the electric field averaged over some volume of mat-
ter. Let’s begin by consider a sphere containing a single point charge Q located a distance
r′ from the origin along the z-axis, as illustrated in Fig. 6.9 [7]. By symmetry the average
field over the entire volume must be along the z-axis The average field is then

⟨Ez⟩=
∫

τ Ez dτ∫
τ dτ

=
1
τ

∫

τ
Ez dτ,
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where τ is the volume of the sphere. It is convenient to separate the integral into two
parts: one over the spherical shell from radii r′ to R (outside the dashed circle in the above
diagram) and one over the sphere of radius r′ (inside the dashed circle).

The integral over the outer volume vanishes, by the following qualitative argument. Con-
sider the concentric shell at radius R with thickness dr. The solid angle element intercepts
the volume elements dτ1 and dτ2 in the shaded shell of thickness dr. The value of Ez de-
creases quadratically with distance from Q but dτ increases quadratically with distance,
so their product remains constant. But Ez is positive at dτ1 but negative at dτ2, so the two
contributions cancel. A similar argument can be make for all shells and the entire outer
shell with r > r′ contributes zero.

To calculate the integral over the inner volume (inside the dashed circle), consider the
point P in Fig. 6.9. The potential at P is

Φ =
1

4πε0

Q
r1

=
1

4πε0

Q
|xxx− xxx′| ,

where from Fig. 6.9 that r1 = |xxx− xxx′|. Thus, we may expand in the multipole expansion
given in Eq. (3.48),

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ) =
∞

∑
l=0

rl

(r′)l+1 Pl(cosθ)

where we’ve used from Fig. 6.9 that r < r′. Writing this expansion out and substituting the
explicit values for the Legendre polynomials from Table 4.1,

Φ =
Q

4πε0

1
r′

[
1+

r
r′

cosθ +
1
2

r2

r′2
(3cos2 θ −1)+

1
2

r3

r′3
(5cos3 θ −3cosθ + · · ·

]
.

The electric field is minus the gradient of the potential, so we need to evaluate Ez =

−∂Φ/∂ z. Utilizing

r cosθ = z
∂ r
∂ z

=
∂
∂ z

(x2 + y2 + z2)1/2 =
z
r
= cosθ

the preceding multipole expansion can be written in terms of z and the derivative taken to
give the expansion for the electric field

Ez =−
Q

4πε0r′2

[
1+

2z
r′

+
3

2r′2
(3z2− r2)+ · · ·

]

Then we may compute the average by integrating term by term in this series. The first term
gives

⟨Ez⟩1 =−
Q

4πε0r′2

∫ π

0

∫ r′

0
2πr2 sinθ dr dθ =− Qr′

3ε0τ
.

All of the higher-order terms give zero, so we obtain

⟨Ez⟩=−
Qr′

3ε0τ
=−Qr′

3ε0

3
4πR3 =− Qr′

4πε0R3 =− p
4πε0R3 ,

where the volume is τ = 4
3 πR3 and the dipole moment p of the charge Q is p = Qr′. This
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result was for a single charge on the z-axis. For an arbitrary charge distribution the same
result is obtained, except that

⟨Ez⟩=−
ptotal

4πε0R3 ,

where ptotal is the total dipole moment of the arbitrary charge distribution within the sphere
of radius R.

6.11 Boundary Conditions at Interfaces

In advanced applications one often must consider problems in which media with differ-
ent properties are spatially adjacent and boundary conditions at all interfaces must be ac-
counted for. We may do so by using the vacuum Maxwell equations modified to reflect the
influence of the medium on classical electrodynamics. As we now discuss, the in-medium
Maxwell equations may be expressed in either differential or integral form.

6.11.1 Differential Form of Maxwell Equations in Medium

In a medium that may be polarized by electric or magnetic fields, the vacuum Maxwell
equations (1.1) are modified to the Maxwell equations in medium, expressed in differential
form,

∇∇∇ ·DDD = ρ (Gauss’s law), (6.50a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (6.50b)

∇∇∇ ·BBB = 0 (No magnetic charges), (6.50c)

∇∇∇×HHH− ∂DDD
∂ t

= JJJ (Ampère–Maxwell law), (6.50d)

where DDD is defined in Eq. (6.23) and HHH is defined in Eq. (9.11).8 The Maxwell equations
(6.50) in differential form can be cast in integral form using the divergence theorem and
Stokes’ theorem.

6.11.2 Integral Form of Maxwell Equations in Medium

Let V be a finite volume bounded by a closed surface (or surfaces) S, let da be an area
element of that surface, and let nnn be a unit normal at da, pointing out of the volume. The
divergence theorem (2.20)

∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x,

8 The vacuum Maxwell equations (1.1) can be recovered from the Maxwell equations in medium (6.50) by
substituting DDD = ε0EEE and HHH = BBB/µ0 into Eqs. (6.50), remembering from Eq. (2.4) that µ0ε0 = 1/c2.
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applied to Eq. (6.50a) yields ∮

S
DDD ·nnnda =

∫

V
ρ d3x, (6.51)

with Eq. (6.51) being an integral form of Gauss’s law requiring that the total flux DDD out
through the surface be equal to the charge contained in the volume. Likewise, applying the
divergence theorem to Eq. (6.50c) yields the integral equation

∮

S
BBB ·nnnda = 0, (6.52)

where Eq. (6.52) is the magnetic analog of Eq. (6.51), requiring that there be no net flux B
through the closed surface S because no magnetic charges are known to exist.

In a similar manner, suppose that C is a closed contour spanned by an open surface S′,
dlll is a line element on C, da is an area element on S′, and nnn′ is a unit vector pointing in a
direction given by the right-hand rule (see Box 2.3). Applying Stokes’ theorem (2.25),

∫

S
(∇∇∇×AAA) ·nnnda =

∮

C
AAA ·dlll,

to Eq. (6.50b) gives
∮

C
EEE ·dlll =−

∫

S

∂BBB
∂ t
·nnn′da, (6.53)

which is an integral form of Faraday’s law of magnetic induction. Likewise, applying
Stokes’ theorem to Eq. (6.50d) gives

∮

C
HHH ·dlll =

∮

S′

(
JJJ+

∂DDD
∂ t

)
·nnn′da (6.54)

which is an integral form of the Ampère–Maxwell law of magnetic fields. Summarizing
equations (6.51)-(6.54), the integral forms of Maxwell’s equations in medium are

∮

S
DDD ·nnnda =

∫

V
ρ d3x (Gauss’s law) (6.55a)

∮

C
EEE ·dlll =−

∫

S

∂BBB
∂ t
·nnn′da, (Faraday’s law) (6.55b)

∮

S
BBB ·nnnda = 0, (No magnetic charges) (6.55c)

∮

C
HHH ·dlll =

∮

S′

(
JJJ+

∂DDD
∂ t

)
·nnn′da (Ampère–Maxwell law) (6.55d)

Equations (6.55) may be used to determine the relationship of normal and tangential com-
ponents of the fields on either side of an interface between media having different electro-
magnetic properties, as we shall now illustrate following the discussion in Jackson [19].

6.11.3 Matching Conditions at Boundaries

Consider Fig. 6.10, where there is a boundary between Medium 1 and Medium 2 and
we allow the most general possibility that the interface at the boundary can have both a
surface charge σ and a surface current density KKK. To facilitate the analysis, an infinitesimal
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n
V

Medium 1

Medium 2

E
2

, B
2

D
2

, H
2

E
1

, B
1

D
1

, H
1

C

t

σ, K

tFig. 6.10 Schematic illustration of a boundary surface between two different media that is assumed
to carry surface charge σ and surface current density KKK. The infinitesimal Gaussian
cylinder of volume V is assumed to lie half in one medium and half in the other, with the
normal to its surface nnn pointing from Medium 1 into Medium 2. The infinitesimal
rectangular contour C is assumed to lie partly in one medium and partly in the other, with
its plane perpendicular to the surface so that its normal ttt (pointing out of the page in the
figure) is tangent to the surface. Adapted from Ref. [19].

cylindrical Gaussian pillbox of volume V straddles the surface between the two media.
In addition, an infinitesimal rectangular contour C has long sides on either side of the
boundary and is oriented so that the normal to the rectangular surface points out of the
page and is tangent to the interface.

Let us first apply equations (6.55a) and (6.55c) to the cylindrical Gaussian pillbox in
Fig. 6.10. In the limit that the pillbox is assumed to be very shallow the side of the cylinder
does not contribute to the integrals on the left side of Eqs. (6.55a) and (6.55c). If the top
and bottom of the cylinder are are assumed to be parallel to the interface and to each have
area ∆a, then the integral on the left side of Eq. (6.55a) is given by

∮

S
DDD ·nnnda = (DDD2−DDD1) ·nnn∆a.

Now, applying a similar argument to the left side of Eq. (6.55c), the integral is given by
∮

S
BBB ·nnnda = (BBB2−BBB1) ·nnn∆a.

If the charge density ρ is singular at the interface and produces an idealized surface charge
density σ , the integral on the right side of Eq. (6.55a) evaluates to

∫

V
ρ d3x = σ∆a,

and the normal components of DDD and BBB on the two sides of the interface are related to each
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other by

(DDD2−DDD1) ·nnn = σ , (6.56a)

(BBB2−BBB1) ·nnn = 0. (6.56b)

Thus, stating Eqs. (6.56) in words:

1. the normal component of the magnetic field BBB is continuous across the inter-
face, but

2. the discontinuity of the normal component of the electric displacement DDD at
any point on the interface is equal to the surface charge density σ at that point.

In a similar manner, the infinitesimal rectangular contour C in Fig. 6.10 can be used in
conjunction with Stokes’ theorem to determine the discontinuities in the tangential compo-
nents of EEE and HHH. In the limit that the short sides of the rectangular loop may be neglected
and each long side is of length ∆l and parallel to the interface, the integral on the left side
of Eq. (6.55b) is ∮

C
EEE ·dlll = (ttt×nnn) · (EEE2−EEE1)∆l.

Likewise, the integral on the left side of Eq. (6.55d) is
∮

C
HHH ·dlll = (ttt×nnn) · (HHH2−HHH1)∆l.

The right side of Eq. (6.55b) vanishes because in the limit of vanishing length of the short
side of the rectangular contour ∂BBB/∂ t is finite while ∆t→ 0. Because there is an idealized
surface current density KKK flowing exactly on the boundary, the integral on the right side of
Eq. (6.55d) is equal to

∮

S′

(
JJJ+

∂DDD
∂ t

)
· ttt da = KKK · ttt∆l,

where the second term vanishes by the same argument as that given above for the right
side of Eq. (6.55b). Therefore, the tangential components of EEE and HHH on either side of the
media interface are related by

(ttt×nnn) · (EEE2−EEE1) = 0 (ttt×nnn) · (HHH2−HHH1) = KKK · ttt,

and using the identity (A.4), this implies that

nnn× (EEE2−EEE1) = 0, (6.57a)

nnn× (HHH2−HHH1) = KKK, (6.57b)

where in Eq. (6.57b) it is understood that the surface current only has components parallel
to the interface at each point. Thus, stating Eqs. (6.57) in words:

1. the tangential component of the electric field EEE is continuous across an interface, but
2. the tangential component of HHH is discontinuous across the interface by an amount hav-

ing magnitude |KKK| and direction KKK×nnn.
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E0 E0

ε

ε
0

r

θ

a

z

P

tFig. 6.11 A dielectric ball of radius a and dielectric constant κ = ε/ε0 placed in an initially uniform
external electric field EEE0 directed along the zzz axis. Used in the example discussed in
Section 6.12.

The discontinuity equations (6.56) and (6.57) for the fields BBB, EEE, DDD, and HHH allow solving
the Maxwell equations in different regions having potentially different electromagnetic
properties, and then connecting the solutions to obtain the fields evaluated over all of the
space.

6.12 Example: A Dielectric Boundary Value Problem

Methods developed in previous chapters may be adapted to handle the presence of di-
electrics in boundary value problems. Let us illustrate, in the process displaying techniques
that are applicable to a variety of problems.

6.12.1 Dielectric Ball in External Electric Field

A ball with dielectric constant κ = ε/ε0 is placed in an initially uniform electric field di-
rected along the z axis, as illustrated in Fig. 6.11, with the assumption that there are no free
charges inside or outside of the ball. Let’s determine the scalar potential Φ and the electric
field EEE using the Laplace equation with appropriate boundary conditions. Exploiting axial
symmetry about the z axis and solving the Laplace equation in spherical coordinates by
separation of variables (see Section 4.1.2), general solutions are of the form given by Eq.
(4.37),

Φ(r,θ) =
∞

∑
l=0

(Alrl +Blr−(l+1))Pl(cosθ).

However, there are no charges at the origin and the requirement that Φ(r,θ) be finite there
demands that for the interior solution, Bl = 0, and the interior solution is of the form

Φin(r,θ) =
∞

∑
l=0

AlrlPl(cosθ), (6.58)
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and the exterior solution is of the form

Φout(r,θ) =
∞

∑
l=0

(Blrl +Clr−(l+1))Pl(cosθ),

with the constants Al , Bl , and Cl to be determined by imposing boundary conditions. At
infinity, we must have [see Eq. (4.41)],

Φ(r→ ∞) =−E0z =−E0r cosθ =−E0rP1(cosθ).

This requires that

−E0rP1(cosθ) = [Blrl +Clr−(l+1)]Pl(cosθ)≃ BlrlPl(cosθ),

since the Cl term vanishes as r→ ∞. Multiplying both sides by P1(cosθ) and integrating,

−E0r
∫

P1(cosθ)P1(cosθ)d(cosθ) = Blrl
∫

P1(cosθ)Pl(cosθ)d(cosθ).

Using the orthogonality relation (4.38),
∫ +1

−1
Pk(cosθ)Pl(cosθ)d(cosθ) =

2
2l +1

δkl ,

all terms vanish except for l = 1 and we obtain B1 =−E0, with all other Bl equal to zero.
Thus, the exterior solution becomes,

Φout(r,θ) =−E0rlP1(cosθ)+
∞

∑
l=0

Clr−(l+1)Pl(cosθ). (6.59)

Now let’s use the boundary conditions at the edge of the sphere to fix the other constants,
by requiring the matching conditions at the surface r = a for tangential and normal com-
ponents of Φ,

−1
a

∂Φin

∂θ

∣∣∣∣
r=a

= −1
a

∂Φout

∂θ

∣∣∣∣
r=a

(Tangential), (6.60)

−ε
∂Φin

∂ r

∣∣∣∣
r=a

= −ε0
∂Φout

∂ r

∣∣∣∣
r=a

(Normal). (6.61)

We must substitute the expansions (6.58) and (6.59) into these matching equations and
solve to determine the constants. First consider the tangential matching. Substituting (6.58)
and (6.59) into Eq. (6.60) gives

−1
a

∂
∂θ

∞

∑
l=0

AlrlPl(cosθ)

∣∣∣∣∣
r=a

=−1
a

∂
∂θ

[
BlrlP1(cosθ)+

∞

∑
l=0

Clr−(l+1)

]

r=a

Pl(cosθ),

which simplifies to
∞

∑
l=0

alAl
∂

∂θ
Pl(cosθ) =−aE0

∂
∂θ

P1(cosθ)+
∞

∑
l=0

a−(l+1)Cl
∂

∂θ
Pl(cosθ). (6.62)

Let’s convert the derivatives of Legendre polynomials Pn(x) to associated Legendre poly-
nomials Pm

n (x) using the general relationship [2],

Pm
n (x) = (1− x2)m/2 dm

dxm Pn(x), (6.63)
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which, upon specializing to m = 1, yields

dPn(x)
dx

= (1− x2)−1/2P1
n (x), (6.64)

or, upon letting x = cosθ ,
dPn(cosθ)

dθ
=−P1

n (cosθ). (6.65)

Then Eq. (6.62) becomes

−
∞

∑
l=0

alAlP1
l (cosθ) =−aE0P1

1 (cosθ)+
∞

∑
l=0

a−(l+1)ClP1
l (cosθ). (6.66)

We will now exploit the orthogonality properties of the associated Legendre polynomials,
which obey the relationship [2],

∫ +1

−1
Pm

p (x)P
m
q (x)dx = Kqmδpq Kqm ≡

2
2q+1

(q+m)!
(q−m)!

, (6.67)

or in spherical coordinates
∫ π

0
Pm

p (cosθ)Pm
q (cosθ)sinθdθ = Kqm δpq. (6.68)

There are two solutions for Eq. (6.66),

1. a special solution for l = 1, and
2. a general solution for all l ̸= 1.

Special solution (l = 1): To obtain the special solution let x = cosθ , multiply both sides
by P1

1 (x), and integrate to give

−
∞

∑
l=0

alAl

∫
P1

1 (x)P
1
l (x)dx =−aE0

∫
P1

1 (x)P
1
1 (x)dx+

∞

∑
l=0

a−(l+1)Cl

∫
P1

l (x)P
1
1 (x)dx.

Utilizing Eq. (6.67), this gives

−
∞

∑
l=0

alAlδ1l =−aE0 +
∞

∑
l=0

a−(l+1)Clδ1l ,

and finally aA1 =−aE0 +a−2C1, so that

A1 =−E0 +
C1

a3 (Special solution for l = 1). (6.69)

General solution (l ̸= 1): To obtain the general solution, set x = cosθ , multiply both sides
of Eq. (6.66) by P1

k (x), and integrate to give

−
∞

∑
l=0

alAl

∫
P1

k (x)P
1
l (x)dx =−aE0

∫
P1

k (x)P
1
1 (x)dx+

∞

∑
l=0

a−(l+1)Cl

∫
P1

k (x)P
1
l (x)dx.

Utilizing the orthogonality relation (6.67), this gives alAl = a−(l+1)Cl , which rearranges to

Al =
Cl

a2l+1 (General solution for l ̸= 1). (6.70)
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Two relations [Eqs. (6.69) and (6.70)] have been obtained among the coefficients using
the tangential matching condition (6.60) but the contraints imposed by matching at the
boundary have not been exhausted: we may use the normal matching condition (6.61) to
obtain additional constraints on the coefficients. Upon substituting the expansions (6.58)
and (6.59) into Eq. (6.61),

ε
∞

∑
l=0

lal−1AlPl(x) = ε0B1P1(x)+
∞

∑
l=0
−(l +1)Cla−(l+2)Pl(x). (6.71)

As before, there are two solutions,

1. a special solution, when l = 1, and
2. a general solution, when l ̸= 1.

Special solution (l = 1): The special solution may be found by multiplying Eq. (6.71)
by P1(x) and integrating. Upon exploiting orthogonality properties the result is another
relationship among coefficients:

ε
ε0

A1 =−E0−2
C1

a3 (Special solution for l = 1). (6.72)

General solution (l ̸= 1): The general solution may be obtained by multiplying both sides
of Eq. (6.71) by Pk(x), integrating, and exploiting the orthogonality constraints (4.38) to
give

ε
ε0

lAl =−(l +1)
Cl

a2l+1 (General solution for l ̸= 1). (6.73)

We have obtained four equations—(6.69), (6.70), (6.72), and (6.73)—by exploiting bound-
ary matching conditions on the fields; these must be solved simultaneously for the unknown
coefficients. We note that Eqs. (6.70) and (6.73) can be satisfied only if Al =Cl = 0 for all
l ̸= 1, and solving the other two equations (6.69) and (6.72) simultaneously for l = 1 gives

A1 =−
(

3
ε/ε0 +2

)
E0 C1 =

(
ε/ε0−1
ε/ε0 +2

)
a3E0. (6.74)

Inserting these results into Eqs. (6.58) and (6.59) gives for the interior and exterior scalar
potentials

Φin =−
(

3
2+ ε/ε0

)
E0 r cosθ =−

(
3

2+ ε/ε0

)
E0 z (Interior potential), (6.75a)

Φout =−E0 z+
(

ε/ε0−1
ε/ε0 +2

)
E0 a3 cosθ

r2 (Exterior potential), (6.75b)

The electric fields then follow from EEE =−∇∇∇Φ,

Ein =

(
3

ε/ε0 +2

)
E0 (Interior electric field), (6.76a)

Eout = E0−
P

4πε0r3 (Exterior electric field), (6.76b)

as shown in Problem 6.5. From these results we conclude that for the interior electric field
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1. Ein is a constant that is proportional to the constant exterior field E0,
2. if ε = ε0, the interior field is equal to the exterior field, Ein = E0, and
3. if ε > ε0, then the strength of the interior field is reduced relative to that of the exterior

field, Ein < E0.

In Eq. (6.75b) for the external field, it is clear that the first term is just the unperturbed
exterior field EEE0 and the second term is a correction associated with a potential generated
by the polarized dielectric sphere. If the induced electric dipole moment ppp [see Eq. (3.53)]
of the polarized sphere is taken to have magnitude

p = 4πε0

(
ε/ε0−1
ε/ε0 +2

)
a3E0, (6.77)

then the exterior potential (6.75b) can be written

Φout =−E0 z+
p

4πε0

cosθ
r2 , (6.78)

making clear that the external potential is the unperturbed external potential (first term)
modified by a potential corresponding to an induced electric dipole at the origin that is as-
sociated with the polarized dielectric sphere. From Eqs. (6.25) and (6.27), the polarization
PPP is given by

PPP = (ε− ε0)EEE, (6.79)

and from Eq. (6.11) the polarization may also be defined as the density of dipole moments.
Then from Eq. (6.77), the polarization of the dielectric sphere is given by

PPP = (ε− ε0)EEE =

(
dipole moments

unit volume

)
=

p
4
3 πa3

= 3ε0

(
ε/ε0−1
ε/ε0 +2

)
EEE0. (6.80)

As you are asked to show in Problem 6.6, the surface charge on the polarized dielectric in
Fig. 6.11 is then given by

σpol = 3ε0

(
ε/ε0−1
ε/ε0 +2

)
E0 cosθ . (6.81)

The results of this extended example of a spherical dielectric in an external electric field
are displayed graphically in Figs. 6.12 and 6.13.

6.12.2 Interpretation of Results

As indicated schematically in Fig. 6.12(a), the external field E0 aligned in the z direction
polarizes the dielectric sphere, with the polarization vector PPP given in Eq. (6.80) and ori-
ented in the direction of the external field. The polarization is the density of induced dipole
moments (6.77). This corresponds to the polarization of charge illustrated in Fig. 6.12(b)
with positive charge accumulating on the right side of the sphere and negative charge on
the left side. The polarization of charge indicated in Fig. 6.12(b) induces an electric field



124 Electrostatics in Dielectric Matter

-

-

-
-

-
-

-

+

+

+

+

+
+

+
P E'

E0 E0

(a) (b)tFig. 6.12
(a) Polarization of a dielectric ball by an external electric field EEE0. (b) The polarization of
charge induces a field EEE ′ inside the sphere that opposes and partially cancels the applied
field EEE0.

EEE ′ that opposes the applied field EEE0 but does not completely cancel it for the dielectric-
filled sphere as would be the case for a conducting metal-filled sphere. The electric field
EEE in inside the sphere is given by Eq. (6.76) and is constant. If ε > ε0 the electric field in-
side acts in the opposite direction as the applied field and is reduced in strength by a factor
3/(ε/ε0 + 2) relative to the applied field. This is indicated schematically in Fig. 6.13(a),
where we notice that

1. The field inside EEE in is in the same direction as the applied field EEE0, but is reduced in
strength by the induced field EEE ′ acting against the applied field.

2. This reduction in strength for the interior field is indicated by the decreased density of
field lines inside the sphere relative to the outside.

3. There is a discontinuity of the electric field lines at the boundary of the sphere because
of the surface charge with density given by Eq. (6.81) that has accumulated there as a
consequence of polarization by the external field.

As indicated in Eqs. (6.77) and (6.78), in the presence of the dielectric the external potential
has two contributions:

zz

(a) Dielectric filled sphere (a) Metal filled spheretFig. 6.13
(a) Electric field lines for dielectric filled sphere in an external electric field EEE0 directed
along the zzz axis. (b) Electric field lines for a conducting ball in an external electric field EEE0

directed along the zzz axis. Original calculation in Fig. 4.5.
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1. the original potential due to the external field, and
2. a correction term that may be interpreted as the potential generated by an effective

electric dipole centered on the dielectric sphere, which has been produced by the charge
polarization.

At large distance the external potential is that of the original applied field EEE0, but near the
sphere the field lines in Fig. 6.13(a) are strongly distorted by the increasing importance of
the second term in Eq. (6.78), which grows rapidly as the sphere is approached since it
scales as r−2.

Background and Further Reading

Good introductions to the material of this chapter may be found in Griffiths [13]. More
advanced treatments may be found in Jackson [19], Garg [11], Chaichian et al [5], and
Zangwill [42].
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Problems

6.1 Two concentric conducting spheres of inner and outer radii a and b, respectively,
carry charges ±Q. The empty space between the spheres is half-filled by a hemi-
spherical shell of dielectric having dielectric constant ε/ε0.

a

b

-Q

+Q

εε
0

(a) Find the electric field in the region between the spheres. (b) Calculate the surface-
charge distribution on the inner sphere. (c) Calculate the polarization-charge density
induced on the surface of the dielectric at r = a. ***

6.2 Two long coaxial conducting cylinders of radii a and b are lowered vertically into a
dielectric liquid.

a b

h

L-h

Dielectric

liquid

L

If the liquid rises an average height of h between the electrodes when a potential dif-
ference V is established between them, show that the susceptibility of the dielectric
liquid is given by

χe =
(b2−a2)ρgh ln(b/a)

ε0V 2 ,
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where ρ is the density of the liquid, g is the acceleration due to gravity, and the
susceptibility of the air is neglected.

6.3 A parallel-plate capacitor has plates of area A separated by a distance d and the plates
are charged to a potential difference V using a battery.

(a) With the charging battery disconnected a dielectric sheet that has exactly the same
width and length as a plate is inserted between the plates. Find the work done on the
dielectric sheet; is it pulled in or must it be pushed in?

(b) Repeat the experiment and analysis of part (a), but with the charging battery
connected to the plates.

6.4 A point charge q is located in free space a distance d from the center of a dielectric
sphere of radius a, with a< d. Find the potential at all points in space as an expansion
in spherical harmonics with expansion coefficients evaluated.

6.5 Prove that for the dielectric ball in an external electric field considered in Section
6.12, the interior and exterior electric fields are given by Eqs. (6.76a) and (6.76b),
respectively. ***

6.6 For the dielectric ball in an external electric field

E0 E0

ε

ε
0

r

θ

a

z

P

that is analyzed in Section 6.12, show that the surface charge density induced by the
polarization is given by,

σpol = 3ε0

(
ε/ε0−1
ε/ε0 +2

)
E0 cosθ ,

where ε characterizes the interior and ε0 characterizes the exterior permittivity.



7 Steady Currents

An important class of problems in electrostatics corresponds to situations where the source
of the electric field EEE is a steady flow of electrical charge. In this chapter we shall study
electrostatics in the presence of such steady-current sources.

7.1 Steady-Current Conditions

The current I passing through an arbitrary surface S is given by

I =
∫

S
dSSS · JJJ. (7.1)

where JJJ is the current density. Generally the charge density ρ and the current density JJJ are
required to satisfy the continuity equation (1.3),

∂ρ
∂ t

+∇∇∇ · JJJ = 0,

which ensures local conservation of charge by demanding that electrical charge variation
in some arbitrarily small volume be caused by flow of electrical current through the surface
of that volume. If we restrict consideration to charge densities having no explicit time de-
pendence, ∂ρ/∂ t = 0 and the continuity equation simplifies to the steady-current condition

∇∇∇ · JJJ = 0 (Steady-current condition). (7.2)

Currents satisfying (7.2) can produce static electric and static magnetic fields, which can
be studied independently because the Maxwell equations (1.1) do not mix static electric
and magnetic fields. The field lines of a current density JJJ consistent with Eq. (7.2) must
satisfy the condition that every field line

• begins and ends at infinity, or
• closes on itself, implying that
• any field line entering an infinitesimal volume of space must also exit that volume.

Figure 7.1 shows an example of field lines for a current satisfying these conditions. The
resemblance of Fig. 7.1 to streamlines for fluid flow is obvious, and the analogy of a steady
current as a flow of fluid is often a useful one as long as the details of microscopic inter-
actions between particles in an ordinary fluid can be ignored. If the motion of a charge
density is characterized by a velocity field vvv(xxx) we may write

JJJ(xxx) = ρ(xxx)vvv(xxx). (7.3)

128
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tFig. 7.1
Field lines of a current density that satisfies the condition (7.2) for a steady current. The
resemblance to streamlines for flow of an ordinary fluid is apparent.

If the charge density can be viewed as moving rigidly with a uniform velocity vvv = v0, the
current can be expressed as

JJJ(xxx) = ρ(xxx)v0 (7.4)

and Eq. (7.3) is termed the convection current density. If N different species carrying
charges qi, with number densities ni and uniform velocities vi contribute to the current,
the current density is a sum of the different contributions

JJJ =
N

∑
i=1

qinibi. (7.5)

We shall most often exemplify using currents with a single kind of charge carrier, but
currents with such mixed charge carriers—perhaps with different charge signs for the con-
stituent carriers—may be found in some realistic applications such as in biological and
astrophysical settings.

7.2 Vacuum Currents

We begin with the simplest currents, which can be viewed as a stream of particles flowing
in a vacuum, with no influence from any fields or surrounding matter. The properties of
vacuum currents may be explored by considering the operation of the vacuum diode il-
lustrated in Fig. 7.2(a), which is a parallel plate capacitor with one plate heated so that it
expels electrons by thermionic emission.1 These devices may be unfamiliar to the reader
as they have been replaced by semiconductors in most modern consumer electronics, but
a theoretical analysis of the vacuum diode provides substantial insight into the nature of
vacuum currents. In particular, vacuum diodes illustrate clearly a characteristic property
of vacuum currents: the current is limited ultimately by interactions between the charge-
carrying particles in the current itself.

1 Thermionic emission is the ejection of particles from the surface of a heated metal because the thermal energy
of the metal gives some particles sufficient kinetic energy to escape, with the rate of ejection increasing with
temperature. We consider only the case of the emitted particles being electrons.
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tFig. 7.2 (a) A vacuum diode. The heated cathode emits electrons thermionically that strike the
anode, causing a current to flow in the circuit. (b) Curves for the electric potential Φ
between the plates for (I) low, (II) medium, and (III) high thermionic electron density.

In our analysis a vacuum will be assumed to exist between the plates in Fig. 7.2(a), and
for simplicity the thermionic electrons are taken to have negligible velocity when produced.
A vacuum diode behaves differently at different cathode temperatures, which corresponds
to different rates of electron emission from the heated plate, as will now be discussed.

7.2.1 Vacuum Diodes at Low Temperature

At low cathode temperatures the rate of electron emission, and thus the density of electrons
between the plates, is small. The emitted electrons accelerate in the potential Φ(x) = xV/L,
and if the electron density is negligible the behavior of the electrons corresponds to the
usual solution of the Laplace equation (2.58) between the plates of a capacitor that is
illustrated by Curve I in Fig. 7.2(b). The current per electron in the gap is estimated in
Problem 7.2 to be

I =
e
L

v, (7.6)

where L is the plate separation and v is the average speed of electrons in the gap.

7.2.2 Vacuum Diodes at Intermediate Temperatures

If the temperature of the cathode is raised the rate of electron emission increases, as does
the current in the gap since each additional electron makes a contribution given by Eq.
(7.6). Eventually, the charge density in the gap created by the electrons can no longer be
ignored; a space charge2 builds up in the gap, and the solution for the potential is no longer

2 Space charge is a general term used to indicate a volume of uncompensated charge that builds up in an other-
wise electrically neutral region of space.
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given by the Laplace equation ∇2Φ = 0, but rather by the Poisson equation (2.54),

∇2Φ =− ρ
ε0
. (7.7)

The transition of the solution from Laplace to Poisson is a signal that the Coulomb repul-
sion between the emitted electrons in the gap associated with the charge density ρ (which
is negative) can no longer be ignored. In one dimension ∇2 = d2/dx2 is a curvature and the
Poisson equation (7.7) implies that the potential Φ(x) begins to develop a positive curva-
ture between the plates as a result of the (negative) space charge built up there (physically
because the Coulomb interaction between the charges in the gap begins to retard their ac-
celeration), leading to the behavior exemplified by Curve II in Fig. 7.2(b).

7.2.3 Vacuum Diodes at High (Saturation) Temperature

Despite the retarding effect of the accumulating space charge the charge density and current
continue to increase as the temperature of the cathode is raised, although more slowly than
at lower temperatures. Eventually however, a temperature is reached where dΦ/dx→ 0
at x = 0, which is exemplified by Curve 3 in Fig. 7.2(b). The current saturates at this
point, since there is no electric field at the cathode (x = 0) to accelerate additional emitted
electrons.

7.2.4 Space Charge and the Child–Langmuir Law

The saturated saturated steady current illustrated by Curve III in Fig. 7.2(b) still satisfies
Eq. (7.2), meaning that

ρ(x)v(x) = constant (7.8)

everywhere. Furthermore, because we assumed v(0) = 0, the kinetic energy of each elec-
tron is

1
2

mv2(x) = eΦ(x). (7.9)

Combining these results with the Poisson equation (7.7) leads to the Child–Langmuir law
specifying the space-charge limited current density,

|JJJ|= 4
9

√
2e
m

ε0V 3/2

L2 , (7.10)

as you are asked to show in Problem 7.3.

7.3 Currents in Matter

Electrical currents flowing in neutral matter are generally more complex than those flowing
in a vacuum, requiring the full power of quantum mechanics and statistical mechanics for
an adequate theoretical understanding. Nevertheless, it is empirically well established that
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the current density for many systems can be described well by Ohm’s law, which is based
on classical considerations and is described in the following subsection.

7.3.1 Ohm’s Law

To make a current flow some force must push on the charges (continuously if, as is usually
the case, there is any resistance to the charge flow). For most materials the current density
JJJ is proportional to the force per unit charge fff ,

JJJ = σ fff , (7.11)

where the constant of proportionality σ depends on the nature of the medium and is called
the conductivity. Often the reciprocal of the conductivity, ρ = σ−1, which is called the
resistivity, is used instead. If the force is electromagnetic in origin,

JJJ = σ(EEE + vvv×BBB), (7.12)

where EEE is the electric field, BBB is the magnetic field, and vvv is the velocity. Except for special
circumstances such as in relativistic plasmas, the velocity is small and the vvv×BBB term can
be neglected, leaving

JJJ = σEEE (Ohm’s law). (7.13)

This is called Ohm’s law.3 For a cylindrical wire of cross-sectional area A and conductivity
σ , if the potential difference between the ends is V the electric field and current density are
uniform and the total current is given

I ≡ JAσEA =
σA
V

. (7.14)

In this and similar examples the total current flow in the wire from one point to another is
proportional to the potential difference between the points,

V = IR (Ohm’s law), (7.15)

where the constant of proportionality R is called the resistance. This is the most familiar
form of Ohm’s law. The resistance depends on the geometry and the conductivity of the
medium; in the example given above R = L/σA, where L is the length. In more complex
situations (for example, crossed electric and magnetic fields) the simple scalar form of
Ohm’s law described here is replaced by a tensor formulation, as described in Box 7.1.

7.3.2 The Drude Model of Metallic Conduction

An unavoidable difficulty for any classical treatment of electromagnetism is that important
phenomena involving interaction with matter, such as the dielectric or magnetic properties
of various materials, depend essentially on the microscopic structure of the matter, which

3 Ohm’s law is not a true “law” in the same sense as say Coulomb’s law or the law of gravity. It is a “rule of
thumb” that is often but not always obeyed. The subset of conductors that do obey Ohm’s law are called ohmic
conductors.
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Box 7.1 Resistivity and Conductivity Tensors

In the simplest cases the current and the electric field may be assumed collinear
and the elementary form of Ohm’s law described in Section 7.3.1 holds: V = IR,
where V is voltage, I is current, and R is resistance. This can also be expressed in
terms of the electric field E and current density j as j = σE where σ is the scalar
conductivity, or the inverted expression E = ρ j, where the scalar resistivity ρ is
given by ρ = σ−1. In more complex situations such as in the Hall effect described
in Box 8.1 where there are both electric and magnetic fields, the resistivities and re-
lated quantities become tensors. Restricting to two dimensions for the Hall problem,
the rank-2 resistivity tensor ρ and rank-2 conductivity tensor σ may be expressed
as the matrices

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
=

(
ρxx ρxy

ρyx ρyy

)
σ =

(
σ11 σ12

σ21 σ22

)
=

(
σxx σxy

σyx σyy

)
,

where the components are ρi j = Ei/ j j and σi j = ji/E j, with ρ and σ related by
matrix inversion, ρ = σ−1. Then Ei = ρi j j j and ji = σi jE j, or

(
Ex

Ey

)
=

(
ρxx ρxy

ρyx ρyy

)(
jx

jy

) (
jx

jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

Ey

)
,

written out explicitly. Notice that if ρxy = ρyx vanishes the resistivity matrix becomes
diagonal and we revert to the simple Ohm’s law description of Section 7.3.1, with a
scalar resistivity.

requires arguments from quantum theory and quantum statistical mechanics that are out-
side the scope of classical electrodynamics and classical mechanics. In a presentation of
classical electrodynamics, one is forced then into one of two alternatives:

1. graft sufficient quantum theory and results into the presentation, assuming that the
reader has sufficient understanding of quantum theory, or

2. approximate quantum phenomena by classical or semiclassical models.

An example of the second alternative is the Drude model of electrical conduction [8, 9],
which predates modern quantum mechanics by 25 years, but is still widely used in con-
densed matter physics to give a qualitative overview of metallic conduction [3]. We begin
this section with a brief introduction to the Drude model.

Although at the time there was little precise theoretical justification, in the year 1900
Drude proposed a model of metallic conduction that assumed the heavy, positively charged
ions (atomic nucleus plus core electrons in modern language) to be fixed spatially in a
crystal lattice, and that the light valence electrons became detached from the ions and
wandered freely, scattering randomly from the fixed ions as in a miniature pinball machine;
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+eZ

-e(Z-δ)

-e

tFig. 7.3
Drude model of electrical conduction in metal with atoms of atomic number Z, which is
basically a classical analysis of a pinball machine in which the ions are stationary and act
as the posts of the machine and the valence electrons are detached from the ions, free to
roam through the crystal lattice and scatter from the ions as in a pinball machine. In this
diagram (which is not to scale) each large circle is an ion, which consists of the dark gray
nucleus with charge +eZ, surrounded by a white region containing the core electrons
carrying charge −e(Z−δ ), where δ is the number of electrons ionized from each ion. The
small black balls indicate electrons that have been freed from the ions and scatter
randomly from the fixed ions. In this example an electric field has been assumed that
causes a net drift of the randomly scattering electrons to the right.

Fig. 7.3 illustrates.4 These free (valence) electrons are called the conduction electrons, and
in the Drude model they are viewed as forming a gas. There are four basic assumptions
that enter into this Drude model.

1. Between collisions with ions the conduction electrons move freely in straight lines, if
there are no applied fields. If external fields are applied, the electrons move according
to Newton’s laws of motion in those fields (this is called the independent electron ap-
proximation), neglecting fields produced by other electrons or ions (this is called the
free electron approximation). The independent electron approximation is found to be
fairly good in many contexts, but even a qualitative understanding of the behavior of
metals often requires improving on the free electron approximation.

4 As indicated in Fig. 7.3, the number of ionized valence electrons per atom is denoted by δ , which will depend
on the valence of the atoms comprising the metal. For example, metallic copper in a +1 valence state has
δ (Cu) = 1 and metallic iron in a +2 valence state has δ (Fe) = 2. One should bear in mind that when the
Drude model was formulated in 1900 the electron had only recently been discovered as a distinguishable
particle (by J. J. Thomson in 1897), but it was not yet certain that atoms even existed, or what their structure
was if they did. In particular, it is clear that our discussion above distinguishing core electrons from valence
electrons in atoms is an interpolation into the Drude model of knowledge that would only come later: even the
rudimentary Bohr model of the atom was still 15 years in the future, and it would be another 25 years before
quantum mechanics would be invented when Drude published his model.
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2. As in kinetic theory, collisions are assumed to alter electron velocity instantaneously.5

Although the simple picture of Fig. 7.3 with instantaneous interactions misses the mark
in details, many qualitative features of metallic behavior survive.

3. A parameter τ called the relaxation time or mean collision time is of fundamental im-
portance in the Drude model. The probability per unit time for an electron collision to
occur is τ−1 so that the probability that an electron experiences a collision in a time
interval dt is dt/τ . With these assumptions, an electron chosen at random at a given
time will travel an average time τ before the next collision, and will have traveled an
average time τ since its last collision. In the simplest approximation, the relation time
τ is assumed independent of electron position and velocity. Perhaps surprisingly, this
assumption often works reasonably well.

4. Electrons reach thermal equilibrium only through collisions. After each collision an
electron emerges with a velocity having a random direction and a magnitude propor-
tional to the local temperature at the site of the collision.

The following example illustrates an application of the Drude model to the relationship of
current, voltage, and resistance for a current flowing in a wire.

Example 7.1 According to the empirical Ohm’s law described in Section 7.3.1, for a
current I flowing in a wire, V = IR, where V is the voltage drop and R is the resistance,
which depends on the geometry of the wire but is independent of V and I. Let us show
that the Drude model provides a reasonable understanding of Ohm’s law, and allows an
estimate of the resistance R. The dependence of the resistance on the geometry of the wire
can be eliminated by introducing the resistivity ρ , which depends only on the nature of the
metal in the wire, through the requirement that it be the constant of proportionality between
the electric field EEE and the current density JJJ that it induces,

EEE = ρJJJ, (7.16)

where we assume the simplest case that EEE and JJJ are parallel. [If they were not parallel, the
scalar resistivity in Eq. (7.16) would become a resistivity tensor, as described in Box 7.1.]
The magnitude of JJJ is the charge per unit time crossing a unit area perpendicular to the
current. For uniform flow of a current I through a wire of length L and cross sectional area
A, the current density will be J = I/A and since the voltage drop along the wire is EL, from
Eq. (7.16) V = IρL/A and the resistance is related to the resistivity of the metal and the
geometry of the wire by

R =
ρL
A

. (7.17)

If n electrons per unit volume, each carrying charge −e move with velocity vvv, in a time dt
the charge passing through a cross section A will be −nevAdt, so the current density is

JJJ =−nevvv. (7.18)
5 As illustrated in Problem 7.1, the density of the “gas of conduction electrons” is typically of order 1000 times

larger than that of classical gases at standard temperature and pressure; nevertheless, the Drude model assumes
the normal kinetic theory of gases to apply in relatively unaltered form.
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In the absence of an applied field electrons may be expected to move randomly in all
directions and the velocity vvv in Eq. (7.18) averages to zero, but if an electric field EEE is
applied there will be a non-zero net velocity of the electrons opposite the direction of EEE
(since the electron charge is negative).

This velocity can be computed as follows. For a typical electron at time zero, let ∆t be
the time elapsed since its last collision. Its velocity will be a sum of the velocity vvv0 after
the last collision plus a velocity −eEEEδ t/m (where m is the electron mass) gained from
the electric field. Since the Drude model assumes the direction of the velocity after the
previous collision to be random, vvv0 averages to zero and the average electronic velocity is
given entirely by the average of −eEEE∆t/m. But the average of ∆t is the Drude relaxation
time τ and therefore the average velocity is

vvv =−eEEEτ
m

, (7.19)

and the current density is

JJJ = σEEE σ ≡ ne2τ
m

, (7.20)

where σ = ρ−1 is called the conductivity. [As for the resistivity, if EEE and JJJ are not par-
allel the scalar conductivity of Eq. (7.20) becomes a conductivity tensor, as described in
Box 7.1.] The Drude relaxation time is then

τ =
m

ρne2 , (7.21)

from which measured resistivities ρ can be used to estimate relaxation times. These are
found to be τ ∼ 10−14 seconds for many metals at room temperature.

The Drude model describes some conduction phenomena qualitatively, but fails dramati-
cally for others. The successes point to aspects of conduction theory that can be understood
in simple classical terms, such in Example 7.1; the failures can be understood and amelio-
rated only with the aid of modern quantum theories of electrical conduction.

Background and Further Reading

The properties of vacuum diodes are described in Ref. [42]. An introduction to the Drude
model of classical conduction may be found in Ref. [3].
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Problems

7.1 In the Drude model, estimate the number density of the gas of conduction electrons
for a typical metal like copper. Compare with the number density for a typical gas by
calculating the number density for air molecules under standard conditions.

7.2 For the vacuum diode of Fig. 7.2(a), assume that the cathode temperature is low
enough that electron density between the plates is small. Find an expression for the
average current per electron in the gap between the plates in terms of plate separation
L and average electron speed v.

7.3 Using Eqs. (7.8) and (7.9), and the Poisson equation (7.7), prove the space-charge
limiting result given in Eq. (7.10). ***



8 Magnetostatics in Vacuum

Chapters 2-6 have dealt with the subject of electrostatics. The basic goal of electrostatics is
that we have some set of discrete source charges {qi}, or a localized continuous distribution
of charge ρ(xxx), that are stationary with respect to a chosen reference frame, and we desire
to calculate the electric field produced by those charges at arbitrary locations in space.
This can be accomplished using the principle of superposition: calculate the contribution
of each source charge qi or infinitesimal piece of a continuous charge dρ(xxx) to the electric
field at some point, and sum them to get the total electric field at that point. We have
developed a number of sophisticated ways to do this beyond brute force summation or
integration, but that is the essential idea. In this chapter we wish to expand upon this idea
by the (seemingly) elemental extension of allowing the source charges to move.

8.1 Magnetostatics Versus Electrostatics

The introduction of charges in motion (currents) may seem an innocuous change on its
surface, but it adds to the electric field associated with the stationary source charges a new
magnetic field associated with their motion, and a host of associated phenomena (mag-
netism) having a phenomenology that is often very different from that of electrostatics;
so much so that it took centuries after electrostatic and magnetic phenomena were first
identified in nature to realize that they are not separate subjects but are in fact different
manifestations of the same basic physical principles.

Magnetostatics is more subtle and complex than electrostatics. From Maxwell’s equa-
tions (1.1), a time-independent current distribution JJJ(xxx) is a source of a vector field BBB(xxx)
called the magnetic field that satisfies the differential equations1

∇∇∇ ·BBB(xxx) = 0, (8.1a)

∇∇∇×BBB(xxx) = µ0JJJ(xxx). (8.1b)

Applying the divergence operation to both sides of Eq. (8.1b) using the vector identity
∇∇∇ · (∇∇∇×AAA) = 0 of Eq. (A.6) gives

∇∇∇ · (∇∇∇×BBB(xxx)) = 0 = µ0∇∇∇ · JJJ(xxx). (8.2)

Thus, magnetostatic current densities satisfy ∇∇∇ ·JJJ(xxx)= 0. In electrostatics stationary charges
produce electric fields constant in time; in magnetostatics stationary (unchanging) currents

1 Equations (8.1) specify the divergence and the curl of the vector field BBB(xxx). This should be sufficient to specify
BBB(xxx) uniquely by the Helmholtz theorem of Box 3.1, if the fields and sources are sufficiently well-behaved.

138
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produce magnetic fields that are constant in time. The more complex nature of magne-
tostatics relative to electrostatics arises in part because magnetostatics involves a current
density that is a vector and the force law [given in Eq. (8.4) below] involves a cross prod-
uct of vectors, in contrast to the scalar quantities and operations inherent in electrostatics.
From a physics perspective magnetism is also complicated by there being two fundamen-
tally different types of currents that can produce magnetic effects:

1. currents that results from moving charges, and
2. currents that result from the quantum spins of point-like particles (magnetization cur-

rents ), which have no suitable classical analogs.2

It follows that magnetizable matter exhibits much greater variety than polarizable matter
(Ch. 6), both in its fundamental attributes and in the way that it responds to external fields.

For example, permanent magnetism (ferromagnetism), caused by spontaneous
breaking of angular momentum symmetry by macroscopic alignment of spins,
occurs much more commonly than than the dielectric counterpart of ferroelec-
tricity where a material spontaneously polarizes in the absence of an external
electric field [42].

From the static (all time derivatives set to zero) vacuum Maxwell equations (1.1), the basic
equations governing electrostatics are

∇∇∇×EEE(xxx) = 0 (8.3a)

∇∇∇ ·EEE(xxx) = ρ(xxx)
ε0

. (8.3b)

Comparing with the basic equations (8.1) governing magnetostatics, we see that the formal
roles of the divergence and curl operators are interchanged between electrostatics and mag-
netostatics. As a purely practical matter, this leads to methods and corresponding results
for magnetostatics that are quite different from the methods and corresponding results in
electrostatics.

Finally, though, let us note that from a fundamental point of view special relativity tells
us that (despite the differences described above) the distinction between electric EEE fields
and magnetic BBB fields amounts to nothing more than a choice of observer reference frame.

What looks like an electric field in one inertial frame looks like a magnetic field
in a different inertial frame. Thus the distinction between electric and magnetic
phenomena isn’t consistent with special relativity and Lorentz invariance.

2 Quantum-mechanical orbital angular momentum can be viewed semiclassically as charge in motion on a
classical orbit (think of the Bohr model of the hydrogen atom), but quantum spin angular momentum has no
corresponding classical analog that is completely faithful to the underlying quantum physics. Intrinsic spin is
inherently quantum in nature and any attempt to treat it classically raises issues at a fundamental level.
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dstFig. 8.1 (a) The magnetic force fff M acting on a charged particle moving with velocity vvv in a
segment of conductor of length L and cross-sectional area A, subject to a magnetic field BBB.
(b) Current loop carrying a steady current I in a uniform magnetic field BBB. The vector line
segment dsss has a magnitude equal to the segment length and direction equal to the local
current direction.

We shall take that up in later chapters addressing the special theory of relativity, Lorentz
transformations, and the formulation of the Maxwell equations in a manifestly Lorentz-
covariant manner. For now we note that in the low-energy world of most everyday and
laboratory experience,3 there is utility in a formalism that distinguishes between electric
and magnetic phenomena through the use of equations that are (secretly) Lorentz covariant,
but are not manifestly so.

8.2 Magnetic Forces

A magnetic field BBB generated by source charges in motion and the electric field EEE asso-
ciated with those charges lead to a force FFF that is found to act on a test charge q having
relative velocity v according to the Lorentz force law,

FFF = q(EEE + vvv×BBB) (Lorentz force law). (8.4)

As you are asked to show in Problem 9.2, the magnetic force acting on a single charged
particle in the short segment of conductor illustrated in Fig. 8.1(a) is

fff M = qvvv×BBB, (8.5)

and is directed upward by the right-hand rule for the cross product. The total magnetic
force acting on the segment in Fig. 8.1(a) is given by

FFFM = I(LLL×BBB), (8.6)

3 Although it is not completely apparent from the appearance of the equations in SI units without examining the
constants carefully [recall from Eq. (2.4) that the SI constants µ0 and ε0 are related to each other through the
speed of light c], magnetic fields are intrinsically much weaker than electric fields under typical laboratory
conditions. But this is largely because the characteristic speeds of charged particles are much less than the
speed of light c in those circumstances. If the speed of charged particles approaches c, magnetic forces and
electric forces become comparable in intrinsic strength. This is a consequence of special relativity, which
requires not only space and time, but also electric and magnetic phenomena, to enter the theory on an equal
footing, and whether a field is seen as electric or magnetic by an observer depends on the inertial frame of that
observer.
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where LLL has magnitude L and direction equivalent to that of the current, and the magnitude
of the current is I = nqvA. A finite length of wire having uniform cross section can be
partitioned into segments of length ds as in Fig. 8.1(b), and the total force acting on the
wire is found to be

FFFM = I
∫ b

a
(dsss×BBB), (8.7)

where a and b are the endpoints. For the special case of a steady current, uniform magnetic
field BBB, and a closed loop (a = b), the force acting on the loop is

FFFM = I
∮
(dsss×BBB) = I

(∮
dsss
)
×BBB = 0, (8.8)

which vanishes because for a closed loop the set of length-element vectors dsss forms a
closed polygon so

∮
dsss = 0.

For any closed current loop in a uniform magnetic field the total magnetic force
acting on the loop is zero.

Although in a uniform field the net force on current loops vanishes, the net torque does
not, as you are asked to show in Problem 9.3.

The quite different phenomenology of magnetism relative to electrostatics in everyday
experience is partially due to characteristic charged-particle velocities being much less than
the speed of light in typical observations (see Section 8.1), and partially due to the nature
of the Lorentz force law, which mixes the effect of the electric field and magnetic field
in a non-trivial way. The characteristic motion of a charged particle in a magnetic field is
circular, as illustrated in Box 8.1 and Fig. 8.2. Two important physical consequences of the
force law (8.4) are illustrated in Box 8.1, cyclotron orbits and the classical Hall effect.

How much work can be done by the Lorentz force? We calculated previously in Eq.
(2.37) that the work done if a test charge is moved in an electric field is the product of the
charge and the difference in electric potential over the path. If we repeat that calculation
using the Lorentz force (8.4) with BBB = 0 the same result is obtained (which is reassuring!).
On the other hand, let’s set EEE = 0 in Eq. (8.4) and calculate the work done by the magnetic
part of the Lorentz force on a test charge.

If a charge Q moves a distance dLLL = vvvdt, then the amount of work done by the
magnetic field is

dW = FFF ·dLLL = Q(v×BBB) · vvvdt = 0. (8.9)

The magnetic field does no work, since the cross product vvv×BBB is perpendicular
to the velocity vvv, so that the scalar product (v×BBB) · vvv vanishes identically.

As exemplified in the cyclotron motion discussed in Box 8.1, magnetic forces can alter the
direction of charged-particle velocity but not its magnitude.

If a magnetic field appears to us to be doing work, Eq. (8.9) indicates that we have



142 Magnetostatics in Vacuum

(b)(a)

x

y

R

q

v

F
M

v

F
M

v

F
M

v

F
M

B

tFig. 8.2 (a) Cyclotron motion caused by magnetic field BBB pointing into the page along the z axis
acting on a charge q with a velocity vvv, as explained in Box 8.1. We have used the standard
notation of ⊗ or × to indicate a magnetic field pointing into the page (and ⊙ to indicate
one pointing out of the page). (b) An electric field EEE perpendicular to the magnetic field
converts circular cyclotron motion into spiral motion because of the Lorentz force law (8.4).

misunderstood what is happening. Often, when at first glance a magnetic field appears to
be doing work, what is actually happening is that a magnetic field acts to alter the direction
of motion, which then permits an electric field to do the observed work. In such a case the
magnetic field enables the work to be done by changing the direction of motion, but the
actual work is done by an electric field, never by the magnetic field.

8.3 The Law of Biot and Savart

The magnetic field BBB(xxx) of a steady line current described by the density JJJ(xxx) is given by
the empirical Biot–Savart law,4

BBB(xxx) =
µ0

4π

∫
JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′ =

µ0

4π

∫
JJJ(xxx′)× R̂RR

R2 d3x′, (8.10)

where the permeability of free space µ0 is defined in Eq. (1.2) and the second form employs
the compact notation of Eqs. (2.10) and (2.11). The integral in Eq. (8.10) can be performed
analytically only for simple geometrical arrangements. When a steady current is flowing in
a 1D wire the magnitude of the current I must be constant. If LLL is a vector that points to a
line element dLLL of the wire as in Fig. 8.3, substitution of IdLLL for JJJd3x in Eq. (8.10) yields

4 The law embodied in Eq. (8.10) was formulated by Jean-Baptiste Biot and Félix Savart in 1820. The SI unit for
BBB is the tesla (T), where 1 T≡ 1 N A−1 m−1. Although discouraged by champions of international standards,
it is common also to use the gaussian (CGI) unit of gauss (G) for BBB, even when using SI units overall, where
1 tesla = 104 gauss. For reference, the magnetic field at the surface of the Earth is of order one gauss, and the
strongest known magnetic fields are ∼ 1016 gauss, which are observed in highly magnetized, rapidly rotating
neutron stars called magnetars.
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Box 8.1 Motion of Charged Particles in Magnetic and Electric Fields

Characteristic cyclotron motion of a charged particle in a magnetic field is circular
with the centripetal acceleration that curves the path provided by the magnetic force.

Cyclotron Motion
As illustrated in Fig. 8.2(a) and Problem 8.11, the magnetic field BBB, oriented into
the page, produces through the qvvv× BBB component of the Lorentz force (8.4) a
centripetal force directed toward the center of the circle for a particle of charge q and
velocity vvv, causing the particle to be deflected in a circular path without changing its
speed (implying that the magnetic field does no work). The motion becomes more
complex if an electric field is present also. For both an electric field and magnetic
field, the circular cyclotron motion due to the magnetic field can be converted into a
the spiral motion depicted in Fig. 8.2(b) by the qEEE component of the Lorentz force.

Classical and Quantum Hall Effects
An important consequence of the Lorentz force is exemplified by the classical Hall
effect, depicted in the following diagram for a 2D conductor.

− − − −− − − −

+ + + ++ + + +
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(a) A current density jx is produced by an applied electric field Ex. (b) A uniform
magnetic field BBB applied in the +z direction deflects electrons in the current in the
−y direction (Lorentz force). (c) Negative charge accumulate on one edge and pos-
itive charge on the opposite edge, producing a transverse electric field Ey (Hall
field) and associated force that just cancels the Lorentz force; thus in equilibrium
current flows only in the x direction. (d) Typically the longitudinal voltage VL and
the transverse Hall voltage VH are measured. The Hall resistance RH (inferred from
RH =VH/w jx) depends on the sign and density of charge carriers. Thus the Hall ef-
fect is a diagnostic for charge carriers in materials. At very high magnetic fields, the
classical Hall effect is modified dramatically by quantum mechanics. Corresponding
quantum Hall experiments revealed topological effects that initiated the topological
matter revolution in modern condensed matter and materials science.
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dLtFig. 8.3 Current loop carrying a steady current I for Eq. (8.11).

the Biot–Savart law in the form

BBB(xxx) =
µ0I
4π

∫
dLLL× (xxx−LLL)

|xxx−LLL|3
=

µ0I
4π

∫
dLLL× R̂RR

R2 . (8.11)

for a steady current.
Similar to the case for electric flux defined in Eq. (2.49), it is convenient to introduce

the magnetic flux FM through a surface S, which is defined as the normal component of BBB
integrated over S,

FM =
∫

S
BBB ·daaa. (8.12)

In electrostatics one can use lines of force to describe an electric field. In a similar way, for
magnetic fields, one can draw lines of the magnetic field, which are everywhere tangent to
the direction of BBB at that point.

Since steady currents normally flow in closed loops, the integral in the Biot–Savart law is
typically evaluated over a closed curve. However, the Biot–Savart law can also be applied
to infinitely long wires. Let us use the Biot-Savart law to calculate the magnetic field due
to current in a very long straight wire carrying a steady current I, as illustrated in Fig. 8.4.
An element IdLLL of the current will produce a magnetic field dBBB with magnitude

dB =
µ0I
4π

dLsinφ
r2 ,

as illustrated in Fig. 8.4. Expressing the variables dL, sinφ , and r2 in terms of the angle θ ,

r

φL

dB
ρ P

dL

I

θ

tFig. 8.4
Magnetic field dBBB produced by an element IdLLL of an infinitely long straight wire. The
vector dBBB lies in a plane perpendicular to the wire at the point P.
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B
b

dL

I
b

I
a

dF

dtFig. 8.5 Geometry for calculating the force per unit length acting between two long, straight parallel
wires.

the magnitude of B is given by

B =
µ0I
4πρ

∫ +π/2

−π/2
cosθdθ =

µ0I
2πρ

, (8.13)

where we’ve assumed the length of the wire to be infinite.
This result can be generalized easily to calculate the force acting between the two long

parallel wires illustrated in Fig. 8.5, as you are asked to show in Problem 8.7. The resulting
force per unit length is

dF
dIa

=
µ0IaIb

2πd
, (8.14)

with the force attractive if the currents Ia and Ib flow in the same direction and repulsive if
they flow in opposite directions.5

Example 8.1 Let us use the Biot–Savart law (8.11) to calculate the magnetic field pro-
duced along the z axis by the circular current loop in Fig. 8.6. The components of dBBB that
are perpendicular to the z symmetry axis cancel one another when the entire loop is tra-
versed, but the z components add with the same magnitude for each line increment dLLL,
which gives

BBB(z) = ẑzz
µ0I
4π

cosθ
R2 + z2

∮
dL = ẑzz

µ0I
2

R2

(R2 + z2)3/2 , (8.15)

where
∮

dL = 2πR and cosθ = R/
√

R2 + z2 were used. This non-zero value of BBB on the
symmetry axis contrasts with the value of zero for the electric field EEE found for the corre-
sponding electrostatics problem of a uniformly charged ring. The difference follows from
the cross product in the Biot–Savart formula that isn’t present in the electric field formula.
This causes contributions to BBB(z = 0) from opposite sides of the ring to add constructively

5 Until the year 2019, this equation provided the official definition of the ampere (amp) unit of current in the
SI system: one ampere is the current passing through two long parallel wires 1 meter apart with thickness
negligible relative to their separation that produces a magnetic force of 2×10−7 newtons per meter. In a 2019
revision of the SI units system, the elementary charge e was fixed to be exactly 1.602176634×1019 C, and an
ampere (amp) was defined to be an electric current equivalent to one Coulomb (C) of charge moving past a
reference point per second.
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θ

θ
dB

x-Lz = zz

>

I

dL

RtFig. 8.6 Geometry for Biot–Savart calculation of the magnetic field on the symmetry axis of a
circular current loop, as illustrated in Example 8.1.

for the magnetic field, but to subtract and cancel each other for the electric field. This
example is one illustration of the basic differences between electric fields produced by sta-
tionary charges and magnetic fields produced by charges in motion.

Both Coulomb’s law and the Biot–Savart law are empirical, with each tailored to account
for the corresponding electrostatic and magnetostatic data, respectively.

The Biot–Savart law may be viewed as the empirical starting point for magneto-
statics, just as Coulomb’s law may be viewed as the empirical starting point for
electrostatics.

Both laws exhibit an inverse-square distance dependence, but otherwise they differ sub-
stantially because of the vector character of the magnetic law.

8.4 Differential Form of the Biot–Savart Law

The Biot–Savart law (8.10) for a line current in integral form,

BBB(xxx) =
µ0

4π

∫
JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′,

contains (in principle) a complete description of magnetostatics for line currents, but is not
always the most convenient form for solving problems. In many situations a differential
equation is more convenient to use. Let us find a form of the Biot–Savart law expressed as
a differential equation, following the presentation in Jackson [19]. From Eq. (A.11),

xxx− xxx′

|xxx− xxx′|3
=−∇∇∇

(
1

|xxx− xxx′|

)
= ∇∇∇′

(
1

|xxx− xxx′|

)
, (8.16)
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which allows converting the Biot–Savart equation (8.10) into

BBB(xxx) =
µ0

4π

∫
JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′

=
µ0

4π
∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d

3x′, (8.17)

where ∇∇∇ has been pulled out of the integral because it operates on xxx but not xxx′.6 Now take
the divergence of Eq. (8.17)

∇∇∇ ·BBB =
µ0

4π
∇∇∇ ·∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d

3x′.

But from Eq. (A.6) we have the identity ∇∇∇ · (∇∇∇×AAA) = 0 so

∇∇∇ ·BBB = 0, (8.18)

which may be termed the first law of magnetostatics [and is the third Maxwell equation
(1.1c), corresponding to the absence of magnetic charges].

Next, take the curl of BBB in Eq. (8.17),

∇∇∇×BBB =
µ0

4π
∇∇∇×∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d

3x′. (8.19)

Using the vector identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA of Eq. (A.8), this becomes

∇∇∇×BBB =
µ0

4π
∇∇∇
∫

JJJ(xxx′) ·∇∇∇
(

1
|xxx− xxx′|

)
d3x′− µ0

4π

∫
JJJ(xxx)∇2

(
1

|xxx− xxx′|

)
d3x′

=− µ0

4π
∇∇∇
∫

JJJ(xxx′) ·∇∇∇′
(

1
|xxx− xxx′|

)
d3x′+µ0JJJ(xxx), (8.20)

where we have used the identities of Eq. (A.11),

∇∇∇
(

1
|xxx− xxx′|

)
=−∇∇∇′

(
1

|xxx− xxx′|

)
∇2
(

1
|xxx− xxx′|

)
=−4πδ (xxx− xxx′) (8.21)

(with ∇∇∇ operating on xxx and ∇∇∇′ operating on xxx′) in the last step. Integrating the remaining
integral in Eq. (8.20) by parts then gives

∇∇∇×BBB = µ0JJJ+
µ0

4π
∇∇∇
∫

∇∇∇′ · JJJ(xxx′)
|xxx− xxx′| d3x′. (8.22)

But for steady-state magnetism ∇∇∇ · JJJ = 0 and we obtain finally

∇∇∇×BBB = µ0JJJ, (8.23)

which may be termed the second law of magnetostatics [and is the fourth Maxwell equation
(1.1d) if electric fields don’t depend on time (Ampère’s law)].

6 Remember that in these manipulations, using our standard notation, the integrations are over the primed co-
ordinates, but applied gradient, divergence, and curl operations (∇∇∇, ∇∇∇·, and ∇∇∇×, respectively, without primes)
are taken with respect to the unprimed coordinates. This is made explicit in the notation exemplified in Eqs.
(A.11) of Appendix A, where ∇∇∇≡∇∇∇x operates on the xxx coordinates while ∇∇∇′ ≡∇∇∇x′ operates on the xxx′ coordi-
nates. However, we will usually use the abbreviated notation ∇∇∇≡ ∇∇∇x and ∇∇∇′ ≡ ∇∇∇x′ .
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n

S

C
dl

da

tFig. 8.7 The 2D surface S and the contour C bounding the surface for Stokes’ theorem. An
infinitesimal line element on C is indicated by dl and an infinitesimal surface element on S
is indicated by da, with the normal to da denoted by nnn. The path in the line integration is
traversed in a right-hand rule sense relative to nnn, as indicated by arrows.

The integral equivalent of Ampère’s law (8.23) may be obtained from Stokes’ theorem
(2.25), ∫

S

(∇∇∇×AAA) ·nnnda =
∮

C
AAA ·dlll,

for the vector field AAA where S is an arbitrary open surface bounded by a closed curve C and
where nnn is the normal to S. Figure 8.7 illustrates. Applying Stokes’ theorem to Eq. (8.23),

∫

S
(∇∇∇×BBB) ·nnnda =

∮

C
BBB ·dlll = µ0

∫

S
JJJ ·nnnda (8.24)

and therefore Eq. (8.23) becomes
∮

C
BBB ·dlll = µ0

∫

S
JJJ ·nnnda. (8.25)

Using that the total current I passing through the closed curve C is given by the surface
integral on the right side of Eq. (8.25),

I =
∫

S
JJJ ·nnnda, (8.26)

gives us Ampère’s law in integral form,
∮

C
BBB ·dlll = µ0I, (8.27)

We found in our study of electrostatics that Gauss’s law can often be used to find the
electric field in highly symmetric cases. Ampére’s law can be employed in an analogous
way for magnetostatic problems with high symmetry. The following example illustrates.

Example 8.2 Let’s determine the magnetic field for the long solenoid illustrated in
Fig. 8.8, with n closely wound turns per unit length on a cylinder of radius R and car-
rying a steady current I. Because the solenoid is tightly wound, each coil may be assumed
to be perpendicular to the symmetry axis of the cylinder. One expects then on symmetry
and general grounds that the magnetic field is oriented along the cylinder axis, and that it
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a

b

2 1

I

I

R

n coils per

unit length L

tFig. 8.8 Analysis of a long, tightly wound solenoid using Ampère’s law. Two rectangular loops are
shown, Loop 1 is outside the solenoid and Loop 2 overlaps half inside and half outside of
the solenoid.

must be zero at large distances from the solenoid. Let’s apply Ampère’s law (8.27) to the
two rectangular Ampèrian loops shown in the diagram.7 Loop 1 is completely outside the
solenoid and encloses no current, Ienc = 0, with its left side a distance a and its right side a
distance b from the central axis of the cylinder. Applying Ampère’s law to it

∮
BBB ·dl = [B(a)−B(b)]L = µ0Ienc = 0,

where B = |BBB|. Thus,

1. B(a) = B(b) and the magnetic field outside is independent of the distance from the
solenoid, but

2. the boundary conditions require that B = 0 at infinity,

which implies that B = 0 everywhere outside the solenoid. Loop 2 is halfway inside the
solenoid and Ampère’s law gives

∮
BBB ·dl = BL = µ0Ienc = µ0nIL,

where B is the field inside the solenoid, since there is no contribution from the half rectangle
outside the cylinder because B = 0 there. Thus inside the solenoid the field is uniform,
BBB = µ0nIẑzz, where ẑzz is a unit vector along the cylinder axis, and outside the solenoid the
magnetic field vanishes.

Like Gauss’s law, Ampère’s law is generally valid (for steady currents), but it is useful only

7 We shall refer to such constructions employed in the use of Ampère’s law as Ampèrian loops, by analogy with
the Gaussian surfaces introduced in Section 2.4 in the use of Gauss’s law.
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A

z

y

x

K

tFig. 8.9 Using the Biot–Savart law in Example 8.3 to find the magnetic field produced by an infinite
sheet of surface current KKK = Kx̂xx in the x− y plane.

if a problem has sufficient symmetry to allow B to be pulled out of the integral
∮

BBB · dlll,
permitting Eq. (8.27) to be solved easily for the magnetic field.

8.5 Biot–Savart Law for Surface and Volume Currents

The integral form of the Biot–Savart Law for line currents given in Eq. (8.10) may be gen-
eralized easily to apply to surface currents and volume currents. For a 2D surface current
KKK, the Biot–Savart law takes the form

BBB(xxx) =
µ0

4π

∫
KKK(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
da′ =

µ0

4π

∫
KKK(xxx′)× R̂RR

R2 da′ (8.28)

while for a 3D volume current JJJ

BBB(xxx) =
µ0

4π

∫
JJJ(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′ =

µ0

4π

∫
JJJ(xxx′)× R̂RR

R2 d3x′, (8.29)

where the second form of each expression employs the compact notation of Eqs. (2.10)
and (2.11).

Example 8.3 Let us use Eq. (8.28) to calculate the magnetic field due to a surface cur-
rent KKK = Kx̂xx in the x− y plane, as illustrated in Fig. 8.9. From the Biot–Savart law the
magnetic field must be perpendicular to KKK so it cannot have an x component and cannot
have a z component by symmetry in y since any vertical contribution at +y would be can-
celled by one at −y. Thus the magnetic field has only y components and by the right-hand
rule it points left above the plane of Fig. 8.9 and right below it. The rectangular Ampèrian
loop A is parallel to the yz plane and is half above and half below the xy surface. Applying
Ampère’s law (8.27) to the loop A gives

∮

C
BBB ·dlll = 2BL = µ0Ienc = µ0KL,
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where L is the width of the rectangle and Ienc is the current enclosed by the rectangle. Thus
B = 1

2 µ0K and the magnetic field produced by the sheet of current KKK = Kx̂xx in Fig. 8.9 is

BBB =





+
1
2

µ0Kŷyy (z < 0),

−1
2

µ0Kŷyy (z > 0),
(8.30)

where ŷyy is a unit vector in the y direction.

In Example 8.3 the magnetic field produced by a uniform sheet of current is independent
of the distance from the surface containing the current in Example 8.3, just as would be the
case for the electric field produced by a uniform surface charge in electrostatics.

8.6 Vector Potentials and Gauge Invariance

We have seen in the preceding section that the basic laws of magnetostatics are defined in
differential form through Eqs. (8.23) and (8.18),

∇∇∇×BBB = µ0JJJ, ∇∇∇ ·BBB = 0, (8.31)

which must be solved for the magnetic field BBB. In electrostatics the electric potential Φ
proved to be an extremely useful quantity because the electric field can be derived from
it by taking the gradient, EEE = −∇∇∇Φ. The electric potential Φ is a scalar quantity and it is
often termed the scalar potential [we have indeed used the terms “(electric) potential” and
“scalar potential” interchangeably]. For the special case that the current density is zero in
a region, it is possible to define a magnetic scalar potential ΦM such that the magnetic
field is given by BBB = −∇∇∇ΦM. Then in Eq. (8.31) ∇∇∇×BBB = 0, and ∇∇∇ ·BBB = 0 reduces to
the Laplace equation for ΦM, implying that the methods for solving Laplace’s equation
developed for electrostatics in Chs. 2-6 become applicable. However, this approach has
limited utility because it is valid only for regions where the current density vanishes. As
we now discuss, an approach with potentially broader application may be developed by
exploiting the second equation above, ∇∇∇ ·BBB = 0. This will allow defining a vector potential
AAA, from which the magnetic field BBB can be derived by taking the curl of AAA.

We begin by noting that ∇∇∇ ·BBB = 0 will hold everywhere if BBB is the curl of some vector
field AAA (the vector potential),

BBB(xxx) = ∇∇∇×AAA(xxx), (8.32)

since then the identity ∇∇∇ · (∇∇∇×AAA) = 0 ensures that the divergence of BBB vanishes under all
conditions. In fact, BBB was already written in this form in Eq. (8.17),

BBB(xxx) =
µ0

4π
∇∇∇×

∫
JJJ(xxx′)
|xxx− xxx′| d

3x′, (8.33)



152 Magnetostatics in Vacuum

and upon comparing Eqs. (8.32) and (8.33), a vector potential AAA consistent with the phe-
nomenology of magnetism takes the general form

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d

3x′+∇∇∇χ(xxx), (8.34)

where the addition of the arbitrary scalar function χ(xxx) has no effect on ∇∇∇ ·BBB = 0 because
of the identity ∇∇∇× (∇∇∇ f ) = 0 [see Eq. (A.7)] for a scalar function f . Since χ(xxx) is an
arbitrary scalar function of xxx, the vector potential AAA can be transformed freely according to

AAA→ AAA+∇∇∇χ, (8.35)

which has no effect on the magnetostatic equation ∇∇∇ ·BBB = 0 because identically ∇∇∇ · (∇∇∇×
∇∇∇χ) = 0.

Gauge transformations: The addition of the gradient of an arbitrary scalar func-
tion ψ to the vector potential AAA→ AAA+∇∇∇χ is called a gauge transformation and
the invariance of the laws of electromagnetism under this transformation is called
gauge invariance. The gauge symmetry associated with this invariance has large
implications for classical electromagnetism and quantum electrodynamics, and a
generalization of this gauge symmetry is of fundamental importance in relativis-
tic quantum field theories, particularly for the Standard Model of elementary
particle physics. We will elaborate on electromagnetism as the prototype gauge
field theory in Ch. 18.

From the Helmholtz theorem (Box 3.1), a vector field with suitable boundary conditions is
specified uniquely by its curl and its divergence. From Eq. (8.32), specifying the magnetic
field requires only the curl of AAA. Thus we are free to make gauge transformations on the
vector potential such that ∇∇∇ ·AAA has any convenient functional form, without affecting the
magnetic field and thus without altering the physics of classical electromagnetism.

Substituting BBB = ∇∇∇×AAA into Eq. (8.23) gives

∇∇∇× (∇∇∇×AAA) = µ0JJJ,

which becomes

∇∇∇(∇∇∇ ·AAA)−∇2AAA = µ0JJJ, (8.36)

upon invoking the identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA given in Eq. (A.8). Now let us
exploit the freedom of gauge transformations (8.35) by choosing a gauge where

∇∇∇ ·AAA = 0 (Coulomb gauge condition), (8.37)

is satisfied, which defines the Coulomb gauge (also know as the radiation gauge or the
transverse gauge, for reasons that will be explained later). In Coulomb gauge, Eq. (8.36)
is transformed into the Poisson equation,

∇2AAA =−µ0JJJ (Coulomb gauge). (8.38)
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θ

tFig. 8.10 A small current loop that produces a vector potential AAA(xxx) and corresponding magnetic
field BBB(xxx) at the point P, where it is assumed that xxx≫ xxx′.

From application of the Poisson equation in electrostatics we expect that the solution for AAA
in Coulomb gauge is given by the first term of Eq. (8.34) with χ = constant,

AAA(xxx) =
µ0

4π

∫
JJJ(xxx′)
|xxx− xxx′| d

3x′, (8.39)

provided that JJJ(xxx′)→ 0 sufficiently rapidly at infinity. Classical gauge transformations will
be discussed in more depth in Ch. 11.

8.7 Magnetic Fields of Localized Currents

We now consider a current distribution that is localized in a region of space small compared
to the length scale of interest to an observer; Fig. 8.10 illustrates, where a loop that is small
compared with the distance to an observer at P carries a steady current I. A full treatment
of this problem by analogy with electric multipole expansions is possible using vector
spherical harmonics, which are described briefly in Box 8.2. We shall avoid using them
and confine ourselves instead to lowest-order multipole expansions.

Let us assume that xxx≫ xxx′ and expand the denominator of Eq. (8.39) in a multipole series
of the form (3.48) for the current distribution in Fig. 8.10,

1
|xxx− xxx′| =

1
r

∞

∑
n=0

(
r′

r

)n

Pn(cosθ)dlll, (8.40)

where r ≡ |xxx|, r′ ≡ |xxx′|, and θ is indicated in Fig. 8.10. Thus the vector potential can be
expanded as

AAA(xxx) =
µ0I
4π

[
1
r

∮
dlll′+

1
r2

∮
r′ cosθdlll′

+
1
r3

∮ (
r′
)2
(

3
2

cos2 θ − 1
2

)
dlll′+ · · ·

]
. (8.41)

The first term in Eq. (8.41) vanishes because the integral of the current vector over all
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Box 8.2 Vector Spherical Harmonics

Vector spherical harmonics are an extension of regular (scalar) spherical harmonics
designed for use with vector fields. Generally the components of vector spherical
harmonics are complex-valued functions expressed in terms of spherical basis vec-
tors. Following the conventions of Ref. [4], three vector spherical harmonics may be
defined

YYY lm = Ylmr̂rr ΨΨΨlm = r∇∇∇Ylm ΦΦΦlm = rrr×∇∇∇Ylm,

where rrr is the radial vector in spherical coordinates. The purpose of the radial fac-
tors is to ensure that the vector spherical harmonics have the same dimensions as
ordinary spherical harmonics, and that they do not depend on the radial coordinate.
These new vector fields facilitate separation of radial from angular coordinates in
spherical coordinates, permitting a a multipole expansion of the electric field EEE of
the form

EEE =
∞

∑
l=0

+l

∑
m=−l

(
Er

lm(r)YYY lm +E(1)
lm (r)ΨΨΨlm +E(2)

lm (r)ΦΦΦlm

)
,

The component labels indicate that Er
lm(r) is the radial component, and E(1)

lm (r) and
E(2)

lm (r) are transverse components of the vector field (with respect to the vector rrr).

orientations will average to zero.8 This reflects that the first term in the multipole expan-
sion is the monopole term, which measures the total “charge”; but there are no magnetic
monopoles because there is no magnetic charge consistent with the Maxwell equations
(∇∇∇ ·BBB = 0). Defining the magnetic moment mmm by the integral

mmm =
1
2

∫
xxx′× JJJ(xxx′)d3x′, (8.42)

and the magnetic moment density or magnetization MMM(xxx) by

MMM(xxx) =
1
2
[xxx× JJJ(xxx)] , (8.43)

for I = |JJJ| the multipole expansion (8.41) of the vector potential can be written as

AAA(rrr) =
µ0

4π
mmm× r̂rr

r2 + higher-order multipole terms,

where the first term has the form of a magnetic dipole. The higher-order multipoles in
this expression have increasingly larger powers of |xxx| in their denominators and at large
distances from the current source the vector potential for a steady-state current distribution
can be approximated well by retaining only the magnetic dipole term (see Problem 8.8,

AAA(rrr) =
µ0

4π
mmm× r̂rr

r2 . (8.44)

8 This argument is intuitive; a more formal proof that the first term vanishes is given in Section 5.6 of Ref. [19].
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Then the magnetic field may be found by taking the curl of AAA, giving the components (see
Problem 8.9)

BBBr =
µ0m
2πr3 cosθ BBBθ =

µ0m
4πr3 sinθ BBBφ = 0. (8.45)

Because the dipole term dominates the multipole expansion in typical situations, it is com-
mon to refer to the magnetic dipole moment as simply the magnetic moment.

If the current as assumed to correspond to an arbitrary closed loop confined to a plane
the magnitude of the magnetic moment takes a simple form that is independent of the shape
of the loop,

|mmm|= IA, (8.46)

where I is the current and A is the area enclosed by the planar current loop. If the current
distribution is due to charged particles with charges qi, masses Mi, and velocities vvvi, the
current density is

JJJ = ∑
i

qivvviδ (xxx− xxxi),

where xxxi is the position of the ith particle, and the magnetic moment is

mmm =
1
2 ∑

i
qi(xxxi× vvvi).

But the orbital angular momentum of particle i is LLLi =Mi(xxxi×vvvi) and the magnetic moment
becomes

mmm = ∑
i

qi

2Mi
LLLi. (8.47)

If all the particles have the same charge-to-mass ratio qi/Mi = e/M,

mmm =
e

2M ∑
i

LLLi =
e

2M
LLL, (8.48)

where LLL is the total orbital angular momentum. Equation (8.48) is the well-known classical
connection between angular momentum and magnetic moment. It holds approximately for
orbital angular momentum even on the atomic scale, but fails for moments arising from
intrinsic particle spin, which is a uniquely quantum effect that is beyond the scope of our
present discussion of classical electromagnetism.

Background and Further Reading

Good introductions to the material of this chapter may be found in Griffiths [13]. More
advanced treatments may be found in Jackson [19], Garg [11], Chaichian et al [5], and
Zangwill [42].
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Problems

8.1 A localized current distribution of cylindrical symmetry has a current flowing only
in the azimuthal direction, with a current density JJJ = J(r,θ)φ̂φφ . The current is zero
both outside the cylinder and near the origin. Working in Coulomb gauge, show that
the corresponding vector potential AAA has only an azimuthal component with

Ain
φ (r,θ) =−

µ0

4π ∑
l

mlrlP1
l (cosθ),

where P1
l (cosθ) is an associated Legendre polynomial and the multiple moments are

given by

ml =





− 1
l(l +1)

∫
r−l−1P1

l (cosθ)J(r,θ)d3x ( interior),

− 1
l(l +1)

∫
rlP1

l (cosθ)J(r,θ)d3x (exterior),

for the interior and exterior solutions, respectively.
8.2 A cylindrical solenoid of length L and radius a carries a current I through N turns

per unit length.

I

I

θ2θ1
z

Show that in the limit NL→ ∞, the magnetic field is

Bz =
µ0NI

2
(cosθ1 + cosθ2)

at the point defined on the cylinder axis by the angles θ1 and θ2 in the preceding
figure.

8.3 It was asserted in Eq. (8.39) that the vector potential in Coulomb gauge is given by

AAA(xxx) =
µ0

4π

∫ JJJ(xxx′)
|xxx− xxx′| d

3x′,

provided that the current distribution JJJ(xxx′) vanishes sufficiently rapidly at infinity.
Prove that this solution does indeed satisfy the Coulomb gauge condition.

8.4 Show that the vector potential AAA = 1
2 BBB0× xxx corresponds to a magnetic field BBB0. ***

8.5 (a) Starting from the classical Lorentz-force equation, show that Ey = vxBz in the
Hall effect experimental diagram shown in Box 8.1.
(b) The electron velocity vvv in the Hall experiment depends on interactions with the
lattice in the 2D Hall device. In the classical Drude model of electron transport (see
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Section 7.3.2) the force is given by FFF = m(dvvv/dt + vvv/τ), where m is the effective
electron mass and τ is the Drude-model relaxation time. Assuming steady-state elec-
tron flow and defining the cyclotron frequency ωc ≡ eB/m, show that the classical
equations of motion for Hall-device electrons in the Drude approximation are

vx =−
eτ
m

Ex−ωcτvy vy =−
eτ
m

Ey +ωcτvx vz =−
eτ
m

Ez,

where e is the electronic charge, m is the electron mass, BBB is the magnetic field, and
EEE is the electric field.

(c) Use the results from parts (a) and (b) to show that in the figure of Box 8.1,

Ey =−
eBτ
m

Ex.

Hint: At equilibrium, vy = 0.

(d) The current density JJJ in the Drude model is

JJJ =
e2ne

m
τEEE = σEEE σ ≡ e2neτ

m
,

where ne is the electron number density, σ is the conductance, and τ is the Drude-
model relaxation time. Using the figure in Box 8.1, prove that

Ey =
VH

w
I = w jx RH ≡

VH

I
=− B

ene
RL ≡

VL

I
=

L
wσ

,

where VH is the Hall voltage (associated with the induced electric field Ey), I is the
total current, Jx is the current density in the x direction, q = −e was assumed for
electrons, RH is the Hall resistance, and RL is the longitudinal resistance (along the
x axis) of the Hall device shown in Box 8.1.

8.6 (a) Show that for a 2D Hall device like the one shown in Box 8.1, with length L and
width w, that J = σE (where J is the current density, E is the electric field, and σ is
the conductivity) is equivalent to the simple form of Ohm’s law, V = IR. Hint: See
Section 7.3.1 and Box 7.1.

(b) Show that for the Hall device shown in Box 8.1, the resistance components Ri j =

Vi/I j and resistivity components ρi j = Ei/ j j are related by

Ryx = ρyx Rxx = (L/w)ρxx.

Verify the final forms of the ρ and σ tensors in Box 7.1. ***

8.7 Show that the magnitude of the force per unit length acting between two infinitely
long parallel wires carrying steady currents Ia and Ib, respectively, and separated by
a distance d,
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B
b

dL

I
b

I
a

dF

d

is given by

dF
dIa

=
µ0IaIb

2πd
,

and is attractive if the currents are in the same direction and repulsive if they are in
the opposite directions.

8.8 Prove that for the current loop in Fig. 8.10 the vector potential is at large distance
from the source is given by

AAA(rrr) =
µ0

4π
mmm× r̂rr

r2 ,

where we define r ≡ |xxx| and r′ ≡ |xxx′| . Hint: Use a multipole expansion assuming
r≫ r′, and that

∮
(r̂rr · rrr′)dLLL′ =−r̂rr×

∫
daaa′ =−r̂rr×aaa

in Fig. 8.10, where aaa is the “vector area” of the loop. ***
8.9 Find the formula for the magnetic field corresponding to the vector potential derived

in Problem 8.8

8.10 Consider two parallel, infinite line charges λ separated by a distance d and and mov-
ing in the same direction at a speed v, as viewed in the laboratory frame. The follow-
ing figure illustrates.

d

λ

λ

v

Show that for the electrostatic repulsion between the charges to be equal in magni-
tude to the magnetic attraction, v must be equal to the speed of light c. Hint: Re-
member that the SI constants ε0 and µ0 are related to each other through c. ***

8.11 Consider a particle with positive charge q and mass m moving in a uniform magnetic
field BBB directed into the page with initial velocity vvv in the x− y plane perpendicular
to the field and to the x axis, as illustrated in the following diagram.



159 Problems

x

y

q

v

B

Show that the resulting force acting on the particle has constant magnitude FM = qvB,
with orientation perpendicular to both BBB and vvv. Thus show that the positively charged
particle executes clockwise circular motion in the x− y plane with the force always
directed toward the center of a circular orbit of radius R = mv2/qvB, with orbital
period T = 2πm/qB. ***

8.12 A rectangular loop consists of N = 100 closely wrapped turns and has dimensions
a = 0.4 m and b = 0.3 m. The loop is hinged along the y-axis and its plane makes an
angle of θ = 30◦ with the x-axis.

y

x

z

I

θ

a

b

B

What is the magnitude of the torque exerted on the loop by a uniform magnetic
field B = 0.8 T directed along the x-axis when the steady current is I = 1.2 A in the
direction shown? What is the expected direction of rotation of the loop? ***



9 Magnetic Fields in Matter

Just as it was shown in Ch. 6 that electric fields can polarize matter electrostatically, mag-
netic fields can polarize matter magnetically. In classical electromagnetism all magnetic
phenomena have their origin in the motion of electrical charges. At the microscopic level,
we may view magnetism as being produced by small current loops (for example, electrons
in orbits around nuclei in atoms) that may be modeled as tiny magnetic dipoles. Ordinarily
the effects of these dipoles cancel out because of random orientation of atoms, but if a
magnetic field is applied to the matter it can cause a net alignment of the dipoles so that the
matter becomes magnetically polarized (magnetized). For the electric polarization of mat-
ter described in Ch. 6, the polarization is usually in the direction of the EEE field. Magnetic
polarization of matter is more complex and varied than electric polarization of matter. For
example,

1. paramagnetic materials acquire a magnetization in the same direction as the applied
field BBB, while

2. diamagnetic materials acquire a magnetization in the direction opposite the applied
field, and

3. ferromagnetic materials can become permanent magnets, by retaining their magne-
tization after the polarizing field has been removed, with the retained magnetization
depending on the entire magnetic history of the material.

As a consequence, the discussion of magnetized matter is more involved than the discus-
sion of electrically polarized matter.

9.1 Alignment of Current Loops in Magnetic Fields

In classical electromagnetism, magnetic interactions in matter are assumed to be a con-
sequence of small current loops arising at the atomic and molecular level.1 As shown in
Probs. 9.2 and 9.3, these current loops experience no net force in a uniform magnetic field

1 Some early investigators of magnetism were enamored of the idea that magnetic effects were attributable to
Coulomb-like interactions with magnetic dipoles formed from north and south magnetic poles, analogous to
electric dipoles formed from a positive and negative charge (this is often called the Gilbert model). Today we
know that there are no distinct magnetic charges and a more realistic picture of magnetism is based on small
loops of electrical current (this is often called the Ampèrian model). These fictitious magnetic charges can be
used as a basis for theoretical approaches that give approximately “correct” results for long-distance behavior,
but that tend to fail at short distance. We shall always use the Ampèrian picture of magnetism arising from
tiny current loops.

160
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if they carry steady currents, but they do experience a net torque that tends to align them
with the magnetic field. It is this alignment of current loops by the magnetic field that leads
to magnetization of matter. If the magnetic interaction is expanded in a multipole series
(see Section 8.7), only the lowest orders contribute when observing from a large distance.
For a magnetic interaction, the l = 0 monopole term is the total “charge”, but there are no
magnetic charges (no magnetic monopoles) so the l = 0 term vanishes and the lowest-order
magnetic multipole is the dipole with l = 1. Thus, to good approximation we may treat the
current loops as a set of magnetic dipoles.2 Just as found for electric multipole moments
in Section 6.2.2, the low-order moments dominate for a distant observer. The difference
here is that there is no monopole moment for magnetism, so it is dominated typically by
the magnetic dipole moments.

Thus the current loops may be replaced by magnetic dipoles in the analysis of mag-
netized matter. The magnetic dipole moment vector mmm for a loop carrying a current I is
defined by

mmm = I
∫

daaa = Iaaa, (9.1)

where aaa is the vector area of a surface S bounded by the loop:

aaa =
∫

S
daaa =

1
2

∮
rrr×dlll, (9.2)

where the second integral is around the boundary curve of the area S. If the loop is flat,
aaa has a magnitude equal to the usual area enclosed and the direction of aaa (and of mmm) is
given by the right-hand rule applied to the direction of the current in the loop. Then the
magnitude of the magnetic dipole moment vector mmm is

|mmm|= Ia, (9.3)

where I is the magnitude of the current and a is the area bounded by the loop. The torque
τττ exerted on a current loop of area aaa carrying current I, or on the corresponding magnetic
dipole moment mmm, is

τττ = Iaaa×BBB = mmm×BBB, (9.4)

with the direction given by the right-hand rule applied to the direction of the current within
the loop.

9.2 Ampère’s Law in Magnetically Polarized Matter

In the previous chapter we have dealt with steady-state magnetic fields in a microscopic
manner, assuming that the current density JJJ is a known function of position. In macroscopic
problems dealing with magnetic effects in materials, this will often not be true since the
magnetic polarization of the matter will modify current densities. Now we must develop
methods to solve for the fields in the presence of such polarization.
2 Retaining only the dipoles and not higher-order multipoles is justified if the distance to the observer greatly

exceeds the size of the current loop. This is almost always true, since the current loops are atomic-scale.
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9.2.1 Macroscopic Averaging

The atomic currents in matter produce rapidly fluctuating current densities on a micro-
scopic scale. Just as discussed in Section 6.7 for electric fields in matter, only averages
over small macroscopic volumes are known and only these enter into the classical equa-
tions of electromagnetism. The first step in introducing averaging in matter for electric
fields in Section 6.7 was to note that the averaging procedure preserves the crucial relation
∇∇∇×EEE = 0, which ensures that the macroscopic electric field is still derivable from a scalar
potential through EEE =−∇∇∇Φ. In a similar manner, for magnetic fields the macroscopic av-
eraging procedure leads to the same equation ∇∇∇ ·BBB = 0 that we introduced in Eq. (8.18).
Thus, the averaging procedure preserves the notion of a vector potential AAA(xxx), from which
we can derive the macroscopic magnetic field by taking the curl, BBB = ∇∇∇×AAA.

The basic effect of magnetization is to establish currents within a material and on its
surface such that these currents produce the field due to magnetization. The average macro-
scopic magnetization or magnetic (dipole) moment density is

MMM(xxx) = ∑
i

Ni⟨mmmi⟩, (9.5)

where ⟨mmmi⟩ is the magnetic moment averaged over a small volume around the point xxx.
In addition to the bulk magnetization we may assume that there is a macroscopic current
density JJJ(xxx) produced by the flow of free charge in the medium. Then the vector potential
resulting from averaging over a small volume ∆V around xxx′ will take the form

∆AAA(xxx) =
µ0

4π

[
JJJ(xxx′)
|xxx− xxx′| +

MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3

]
∆V, (9.6)

where the first term represents the contribution of the flow of free charge and the second
term represents the contribution from the magnetic dipoles in the medium described by Eq.
(8.44). Letting ∆V tend to d3x′, the total vector potential at xxx is given by an integral over
all space,

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)
|xxx− xxx′| +

MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
]

d3x′. (9.7)

The second (magnetization) term can be cast in another form by utilizing Eq. (8.16) to
write ∫

MMM(xxx′)× (xxx− xxx′)

|xxx− xxx′|3
d3x′ =

∫
MMM(xxx′)×∇∇∇′

(
1

|xxx− xxx′|

)
d3x′.

Integration by parts then allows Eq. (9.7) to be written

AAA(xxx) =
µ0

4π

∫ [
JJJ(xxx′)+∇∇∇′×MMM(xxx′)

]

|xxx− xxx′| d3x′, (9.8)

where a surface term has been discarded by assuming MMM(xxx′) to be localized and well be-
haved.
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9.2.2 The Auxiliary Field HHH and Constituitive Relations

From the results in the preceding section we see that the magnetization contributes an
effective current density

JJJM = ∇∇∇×MMM. (9.9)

Then JJJ+ JJJM plays the role of the effective current such that

∇∇∇×BBB = µ0(JJJ+∇∇∇×MMM). (9.10)

It is then convenient to define a new macroscopic field HHH by3

HHH ≡ 1
µ0

BBB−MMM. (9.11)

The introduction of HHH in the presence of magnetically polarized materials is a matter of
convenience, analogous to the introduction in Section 6.7 of DDD to account for electrically
polarized materials in electrostatics. The fundamental fields in classical electromagnetism
are the electric field EEE and the magnetic field BBB.4 The derived fields DDD and HHH are introduced
as a convenient way to take into account the average contributions to charge density and
current of the atomic-level charges and currents. Then the macroscopic fields in medium
that replace the microscopic fields of Eqs. (8.31) are

∇∇∇×HHH = JJJ,

∇∇∇ ·BBB = 0,
(9.12)

which are analogous to the macroscopic fields for electrostatics in medium

∇∇∇×EEE = 0,

∇∇∇ ·DDD = ρ,
(9.13)

that were derived in Sections 6.7 and 6.8.
Just as for Eqs. (9.13), the description of macroscopic magnetostatics in Eqs. (9.12)

requires constituitive relationships, in this case between the fundamental field BBB and the
derived field HHH. For paramagnetic and diamagnetic materials that are isotropic, the rela-
tionship may be assumed linear,

BBB = µHHH, (9.14)

3 We have routinely termed BBB the magnetic field. Some authors instead call HHH the magnetic field, which requires
finding another name for BBB. For example, Jackson [19] calls HHH the magnetic field and BBB the magnetic induction.
This is a question of terminology, not physics, and arguments can be made from a theoretical or experimental
perspective in favor of either naming convention. Because the fundamental fields are EEE and BBB, and the auxiliary
fields DDD and HHH are derived quantities, we have adopted the convention of calling BBB the magnetic field, with
no specific name for HHH. Likewise EEE is termed the electric field and DDD the displacement field (but the common
name “displacement” for DDD survives for historical, not descriptive, reasons).

4 This is a classical statement. As we shall discuss in Ch. 18, in quantum mechanics one finds that the scalar
potential Φ and the vector potential AAA (or a 4-vector having Φ and AAA as components in a Lorentz-invariant
theory) should be viewed as more fundamental than the electric and magnetic fields, for two basic reasons.
(1) There are experiments where probes that never see the magnetic field are influenced by the vector potential
(the Aharonov–Bohm effect), and (2) the fundamental coupling of electromagnetism to charged particles is
through the vector and scalar potentials (the minimal coupling prescription; also called minimal substitution).



164 Magnetic Fields in Matter

H

B

tFig. 9.1 Schematic illustration of magnetic hysteresis.

where the constant µ is characteristic of the medium and is called the magnetic permeabil-
ity. It is also common to characterize the magnetic properties of the medium in terms of
the magnetic susceptibility χ , which is related to the magnetic permeability by

χ =

(
µ
µ0
−1
)
. (9.15)

Typically for paramagnetic materials µ > 1 and for diamagnetic materials µ < 1, with
µ/µ0 differing from unity by a part in ∼ 105 for either case. The physical reasons for
paramagnetism and diamagnetism are discussed in Box 9.1.

The case of ferromagnetic materials is more involved. In ferromagnetic substances the
magnetic susceptibility χ (or the magnetic permeability µ) is positive but not constant;
it depends on the applied field HHH, and typically can take large values. When an external
field is applied to a ferromagnetic material the system acquires a magnetization MMM aligned
with the applied field. The origin of permanent ferromagnetism (magnetism that remains in
the absence of an external field) is an essentially quantum-mechanical effect where many
spins align spontaneously to form a highly collective state.5 Ferromagnets may exhibit
hysteresis, where the magnetic field BBB is not a single-valued function of HHH and the state
of the system may depend on its preparation history; Fig. 9.1 illustrates. These complex
behaviors lead to a constituitive relationship

BBB = FFF [HHH], (9.16)

where the notation FFF [HHH] indicates that FFF is a non-linear function of HHH. The compli-
cated nonlinear relationship of BBB and HHH in ferromagnetic materials means that magnetic
boundary-value problems are generally more difficult to deal with than corresponding
problems in electrostatics.

5 This is an example of quantum-mechanical spontaneous symmetry breaking, which is a phenomenon where
the ground state wavefunction does not have the full symmetry of the Hamiltonian for a system. In the case
of permanent ferromagnetism, the correct Hamiltonian is rotationally invariant (conservation of angular mo-
mentum) but the ferromagnetic wavefunction has spins aligned in a preferred direction, even if no external
field is present, which breaks rotational invariance. Thermal fluctuations can destroy this collective alignment
of spins, so in permanent ferromagnets the collective magnetic state disappears above a critical temperature
called the Curie temperature Tc. For T > Tc, a ferromagnet then behaves as a paramagnet. An introduction to
spontaneously broken symmetry may be found in Chs. 17 and 18 of Ref. [17].
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Box 9.1 Diamagnetism and Paramagnetism

Materials characterized by small magnetic susceptibilities |χ| ≪ 1 are called para-
magnetic if χ > 0, and diamagnetic if χ < 0. Magnetization in diamagnetic and
paramagnetic media typically depends linearly on the applied magnetic field.

Physical Origin of Diamagnetism
In diamagnetic media an external field HHH creates a magnetization MMM opposite to HHH,
so χ < 0. Physically, external fields induce currents associated with orbital motion
in the diamagnetic material. (The external field also interacts with electron spins,
but this is a much smaller effect than the interaction with orbital currents.) The field
created by the moving charges opposes the applied field HHH (Lenz’s law). Thus,
the magnetic field is decreased inside the material and magnetic lines of force are
expelled from the medium. This diamagnetic effect is particularly dramatic in su-
perconductors, where the magnetic field is expelled completely (Meissner effect),
except for a thin surface layer where the magnetic field decays exponentially over a
distance called the London penetration depth).a

Physical Origin of Paramagnetism
Some materials have magnetic dipoles associated with intrinsic spins (a quantum-
mechanical effect). Application of an external field HHH then partially aligns the dipoles
with the applied field, thereby enhancing the internal field. (This ordering is opposed
by thermal fluctuations, so the fraction of alignment is temperature dependent.)
Such materials are called paramagnetic. The net effect is that the lines of magnetic
force are “drawn in” to paramagnetic material.

Magnetic Field Lines for Diamagnets and Paramagnets
The contrasting behavior of diamagnetic and paramagnetic matter in magnetic fields
can be characterized by their magnetic field lines, as in the following figure [5].

The diamagnetic matter in (a) expels the magnetic field but the paramagnetic matter
in (b) enhances the density of field lines within the sample.

a Diamagnetic effects are greatly amplified in a superconductor because the induced currents flow with-
out resistance. It may be shown in quantum field theory that the (normally massless) photon gains
an effective mass through interaction with the dielectric medium, which causes it to penetrate the su-
perconductor with exponentially decaying probability. This acquisition of effective mass by photons
is a non-relativistic model of the Higgs mechanism, whereby a massless gauge boson (the photon)
acquires a mass. As we shall discuss further in Ch. 18, this Higgs mode of spontaneous symmetry
breaking is fundamental for the Standard Model of elementary particle physics.
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9.2.3 Magnetic Boundary-Value Conditions

Boundary conditions for BBB and HHH at media interfaces were considered in Section 6.11; Eqs.
(6.56b) and (6.57b) indicate that normal components of BBB and tangential components of HHH
on opposite sides of a boundary between medium 1 and medium 2 are related by

(BBB2−BBB1) ·nnn = 0, (9.17a)

nnn× (HHH2−HHH1) = KKK, (9.17b)

where nnn is a unit normal vector pointing from region 1 into region 2, and KKK is the sur-
face current density. If media satisfy the linear constituitive relation (9.14) and have finite
conductivities so that JJJ = σEEE and KKK = 0, boundary conditions can be expressed as [19],

BBB2 ·nnn = BBB1 ·nnn BBB2×nnn =
µ2

µ1
BBB1×nnn, (9.18)

or as

HHH2 ·nnn =
µ1

µ2
HHH1 ·nnn HHH2×nnn = HHH1×nnn. (9.19)

If µ1 ≫ µ2 the boundary conditions on HHH for highly-permeable material are essentially
the same as for the electric field at the surface of a conductor, which permits electrostatic
potential theory to be applied to magnetic field problems. In the next section we shall
address methods of solving magnetostatic boundary value problems.

9.3 Solving Magnetostatic Boundary-Value Problems

Magnetostatic boundary value problems require solving Eqs. (9.12) subject to constituitive
relations as in Eqs. (9.14) and (9.16). Especially because of the range of constituitive re-
lations that are possible for magnetic and magnetized materials, a variety of situations can
occur and a survey of possible methods of attack is useful. We summarize some approaches
following the presentation in Jackson [19].

9.3.1 Solutions Using a Vector Potential

Because ∇∇∇ ·BBB = 0, it is always possible introduce a vector potential AAA(xxx) such that BBB =

∇∇∇×AAA. Then if we have a non-linear constituitive relation (9.16) the resulting differential
equation

∇∇∇×HHH[∇∇∇×AAA] = JJJ

is generally very difficult to solve. However, if the constituitive relation is linear, BBB = µHHH,
the preceding equation becomes

∇∇∇×
(

1
µ

∇∇∇×AAA
)
= JJJ. (9.20)
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For a region of space in which µ is constant, the vector identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−
∇2AAA of Eq. (A.8) may be used to write this as

∇∇∇(∇∇∇ ·AAA)−∇2AAA = µJJJ. (9.21)

Invoking the Coulomb gauge condition (8.37) by setting ∇∇∇ ·AAA = 0 we obtain the Poisson
equation

∇2AAA =−µJJJ. (9.22)

Comparing with Eq. (8.38) in vacuum, this is a Poisson equation with a current density
modified by the medium, which is similar to a Poisson equation for uniform dielectric me-
dia with an effective charge density (ε/ε0). Matching of solutions for Eq. (9.22) across
interfaces between different (linear) media can be implemented using the boundary condi-
tions (9.18) or (9.19).

9.3.2 Solutions Using a Magnetic Scalar Potential

As mentioned in Section 8.6, for the special case JJJ = 0 where the current density van-
ishes in a region of interest, ∇∇∇×HHH = 0, suggesting the introduction of a magnetic scalar
potential ΦM such that

HHH =−∇∇∇ΦM. (9.23)

If the medium is linear and µ is constant the magnetic scalar potential satisfies the Laplace
equation

∇2ΦM = 0, (9.24)

for which the boundary conditions (9.18) are appropriate. This method is of limited utility
since it applies only if JJJ = 0. One use case is the magnetic field external to a closed loop
of current. Another is the hard ferromagnet that will be considered in Section 9.3.3.

9.3.3 Solutions for Hard Ferromagnets

A hard ferromagnet is one having a magnetization sufficiently stable that is largely inde-
pendent of applied field for moderate field strengths. This suggests an approximation where
the ferromagnet can be assumed to have a specified fixed magnetization MMM(xxx), using either
magnetic scalar potential methods or vector potential methods.

Using the Magnetic Scalar Potential: Since JJJ = 0 for a hard ferromagnetic, the magnetic
scalar potential method of Section 9.3.2 is applicable. Then ∇∇∇ ·BBB = 0 becomes

∇∇∇ ·BBB = µ0∇∇∇ · (HHH +MMM) = 0, (9.25)

where Eq. (9.11) was used, and since HHH =−∇∇∇ΦM from Eq. (9.23), this becomes a magnetic
Poisson equation,

∇2ΦM = ∇∇∇ ·MMM =−ρM, (9.26)
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where an effective magnetic-charge density

ρM ≡−∇∇∇ ·MMM (9.27)

has been introduced. By analogy with the second term of Eq. (6.21) for electrostatics in
electrically polarized matter, if there are no boundary surfaces the solution is expected to
be [19]

ΦM(xxx) =− 1
4π

∫
∇∇∇′ ·MMM(xxx′)
|xxx− xxx′| d3x =− 1

4π
∇∇∇ ·
∫

MMM(xxx′)
|xxx− xxx′| d

3x, (9.28)

where the second form results from an integration by parts and Eq. (8.16), which is justified
if MMM is localized and well behaved.

Although physical magnetization distribution generally don’t have discontinuities, it is
sometimes useful to idealize a problem and treat MMM(xxx) as if it is discontinuous. We can then
model a hard ferromagnet as having a volume V and a surface S, with MMM(xxx) finite inside
but falling to zero at the surface S. Application of the divergence theorem to the surface
indicates that in this idealization there is an effective magnetic surface-charge density given
by [19]

σM = nnn ·MMM, (9.29)

where nnn is the outward normal at the surface. Then the first form of the potential (9.28) is
modified to

ΦM(xxx) =− 1
4π

∫

V

∇∇∇′ ·MMM(xxx′)
|xxx− xxx′| d3x+

1
4π

∮

S

nnn′ ·MMM(xxx′)
|xxx− xxx′| da′. (9.30)

An important special case is for uniform magnetization of the volume. Then JJJ′ = 0 inside
the volume and the first term of Eq. (9.30) vanishes, leaving only the surface term,

ΦM(xxx) =
1

4π

∮

S

nnn′ ·MMM(xxx′)
|xxx− xxx′| da′ =

1
4π

∮

S

σ(xxx′)
|xxx− xxx′| da′, (9.31)

where Eq. (9.29) was used. Thus, introduction of a sharp boundary for the volume of a
uniformly magnetized object induces a surface charge on the boundary given by Eq. (9.29).

Using the Vector Potential: If we choose to satisfy ∇∇∇ ·BBB automatically by introducing a
vector potential AAA and defining the magnetic field by BBB = ∇∇∇×AAA, then the first of Eqs.
(9.12) is

∇∇∇×HHH = ∇∇∇×
(

1
µ0

BBB−MMM
)
= 0, (9.32)

which becomes upon introduction of BBB = ∇∇∇×AAA,

1
µ0

(∇∇∇×∇∇∇×AAA) = ∇∇∇×MMM,

and upon using the identity ∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA on the left side and Eq. (9.9)
on the right side,

∇∇∇(∇∇∇ ·AAA)−∇2AAA = µ0JJJM, (9.33)
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z

P

r

a

M = M0z
^

tFig. 9.2 A uniformly magnetized sphere of radius a, with a sharp surface and a surface magnetic
charge density σM(θ); MMM = MMM0ẑzz is parallel to the z axis, so that σM = nnn ·MMM = M0 cosθ .

where JJJM is the effective magnetic current density defined in Eq. (9.9). Transforming to
Coulomb gauge (8.37) by setting ∇∇∇ ·AAA = 0 then leads to a Poisson equation for the vector
potential,

∇2AAA =−µ0JJJM. (9.34)

If there are no bounding surfaces, the solution is

AAA(xxx) =
µ0

4π

∫
∇∇∇′×MMM(xxx′)
|xxx− xxx′| d3x (9.35)

[compare Eq. (9.8) with JJJ = 0]. If the magnetization is discontinuous (as in the uniformly
magnetized sphere with sharp surface in Section 9.3.4), it is necessary to add a surface
integral to Eq. (9.28). For the case of MMM falling to zero at the surface S bounding the
volume V , starting from Eq. (9.7) the proper generalization of Eq. (9.35) may be shown to
be [19]

AAA(xxx) =
µ0

4π

∫

V

∇∇∇′×MMM(xxx′)
|xxx− xxx′| d3x+

µ0

4π

∮

S

MMM(xxx′)×nnn′

|xxx− xxx′| da′. (9.36)

For the special case that the magnetization is constant over the volume V , only the second
(surface integral) term can contribute in Eq. (9.36).

9.3.4 Example: Uniformly Magnetized Sphere

As an example of solving boundary problems in magnetostatics using the methods just
discussed, let us consider a spherical ball with uniform permanent magnetization that has
a sharp transition at the surface from magnetized to non-magnetized matter; Fig. 9.2 illus-
trates.

Solution Using the Magnetic Scalar Potential: The sphere is uniformly magnetized, so
there are no volume currents and the scalar magnetic potential method of Section 9.3.2
is applicable. As discussed in Section 9.3.3, there will be a surface charge σM = nnn ·MMM
associated with the sharp transition from magnetized to un-magnetized material. Assuming
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that MMM = M0ẑzz so that σM = nnn ·MMM = MMM0 cosθ in spherical coordinates, from Eq. (9.28) the
scalar magnetic potential is

ΦM(r,θ) =
1

4π

∮

S

σ(xxx′)
|xxx− xxx′| da′ =

M0a2

4π

∫
cosθ
|xxx− xxx′| dΩ′.

Inserting the multipole expansion

1
|xxx− xxx′| =

∞

∑
l=0

rl
<

rl+1
>

Pl(cosθ)

of Eq. (3.48) and using that P1(cosθ) = cosθ gives

ΦM(r,θ) =
M0a2

4π

∫
P1(cosθ)
|xxx− xxx′| dΩ′

=
M0a2

4π

∞

∑
l=0

rl
<

rl+1
>

∫
Pl(cosθ)P1(cosθ)dΩ′

=
1
3

M0a2 r<
r2
>

P1(cosθ) =
1
3

M0a2 r<
r2
>

cosθ , (9.37)

where the orthogonality condition of Eq. (4.39) has eliminated all terms in the sum except
for l = 1, and r< and r> are the smaller and larger of r and a, respectively.

Interior solution: Inside the sphere, r< = r and r> = a, so the magnetic scalar potential is
given by

Φin
M =

1
3

M0r cosθ =
1
3

M0z.

Then from Eq. (9.23)

HHH in =−∇∇∇Φin
M =− ∂

∂ z

(
1
3

M0z
)

ẑzz =−1
3

M0ẑzz =−1
3

MMM,

and from Eq. (9.11),

BBBin = µ0(HHH in +MMM) = µ0

(
−1

3
MMM+MMM

)
=

2µ0

3
MMM.

Therefore, the interior solution is

Φin
M =

1
3

M0z HHH in =−
1
3

MMM BBBin =
2µ0

3
MMM, (9.38)

where we see that the fields are constant inside the sphere, with BBB parallel and HHH antipar-
allel to MMM.

Exterior solution: For the exterior solution, r< = a and r> = r, giving from Eq. (9.37) for
the exterior potential,

Φout
M =

1
3

M0a3 cosθ
r2 , (9.39)
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tFig. 9.3 Lines of BBB and HHH for a uniformly magnetized sphere having a sharp boundary [19].

which may be recognized as a dipole potential with dipole moment

mmm =
4πa3

3
MMM. (9.40)

Then, proceeding as above the exterior solution is

HHHout =−∇∇∇Φout
M =−1

3
a3

r3 MMM BBBout = µ0(HHH +MMM) =

(
3r3−a3

3r3

)
µ0 MMM. (9.41)

The BBB and HHH fields for the interior and exterior solutions are plotted in Fig. 9.3

Solution Using the Vector Potential: Alternatively, the vector potential and Eq. (9.36) can
be used to obtain the solution for the problem posed in Fig. 9.2. The magnetization is
assumed uniform inside the sphere so the volume current JJJM = 0 and the first (volume)
term in Eq. (9.36) make no contribution. However, there is a surface charge because of the
sharp boundary on magnetization so the second term in Eq. (9.36) will be non-zero and

AAA(xxx) =
µ0

4π

∮

S

MMM(xxx′)×nnn′

|xxx− xxx′| da′. (9.42)

Using the notation (εεε1,εεε2,εεε3) = (x̂xx, ŷyy, ẑzz) for cartesian basis vectors and (εεεr,εεεθ ,εεεφ ) =

(r̂rr, θ̂θθ , φ̂φφ) for spherical basis vectors, since MMM = M0εεε3 we have

MMM(xxx′)×nnn′ = M0 sinθ ′εεεφ

= M0 sinθ ′(−sinφεεε1 + cosφ ′εεε2),

where Eq. (A.41) was used. The problem has azimuthal (φ ) symmetry about the z-axis. If
the observing point P is chosen to lie in the x-y plane, then only the y component of MMM×nnn
survives integration over the azimuth so (−sinφ ′εεε1 + cosφ ′εεε2)→ cosφ ′εεε2, which gives
an azimuthal component of the vector potential

Aφ =
µ0

4π
M0a2

∫
sinθ ′ cosφ ′

|xxx− xxx′| dΩ′, (9.43)

where the components of xxx′ are (r′ = a,θ ′,φ ′), confining the integration to the surface of
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the sphere. Since

Y11(θ ′,φ ′) =−
√

3
8π

sinθ ′eiφ ′ =−
√

3
8π

sinθ ′(cosφ ′+ isinφ ′),

we may write

sinθ ′ cosφ ′ =−
√

8π
3

Re [Y11(θ ′,φ ′)],

where Re(x) denotes the real part of x. Thus,

Aφ =−
√

3
8π

µ0

4π
M0a2

∫
Re [Y11(θ ′,φ ′)]
|xxx− xxx′| dΩ′.

Then if the denominator is expanded using Eq. (3.51),

1
|xxx− xxx′| = 4π

∞

∑
l=0

l

∑
m=−l

1
2l +1

rl
<

rl+1
>

Y ∗lm(θ
′,φ ′)Ylm(θ ,φ),

the spherical harmonic orthogonality relation (3.56),
∫ 2π

0
dφ
∫ π

0
Y ∗l′m′(θ ,φ)Ylm(θ ,φ)sinθdθ = δl′lδm′m,

ensures that only the l = 1,m = 1 term survives the summation and the vector potential is

Aφ (xxx) =
µ0

3
M0a2

(
r<
r2
>

)
sinθ . (9.44)

For the inside solution, r< = r and r> = a, so

Ain
φ (xxx) =

µ0

3
M0r sinθ . (9.45)

You are asked to calculate the corresponding BBB and HHH fields for the interior of the sphere
in Problem 9.1.

By placing a shell of permeable matter in a magnetic field, it is possible to shield the
interior of the shell from the magnetic field. Example 9.1 illustrates.

Example 9.1 Consider Fig. 9.4, where the shell contains material of permeability µ .
Let us find the fields BBB and HHH for this arrangement. There are no currents so the magnetic
scalar potential method of Section 9.3.2 is applicable and from Eq. (9.23)

HHH =−∇∇∇ΦM,

and since BBB = µHHH, the equation ∇∇∇ ·BBB = 0 is replaced by ∇∇∇ ·HHH = 0 in all regions. There-
fore, the magnetic potential ΦM satisfies the Laplace equation everywhere and the problem
reduces to solving the Laplace equation subject to the boundary conditions of Eq. (9.19) at
r = a and r = b.
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a b
B0

tFig. 9.4 A shell of material with permeability µ is placed in a previously uniform magnetic field BBB0.
Example 9.1 demonstrates that if the shell contains highly permeable material the cavity
inside the shell is shielded strongly from the magnetic field.

Exterior solution: If r > b, the potential is of the form

ΦM =−H0r cosθ +

∞

∑
l=0

αl

rl+1 Pl(cosθ) (r > b), (9.46)

which gives a uniform field ΦM = HHH0 at large distance.

Interior solution: Likewise, the potential must take the form

ΦM =

∞

∑
l=0

(
βlrl + γl

1
rl+1

)
Pl(cosθ). (a < r < b), (9.47a)

ΦM =

∞

∑
l=0

δlrlPl(cosθ) (r < a). (9.47b)

in interior regions.

Matching boundary conditions: The boundary conditions at r = a and r = b require the
components Hθ and Br be continuous, which implies that

∂ΦM

∂θ
(b+) =

∂ΦM

∂θ
(b−)

∂ΦM

∂θ
(a+) =

∂ΦM

∂θ
(a−), (9.48a)

µ0
∂ΦM

∂ r
(b+) = µ

∂ΦM

∂ r
(b−) µ

∂ΦM

∂ r
(a+) = µ0

∂ΦM

∂ r
(a−), (9.48b)

where the notation b+ means the limit r→ b approached from r > b and the notation b−
means means the limit r→ b approached from r < b, with a similar convention for a±. The
four conditions (9.48) determine the unknown constants in Eqs. (9.46) and (9.47). One
finds that all coefficients with l ̸= 1 vanish and the l = 1 coefficients satisfy the simultane-
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tFig. 9.5 The magnetic shielding effect of a shell of highly permeable material. Lines for the
magnetic field BBB are shown [19]. Note the absence of field lines for the cavity inside the
shell. Calculation described in Example 9.1.

ous equations

α1−b3β1− γ1 = b3H0,

2α1 +µ ′b3β1−2µ ′γ1 =−b3H0,

a3β1 + γ1−a3δ1 = 0,

µ ′a3β1−2µ ′γ1−a3δ1 = 0,

(9.49)

where µ ′ ≡ µ/µ0, which may be solved simultaneously for the unknown coefficients. For
example, the solution of Eqs. (9.49) for α1 and δ1 are [19],

α1 =




(2µ ′+1)(µ ′−1)

(2µ ′+1)(µ ′+2)−2
a3

b3 (µ
′−1)2


(b3−a3)H0,

δ1 =−




9µ ′

(2µ ′+1)(µ ′+2)−2
a3

b3 (µ
′−1)2


H0.

(9.50)

The corresponding magnetic field lines are shown in Fig. 9.5. For this solution the potential
outside the shell corresponds to the original uniform field HHH0 plus a dipole field with dipole
moment α1 parallel to HHH0. In the cavity inside the shell there is a uniform field parallel to
HHH0 and equal in magnitude to −δ1. If µ ≫ µ0, the dipole moment α1 and the inner field
−δ1 tend to

α1 −→ b3H0 −δ1 −→
9µ0

2µ(1−a3/b3)
H0. (9.51)

Thus the field in the inner cavity of Fig. 9.5 is proportional to µ−1 and a shield made of
highly permeable material causes a large reduction of the magnetic field inside the cavity.
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Example 9.1 illustrates that even thin shells of material with µ/µ0 ∼ 103−106 can greatly
reduce the interior magnetic field, as is clear from Fig. 9.5.

Background and Further Reading

The presentation in this chapter has followed Jackson [19] rather closely. See also Garg
[11], Chaichian et al [5], and Zangwill [42].
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Problems

9.1 Find the fields BBBin and HHH in corresponding to the vector potential of Eq. (9.45),

Ain
φ (xxx) =

µ0

3
M0r sinθ ,

inside the sphere of Fig. 9.2.
9.2 Classical magnetism can be viewed as resulting from current loops in matter. Ana-

lyze the magnetic forces acting on a rectangular current loop carrying a steady cur-
rent I in a uniform magnetic field BBB. Show that the total magnetic force acting on the
loop is

FFFM = I
∮
(dsss×BBB),

and that the total force vanishes for a loop carrying a steady current in a uniform
magnetic field. ***

9.3 In Problem 9.2 and Section 8.2 we showed that there is no net force acting on a loop
carrying a steady current that is immersed in a uniform magnetic field. Show that
there is however a net torque acting on current loops in uniform magnetic fields, and
that the net effect of this torque is to align magnetic dipole moments with the applied
magnetic field by aligning the normal vector of the plane of current loops with BBB.



10 Dynamical Charges and Currents

In the discussion to this point we have considered primarily static charges (no relative mo-
tion) as sources of electric fields and steady-state charge currents (no change in time) as
the source of magnetic fields. However, many important electromagnetic phenomena in-
volve the motion of charges and/or non-steady electrical currents. Hans Christian Ørsted
(1777-1827) discovered the magnetic effect of the electric current, establishing the first
connection between electric and magnetic phenomena, and André–Marie Ampère (1775-
1827) extended that work, finding in 1823 the circuit law between electric current passing
through a loop and magnetic field around the loop and establishing a formula describing
the interaction of two currents. However, it was Michael Faraday who performed the most
quantitative experiments on time-dependent electric and magnetic field, and their relation-
ship, beginning in 1831. As we shall see, these experiments implied that a time-varying
electric field produces a magnetic field and a time-varying magnetic field produces an
electric field, and paved the way for the understanding of classical electromagnetism that
was elucidated fully by Maxwell.

10.1 Faraday and the Law of Induction

Faraday extended the earlier insights of Ørsted and Ampère by concentrating on time-
varying electric and magnetic phemomena. In a nutshell, Faraday’s essential observations
were that

1. a transient current is produced in a test circuit if a steady current in a nearby circuit is
turned off;

2. a transient current is also produced in a test circuit if a nearby circuit with a steady
current is moved relative to the first circuit;

3. a transient current is produced in a test circuit if a permanent magnet is moved into or
out of the circuit.

In summary, Faraday established experimentally that a current flows in a test circuit if
a current in a nearby circuit changes over time, or if the two circuits move with respect
to each other, or if a magnetic field varies near the test circuit. Faraday interpreted these
results as originating in a changing magnetic flux that

1. is produced an electric field around the test circuit,
2. which leads to an electromotive force E (EMF) that drives a current in the test circuit

governed by Ohm’s law (see Section 7.3.1).

177
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Cnda

SB

tFig. 10.1
Magnetic flux BBB through a circuit C bounding a surface S, with a unit normal to the surface
nnn and surface element da.

Thus, Faraday’s results and his interpretation of those results represent the first steps in the
unification of electricity and magnetism into a single theory of electromagnetism.

10.2 Mathematical Description of Faraday’s Results

Faraday was a talented experimentalist with incisive intuition, but without much formal
training in the sciences or mathematics. Maxwell and others are largely responsible for
transforming Faraday’s brilliant insights and measurements into mathematical language.
Let us express the results of Faraday’s observations mathematically. Consider Fig. 10.1,
where the magnetic flux passing through the area enclosed by the circuit indicated by the
contour C is

FM =
∫

S
BBB ·nnnda (10.1)

and the electromotive force E around the circuit that causes a current flow according to
Ohm’s law is

E =
∮

C
EEE ′ ·dlll, (10.2)

where EEE ′ is the electric field at element dlll of the circuit C. All of Faraday’s observations
listed above may be explained by the relationship

E =−k
dFM

dt
.

between the rate of change of the magnetic flux dFM/dt and the EMF E , where k is a
constant of proportionality that can be determined by requiring Galilean invariance at low
velocities.1 This indicates that k = 1 in SI units (and k = c−1 in Gaussian units). Therefore,

1 As we shall see in Ch. 15, the Maxwell equations are invariant under Lorentz transformations, not Galilean
transformations. But Lorentz transformations reduce to Galilean transformations in the limit v≪ c, so requir-
ing Galilean invariance for low velocities is a legitimate way to determine the constant k.
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in SI units

E =−dFM

dt
, (10.3)

where the sign is specified by Lenz’s law.2

Lenz’s law: The induced current and corresponding magnetic field are in a di-
rection so as to oppose changing the flux through the circuit.

Combining Eq. (10.3) with Eqs. (10.1) and (10.2) gives Faraday’s law in integral form,
∮

C
EEE ′ ·dlll =− d

dt

∫

S
BBB ·nnnda (Faraday’s law), (10.4)

indicating that the induced EMF is proportional to the total time derivative of the magnetic
flux.3 Notice that this reduces to the result

∮
c EEE ·dlll = 0 of Eq. (2.26) for the static case with

dBBB/dt = 0. Equation (10.4) represents a form of Faraday’s law with broad implications. If
we view C as a geometrical closed path not necessarily coincident with an electrical circuit,
Eq. (10.4) may be viewed as a relationship among the fields BBB and EEE ′.

If the circuit C is moving with some velocity, the total time derivative must take that
motion into account, since the flux through the circuit can change for two reasons:

1. the flux varies with time at a given point, or
2. translation of the circuit changes the location of the circuit in an external field.

This can be taken into account by computing the convective derivative,

d
dt

=
∂
∂ t

+ vvv ·∇∇∇, (10.5)

where vvv is the velocity and the partial derivative in the first term on the right side has the
usual meaning that it is the derivative with respect to a variable (time in this case) with all
other variables held constant. Then the total time derivative of the moving circuit is [19],

d
dt

∫

S
BBB ·nnnda =

∫

S

∂BBB
∂ t
·nnnda+

∮

C
(BBB× vvv) ·dlll, (10.6)

which can be used to write Eq. (10.4) in the form
∮

C

[
EEE ′− (vvv×BBB)

]
·dlll =−

∫

S

∂BBB
∂ t
·nnnda. (10.7)

This is Faraday’s law applied to the moving circuit C, but if we think of the circuit C and

2 Griffiths [13] states the Lenz law in somewhat more picturesque form “Nature abhors a change in flux”. For a
dramatic example of just how much Nature detests magnetic flux changes, see Problem 10.1.

3 The flux can be changed by changing the magnetic field, or the shape, position, or orientation of the circuit.
The total time derivative d/dt appearing in Eq. (10.4) accounts for all such possibilities. Note that EEE ′ is the
electric field at dlll in the coordinate system where dlll is at rest.
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surface S being instantaneously at a certain point, then application of Eq. (10.4) to that
circuit at fixed location gives,

∮

C
EEE ·dlll =−

∫

S

∂BBB
∂ t
·nnnda, (10.8)

where EEE is now the electric field in the laboratory frame. Galilean invariance (valid at low
velocities) then requires the left sides of Eqs. (10.7) and (10.8) to be equivalent.

If the circuit is held fixed in a reference frame so that the electric and magnetic fields are
defined in the same frame, Faraday’s law (10.4) in integral form can be transformed into a
differential equation. From Stoke’s theorem,

∮

C
EEE ′ ·dlll =

∫

S
(∇∇∇×EEE ′) ·nnnda,

and Eq. (10.4) may be written as
∫

S

(
∇∇∇×EEE +

∂BBB
∂ t

)
·nnnda = 0.

But the circuit C and surface S are arbitrary, so the expression in parentheses must vanish
identically, giving

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (10.9)

which is Faraday’s law (1.1b) in differential form. Note that this is the time-dependent
generalization of ∇∇∇×EEE = 0 from Eq. (2.27) in electrostatics. In a static system the curl of
EEE vanishes but that is no longer true in the presence of a time-dependent magnetic field.

Background and Further Reading

See Griffith’s [13] for an introduction and Garg [11] and Zangwill [42] for more advanced
discussions.
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Problems

10.1 Consider a metal ring placed on top of a strong solenoid (enhanced by an iron core),
as illustrated in the following figure.

Metal

ring

Solenoid

with iron

core

B

If the solenoid is plugged in the metal ring will jump into the air, by as much as
several feet in typical demonstrations. Explain why. Hint: See Refs. [36, 39] for a
discussion of this demonstration. ***



11 Maxwell’s Equations

The preceding chapters have provided a systematic explanation and validation of the vari-
ous pieces of electromagnetic theory that James Clerk Maxwell synthesized into what we
now call the Maxwell equations. To this point we have treated electricity and magnetism
largely as separate subjects. As Faraday’s discoveries that were discussed in Ch. 10 make
clear, this distinction begins to fail when one moves from static to time-dependent phe-
nomena, and we will now begin to address a unified picture of electromagnetism, valid for
electric and magnetic phenomena in both static and dynamical contexts. In this chapter we
take the Maxwell equations to be the basis for all classical understanding of electromag-
netism and address systematically their broader scientific and technical implications.

11.1 The Almost-but-Not-Quite Maxwell’s Equations

The basic equations of electricity and magnetism that we have studied in Chs. 2-9 can be
summarized (in medium, in differential form, in SI units) as

∇∇∇ ·DDD = ρ (Gauss’s law), (11.1a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (11.1b)

∇∇∇ ·BBB = 0 (No magnetic charges), (11.1c)

∇∇∇×HHH = JJJ (Ampère’s law), (11.1d)

Expressed here in modern notation, these were the fundamental equations of electromag-
netism as they stood in the mid-1800s when James Clerk Maxwell set about his synthesis
of electromagnetic understanding. A comparison shows that these are almost, but not quite,
the Maxwell equations that were introduced in Eqs. (6.50). The difference lies in the fourth
equation (Ampère’s law), where a term −∂DDD/∂ t is missing relative to the fourth Maxwell
equation (6.50d).

11.1.1 Ampère’s Law and the Displacement Current

It is important to recognize that all but Faraday’s law in Eqs. (11.1) were derived from
data taken under steady-state conditions, so we should expect that modifications might
be required for the description of time-dependent fields. Maxwell realized that the funda-
mental equations of electromagnetism (11.1) known in his time were inconsistent as they
then stood. Since the divergence of a curl vanishes by a basic vector-calculus identity,

182
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∇∇∇ · (((∇∇∇×HHH) = 0, it follows from Ampère’s law (11.1d) for steady currents that

∇∇∇ · JJJ = ∇∇∇ · (∇∇∇×HHH) = 0. (11.2)

But from the continuity equation (1.3) ensuring conservation of charge,

∂ρ
∂ t

=−∇∇∇ · JJJ,

so ∇∇∇ · JJJ = 0 can hold only if the charge density doesn’t change with time. Therefore,
Maxwell modified Ampère’s law to accomodate a time dependence by introducing a dis-
placement current term ∂DDD/∂ t,1

∇∇∇×HHH = JJJ −→ ∇∇∇×HHH = JJJ+
∂DDD
∂ t

, (11.3)

thus converting Eqs. (11.1) into what we now call the Maxwell equations (6.50) (in medium,
in differential form),2

∇∇∇ ·DDD = ρ (Gauss’s law), (11.4a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (11.4b)

∇∇∇ ·BBB = 0 (No magnetic charges), (11.4c)

∇∇∇×HHH− ∂DDD
∂ t

= JJJ (Ampère–Maxwell law), (11.4d)

where the last equation is now called the Ampère–Maxwell law. It still is the same law
as before when applied to steady-state phenomena, but addition of the displacement cur-
rent term means that a changing electric field can generate a magnetic field, even if there
is no current. Thus, it is the converse of Faraday’s law, where a changing magnetic field
can produce an electric field. As you were asked to show way back in Problem 1.1, these
(Maxwell) equations are now consistent with the continuity equation. Taking the diver-
gence of both sides of the Ampère–Maxwell law,

∇∇∇ · (∇∇∇×HHH) = ∇∇∇ · JJJ+ ∂ (∇∇∇ ·DDD)

∂ t
,

and using ∇∇∇ ·DDD = ρ from Gauss’s law and the identity ∇∇∇ ·(∇∇∇×HHH) = 0 from Eq. (A.6), this
becomes

∂ρ
∂ t

+∇∇∇ · JJJ = 0,

which is the continuity equation (1.3).

1 As elaborated in Box 11.1, Maxwell’s original detailed physical reason for the displacement term and corre-
sponding name is partially bogus, being based on a now-discredited mechanical model of electric and magnetic
fields in the fictitious aether. However, his insight that the displace term is required was seminal, and the name
itself survives in the modern form of the Maxwell equations.

2 Recall that the vacuum Maxwell equations (1.1) in differential form can be recovered by substituting DDD = ε0EEE
and HHH = BBB/µ0 into these equations, remembering from Eq. (2.4) that µ0ε0 = 1/c2, and that the Maxwell
equations in medium in integral form are given by Eqs. (6.55).
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Box 11.1 Maxwell, Steampunk, and the Displacement Current

Maxwell’s reasons for introducing the displacement current were based partially on
a now-discredited mechanical model of the (fictitious) aether, which was thought in
the 19th century to be the special medium through which electromagnetic waves
traveled. These ideas of a mechanical aether have strong overlap with the modern
literary and animé genre called steampunk, which is a fictional alternative history in
which modern electrical and internal combustion technologies fail to develop and all
mechanical devices (including flying machines) are driven by steam, as described
in Ref. [31]. A schematic illustration of Maxwell’s mechanical model (the “elastic
vortex aether”) is illustrated in the following figure.

Maxwell calculated that his elastic vortex aether propagated transverse waves at a
speed of 3.107×108 m s−1, which was close to the 3.149×108 m s−1 for the speed
of light that Hippolyte Fizeau had measured in 1847 using a rotating toothed wheel
with mirror apparatus. Maxwell remarked [28, 29],

“we can scarcely avoid the inference that light consists of the transverse
undulations of the same medium which is the cause of electric and mag-
netic phenomena” ,

which was the first direct claim that light had an electromagnetic origin. The dis-
placement term in the Maxwell equations and the electromagnetic origin of light
have stood the test of time, despite their origin in a fictitious steampunk-like me-
chanical model of vortices and idle wheels inspired by the cogs and gears in the
machinery of the Victorian age.

Local conservation of charge: Physically the continuity equation requires that
changes in electrical charge in some arbitrary volume are caused by flow of
charge through the surface bounding that volume.

1. This requires conservation of charge within a volume of space that can be
arbitrarily small, thus implying that charge is conserved locally.

2. A charge that disappears from one point in space and instantly reappears at
another point is consistent with global charge conservation, but not with local
charge conservation.

The reason requires relativistic quantum field theory for its full explanation: de-
stroying a charge at one point and simultaneously creating it at another would
require instantaneous propagation of a signal between the two points, which is
inconsistent with special relativity.
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Maxwell’s equations (11.4), supplemented by the Lorentz force law (1.4)

FFF = q(EEE + vvv×BBB),

to describe electromagnetic forces, and Newton’s laws of motion to translate force into
experimentally observable particle motion are thought to describe all of classical electro-
magnetism.

11.1.2 Implications of the Ampère–Maxwell Law

As was introduced in Section 1.4, Maxwell’s seemingly small change in the Ampère law
turns out to have enormous implications for both our classical and quantum understanding
of electromagnetism.

1. Maxwell’s addition of ∂DDD/∂ t to Ampère’s law (and Faraday’s induction experiments)
effectively brought together the previously separate subjects of electricity and mag-
netism. Ampère’s law is only about magnetism, but both the polarized electric field DDD
and the polarized magnetic field HHH appear in the Ampère–Maxwell law, while EEE and BBB
both appear in Faraday’s law.

Changing electric fields produce magnetic fields and changing magnetic fields
produce electric fields, and we may now speak meaningfully of the unified sub-
ject of electromagnetism.

2. The fundamental equations of electromagnetism are now consistent with (local) con-
servation of electrical charge.

3. This modification will lead eventually to the greatest triumph of Maxwell’s theory (see
Section 13.2.1):

The Maxwell equations have wave solutions, and the corresponding electromag-
netic waves may be interpreted as light,

which unifies the field of electricity, not only with the field of magnetism, but also with
the field of optics.

4. That Maxwell’s equations obey the continuity equation and thus conserve charge locally
leads to the idea of electromagnetic gauge invariance, which will provide powerful tools
for dealing with classical electromagnetism, and will underlie a quantum field theory of
electromagnetism (quantum electrodynamics or QED).

5. Electromagnetic gauge invariance will eventually be generalized to more sophisticated
local gauge invariance in the weak and strong interactions, resulting in the relativistic
quantum field theory that we term the Standard Model of elementary particle physics.

Some of these topics are beyond the scope of classical electromagnetism, but it is important
to appreciate that they have their historical and scientific antecedents in that discipline. A
general introduction to modern relativistic quantum field theory and many of these topics
specifically may be found in Ref. [14].
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11.2 Vector and Scalar Potentials

In our discussions of electrostatics and magnetostatics we introduced the scalar potential
Φ (Section 2.5) and the vector potential AAA (Section 8.6). The Maxwell equations (11.4) are
a set of coupled first-order differential equations relating the components of the electric
and magnetic fields. To solve those coupled differential equations it is often convenient to
introduce the potentials AAA and Φ, which satisfy some of the Maxwell equations identically
and leave a smaller number of second-order differential equations to solve.

Consider the two homogeneous equations (the ones equal to zero on the right side) in
Eqs. 11.4. As we have noted in Section 8.6, since ∇∇∇ ·BBB = 0, the magnetic field BBB can be
described as the curl of a vector potential AAA,3

BBB = ∇∇∇×AAA. (11.5)

Then Faraday’s law (11.4b) may be written as,

∇∇∇×
(

EEE +
∂AAA
∂ t

)
= 0. (11.6)

Since the curl of the quantity EEE + ∂AAA/∂ t in parentheses vanishes, it can be written as the
gradient of a scalar function; let’s choose it to be minus the scalar potential Φ,

EEE +
∂AAA
∂ t

=−∇∇∇Φ,

which rearranges to

EEE =−∇∇∇Φ− ∂AAA
∂ t

. (11.7)

For simplicity, let us restrict consideration to the vacuum form of the Maxwell equations
that is given in Eq. (1.1), which are formulated in terms of the electric field EEE and the
magnetic field BBB,

∇∇∇ ·EEE =
ρ
ε0

(Gauss’s law), (11.8a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (11.8b)

∇∇∇ ·BBB = 0 (No magnetic charges), (11.8c)

∇∇∇×BBB− 1
c2

∂EEE
∂ t

= µ0JJJ (Ampère–Maxwell law). (11.8d)

Substituting BBB = ∇∇∇×AAA and EEE = −∇∇∇Φ− ∂AAA/∂ t into the Maxwell equations (11.8), we
find using the identities ∇∇∇ · (∇∇∇×BBB) = 0 and ∇∇∇×∇∇∇Φ = 0, that the homogeneous equations
(11.8b) and (11.8c) are satisfied identically, while the inhomogeneous equations (11.8a)

3 Recall the reason: if BBB = ∇∇∇×AAA, then by taking the divergence of both sides ∇∇∇ ·BBB = ∇∇∇ · (∇∇∇×AAA) = 0, where
the identity (A.6) was used. Thus the condition ∇∇∇ ·BBB = 0 is guaranteed if BBB derives from the curl of a vector
potential.
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and (11.8d) are transformed into coupled second-order differential equations,

∇2Φ+
∂
∂ t

(∇∇∇ ·AAA) =− ρ
ε0
, (11.9a)

∇2AAA− 1
c2

∂ 2AAA
∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

1
c2

∂Φ
∂ t

)
=−µ0JJJ, (11.9b)

where the identity ∇∇∇×(∇∇∇×AAA)=∇∇∇(∇∇∇ ·AAA)−∇2AAA has been used. Thus the problem has been
converted into solving the two coupled equations (11.9). These equations can be decoupled
by a suitable gauge transformation, as will now be shown.

11.3 Exploiting Gauge Symmetry

In Section 8.6 we showed that the magnetic field is invariant under a gauge transformation
on the vector potential,

AAA→ AAA′ = AAA+∇∇∇χ,

where χ is an arbitrary scalar function. But in general the Maxwell equations involve both
magnetic and electric fields. If the electric field is to be unaltered under this gause trans-
formation of the magnetic field the scalar potential must be changed at the same time
according to

Φ→Φ′ = Φ− ∂ χ
∂ t

.

Gauge Transformation: A classical gauge transformation on the electromag-
netic field is defined by the simultaneous transformations

AAA→ AAA+∇∇∇χ Φ→Φ− ∂ χ
∂ t

, (11.10)

on the vector potential AAA and the scalar potential Φ, where χ is an arbitrary scalar
function. A gauge transformation leaves the electric and magnetic fields, and thus
Maxwell’s equations, unchanged.

Notice that in the gauge transformation (11.10) the same scalar function χ must be used in
both equations, but the choice of χ is arbitrary.

Mathematically, the invariance of electromagnetism under the gauge transformation
(11.10) means that an electromagnetic field may be viewed as an equivalence class of
potentials {Φ,AAA}, where equivalence classes are defined in Box 11.2. Thus, on the set of
all possible electromagnetic potentials {(Φ1,AAA1),(Φ2,AAA2), · · ·} we may define an equiv-
alence relation “related by the gauge transformation of Eq. (11.10)” and the equivalence
class is the set of all electromagnetic potentials related to each other by a gauge transfor-
mation. The objects of the class then are “equivalent” in the sense that all members of the
equivalence class give the same electric and magnetic fields, and thus lead to the same
classical electromagnetic physics when inserted in the Maxwell equations.
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Box 11.2 Equivalence Classes

A very useful concept for a set is that of an equivalence class, which is predicated
on there being an equivalence relation defined between set members. Equivalence
classes are of utility when one wishes to refer to a subset of things that are “the
same” for our considerations, in that they all exhibit a specific property.

For example, if for the set of all balls of a solid color we define an equiva-
lence relation “having the same color”, then the subset of all yellow balls
would be one equivalence class of the set of all balls of a solid color, and
the subset of all black balls would be another.

When a set S has an equivalence relation defined on it the set may be partitioned
naturally into disjoint (non-overlapping) equivalence classes, with elements a and b
belonging to the same equivalence class if and only if they are equivalent. Formally,
equivalence is a binary relation ∼ between members of a set S exhibiting

1. Reflexivity: for each a ∈ S, one has a∼ a.
2. Symmetry: for each a,b ∈ S, if a∼ b, then b∼ a.
3. Transitivity: for each a,b,c ∈ S, if a∼ b and b∼ c, then a∼ c.

Since mathematical groups are sets with added structure, equivalence classes may
be defined in a similar way for groups.

11.3.1 Lorenz Gauge

Suppose that we now take advantage of the invariance of electromagnetism under gauge
transformations and choose a set of potentials {Φ,AAA} that satisfy the Lorenz condition

∇∇∇ ·AAA+
1
c2

∂Φ
∂ t

= 0 (Lorenz gauge). (11.11)

A constraint like Eq. (11.11) is termed a gauge-fixing condition and imposing such a con-
straint is termed fixing the gauge. The gauge choice implied by Eq. (11.11) is called the
Lorenz gauge.4 If the Lorenz gauge condition is inserted into the coupled equations (11.9),
the equations decouple and solving the Maxwell equations has now been reduced to solv-

4 The Lorenz gauge (named for Danish physicist and mathematician Ludvig Lorenz) has often mistakenly been
called the Lorentz gauge, after the better-known Dutch physicist Hendrik Lorentz (who shared the 1902 Nobel
Prize in physics for the theoretical explanation of the Zeeman effect). The present author must confess to
being among the many who have made this error, referring to the “Lorentz” rather than “Lorenz” gauge in an
early book [14]. Ludvig Lorenz did significant work on electromagnetism contemporary with, but independent
of, Maxwell. For example, he proposed independently that electromagnetic waves might be lightwaves. An
overview of Lorenz’s scientific work is given in Ref. [24], and the history of his work and the incorrect
attribution of his famous gauge to Lorentz is discussed in Ref. [20].
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ing two second-order differential equations,

∇2Φ− 1
c2

∂ 2Φ
∂ t2 =− ρ

ε0
, (11.12a)

∇2AAA− 1
c2

∂ 2AAA
∂ t2 =−µ0JJJ, (11.12b)

which are uncoupled: solution of Eq. (11.12a) gives the scalar potential Φ independent of
the vector potential AAA, while solution of Eq. (11.12b) gives the vector potential, indepen-
dent of the scalar potential. Equations (11.12) along with the gauge condition (11.11) are
completely equivalent in physical content to the original Maxwell equations (11.4).

It is always possible to find potentials {Φ,AAA} that satisfy the Lorenz condition.
Suppose that we have a solution with gauge potentials that satisfies Eqs. (11.9),
but does not satisfy Eqs. (11.11). Then, make a gauge transformation to new
potentials {Φ′,AAA′} and require the new potentials to satisfy the Lorentz condition

∇∇∇ ·AAA′+ 1
c2

∂Φ′

∂ t
= 0 = ∇∇∇ ·AAA+

1
c2

∂Φ
∂ t

+∇2χ− 1
c2

∂ 2χ
∂ t2 .

Thus, if a scalar function χ can be found that satisfies

∇2χ− 1
c2

∂ 2χ
∂ t2 =−

(
∇∇∇ ·AAA+

1
c2

∂Φ
∂ t

)
, (11.13)

the new potentials will satisfy the Lorenz gauge conditions (11.11) and the si-
multaneous equations (11.12).

The Lorenz condition Eq. (11.11) does not exhaust the gauge degrees of freedom in
Lorenz gauge. The restricted gauge transformation

AAA→ AAA+∇∇∇χ Φ→Φ− ∂ χ
∂ t

, (11.14)

where the scalar function χ (which is arbitrary for general gauge transformations) is re-
stricted to those that satisfy the constraint

∇2χ− 1
c2

∂ 2χ
∂ t2 = 0, (11.15)

preserves the Lorenz condition if {AAA,Φ} satisfies it to begin with. Thus the Lorenz gauge
corresponds to an entire family of of gauge conditions that satisfy Eq. (11.11). The Lorenz
gauge is often used for two reasons:

1. It leads to the decoupled equations (11.12) that treat Φ and AAA on an equal footing.
2. As will be elaborated in Ch. 15, the Lorenz gauge condition is manifestly invariant

under Lorentz transformations, which fits naturally into special relativity.5

5 Note that the equations are in (Ludvig) Lorenz gauge, but we shall see in Ch. 15 that they are invariant under
(Hendrik) Lorentz transformations. This perhaps helps to explain the historical confusion in the name of the
gauge.
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There are infinitely many valid gauge transformations that can be made using Eq. (11.10)
with different choices for the scalar function χ . However, only some prove to be useful.
One of use is the transformation to Lorenz gauge described in this section. Another that
we have already encountered in Section 8.6 is the transformation to Coulomb gauge.

11.3.2 Coulomb Gauge

We have already introduced the Coulomb gauge condition in Eq. (8.37),

∇∇∇ ·AAA = 0 (Coulomb gauge condition).

From Eq. (11.9a), in Coulomb gauge the scalar potential obeys a Poisson equation

∇2Φ =− ρ
ε0
, (11.16)

which has a solution

Φ(xxx, t) =
1

4πε0

∫ ρ(xxx′, t)
|xxx− xxx′| d

3x′. (11.17)

This is the instantaneous Coulomb potential caused by the charge density ρ(xxx), which is
the motivation for the appelation Coulomb gauge.

As Box 11.3 discusses, the Coulomb potential (11.17) suggests instantaneous
transmission of information in a universe where lightspeed c is the speed limit.
In Chs. 15-18 we will resolve this issue and show that electromagnetism is in
fact causal because no information is being transmitted at a speed v > c.

From Eq. (11.9b), in Coulomb gauge the vector potential obeys

∇2AAA− 1
c2

∂ 2AAA
∂ t2 =−µ0JJJ+

1
c2

∂Φ
∂ t

. (11.18)

As guaranteed by the Helmholtz theorem for any vector (see Box 3.1), the current density
can be decomposed as a sum of two terms

JJJ = JJJL + JJJT, (11.19)

where the terms have the following properties:

1. The component JJJL has vanishing curl, ∇∇∇× JJJL = 0; it is called the longitudinal current
or the irrotational current.

2. The component JJJT has vanishing divergence, ∇∇∇ · JJJT = 0; it is called the transverse
current or the solenoidal current.

The longitudinal and transverse currents are given explicitly by

JJJL =− 1
4π

∇∇∇

∫
∇∇∇′ · JJJ(xxx′, t)
|xxx− xxx′| d3x′, (11.20a)

JJJT =
1

4π
∇∇∇×∇∇∇×

∫
JJJ(xxx′, t)
|xxx− xxx′| d

3x′. (11.20b)
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Box 11.3 Causality and the Coulomb and Gravitational Potentials

Causality (that actions must precede results) is a fundamental principle underlying
all of modern science. The Coulomb potential of Eq. (11.17) appears to violate that
principle.

Causality and the Coulomb Potential
The Coulomb potential in Eq. (11.17) is said to be “instantaneous” because the
associated force acts without delay at any xxx corresponding to a distance |xxx− xxx′|
from the source. This is inconsistent with special relativity and relativistic quantum
field theory, which require that a force be transmitted by a virtual particle (the photon
in this case) communicated at a speed less than or equal to the speed of light c.

Causality and the Newtonian Gravitational Potential
The Newtonianian gravitational potential has the form of a Coulomb potential with
masses playing the role of charges, and has the same causality problem: it implies
that the gravitational force acts instantaneously over any distance. The solution of
this problem in gravitational physics is replacement of Newtonian gravity with gen-
eral relativity, which generalizes special relativity and requires that the transmission
speed of the gravitational force be equal to the speed of light. This prediction of
general relativity has been confirmed by observations, as we now describe.

The Speed of Light and the Speed of Gravity
In 2017 the ground-based Ligo–Virgo detectors observed gravitational wave
GW170817.a But there was more to come: 1.7 seconds later the Fermi Gamma-ray
Space Telescope (Fermi) and International Gamma-Ray Astrophysics Laboratory
(INTEGRAL) in orbit around Earth detected a gamma-ray burst from the same por-
tion of the sky as the source of the gravitational wave. Detailed observations of the
afterglow of the gamma-ray burst at many wavelengths, and comprehensive anal-
ysis of the gravitational and electromagnetic data sets, concluded that the gravita-
tional wave and the gamma-ray burst were caused by a binary neutron star merger
in the galaxy NGC 4993, at a distance of 40 megaparsecs (130 million lightyears).

That the gravitational and electromagnetic signals arrived within 1.7 seconds of
each other after traveling a distance of 40 megaparsecs implied that the speed of
gravity (for the gravitational waves) and the speed of light c (for the gamma-rays)
differ by no more than 3 parts in 1015. Thus, we conclude that the speed of gravity
is c (as predicted by the general theory of relativity). More extensive discussion of
physical implications for GW170817 may be found in Ref. [15] and in Section 24.7
of Ref. [16].

a The name GW170817 indicates that the gravitational wave (GW) was observed in the year 20(17), in
the (08)th month of that year, on the (17)th day of that month.
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From Eq. (11.17) and the continuity equation (1.3),

1
c2 ∇∇∇

∂Φ
∂ t

= µ0JJJT, (11.21)

which gives when inserted into Eq. (11.9b), upon using the identity ∇∇∇(∇∇∇ ·AAA) = 0 and Eq.
(11.19),

∇2AAA− 1
c2

∂ 2AAA
∂ t2 =−µ0JJJT. (11.22)

Thus, in Coulomb gauge the source for the equation for AAA can be expressed entirely in
terms of the transverse current JJJT. For this reason, the Coulomb gauge is sometimes termed
the transverse gauge. The Coulomb gauge is also sometimes called the radiation gauge,
because one finds that in describing electromagnetic radiation by quantum electrodynam-
ics, only the vector potential (which is determined by the transverse components) need be
quantized.

Notice that Eq. (11.22) has the form of a wave equation with the speed of the
wave equal to c, which is the behavior expected for electromagnetic waves. How-
ever, the discussion given above implies that for the scalar potential the propa-
gation speed is infinite. The full resolution of this seeming paradox is beyond
our scope because it requires relativistic quantum field theory, but in essence the
propagating classical field has only transverse components and one finds that in
quantum electrodynamics only the vector potential (and thus only the transverse
components) need be quantized.

As we will see in Ch. 15, Lorentz covariance is most transparent if the 3-vector potential AAA
and the scalar potential Φ are combined into a spacetime 4-vector Aµ with the components
of the 4-vector given by

Aµ = (A0,A1,A2,A3) = (Φ,AAA) = (Φ,A1,A2,A3), (11.23)

where Φ is the scalar potential and AAA is the 3-vector potential with components Ai(i =
1,2,3). In the 4-vector the first component A0 is called the timelike component and the
other three components (A1,A2,A3) are called the spacelike components of the 4-vector.6

It was asserted above that only the two transverse components of the vector (typically
chosen to be A1 and A2 for AAA and A2 and A3 for Aµ ) are required to describe propagating
waves. But a 3-vector like AAA normally has three components, and a 4-vector like Aµ has
four components. So how can a propagating photon have only two rather than three or four

6 A small terminology inconsistency must be dealt with. We have been calling the 3-vector AAA the vector poten-
tial, but relativistically it will be more convenient to work with the 4-vector potential Aµ (which makes more
obvious the requirement of relativity that space and time enter on an equal footing); see Section 16.8.3. We
adopt a policy that where it is clear that we are working non-relativistically, AAA will often be called the vector
potential, while if it is clear that we are working in a relativistic context, Aµ will often be called the vector po-
tential. If there is a chance for confusion the explicit names “3-vector potential” for AAA and “4-vector potential”
for Aµ will be used. Similar terminology considerations apply to other quantities such as the 3-vector current
JJJ and the 4-vector current Jµ , each of which is called the “current vector” in various contexts.
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degrees of freedom? A systematic discussion of relativistic quantum field theory applied
to electrons and photons (QED) is beyond our present scope. However, the short answer
is that it is found in QED that in a covariant gauge like Lorenz gauge there are four states
of polarization, but the contributions from timelike and longitudinal polarizations enter
with equal magnitudes but opposite signs and exactly cancel each other, leaving only the
transverse contributions for a free propagating photon. (This is called the Gupta–Bleuler
mechanism in quantum electrodynamics.) A massive vector field would have three spatial
polarization components. As we will see, the reduction to two spatial polarizations is a
consequence of the photon being identically massless: massless vector fields have two
rather than three states of polarization.

11.4 Retarded Green Function

From Eqs. (11.12), it is clear that the key to solving Maxwell’s equations in Lorenz gauge
is to be able to solve the wave equation with a source f ,

□ψ =− f , (11.24)

where we introduce for convenience the d’Alembertian operator □ with7

□≡− 1
c2

∂ 2

∂ t2 +∇2, (11.25)

because if one knows how to solve (11.24), one can solve Eqs. (11.12). Lorenz gauge has
been assumed, so Eq. (11.11) must also be satified, but the retarded solution of Eqs. (11.12)
with sources that will be found shortly will in fact satisfy Eq. (11.11) automatically, pro-
vided that the solution decreases rapidly enough at infinity. Generalizing the electrostatics
case, a Green function G(t,xxx; t ′xxx′) can be defined by

□G(t,xxx; t ′xxx′) =−δ (xxx− xxx′)δ (t− t ′), (11.26)

where the derivative operators in □ are understood to operate on the unprimed variables,
and in contrast to Eq. (3.21) for electrostatics, the Green function depends on (t ′,xxx′) and
(t,xxx) and there is a delta function in t ′− t as well as in xxx− xxx′. If we can obtain a Green
function, a solution ψ of Eq. (11.24) is given by the principle of superposition,

ψ(t,xxx) =
∫

G(t,xxx; t ′xxx′) f (t ′,xxx′)d3x′ dt ′, (11.27)

assuming that the integral converges. Let us seek a solution of Eq. (11.26) using Fourier
transforms, guided by the discussion in Wald [40].

7 The d’Alembertian operator □ is a Lorentz-invariant combination of the second derivatives with respect to
space and time that will play a significant role in discussing the relationship of the Maxwell equations to
special relativity in Ch. 15.
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11.4.1 Fourier Transforms

For an integrable function F : R→ R, define its Fourier transform F̂ as8

F̂(k) =
1√
2π

∫ +∞

−∞
F(x)e−ikxdx. (11.28)

Fourier transforms can also be extended to distributions such as the Dirac delta function;
for example, the Fourier transform of the delta function is,

δ̂x0(k) =
1√
2π

eilx0 . (11.29)

Assuming a function to be smooth and to fall off fast enough at infinity, the original func-
tion F(x) can be recovered by the inverse Fourier transform,

F(x) =
1√
2π

∫ +∞

−∞
F̂(k)e+ikxdk. (11.30)

This formula applies also to distributions and the inverse of the Fourier transform for a
delta function is

δx0(x) =
1√
2π

∫ +∞

−∞
δ̂x0(k)e

+ikxdk =
1

2π

∫ +∞

−∞
e−ikx0 e+ikx dk. (11.31)

One of the most useful properties of Fourier transforms is that differentiation in real space
corresponds to multiplication by ik in Fourier transform space. For example,

d̂F
dx

(k) = ikF̂(k), (11.32)

for the Fourier transform of dF(x)/dt, as you are asked to show in Problem 11.1.

Thus a partial differential equation with constant coefficients expressed in real
space can be converted to a corresponding algebraic equation in Fourier trans-
form space.

Now let’s solve Eq. (11.26) for G using Fourier transform methods.

11.4.2 Green Functions Using Fourier Transforms

To simplify notation let us temporarily set x′ = t ′ = 0 and c = 1, and define the 4D Fourier
transform of G as9

Ĝ(ω,kkk) =
1

(2π)2

∫ +∞

−∞
G(t,xxx)e+iωte−ikkk·xxxdt d3x (11.33)

8 There are different conventions for choosing the normalization factor in defining Fourier transforms. The
definitions in Eqs. (11.28) and(11.30) employ the “symmetric convention”, which uses a normalization factor
of 1/

√
2π for both the transform (11.28) and the inverse transform (11.30). Note that a simple example of a

solution using Green functions for a driven mechanical oscillator was described in Box 3.2, where a different
normalization for Fourier transforms was used.

9 By convention the time Fourier transform is defined by integrating with e+iωt rather than with e−iωt for com-
patibility with the 4-momentum vector kµ = (ω/c,kkk) of special relativity that will be introduced in Ch. 15.
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Taking the Fourier transform of Eq. (11.26) with respect to t and xxx, using Eq. (11.29) with
x0 = 0, and using Eq. (11.32) yields

(ω2− k2) Ĝ(ω,kkk) =− 1
4π2 , (11.34)

where k ≡ |k|. Naively, this suggest the solution

Ĝ(ω,kkk) =− 1
4π2

1
(ω2− k2)

=− 1
4π2

1
(ω + k)(ω− k)

, (11.35)

but division by (ω2− k2) is illegal since it is possible that ω = k. To see the difficulty
clearly, let’s attempt to take the inverse transform of Ĝ with respect to ω (but not kkk). This
is a Fourier transform with respect to space but not time; denoting it as G̃,

G̃(t,kkk) =
1√
2π

∫ +∞

−∞
Ĝ(ω,kkk)e−iωt dω.

=− 1
4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k)(ω− k)
dω, (11.36)

where Eq. (11.35) was used. This has logarithmic divergences of the integral10 if ω→±k,
so it is ill-defined.

The fundamental reason that the integral in (11.36) is not well defined as it stands is that
many different Green functions satisfy Eq. (11.26), so a unique solution for G in (11.36)
cannot be expected without providing further information to identify the particular Green
function that we seek. To proceed it is necessary to regularize the integration in Eq. (11.36)
in such a way that

1. equation (11.34) remains valid,
2. the right side of Eq. (11.36) becomes well defined, and
3. the resulting solution has the desired boundary and causality properties.

One way to do this is to displace the poles at ω =±k into the complex ω plane and evaluate
the resulting contour integral. There is more than one way to do this, each leading to a
different Green function. The Green function that we seek is the retarded Green function,
which will be appropriate for the situation where there is only outgoing radiation from a
source. To get this solution the poles should be displaced into the lower half of the complex
ω-plane; thus we define the retarded Green function by

G̃(t,kkk)ret =−
1

4π2
√

2π

∫ +∞

−∞

e−iωt

(ω + k+ iε)(ω− k+ iε)
dω, (11.37)

where ε is positive and the limit ε → 0 is to be taken after the integral is evaluated. View-
ing the integral in Eq. (11.37) as a contour integral in the complex ω-plane, if t < 0 the
integration contour can be closed by a large semicircle in the upper half plane since the
exponential factor exp(−iωt) is damped there, as illustrated in Fig. 11.1(a). The poles are

10 All diverges are trouble, but some are worse than others. The prototypical logarithmic divergence occurs in an
integral of the form f (x) =

∫ x
x0

dΛ/Λ. This integral diverges as x→ ∞, which is relatively mild, growing only
as f (x)∼ log(x) at large x.
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Re (ω)

Im (ω)Im (ω)
(a) t<0

(b) t>0

pole pole

Re (ω)

pole pole

tFig. 11.1 Contour integration paths for the the retarded Green function. (a) Path for t < 0, which
encloses no poles so it gives zero. (b) Path for t > 0, which encloses both poles and the
value of the integral comes from the sum of residues at the two poles.

in the negative half-plane so the contour does not enclose them and by the Cauchy residue
theorem,

G̃(t,kkk)ret = 0 (t < 0). (11.38)

That the Green function vanishes for t = 0 is characteristic of the retarded solution, cor-
responding to outgoing but no incoming radiation. This solution is relevant physically if
there is no radiation present when the source is turned on.

By similar reasoning, for t > 0 the integration contour can be closed in the lower half-
plane, as illustrated in Fig. 11.1(b). Now the contour encloses poles at ω =±k− iε and by
the Cauchy theorem the integral evaluates to 2πi times a sum of residues at the two poles.
The residue res f (a) of a function f (z) at a pole z = a is given by

res f (a) =
1

(m−1)!
lim
z→0

(
dm−1

dzm−1 (z−a)m f (z)
)
, (11.39)

where m is the order of the pole (exponent on the denominator factor tending to zero at the
pole) and a is the location of the pole (with a ̸= ∞). In Eq. (11.37) the poles are of order
m = 1 and we obtain

G̃(t,kkk)ret =
2πi

4π2
√

2π

(
e−ikt

2k
− e+ikt

2k

)
=

1
2π
√

2π
sinkt

k
(t > 0). (11.40)

The retarded Green function in real (position) space then results from taking the inverse
transform of Eq. (11.40) with respect to k (homework),

G(t,xxx)ret =
1

(2π)3/2

1
2π
√

2π

∫
sinkt

k
eikkk·xxxd3k

=
δ (t−|xxx|)

4π |xxx| (t > 0). (11.41)

Restoring t ′, xxx′, and c, this result becomes

G(t,xxx; t ′,xxx′)ret =





0 (t < t ′),

δ (t− t ′−|xxx− xxx′|/c)
4π |xxx− xxx′| (t > t ′).

(11.42)
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This propagator now has the desired causal behavior.11

Using the language of special relativity that will be introduced in Ch. 15,
G(t,xxx; t ′,xxx′)ret is non-zero only on the future lightcone of the source point (t ′,xxx′),
meaning that it vanishes unless |xxx− xxx′| = c(t− t ′). That is, if a field satisfying
the wave equation □ψ =− f of Eq. (11.24) is zero at early times and

1. a δ -function source is placed at (t ′,xxx′),
2. the resulting disturbance of the field (electromagnetic waves) will propagate

away from the source at the speed of light.

Because the retarded Green function respects the principle of causality (cause
precedes effect) it is said to be a causal Green function.

Thus, light corresponds to a wave solution of the Maxwell equations that is fixed by the
theory to have a constant speed of propagation v = c, independent of inertial frame. Elec-
tricity and magnetism are now unified in the science of electromagnetism, and optics has
now become the science of electromagnetic waves.

11.4.3 Causal Solutions for Vector and Scalar Potentials

The retarded solution of Eq. (11.24) is the solution obtained using the retarded Green
function in Eq. (11.27),

ψ(t,xxx) =
1

4π

∫
f (t−|xxx− xxx′|/c,xxx′)

|xxx− xxx′| d3x′. (11.43)

This can also be written more compactly as

ψ(t,xxx) =
1

4π

∫
f (t ′,xxx′)ret

|xxx− xxx′| d3x′, (11.44)

where the notation means that f (t ′,xxx′) is to be evaluated at the retarded time

t ′ = t− |xxx− xxx′|
c

, (11.45)

and where t ′ isn’t independent but rather is a function of t, xxx, and xxx′.12 Written in this form
the retarded solution looks like a solution of the Poisson equation, but evaluated at the
retarded time (11.45).

11 The retarded time has a simple meaning. When there is a local change in an electromagnetic field, the field
at some distant point doesn’t reflect that change instantaneously. Instead, the signal of a change in the field
propagates at the speed of light and there is a time delay in its action at a distant point; the time at the distant
point minus the time for the signal to propagate is termed the retarded time.

12 In Eq. (11.44), the integration is not over all of space at an instant of time (as the notation might suggest).
Rather, it is restricted to the surface defined by the past lightcone of the spacetime point (t,xxx), since only
points on the past lightcone can be causally connected to (t,xxx) by a signal traveling at lightspeed (see the
discussion of lightcones and causality in Ch. 15).
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The Maxwell equations (11.12a) and (11.12b) for the scalar and vector potentials are of
the form (11.24), so we can write immediately the corresponding retarded solutions,

Φ(t,xxx) =
1

4πε0

∫
[ρ(t ′,xxx′]ret

|xxx− xxx′| d3x′, (11.46a)

AAA(t,xxx) =
µ0

4π

∫
[JJJ(t ′,xxx′]ret

|xxx− xxx′| d3x′. (11.46b)

Finally, substitution of Eqs. (11.46a) and (11.46b) in Eq. (11.11) and some manipulation
indicates that these solutions are indeed consistent with the Lorenz gauge condition (see
Problem 11.3). Therefore, we may conclude that the solution of the Maxwell equations
for a charge density ρ and a current density JJJ, with no initial incoming radiation, is given
by Eqs. (11.46). This has been shown here in for the special case of Lorenz gauge, but the
Maxwell equations are invariant under gauge transformations so this solution may be taken
to be valid generally.

Background and Further Reading

Much of this chapter is based on the presentations in Jackson [19], Garg [11], and Wald
[40]. Further useful discussion may be found in Refs. [5, 13, 42].
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Problems

11.1 One of the most useful aspects of Fourier transforms is that differentiation in real
space corresponds to multiplication by a factor ik in Fourier transform space, which
converts differential equations into algebraic equations. As an example, prove that

d̂F
dx

(k) = ik F̂(k),

for the Fourier transform of dF/dx. ***
11.2 Supply and explain the steps in verifying the result of Eq. (11.41).
11.3 Prove that Eqs. (11.46) are consistent with the Lorenz gauge condition (11.11). ***
11.4 For problems with a magnetic field oriented along the z axis, two gauge choices that

can be made for the vector potential AAA = (Ax,Ay,Az) are

AAA = (0, Bx, 0) (Landau gauge),

AAA =
1
2

B(−y, x, 0) (Symmetric gauge).

Demonstrate that both of these gauges lead to the same magnetic field BBB=(Bx,By,Bz)=

(0,0,B), where B = |BBB|.



12 Conservation Laws

In Box 1.1 we summarized concisely the symmetries that the equations of classical elec-
tromagnetism exhibit. In this chapter we elaborate on the corresponding conservation laws
that are implied by the symmetries of the Maxwell equations. The prototype conservation
law in electromagnetism is charge conservation, exmplified in the continuity equation (1.3)

∂ρ
∂ t

+∇∇∇ · JJJ = 0 (Continuity equation),

discussed in Section 1.3, which relates the change of charge density in a local region to flow
of charge through the boundaries of that region. Various other electromagnetic conservation
laws can be formulated in a similar manner.

12.1 Conservation of Energy

200
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Problems

12.1 No problems yet for this chapter.



13 Electromagnetic Waves

Perhaps the consequence of classical electromagnetism having the greatest everyday im-
port is that the Maxwell equations have traveling wave solutions that can propagate through
space carrying energy, momentum, and angular momentum. The continuous arrival of life-
sustaining energy from the Sun, your smartphone, and the satellite navigation system in
your phone or car are but a few implications. These propagating electromagnetic fields
are termed free fields, because the electric field lines do not terminate in charges and the
magnetic field lines do not encircle current for these solutions.

In the 19th century it was commonly held that waves required a medium for trans-
mission, based on experience with waves like water waves that did propagate through a
medium. Thus was hypothesized the existence of a medium specifically for transmission
of the electromagnetic waves predicted by Maxwell’s theory that was called the luminifer-
ous aether or just aether for short,1 and electromagnetic waves were hypothesized to travel
in a preferred inertial frame that was at rest with respect the aether. The aether hypothesis
held sway for decades, but its death knell sounded from both observational and theoretical
quarters as the 19th century turned into the 20th century:

1. The Michelson–Morley light interferometry experiment in 1887 found no evidence for
motion of the Earth through the aether (this hypothesized effect was called aether drift).

2. The publication of Einstein’s special theory of relativity in 1905 rendered the aether
superfluous, by asserting that there are no preferred inertial frames and that electromag-
netic waves traveled at a constant speed c in every inertial frame.

The idea that electromagnetic waves travel at the same speed in all inertial frames was
radical, but correct, and special relativity implied that both electromagnetism and particle
mechanics were governed by Lorentz invariance. With the aether now irrelevant, let us
speak of it no more and consider electromagnetic waves, first in vacuum, and then in matter.

13.1 The Classical Wave Equation

Wave phenomena in classical physics are described by a wave equation, which is a second-
order partial differential equation that in one spatial dimension and cartesian coordinates

1 To accomplish its task, while remaining faithful to the rest of observed reality, the aether was required to
possess rather miraculous properties. It was assumed that the aether filled all of space but that it was invisible
(since no one could see it), that it was rigid (because electromagnetic waves are transverse and normal trans-
verse waves require a rigid body for transmission), and that it influenced only electromagnetic waves (so that
it didn’t disturb our understanding of non-electromagnetic phenomena).
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δ = 0δ = 3π/4

A

λ

z

tFig. 13.1 Sinusoidal solutions (13.4) of a 1D wave equation with amplitude A and wavelength
λ = 2π . The solid curve has phaseshift δ = 0 and the dashed curve has a phaseshift
δ = 3π/4. The two waves have the same amplitude and wavelength, but they are shifted
in phase by 3π/4.

takes the form
∂ 2ψ(z, t)

∂x2 − 1
v2

∂ 2ψ(z, t)
∂ t2 = F (z, t), (13.1)

where ψ(z, t) is a scalar field, v is the speed of the wave,2 and we have allowed the pos-
sibility of a source term F (z, t). The 1D classical wave equation admits solutions of the
form

ψ(z, t) = ψ(z± vt), (13.2)

with the ± sign indicating whether the wave is traveling in the positive or negative z direc-
tion. The wave equation is linear, meaning that a sum of solutions is also a solution, and
the most general 1D solution is of the form

ψ(z, t) = f (z+ vt)+g(z− vt), (13.3)

which represents a superposition of left-going (negative-z direction) and right-going (positive-
z direction) waves.

Example 13.1 The sinusoidal waveform

ψ(z, t) = Acos[k(z− vt)+δ ], (13.4)

that is illustrated in Fig. 13.1 is a representative and instructive solution of the classical
wave equation (13.1), both because many simple wave solutions have a similar form, and
because complex waveforms can be built up by a linear combination of such waves (Fourier
series). As illustrated in Fig. 13.1, the amplitude A is the maximum displacement of the

2 Specifically v is the phase velocity of the wave described by the function ψ , which will depend on the nature
of the wave. For example, for transverse waves on a string v = (T/µ)1/2, where T is the string tension and µ
is the mass per unit length of the string, while we shall see that electromagnetic waves in vacuum propagate at
the speed of light c.
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wave. The argument of the cosine function is called the phase of the wave, and k is the
wave number, which is related to the wavelength λ by

k =
2π
λ

(Wavenumber), (13.5)

with the wavelength displayed in Fig. 13.1. As illustrated in Fig. 13.1, if the wave is as-
sumed to be propagating to the right in the positive x direction, the phaseshift δ represents
a shift to the left (a delay) of the waveform. As time passes the the entire wave proceeds to
the right in Fig. 13.1 with a constant speed v, such that a distance ∆x = 2π/k corresponds
to one complete cycle of the cosine function, and one wavelength. At a fixed point x, the
wave amplitude vibrates up and down, executing one complete cycle in a period T given
by

T =
2π
kv

. (13.6)

The corresponding frequency ν represents the number of oscillations per unit time and is
given by

ν =
1
T

=
kν
2π

=
ν
λ
, (13.7)

which may also be expressed as the angular frequency ω , with

ω ≡ 2πν = kν , (13.8)

which allows Eq. (13.4) to be written more concisely as

ψ(x, t) = Acos(kz−ωt +δ ). (13.9)

It is sometimes useful to write a waveform in complex notation using the Euler formula,

eiθ = cosθ + isinθ , (13.10)

which allows writing Eq. (13.9) in the form

ψ(z, t) = Re
(

Aei(kz−ωt+δ )
)
, (13.11)

where Re(· · ·) takes the real part of a complex argument.

Extending to three dimensions, Eq. (13.1) generalizes to the 3D wave equation
(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 −
1
c2

∂ 2

∂ t2

)
ψ(xxx) = F (xxx, t), , (13.12)

which can be written in the compact form

□ψ(xxx) = f , (13.13)

by utilizing the d’Alembertian operator □ given in Eq. (11.25) and the Laplacian operator
∇2 defined in Eq. (2.55).

□≡− 1
c2

∂ 2

∂ t2 +∇2 ∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 .
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Let us now consider wave solutions of the Maxwell equations, first in vacuum, and then in
medium.

13.2 Electromagnetic Waves in Vacuum

Electromagnetic waves are solutions of the Maxwell equations in the absence of sources.
Removing the source terms ρ/ε0 and µ0JJJ from the vacuum Maxwell equations (1.1) gives
the source-free Maxwell equations in vacuum,

∇∇∇ ·EEE = 0, (13.14a)

∇∇∇×EEE =−∂BBB
∂ t

, (13.14b)

∇∇∇ ·BBB = 0, (13.14c)

∇∇∇×BBB =
1
c2

∂EEE
∂ t

. (13.14d)

We may interpret these four equations in the following way:

1. The two equations (13.14b) and (13.14d) involving curls are coupled partial differential
equations describing the time evolution of the electric field EEE(xxx, t) and magnetic field
BBB(xxx, t), respectively.

2. The two equations (13.14a) and (13.14c) involving divergences provide initial condi-
tions for the integration of (13.14b) and (13.14d), and we may deduce from them that

∂
∂ t

(∇∇∇ ·EEE) = 0
∂
∂ t

(∇∇∇ ·BBB) = 0. (13.15)

Thus if the fields are free of divergence initially because of conditions set by Eqs.
(13.14a) and (13.14c), they will remain divergence-free as time evolves in the inte-
gration because of Eq. (13.15).

We shall now show that there are solutions of the source-free Maxwell equations in vacuum
(13.14) that are vector versions of the classical wave solution for a scalar field. However,
these wave solutions for the EEE and BBB fields

1. are 3D vector fields, and
2. the vector EEE and BBB fields are not independent because they are coupled through one of

the first-order Maxwell equations, for example the Faraday equation (13.14b).

Thus electromagnetic wave solutions may be expected to be much richer than those for a
scalar wave equation.

13.2.1 Electromagnetic Wave Equations for the Fields

First, applying the curl operation to Eq. (13.14b) and using the vector identity of Eq. (A.8),

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA, (13.16)
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we obtain

∇∇∇× (∇∇∇×EEE) = ∇∇∇(∇∇∇ ·EEE)−∇2EEE =−∇∇∇×
(

∂BBB
∂ t

)

=− ∂
∂ t

(∇∇∇×BBB) =− 1
c2

∂ 2EEE
∂ t2 ,

where Eq. (13.14d) was used in the last step. Thus,

∇∇∇(∇∇∇ ·EEE)−∇2EEE =− 1
c2

∂ 2EEE
∂ t2 ,

But from the 1st vacuum Maxwell equation ∇∇∇ ·EEE = 0, and we obtain finally,

∇2EEE =
1
c2

∂ 2EEE
∂ t2 , (13.17)

Next apply the curl operation to Eq. (13.14d) and use the identity (13.16) to obtain in a
similar manner

∇∇∇× (∇∇∇×BBB) = ∇∇∇(∇∇∇ ·BBB)−∇2BBB =
1
c2 ∇∇∇×

(
∂EEE
∂ t

)

=
1
c2

∂
∂ t

(∇∇∇×EEE) =− 1
c2

∂ 2BBB
∂ t2 ,

where Eq. (13.14b) was used in the last step. But from the 3rd vacuum Maxwell equation,
∇∇∇ ·BBB = 0, and we obtain

∇2BBB =
1
c2

∂ 2BBB
∂ t2 , (13.18)

Finally, collecting the results in Eqs. (13.17) and (13.18), the wave solutions of the Maxwell
equationa are expressed by

∇2EEE− 1
c2

∂ 2EEE
∂ t2 = 0, (13.19a)

∇2BBB− 1
c2

∂ 2BBB
∂ t2 = 0, (13.19b)

from which one sees that each cartesian component of EEE and BBB satisfies a scalar wave equa-
tion of the form (13.1) with no source term (F = 0). Thus the coupled first-order Maxwell
equations (13.14b) and (13.14d) have been decoupled in the vector wave equations (13.19),
but at a price of the decoupled equations becoming second-order PDEs.3

Equations (13.19) indicate that each cartesian component of EEE(xxx, t) and BBB(xxx, t) satisfies a
scalar wave equation of the form (13.1), but this is no longer true in spherical or cylindrical
coordinates. Functions that happen to satisfy Eqs. (13.19) are not automatically guaranteed
to be solutions of the Maxwell equations (13.19); they only describe valid electric and mag-
netic fields if they satisfy also the divergence conditions of Eqs. (13.14a) and (13.14c), and

3 Note that the wave equations (13.19) require second derivatives of the fields, which appear only because of the
displacement term (1/c2)∂EEE/∂ t that Maxwell added to Ampère’s law to convert it into the Ampère–Maxwell
law given in Eq. (13.14d). Thus one of the several fundamental consequences following from Maxwell’s
modification of Ampère’s law that were discussed in Section 11.1.2 is the existence of electromagnetic wave
solutions of the Maxwell equations.
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satisfy Eqs. (13.14b) and (13.14d) when coupled together. These Maxwell-equation con-
straints are easy to demonstrate for simple plane-wave solutions of Eqs. (13.19), but more
difficult for more complicated situations such as spherical waves or beam-like solutions. In
such cases it may be simpler to use a set of wave equations based on the electromagnetic
potentials rather than the fields, as illustrated in the next section.

13.2.2 Electromagnetic Wave Equations for the Potentials

An uncoupled description of electromagnetic waves can be obtained using the potentials
rather than the fields.

Coulomb Gauge: For example, if we work in Coulomb gauge the gauge constraint ∇∇∇ ·AAA =

0 of Eq. (8.37) for the vector potential AAA implies that ∇2Φ = 0, which has a solution Φ = 0,
and the electric field in the presence of a vector potential is the electrostatic result given in
Eq. (2.35) plus a time derivative of the vector potential:

EEE =−∇∇∇Φ− ∂AAA
∂ t

. (13.20)

Thus, substituting

BBB = ∇∇∇×AAA EEE =−1
c

∂AAA
∂ t

.

into the Faraday law (13.14b) and applying ∇∇∇ ·AAA = 0 once again gives

∇2AAA− 1
c2

∂ 2AAA
∂ t2 = 0, (13.21)

which can be solved for AAA and the electric and magnetic fields obtained by applying the
∂/∂ t and curl operations to AAA.

Lorenz Gauge: In a similar way, the Lorenz gauge condition of Eq. (11.11)

∇∇∇ ·AAA+
1
c2

∂Φ
∂ t

= 0, (13.22)

can be used to deduce the wave equations

∇2Φ− 1
c2

∂ 2Φ
∂ t2 = 0, (13.23)

∇2AAA− 1
c2

∂ 2AAA
∂ t2 = 0, (13.24)

for the scalar potential Φ and vector potential AAA in Lorenz gauge.

13.2.3 Monochromatic Plane-Wave Solutions

Comparing Eqs. (13.1) and (13.19), we may interpret the solutions of Eqs. (13.19) as waves
in the electric and magnetic fields propagating at the speed of light c in vacuum, with the
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k

tFig. 13.2 For a plane wave the fields are constant on any plane transverse to the direction of
propagation given by kkk.

wavespeed c arising because of the relationship in Eq. (2.4) between the SI constants ε0

and µ0, and the speed of light,

c =
1√ε0µ0

= 3.0×108 m s−1. (13.25)

The essential nature of these wave solutions may be illustrated by considering sinusoidal
waves of a single angular frequency ω (monochromatic waves), since more complex wave-
forms correspond to a Fourier superposition of such waves. We assume these monochro-
matic and sinusoidal waves to propagate in the positive-z, direction, and assume them to be
plane-waves (no x and y dependence); so-called, because the fields are uniform over a plane
perpendicular to the direction of propagation,4 as illustrated schematically in Fig. 13.2. For
plane waves the wave equations for EEE and BBB can be solved directly relatively easily as in
Section 13.2.1, so it isn’t necessary to solve for the potentials first, as in Section 13.2.2.

Using the exponential notation introduced in Eq. (13.11), the fields EEE and BBB correspond-
ing to wave solutions of Eqs. (13.19) may be expressed in the general form,

EEE(xxx, t) = E0ei(kkk·xxx−ωt), (13.26a)

BBB(xxx, t) =B0ei(kkk·xxx−ωt), (13.26b)

where E0 and B0 are complex vectors [that have absorbed the phaseshift δ of Eq. (13.4)],
and kkk is the wavevector, with

kkk =
ω
c

n̂nn E0 ⊥ n̂nn B0 = k̂kk×E0, (13.27)

where n̂nn is the direction of wave propagation. Generally every solution of the Maxwell
equations satisfies Eqs. (13.26), but not every solution of Eqs. (13.26) is consistent with
the Maxwell equations, which impose additional constraints. Taking the wave propagation
4 Monochromatic plane waves are a fiction, since no physical wave can have infinite extent. However, they are

a useful fiction because (1) they are simple mathematically, (2) realistic waves often resemble plane waves in
a local-enough region, and (3) linear combinations of plane waves can approximate physical waves.
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direction to be along the z-axis, from Eq. (13.19a) the wave equation for the z component
of EEE is

∂ 2Ez

∂ z2 −
1
c2

∂ 2Ez

∂ t2 = 0, (13.28)

and the constraint ∇∇∇ ·EEE = 0 of Eq. (13.14a) imposes ∂Ez/∂ t = 0, so Ez is independent of
z and the wave equation (13.28) reduces to

∂ 2Ez

∂ t2 = 0. (13.29)

Integrating gives Ez = at+b where a and b are constants. The first term at can be discarded
as unphysical because it grows in time without bound, giving Ez = constant, which we
choose to be zero. By a similar procedure, we can choose Bz = 0. Therefore,

Ez = Bz = 0. (13.30)

In addition, Faraday’s law requires a relationship between electric and magnetic fields,

BBB(xxx, t) =
1
c

n̂nn×EEE(xxx, t). (13.31)

where n̂nn is the direction of wave propagation. In summary, for a plane wave traveling in
the direction n̂nn,

EEE ⊥ n̂nn BBB⊥ n̂nn BBB(xxx, t) =
1
c

n̂nn×EEE(xxx, t). (13.32)

These results indicate that

1. electromagetic waves are transverse: oscillations in the electric and magnetic fields are

• perpendicular to the direction of wave propagation,
• perpendicular to each other, and
• in phase with each other.

2. The fields BBB scaled by a factor of c and EEE have the same magnitude at all points of
spacetime, B0 = E0/c.

A transverse electromagnetic field propagating in the vacuum along the z-axis with the
electric field oscillating in the x− z plane is illustrated schematically in Fig. 13.3.

13.2.4 Energy and Momentum of Electromagnetic Waves

From Ch. 12, the general expression for the energy density u associated with an electro-
magnetic wave is

u =
1
2

(
ε0E2 +

1
µ0

B2
)
. (13.33)

From Eq. (13.32), for monochromatic plane waves

B2 =
1
c2 E2 = µ0ε0E2, (13.34)
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An electromagnetic wave in vacuum propagating along the z axis. The electric field EEE
oscillates sinusoidally in the x− z plane, implying that the magnetic field BBB oscillates
sinusoidally in the y− z plane, in phase with the electric field, with the strength of the
waves related by cB0 = E0 at each spacetime point.

and the contributions of the electric and magnetic fields to the energy density are equal,

u = ε0E2 = ε0

(
ReE0ei(kz−ωt+δ )

)2

= ε0E2
0 cos2(kz−ωt +δ ). (13.35)

The energy flux density associated with an electromagnetic wave (energy per unit area per
unit time) is given by the Poynting vector

SSS =
1
µ0

(EEE×BBB), (13.36)

and for a monochromatic plane wave propagating in the z-direction,

SSS = cε0E2
0 cos2(kz−ωt +δ )ẑzz = cuẑzz. (13.37)

The corresponding momentum density is

ggg =
1
c2 SSS, (13.38)

and for monochromatic plane waves propagating in the ẑzz direction,

ggg =
1
c

ε0E2
0 cos2(kz−ωt +δ )ẑzz =

1
c

u ẑzz. (13.39)

Typically for electromagnetic waves the period is so short5 that any macroscopic mea-
surement will encompass many cycles and for energy and momentum densities we are
interested in their average value over a cycle. The average of the rapidly oscillating cosine

5 For example, in the visible spectrum the characteristic wavelength of yellow light is ∼ 6× 10−7 m, corre-
sponding to a frequency of ∼ 5×10−14 Hz.
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squared function over one period is

⟨cos2(kz−2πt/T +δ )⟩= 1
T

∫ T

0
cos2(kz−2πt/T +δ )dt =

1
2
, (13.40)

where ⟨ ⟩ denotes the average (over one cycle). Thus, the energy density, Poynting vector,
and momentum density averaged over one cycle become

⟨u⟩= 1
2

ε0E2
0 , (13.41)

⟨SSS⟩= 1
2

cε0E2
0 ẑzz (13.42)

⟨ggg⟩= 1
2c

ε0E2
0 ẑzz (13.43)

for a wave propagating in the ẑzz direction.

13.3 Polarization of Electromagnetic Waves

The polarization of an electromagnetic wave characterizes the orientation of its field vec-
tors over time. This polarization can be measured (see Section 13.3.5) and is often of con-
siderable physical interest, since the polarization carries information about how the wave
was formed, and about the environments that it has encountered while propagating from
the source.6 By convention, the polarization of electromagnetic waves is defined by the
plane in which the electric field EEE is oscillating, as illustrated in Fig. 13.4.

13.3.1 The Polarization Ellipse

Confining ourselves to monochromatic plane electromagnetic waves propagating in vac-
uum, we shall now show that as the phase of the wave advances by 2π , the tip of the
electric field vector traces out an ellipse in the plane perpendicular to the propagation di-
rection kkk that is called the polarization ellipse. Let us define real unit vectors ε̂εε1 and ε̂εε2

such that (ε̂εε1, ε̂εε2, k̂kk) constitutes a right-handed orthogonal triad,

ε̂εε1 · ε̂εε2 = 0 ε̂εε1× ε̂εε2 = k̂kk. (13.44)

The vectors (ε̂εε1, ε̂εε2) constitute a polarization basis for E0 in Eq. (13.26a) and the electric
field may be expressed as

EEE(xxx, t) = (E1ε̂εε1 +E2ε̂εε2)ei(kkk·xxx−ωt), (13.45)

6 For example, the polarization of the cosmic microwave background (CMB) radiation that is observed coming
from all directions in the sky by satellite observatories provides a key test for cosmological theories of the
origin of the Universe since the CMB is thought to be the cooling remnant of the big bang itself. It has also
been proposed that the CMB may carry a polarization imprint of perturbations due to gravitational waves
produced in the big bang.
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Polarization of transverse electromagnetic wave propagating in the positive z direction.
(a) “Vertical” polarization of electric field in the x− z plane. (b) “Horizontal” polarization of
electric field in the y− z plane. These are examples of linear or plane polarization.
(c) General polarization defined by plane of the electric field vibrations, which can be
resolved into two mutually perpendicular components, EEE1 and EEE2.

where the complex numbers E1 and E2 may be parameterized as

E1 = Aeiδ1 E2 = Beiδ2 , (13.46)

in terms of the real numbers A, B, δ1, and δ2. Then

ReEEE = Acos(φ +δ1)ε̂εε1 +Bcos(φ +δ2)ε̂εε2 ≡ E1ε̂εε1 +E2ε̂εε2, (13.47)

where we have defined

φ ≡ kkk · xxx−ωt, (13.48)

and it may be shown (Problem 13.1) that Eqs. (13.45)-(13.48) imply that

(
E1

A

)2

+

(
E2

B

)2

−2
(

E1

A

)(
E2

B

)
cosδ = sin2 δ , (13.49)

where we define

δ ≡ δ2−δ1. (13.50)

Equation (13.49) specifies an ellipse in the ε̂εε1− ε̂εε2 plane, with the eccentricity and orien-
tation of the ellipse determined by the parameters δ and the ratio B/A. All possible polar-
izations of a monochromatic, plane electromagnetic wave in vacuum are then described by
the polarization ellipse (13.49) with arbitrary values of parameters.

There are some special cases of the general polarization ellipse of Eq. (13.49) corre-
sponding to two limits of the eccentricity e of an ellipse (which lies between 0 and 1, by
definition) that are of note. The first is that the limit of an ellipse as e→ 1 is a straight line.
The second is that an ellipse becomes a circle in the limit that e→ 0. Let us now discuss
these two special cases.



213 Polarization of Electromagnetic Waves

13.3.2 Linear (Plane) Polarization

The ellipse described by Eq. (13.49) becomes a straight line if the orthogonal electric
field components have the same phase or are 180◦ out of phase, which corresponds to the
restriction

δ = δ2−δ1 = mπ (m = 0,1,2, . . .). (13.51)

This special case corresponds to linear (or plane) polarization, because the electric field
vector for a linearly polarized electromagnetic wave points in the same direction for all val-
ues of xxx and t [see Problem 13.2(a)]. The waves in Figs. 13.4(a) and 13.4(b) are examples
of such plane-polarized waves. Any plane-polarized wave can be decomposed into a sum
of two components that are plane-polarized in mutually perpendicular directions and that
have the same phase. In Fig. 13.4(c) EEE has been resolved into two mutually perpendicular
x and y components, EEE1 and EEE2, respectively, having the same phase.

13.3.3 Circular Polarization

The other special case of Eq. (13.49) of specific interest is that an ellipse becomes a circle
in the limit that the eccentricity tends to zero. If two plane-polarized waves that differ in
phase are added, the maxima of EEE1 and EEE2 occur at different times and the tip of the vector
EEE describes an ellipse as the phase of the wave advances by 2π; such a wave is described
by the general ellipse (13.49) with arbitrary parameter values and is said to have elliptical
polarization. As we have seen, if the phases of the two components are made equivalent
the ellipse degenerates to a straight line corresponding to plane polarization. However, if
EEE1 and EEE2 have the same amplitudes but are out of phase by ±π

2 , the ellipse becomes a
circle and the wave is said to be circularly polarized. If the orthogonal field components
are 90◦ out of phase but of equal amplitude,

A≡
√

2A =
√

2B δ = δ2−δ1 =
mπ
2

(m =±1,±3, . . .), (13.52)

Then, as you are asked to show in Problem 13.2(b), the wave is described in a plane con-
taining xxx by

Re [EEE±(0, t)] =
A√

2
(ε̂εε1 cosωt± ε̂εε2 sinωt). (13.53)

As illustrated in Fig. 13.5, for the corresponding circularly polarized light the tip of the
electric field vector executes a spiraling motion as the wave advances. Because of the ±
ambiguity in Eq. (13.53), for a circularly polarized wave the tip of the electric field vector
rotates in a circle as the wave propagates that can be clockwise or counterclockwise. For
an observer looking toward the source, we define the wave to be

1. right circularly polarized (RCP) if the vector EEE rotates clockwise as the wave propa-
gates, and

2. left circularly polarized (LCP) if it rotates counterclockwise.7

7 In some subfields of physics such as optics a convention for LCP/RCP may be employed that reverses these
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k

E

tFig. 13.5
Snapshot at fixed time of EEE(x,0) for a monochromatic, circularly-polarized, plane wave
propagating in the direction given by kkk. The magnitude of the electric field is indicated by
the solid curve. The tip of the EEE vector executes a spiral motion around the kkk axis as the
wave propagates, as indicated by the dashed curve. This wave is left circularly polarized
(LCP), since the sense of rotation is counterclockwise, as viewed in the direction of the
source.

The wave in Fig. 13.5 is thus left circularly polarized (LCP), since for an observer looking
toward the source EEE appears to be rotating counterclockwise. The corresponding RCP wave
looks the same as Fig. 13.5 except that the sense of the spiral would be opposite because it
would appear to be rotating clockwise for the same observer.

13.3.4 Circular Polarization Basis

It can be useful to combine the cartesian basis vectors ε̂εε1 and ε̂εε2 into the complex conjugate
pairs

ε̂εε+ =
1√
2
(ε̂εε1 + iε̂εε2) ε̂εε− =

1√
2
(ε̂εε1− iε̂εε2), (13.54)

which satisfy the relations

ε̂εε∗±ε̂εε± = 1 ε̂εε∗± · ε̂εε∓ = 0.

definitions. Generally, in discussing LCP/RCP one must specify whether one is defining the sense of rotation
by looking upstream at the source, or downstream toward the destination of the wave, since these points of view
reverse the definitions. Here we define LCP/RCP by looking upstream at the source, with RCP corresponding
to clockwise rotation and LCP to counterclockwise rotation of EEE.
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Equation (13.53) is the real part of the complex field (evaluated at xxx = 0),

EEE±(xxx, t) =A

(
ε̂εε1± iε̂εε2√

2

)
ei(kkk·xxx−ωt), (13.55)

so ε̂εε+ is a pure LCP wave and ε̂εε− is a pure RCP wave. Thus the expansion

EEE(xxx, t) = (E+ε̂εε++E−ε̂εε−)ei(kkk·xxx−ωt), (13.56)

is just as legitimate as the expansion (13.45), and either of the orthogonal bases (ε̂εε1, ε̂εε2) or
(ε̂εε+, ε̂εε−) may be used to expand monochromatic plane waves in states of definite linear or
circular polarization.

13.3.5 Measuring Polarization: Stokes Parameters

At low frequencies the polarization parameters A, B, and δ defining the polarization ellipse
(13.49) can be extracted rather directly from data. At optical and higher frequencies it is
usual to instead extract the polarization parameters from the Stokes parameters si, which
are defined as follows.

s0 = A2 +B2 s1 = A2−B2,

s2 = 2ABcosδ s3 = 2ABsinδ ,
(13.57)

with the constraint s2
0 = s2

1 + s2
2 + s2

3, so only three of the si are independent. The utility
of the Stokes parameters is that each parameter can be related directly to wave intensities
measured in different orthogonal bases. Consider the ε̂εε1− ε̂εε2 coordinate system used in
Eq. (13.45).

1. Let I0 and I90 be intensities measured in detectors sensitive to horizontal and vertical
linear polarizations, respectively, for the ε̂εε1− ε̂εε2 coordinate system.

2. Let I+45 and I−45 be intensities measured in detectors sensitive to linear polarizations
measured at angles ±45 degrees, respectively, relative to the ε̂εε1− ε̂εε2 axes.

3. Let IRCP and ILCP be intensities measured by detectors sensitive to right and left circular
polarizations, respectively.

Then, as you are asked to prove in Problem 13.3,

s0 = I0 + I90 s1 = I0− I90,

s2 = I+45− I−45 s3 = IRCP− ILCP,
(13.58)

which shows that six intensity measurements are sufficient to determine the amplitudes and
phases of the complex electric field components E1 and E2 appearing in Eqs. (13.44) -
(13.49).

13.3.6 The Poincaré Sphere

The Stokes parameters define a one-to-one relationship between each possible polarization
state and a unique point on the surface of a 2-sphere of radius s0 called the Poincaré
sphere, which is illustrated in Fig. 13.6. The Stokes parameters map the polarization ellipse
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A Poincaré sphere of radius s0 that is in one-to-one correspondence with values of the
Stokes parameters defined in Eqs. (13.57) and (13.58).

parameters A, B, and δ into a unique point on the Poincaré sphere. All states of linear
polarization lie on the equator, RCP states lie at the south pole, LCP states lie at the north
pole, and all other points correspond to general elliptical polarization in Fig. 13.6 [42].

13.4 Electromagnetic Waves in Simple Matter

Let us now consider the propagation of electromagnetic waves in simple matter, where we
may assume that the electrical permittivity ε , magnetic permeability µ , and ohmic con-
ductivity σ are all constant. Realistic matter is frequency dispersive, meaning that the per-
mitivitty ε is a function of frequency ε = ε(ω), and plane waves propagate with different
phase velocities if they have different frequencies. Nevertheless, it is useful to first consider
simple matter, where if σ = 0 plane waves are non-dispersive and all frequencies travel at
the same phase velocity, because many essential features of real matter are captured in a
non-dispersive model. This is particularly true with respect to reflection, refraction, and
interference effects occurring at the boundaries separating different types of matter.

Wave propagation in linear, isotropic, non-dispersive matter looks almost like propaga-
tion in vacuum. The Maxwell equations are

∇∇∇ ·DDD = ρf, (13.59a)

∇∇∇×EEE =−∂BBB
∂ t

, (13.59b)

∇∇∇ ·BBB = 0, (13.59c)

∇∇∇×HHH = JJJf +
∂DDD
∂ t

. (13.59d)

For the present discussion we assume that there is no free charge ρf = 0 and no free current
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Jf = 0, and furthermore assume the medium is linear and homogeneous,

DDD = εEEE BBB = µHHH. (13.60)

The constituitive relations (13.60) imply that there are only two independent fields, which
we choose to be EEE and HHH, with the polarization and magnetization of the medium then
given by

PPP = (ε− ε0)EEE MMM =

(
µ
µ0
−1
)

HHH, (13.61)

and the source-free Maxwell equations in terms of EEE and HHH are

∇∇∇ ·EEE = 0 ∇∇∇ ·HHH = 0, (13.62a)

∇∇∇×EEE =−µ
∂HHH
∂ t

∇∇∇×HHH = ε
∂EEE
∂ t

. (13.62b)

As in the discussion of waves in vacuum in Section 13.2.3, we assume monochromatic
plane waves,

EEE(xxx, t) = EEEei(kkk·xxx−ωt) HHH(xxx, t) = HHHei(kkk·xxx−ωt), (13.63)

which produces four constraints upon substitution in Eqs. (13.62),

kkk ·EEE kkk ·HHH = 0, (13.64a)

kkk×EEE = ωµHHH kkk×HHH =−ωεEEE. (13.64b)

These imply that Eq. (13.63) corresponds to a transverse electromagnetic wave, so our
discussion of polarization in Section 13.3 applies without modification. From Problem
13.4, the wave frequency ω is related to the wave vector kkk by a dispersion relation,

ω(kkk) =
c
n

k, (13.65)

where c is the speed of light and

n = c
√

µε. (13.66)

is the index of refraction.

13.4.1 Reflection and Refraction at Interfaces

From our general experience with waves, we expect that a plane electromagnetic wave in-
cident on a sharp boundary between two different dielectric materials produces a reflected
and refracted (transmitted) wave if the wavelength is small compared with the curvature of
the interface; Fig. 13.7 illustrates. In this figure z = 0 is the boundary between Medium 1
characterized by parameters (ε1,µ1) and Medium 2 characterized by parameters (ε1,µ1).
We may expect that at the boundary the incident wave splits into a reflected wave propa-
gating in Medium 1 and a refracted wave propagating in Medium 2. Therefore, the electric
fields in the two media are given by

EEE2(xxx, t) = ETei(kkkT·xxx−ωTt) (Medium 1), (13.67a)

EEE1(xxx, t) = EIei(kkkI·xxx−ωIt)+ERei(kkkR·xxx−ωRt) (Medium 2). (13.67b)
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z = 0tFig. 13.7 Propagation of an monochromatic electromagnetic plane wave at a straight boundary
between two dielectric materials, with n̂nn the unit normal at the boundary. The wavevector is
kkkI for the incident wave, kkkR for the reflected wave, and kkkT for the transmitted (refracted)
wave.

At the interface between Medium 1 and Medium 2, the matching conditions in the absence
of charge or current are

n̂nn · (DDD1−DDD2) = 0 n̂nn · (BBB1−BBB2) = 0, (13.68a)

n̂nn× (EEE1−EEE2) = 0 n̂nn× (HHH1−HHH2) = 0, (13.68b)

which may be used to determine the properties of the transmitted and reflected waves, as
we shall now discuss.

The matching conditions (13.68) cannot be satisfied at all points and all times on the
z = 0 plane unless the phases of the incident, transmitted, and reflected waves are the
same, which requires that

ωI = ωT = ωR ≡ ω kkkI · xxx|z=0 = kkkT · xxx|z=0 = kkkR · xxx|z=0 , (13.69)

and implies the conditions

kIx = kTx = kRx, (13.70a)

kIy = kTy = kRy. (13.70b)

In Fig. 13.7, kkkI and n̂nn lie in the x− z plane, so kIy = 0 and thus from Eq. (13.70b) kTy =

kRy = 0 and we deduce that the three wavevectors kkkI, kkkT, and kkkR are all coplanar.

The remainder of this section is under construction.

13.4.2 Absorption and Dispersion

This section is under construction.
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Background and Further Reading

The discussion of polarization for electromagnetic waves in this chapter has followed
Zangwill [42] closely.
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Problems

13.1 Beginning from Eqs. (13.45)-(13.48), prove that the most general polarization of a
monochromatic plane electromagnetic wave propagating in the vacuum is described
by the polarization ellipse of Eq. (13.49).

13.2 (a) Show that for linearly (plane) polarized monochromatic plane electromagnetic
waves the electric field vector points in the same fixed direction for all values of the
coordinates xxx and t.
(b) Show that for circularly polarized monochromatic plane electromagnetic waves
the electric field vector satisfies

Re [EEE±(0, t)] =
A√

2
(ε̂εε1 cosωt± ε̂εε2 sinωt),

where for circular polarization,

A≡
√

2A =
√

2B δ = δ2−δ1 =
mπ
2

(m =±1,±3, . . .),

which corresponds to the spiral motion illustrated in Fig. 13.5.
13.3 Prove the relationships between measured intensities and the Stokes parameters given

in Eq. (13.58).
13.4 Prove the dispersion relation (13.65). Hint: Take the curl of the relation kkk×EEE =

ωµHHH given in Eq. (13.64b).
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This section is under construction.
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Problems

14.1 No problems yet for this chapter.



15 Minkowski Spacetime

These lectures constitute a graduate-level course in classical electromagnetism. The dis-
tinction between classical and modern physics turns on whether the dynamics are described
by quantum mechanics and quantum field theory or classical mechanics and classical field
theory, and by non-relativistic mechanics or relativistic mechanics. Traditionally classical
electromagnetism excludes quantum theory (except for a few quantum concepts required
for discussions involving the microscopic structure of matter), but special relativity has
been considered part of the discussion of classical electromagnetism. Accordingly, this
chapter will introduce Minkowski spacetime and a differential geometry and spacetime
tensor formalism that is the mathematical foundation of the theory of relativity. Then in
Ch. 16 we will introduce the special theory of relativity and demonstrate explicitly the
Lorentz invariance of Maxwell’s equations. Finally, Ch. 18 will use the gauge-invariant
and Lorentz-invariant formulation of classical electromagnetism in terms of the Maxwell
equations to paint electromagnetism as a relativistic gauge field theory that, when quan-
tized, is the harbinger of the Standard Model of elementary particle physics.

It is possible to introduce special relativity in a minimal way and then use that to demon-
strate the Lorentz invariance of the Maxwell equations in less space than we will use here.
However, we choose to give a more thorough introduction to the differential geometry and
tensor formalism underlying the theory of relativity. In particular, the tensor formalism will
be developed in a way that is compatible with curved spacetime, and therefore with general
relativity. Then, we will approximate by restricting to flat spacetime to recover the theory
of special relativity. This approach has several advantages:

1. At the level of expertise required for our discussion it does not take much longer to
develop the formalism in a way compatible with either flat or curved spacetime than to
describe special relativity minimally.

2. The resulting formalism gives more satisfying insight into special relativity and its re-
lationship with Newtonian mechanics, general relativity, and the Maxwell equations.

3. Developing the formalism in this way gives the reader a solid foundation to take on
more advanced topics such as general relativity.

Let us begin the discussion with an overview of 4-dimensional spacetime.

15.1 Minkowski Spacetime and Spacetime Tensors

The most elegant formulation of special relativity is in terms of a 4-dimensional spacetime
manifold called Minkowski space, and in terms of spacetime tensors that are a consequence
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of the differential geometry of that manifold. Let us review Minkowski space and spacetime
tensors defined for that manifold.

15.1.1 Transformations between Inertial Systems

In 1905 Einstein published the special theory of relativity, which was to revolutionize our
conception of space and time. His motivation for the special theory was a conviction that
the laws of physics must be independent of coordinate system for the observer (the princi-
ple of relativity), and that transformations between inertial frames (coordinate systems in
which Newton’s first law is valid) should be the same for particles and for light. Newtonian
mechanics already implied a principle of relativity for space: the laws of mechanics were
unchanged by a Galilean transformation between inertial frame. For motion along the x
axis a Galilean transformation takes the form

x′ = x− vt y′ = y z′ = z t ′ = t, (15.1)

where primed coordinates and unprimed coordinates represent the two inertial frames, the
velocity is v, and a single universal time t = t ′ is assumed for all inertial frames. But
Einstein (as well as others such as Lorentz) realized that there is a problem in that these
common-sense notions of relative motion between inertial frames were consistent with
the motion of billiard balls and projectiles, but were inconsistent with the theory of light,
which was well understood in 1905 to correspond to an electromagnetic wave described
by Maxwell’s equations.

A striking aspect of the Maxwell theory was that it admitted wave solutions and these
waves traveled with a speed that was a constant of the theory (and thus independent of
inertial frame for the observer). When the constant was evaluated it was found to be equal
to the speed of light, which led to Maxwell’s electromagnetic waves being identified with
light. The beauty of Maxwell’s equations greatly impressed Einstein, but they presented a
problem of interpretation for classical physics.

By the Galilean transformations, the speed of light should depend upon the iner-
tial frame of the observer; but not by Maxwell’s equations because the speed of
light is a constant of the theory.

The interpretation that emerged to reconcile this discrepancy was that electromagnetic
waves must move through some medium. (How could a wave travel through nothing?)
This hypothesized medium was called the aether, and it possessed quite magical proper-
ties: it was required to be an invisible, rigid (because transverse light waves don’t propagate
through fluids) substance permeating all of space, but relevant only for light propagation,
so as not to disturb other physical laws.

Then the constant speed of electromagnetic waves could be understood as an
artifact of the special aether rest frame in which light propagated.
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It is now understood that light waves are propagating disturbances in electric and mag-
netic fields that do not require a physical medium, and that the aether is a fiction. But in
the latter part of the 19th century it was widely believed to exist, and various attempts were
made to detect the motion of the Earth relative to the aether (an effect called the aether
drift). Using light interferometry, Michelson and Morley showed in 1887 that there was
no evidence for motion of the Earth with respect to the hypothetical aether, thus casting
serious doubt on its existence.1

15.1.2 The Special Theory of Relativity

Without the aether fiction, Maxwell’s equations for light and the Galilean invariance exhib-
ited by material particles were clearly at odds. Others had hinted at a solution (notably Hen-
drik Lorentz and Henri Poincaré) but it was Einstein who first concluded that the Maxwell
theory was correct and that it was the Galilean transformations that required modification
to reconcile mechanics and electromagnetism. Thus he put forth the bold and unqualified
assertions that

1. physical law is the same in all coordinate systems, so there are no preferred inertial
frames, and

2. the speed of light is constant in all inertial frames

that are the foundation of the 1905 special theory of relativity. Requiring the speed of light
c be an invariant independent of inertial frame dictated replacement of Galilean transfor-
mations (15.1) with Lorentz transformations,

x′ = γ(x− vt) y′ = y z′ = z,

t ′ = γ
(

t− vx
c2

)
γ ≡ 1√

1− v2/c2
,

(15.2)

where a boost along the x axis is assumed and γ is called the Lorentz γ-factor. Notice that
the Galilean transformations remain quite correct in the low-velocity world since in the
limit v/c→ 0 the factor γ → 1 and the Lorentz transformations (15.2) become equivalent
to the Galilean transformations (15.1). Notice also that time transforms non-trivially under
Lorentz transformations, with the Lorentz transformations mixing the space and time coor-
dinates. This is in stark contrast to the Galilean transformations, where there is a universal
time shared by all observers.

The mathematician Hermann Minkowski (once Einstein’s teacher) then proposed that
in special relativity separate notions of space and time should be abandoned in favor of a
4-dimensional spacetime parameterized by spacetime coordinates

(x0,x1,x2,x3)≡ (ct,x,y,z), (15.3)

1 Nevertheless, efforts persisted for years to salvage the aether hypothesis. Einstein originally took the aether
hypothesis seriously, but abandoned it at some point before he published the special theory of relativity. Ein-
stein claimed that the Michelson–Morley result had no influence on his formulation of the special theory of
relativity. It is likely that Einstein knew of the Michelson–Morley results, but seems to have felt that this was
not as important as his own reasoning in coming to the special theory of relativity.
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where the superscripts are indices, not exponents. (The reason for placement of indices as
superscripts will explained shortly.) In a 1908 presentation entitled Raum und Zeit (Space
and Time) Minkowski introduced 4-dimensional spacetime using a now-legendary phras-
ing:

The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.

Hermann Minkowski (1908)

Now time, scaled by the speed of light so that it has the same units as the other three co-
ordinates, is just another coordinate in 4-dimensional spacetime. Minkowski’s formulation
showed that special relativity is rather simple in 4-dimensional spacetime, but becomes
complicated when projected onto 3-dimensional space.2

15.1.3 Minkowski Space

Allowing the coordinates (x0,x1,x2,x3) to range over all their possible values traces out
the manifold of 4-dimensional spacetime called Minkowski space. In this space the square
of the infinitesimal distance ds2 between two points (ct,x,y,z) and (ct + cdt,x+ dx,y+
dy,z+dz) is given by

ds2 = ∑
µν

ηµν dxµ dxν =−c2dt2 +dx2 +dy2 +dz2,

=−(dx0)2 +(dx1)2 +(dx2)2 +(dx3)2, (15.4)

which is called the line element of the Minkowski space. Notice that in this equation ds2

means (ds)2, and dx2 means (dx)2, but the superscripts in (dx0,dx1,dx2,dx3) are indices
and not powers. The metric tensor of Minkowski space ηµν appearing in Eq. (15.4) may
be expressed as the diagonal matrix

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (15.5)

The line element (15.4) or the metric tensor ηνµ determine the geometry of Minkowski
space because they specify distances, distances can be used to define angles, and that is
geometry.

The pattern of plus and minus signs on the right side of Eq. (15.4), or on the diagonal
of the matrix in Eq. (15.5), defines the signature of the metric. For Minkowski space the
2 An English translation of the full presentation may be found at https://en.wikisource.org/wiki/
Translation:Space_and_Time. Minkowski undoubtedly would have made further contributions to
the development of special and general relativity, but he died unexpectedly of peritonitis only months after his
famous Space and Time lecture.
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signature that we adopt is (−+++). Some authors define the signature as the difference of
the number of + and − signs, which conveys similar information. A metric such as (15.5)
where the signs in the signature pattern are not all the same is termed an indefinite metric.
Equally common is the choice (+−−−) for the Minkowski-space signature, which leads
to the same physical results as our choice if all signs are carried through consistently. The
central point for the indefinite metric of Minkowski spacetime is that the last three terms
have the same sign and that the sign of the first term differs from that of the other three
(assuming the usual modern convention of displaying the timelike coordinate in the first
position and the spacelike coordinates in the last three positions).

Minkowski spacetime is not “just like ordinary space but with more dimensions”,
because the geometry of Minkowski space differs fundamentally from that of 4-
dimensional Euclidean space. The difference is encoded in the metric signature,
which is just the signature of the unit matrix (+ + ++) for 4-dimensional eu-
clidean space, compared with the indefinite-metric signature (− + ++) for the
Minkowski metric.

That change in sign between timelike and spacelike components of the metric signature
for spacetime has enormous implications. Most of the surprising features of special rela-
tivity (space contraction, time dilation, relativity of simultaneity, the twin “paradox”, . . . )
follow directly from this difference in geometry relative to euclidean space implied by the
Minkowski indefinite metric.

15.2 Symmetry under Coordinate Transformations

A physical system has a symmetry under some operation if after the operation the system
is indistinguishable from the system before the operation. The theory of relativity may be
viewed as a symmetry under coordinate transformations. Relativity is ultimately a state-
ment that physics is independent of our choice of coordinate system: two observers, refer-
encing their measurements to two different coordinate systems, should deduce from their
observations the same laws of physics. General relativity requires invariance of the laws of
physics under the most general possible coordinate transformations, while special relativity
requires a symmetry under only the subset of coordinate transformations that are between
inertial frames. Hence, to understand relativity it is important consider coordinate systems,
transformations between coordinate systems, and the properties of those transformations.

15.3 Euclidean Coordinates and Transformations

Our ultimate goal is to describe coordinates and transformations between coordinates in
a general (possibly curved) space having a Minkowski metric with three spacelike coor-
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dinates and one timelike coordinate. However, to introduce these concepts it is useful to
begin with the simpler case of vector fields in euclidean space [10].

15.3.1 Parameterizing in Different Coordinate Systems

Assume a 3D euclidean space having a cartesian coordinate system (x,y,z), with a set
of mutually orthogonal unit vectors (iii, jjj,kkk) pointing in the x, y, and z directions, respec-
tively. Assume also an alternative coordinate system (u,v,w), perhaps not cartesian, with
the (x,y,z) and (u,v,w) coordinates related by functional relationships

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w). (15.6)

Further, we assume the transformations to be invertible so that we can solve for (u,v,w) in
terms of (x,y,z).

Example 15.1 Let (u,v,w) correspond to spherical coordinates (r,θ ,φ), so that Eq.
(15.6) takes the familiar form

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ , (15.7)

with r ≥ 0 and 0≤ θ ≤ π and 0≤ φ ≤ 2π .

It will prove useful to combine Eqs. (15.6) into an equation giving a position vector rrr
for a point in terms of the (u,v,w) coordinates:

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk. (15.8)

For example, in terms of the spherical coordinates (r,θ ,φ),

rrr = (r sinθ cosφ) iii+(r sinθ sinφ) jjj+(r cosθ)))kkk. (15.9)

The second coordinate system in these examples generally may be non-cartesian but the
space still is assumed to be intrinsically euclidean (not curved). The transformation from
the (x,y,z) coordinates to the (r,θ ,φ) coordinates just gives two different schemes to label
points in the same flat space.

15.3.2 Basis Vectors

Vectors are geometrical objects: they exist independent of representation in any particular
coordinate system. However, it is often useful to express vectors in terms of components
within a specific coordinate system by defining basis vectors that permit arbitrary vectors
to be expanded in that basis. Equations (15.8) and (15.9) are familiar examples, where an
arbitrary vector has been expanded in terms of the three orthogonal cartesian unit vectors
(iii, jjj,kkk). For a flat manifold, a single basis can be chosen that applies to all points in the
space. If the space is curved, or if it is represented in non-cartesian coordinates, it is often
useful to define basis vectors at individual points of the space, as we shall now describe.
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tFig. 15.1 Examples of surfaces and curves arising from constraints. (a) In 3D euclidean space
parameterized by cartesian coordinates (x,y,z), the constraints x = x0 and z = z0 define
2D planes and the intersection of these planes defines a 1D surface parameterized by the
variable y. (b) In 3D space described in spherical coordinates (r,θ ,φ), the constraint
r = constant defines a 2D sphere, the constraint θ = constant defines a cone, and the
constraint φ = constant defines a half-plane. The intersection of any two of these surfaces
defines a curve parameterized by the variable not being held constant.

Parameterized curves and surfaces: At any point P(u0,v0,w0), three surfaces pass, which
may be defined by setting u = u0, v = v0, or w = w0, respectively. The intersections of
these three surfaces define three curves passing through P(u0,v0,w0). General parametric
equations for coordinate surfaces may be obtained from Eq. (15.8) by setting one of the
variables (u,v,w) equal to a constant, and for curves by setting two variables to constants.
For example, setting v and w to constant values, v = v0 and w = w0, yields an equation for
a curve given by the intersection of v = v0 and w = w0,

rrr(u) = x(u,v0,w0) iii+ y(u,v0,w0) jjj+ z(u,v0,w0)kkk, (15.10)

where u acts as a coordinate along the resulting curve. Figure 15.1 illustrates for a space
parameterized by cartesian and spherical coordinate systems. For example, in Fig. 15.1(b)

1. the surface corresponding to r = constant is a sphere parameterized by θ and φ ,
2. the constraint θ = constant is a cone parameterized by the variables r and φ ,
3. the constraint φ = constant defines a half-plane parameterized by r and θ , and
4. setting all three variables to constants defines a point P within the space.

Through any such point three curves pass that are determined by the pairwise intersections
of the three surfaces just defined. (1) Setting r and θ to constants specifies a curve that is the
intersection of the sphere and the cone, parameterized by the variable φ . (2) Setting r and
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φ to constants specifies an arc along the spherical surface parameterized by θ . (3) Setting
θ and φ to constants specifies a ray along the conic surface parameterized by r.

The tangent basis: Partial differentiation of (15.8) with respect to u, v, and w, respectively,
gives tangents to the three coordinate curves passing though a point P. These define a set
of basis vectors eeei through

eeeu ≡
∂ rrr
∂u

eeev ≡
∂ rrr
∂v

eeew ≡
∂ rrr
∂w

, (15.11)

where it is understood that all partial derivatives are to be evaluated at the point P =

(u0,v0,w0). The basis generated by the tangents to the coordinate curves will be termed
the tangent basis. Example 15.2 illustrates construction of the tangent basis for the exam-
ple of a spherical coordinate system.

Example 15.2 Consider the spherical coordinate system defined in Eq. (15.7) and illus-
trated in Fig. 15.1(b). The position vector rrr is

rrr = (r sinθ cosφ) iii+(r sinθ sinφ) jjj+(r cosθ)))kkk

and the tangent basis is obtained from Eq. (15.11) as

eee1 ≡ eeer =
∂ rrr
∂ r

= (sinθ cosφ) iii+(sinθ sinφ) jjj+(cosθ)kkk,

eee2 ≡ eeeθ =
∂ rrr
∂θ

= (r cosθ cosφ) iii+(r cosθ sinφ) jjj− (r sinθ)kkk,

eee3 ≡ eeeφ =
∂ rrr
∂φ

=−(r sinθ sinφ) iii+(r sinθ cosφ) jjj.

These basis vectors are mutually orthogonal because eee1 · eee2 = eee2 · eee3 = eee3 · eee1 = 0. For
example,

eee1 · eee2 = r sinθ cosθ cos2 φ + r sinθ cosθ sin2 φ − r cosθ sinθ
= r sinθ cosθ(cos2 φ + sin2 φ)− r cosθ sinθ = 0.

From the scalar products of the basis vectors with themselves, their lengths are

|eee1|= 1 |eee2|= r |eee3|= r sinθ ,

and these can be used to define a normalized basis,

êee1 ≡
eee1

|eee1|
= (sinθ cosφ) iii+(sinθ sinφ) jjj+(cosθ)kkk,

êee2 ≡
eee2

|eee2|
= (cosθ cosφ) iii+(cosθ sinφ) jjj− (sinθ)kkk,

êee3 ≡
eee3

|eee3|
=−(sinφ) iii+(cosφ) jjj.

These basis vectors are now mutually orthogonal and of unit length, with a geometry that
is illustrated in Fig. 15.2.



231 Euclidean Coordinates and Transformations

φ = constant

half-plane

x

y

z

r = constant

surface

θ = constant ,

r = constant curve

φ

er

eφ

eθ

P

tFig. 15.2 Unit vectors in the tangent basis at point P for Example 15.2. The three basis vectors are
tangents to the curves passing through P that are defined by setting any two of the three
variables to a constant.

In elementary physics it is common to use an orthogonal coordinate system so that the basis
vectors are mutually orthogonal, and to normalize them to unit length, as in this example.
However, for more general applications the tangent basis defined by the partial derivatives
as in Eq. (15.11) need not be orthogonal or normalized to unit length.

The dual basis: We may also construct a basis at a point P by using the normals to
coordinate surfaces to define the basis vectors. Solving for

u = u(x,y,z) v = v(x,y,z) w = w(x,y,z),

an alternative set of basis vectors (eeeu,eeev,eeew) may be defined using the gradients

eeeu ≡ ∇∇∇u =
∂u
∂x

iii+
∂u
∂y

jjj+
∂u
∂ z

kkk,

eeev ≡ ∇∇∇v =
∂v
∂x

iii+
∂v
∂y

jjj+
∂v
∂ z

kkk, (15.12)

eeew ≡ ∇∇∇w =
∂w
∂x

iii+
∂w
∂y

jjj+
∂w
∂ z

kkk,

which are normal to the three coordinate surfaces through P defined by u = u0, v = v0,
and w = w0, respectively. This basis (eeeu,eeev,eeew) defined in terms of normals to surfaces is
said to be the dual of the basis (15.11), which is defined in terms of tangents to curves.
Notice that the two basis sets have been distinguished by the use of superscript indices on
the basis vectors (15.12) and subscript indices on the basis vectors (15.11).

Orthogonal and non-orthogonal coordinate systems: The tangent basis and dual basis
are equally valid. For orthogonal coordinate systems the set of normals to the planes cor-
responds to the set of tangents to the curves in orientation, differing possibly only in the
lengths of basis components. Thus, if the basis vectors are normalized the tangent basis
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and the dual basis are equivalent for orthogonal coordinates and the preceding distinctions
have little practical significance. However, for non-orthogonal coordinate systems the two
bases generally are not equivalent and the distinction between upper and lower indices is
relevant. Example 15.3 illustrates.

Example 15.3 Define a coordinate system (u,v,w) in terms of cartesian coordinates
(x,y,z) through [10]

x = u+ v y = u− v z = 2uv+w.

The position vector for a point rrr is then

rrr = x iii+ y jjj+ zkkk = (u+ v) iii+(u− v) jjj+(2uv+w)kkk

and from Eq. (15.11) the tangent basis is

eee1 ≡ eeeu =
∂ rrr
∂u

= iii+ jjj+2vkkk eee2 ≡ eeev =
∂ rrr
∂v

= iii− jjj+2ukkk eee3 ≡ eeew =
∂ rrr
∂w

= kkk.

Solving the original equations for (u,v,w),

u = 1
2 (x+ y) v = 1

2 (x− y) w = z− 1
2 (x

2− y2),

and Eq. (15.12) gives for the dual basis

eee1 ≡ eeeu =
∂u
∂x

iii+
∂u
∂y

jjj+
∂u
∂ z

kkk = 1
2 (iii+ jjj) eee2 ≡ eeev =

∂v
∂x

iii+
∂v
∂y

jjj+
∂v
∂ z

kkk = 1
2 (iii− jjj)

eee3 ≡ eeew =
∂w
∂x

iii+
∂w
∂y

jjj+
∂w
∂ z

kkk =−(u+ v) iii+(u− v) jjj+ kkk.

For the tangent basis the preceding expressions give

eee1 · eee2 = 4uv eee2 · eee3 = 2u eee3 · eee1 = 2v,

where the orthonormality of the basis (iii, jjj,kkk) has been used. Thus the tangent basis is
non-orthogonal. Taking scalar products of tangent basis vectors with themselves gives

eee1 · eee1 = 2+4v2 eee2 · eee2 = 2+4u2 eee3 · eee3 = 1,

so the tangent basis in this example is also not normalized to unit length. In this non-
orthogonal case the normal basis and the dual basis are distinct.

The preceding example illustrates that Eqs. (15.11) and (15.12) define different but equally-
valid bases, and that they are physically distinguishable in the general case of non-cartesian
coordinate systems, and hence that the placement of indices in upper or lower positions
matters. It should be assumed going forward that the vertical placement of indices in equa-
tions (upper or lower positions) is significant.
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15.3.3 Expansion of Vectors and Dual Vectors

Any vector VVV may be expanded in terms of the tangent basis {eeei} and any dual vector ωωω
may be expanded in terms of the dual basis {eeei}:

VVV =V 1eee1 +V 2eee2 +V 3eee3 = ∑
i

V ieeei ≡V ieeei, (15.13)

ωωω = ω1eee1 +ω2eee2 +ω3eee3 = ∑
i

ωieeei ≡ ωieeei, (15.14)

where in the last step of each equation the Einstein summation convention has been intro-
duced:

Einstein Summation Convention: An index appearing twice on one side of
an equation, once in a lower position and once in an upper position, implies a
summation on that repeated index. The index that is summed over is termed a
dummy index; summation on a dummy index on one side of an equation implies
that it does not appear on the other side. If the same index appears more than
twice on the same side of an equation, or appears more than once in an upper
position or more than once in a lower position, you have likely made a mistake.
Since the dummy (repeated) index is summed over, it does not matter what the
repeated index is, as long as it is not equivalent to another index in the equation.

From this point onward the Einstein summation convention usually will be assumed be-
cause it leads to more compact, easier to read equations.

The upper-index coefficients V i appearing in Eq. (15.13) are the components of the vec-
tor in the basis eeei = {eee1,eee2,eee3}, while the lower-index coefficients ωi appearing in Eq.
(15.14) are the components of the dual vector in the basis eeei = {eee1,eee2,eee3}. The vector and
dual vector components generally are distinct because they are components in two differ-
ent bases. However, as will now be discussed the vector and dual vector spaces are related
fundamentally way such that vector components V i and dual vector components ωi may be
treated operationally as if they were different components of the same vector.

15.3.4 Vector Scalar Product and the Metric Tensor

Utilizing Eq. (15.13), the scalar product of two vectors AAA and BBB may be expressed as

AAA ·BBB = (Aieeei) · (B jeee j) = eeei · eee j AiB j = gi jAiB j, (15.15)

where the components of the metric tensor gi j in this basis are given by

gi j ≡ eeei · eee j. (15.16)

Two vectors alone cannot form a scalar product, but the scalar product of two vectors can
be computed with the aid of the metric tensor, as Eq. (15.15) illustrates. Equivalently, the
scalar product of dual vectors ααα and βββ may be expressed as

ααα ·βββ = αieeei ·β jeee j = gi jαiβ j, (15.17)
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where the metric tensor components gi j with two upper indices are defined by

gi j ≡ eeei · eee j, (15.18)

and the scalar product of dual vectors and vectors as

ααα ·BBB = αieeei ·B jeee j = gi
jαiB j, (15.19)

where the metric tensor components gi
j with mixed upper and lower indices are defined by

gi
j ≡ eeei · eee j. (15.20)

Properties of the metric tensor will be discussed below but first we shall use the metric
tensor to establish a relationship called duality between the vector and dual vector spaces.

15.3.5 Duality of Vectors and Dual Vectors

There is little practical distinction between vectors and dual vectors in euclidean space with
cartesian coordinates. However, in a curved space and/or with non-cartesian coordinates
the situation is more complex. Although the examples in this chapter are primarily from
non-curved spaces where it is possible to finesse the issue, it is important not to build
into the discussion at this stage methods and terminologies that will not serve us well in
the more general case . The essential mathematics will be discussed in more depth later,
primarily in Section 15.4.6, but we summarize here the salient points.

1. Vectors are not defined directly in the manifold, but instead are defined in a euclidean
vector space (see Box 15.3) attached to the (possibly curved) manifold at each space-
time point that is called the tangent space.

2. Dual vectors are not defined directly in the manifold, but instead are defined in a eu-
clidean vector space attached to the (possibly curved) manifold at each spacetime point
that is called the cotangent space.

3. The tangent space of vectors and the cotangent space of dual vectors at a point P of
the manifold are different but dual to each other in a manner that will be made precise
below.

4. This duality allows objects in the two different spaces to be treated as effectively the
same kinds of objects.

As will be discussed further below, vectors and dual vectors are examples of more general
objects called tensors, which permits an abstract definition in terms of mappings from
vectors and dual vectors to the real numbers.3 To be specific,

1. Dual vectors ωωω are linear maps of vectors VVV to the real numbers: ωωω(VVV ) = ωiV i ∈ R.
2. Vectors VVV are linear maps of dual vectors ωωω to the real numbers: VVV (ωωω) =V iωi ∈ R.

3 A mapping generalizes a function. For example, y = f (x) is a map that associates the real number y with the
real number x. In this example the map is from a space to the same space (real numbers to real numbers). More
generally the mapping can be between different spaces, such as from vectors to real numbers.
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In these definitions expressions like ωωω(VVV ) = ωiV i ∈ R mean “the dual vectors ωωω act lin-
early on the vectors VVV to produce ωiV i ≡∑i ωiV i, which are elements of the real numbers,”
or “dual vectors ωωω are functions (maps) that take vectors VVV as arguments and yield ωiV i,
which are real numbers”. Linearity of the mapping means, for example,

ωωω(αAAA+βBBB) = αωωω(AAA)+βωωω(BBB),

where ωωω is a dual vector, α and β are arbitrary real numbers, and AAA and BBB are arbitrary
vectors.

It is easy to show (see Box 15.3) that, just as the space of vectors satisfies the conditions
required of a vector space, the space of dual vectors as defined by the map above satisfies
the same conditions and also is a vector space. The vector space of vectors and correspond-
ing vector space of dual vectors are said to be dual to each other because they are related
by

ωωω(VVV ) =VVV (ωωω) =V iωi ∈ R. (15.21)

Notice further that the expression AAA ·BBB = gi jAiB j from Eq. (15.15) defines a linear map
from the vectors to the real numbers, since it takes two vectors AAA and BBB as arguments and
returns the scalar product, which is a real number. Thus one may write

AAA(BBB) = AAA ·BBB≡ AiBi = gi jAiB j. (15.22)

But since in AiBi = gi jAiB j the vector B is arbitrary, in general

Ai = gi jA j, (15.23)

which specifies a correspondence between a vector with components Ai in the tangent space
of vectors and a dual vector with components Ai in the cotangent space of dual vectors.
Likewise, Eq. (15.23) can be inverted using that the inverse of gi j is gi j (see Section 15.3.6)
to give

Ai = gi jA j. (15.24)

Hence, using the metric tensor to raise and lower indices by summing over a repeated index
(an operation called contraction) as in Eqs. (15.23) and (15.24), we see that the vector and
dual vector components are related through contraction with the metric tensor.4

This is the precise sense in which the tangent and cotangent spaces are dual: they
are different, but closely related through the metric tensor.

The duality of the vector and dual vector spaces may be incorporated concisely by requiring
that for the basis vectors {eeei} and basis dual vectors {eeei} in Eqs. (15.13) and (15.14)

eeei(eee j) = eeei · eee j = δ i
j, (15.25)

4 A metric is a function for measuring distance between points in a manifold. Mathematically, a respectable
manifold need not have a metric defined, and the absence of a metric would complicate the present discussion.
However, these lectures are about physics, and physics cannot get very far without the notion of measuring dis-
tance between points, so it is typically formulated in manifolds that do have a metric defined (such manifolds
are termed metric spaces). Thus, we will always assume a metric to be at our disposal in these discussions.
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where the Kronecker delta is defined by

δ i
j =

{
1 i = j
0 i ̸= j

. (15.26)

This implies that the basis vectors can be used to project out the components of a vector VVV
by taking the scalar product with the vector,

V i = eeei ·VVV Vi = eeei ·VVV . (15.27)

A lot of important mathematics has transpired in the last few equations, so let’s pause
for a moment and take stock. For a space with a metric tensor defined,

1. Eqs. (15.21)–(15.27) imply that vectors and dual vectors are in a one-to-one relationship
2. that permits them to be manipulated effectively as if a dual vector component were just

a vector component with a lower index, and
3. component indices can be raised or lowered as desired by contraction with the metric

tensor.

All spaces of interest here will have metrics, so this reduces the practical implications of
the distinction between vectors and dual vectors to a simple matter of keeping proper track
of upper and lower positions for indices.

15.3.6 Properties of the Metric Tensor

The metric tensor will play a fundamental role in our discussion. Accordingly, let us sum-
marize some of its properties in simple euclidean spaces, since most will carry over (suit-
ably generalized) to 4D (possibly curved) spacetime. The metric tensor must be symmetric
in its indices:

gi j = g ji gi j = g ji. (15.28)

From Eqs. (15.23) and (15.24)

gi jA j = Ai gi jA j = Ai. (15.29)

That is, contraction with the metric tensor may be used to raise or lower an index. The
scalar product of vectors may be written in any of the equivalent ways

AAA ·BBB = gi jAiB j = gi jAiB j = gi
jAiB j = AiBi = AiBi. (15.30)

From the two expressions in (15.29), Ai = gi jA j = gi jg jkAk, and since this is valid for
arbitrary components Ai it follows that the metric tensor obeys

gi jg jk = gk jg ji = δ i
k. (15.31)

Viewing gi j as the elements of a matrix G and gi j as the elements of a matrix G̃, Eqs. (15.28)
are equivalent to the matrix equations

G = GT G̃ = G̃T, (15.32)
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Box 15.1 The metric tensor for 3-dimensional euclidean space

Components: gi j ≡ eeei · eee j gi j ≡ eeei · eee j gi
j ≡ eeei · eee j = δ i

j

Scalar product: AAA ·BBB = gi jAiB j = gi jAiB j = gi
jAiB j = AiBi = AiBi

Symmetry: gi j = g ji gi j = g ji

Contractions: gi jA j = Ai gi jA j = Ai

Orthogonality: gi jg jk = gk jg ji = δ i
k

Matrix properties : G̃G = GG̃ = I G≡ [gi j] G̃≡ [gi j]

where T denotes the transpose of the matrix. The Kronecker delta is just the unit matrix I,
implying that Eq. (15.31) may be written as the matrix equations

G̃G = GG̃ = I. (15.33)

Therefore, we note the useful property that

The matrix corresponding to the metric tensor with two lower indices is the in-
verse of the matrix corresponding to the metric tensor with two upper indices,
and one may be obtained from the other by matrix inversion.

Some fundamental properties of the metric tensor for three-dimensional euclidean space
are summarized in Box 15.1.

15.3.7 Line Elements

For coordinates u1(t), u2(t), and u3(t) that are parameterized by the variable t, as t varies
the points corresponding to specific values of the coordinates

u1 = u1(t) u2 = u2(t) u3 = u3(t)

will trace out a curve in the 3D euclidean space. From Eq. (15.8), the position vector for
points on the curve as a function of t is

rrr(t) = x
(
u1(t),u2(t),u3(t)

)
iii+ y

(
u1(t),u2(t),u3(t)

)
jjj+ z

(
u1(t),u2(t),u3(t)

)
kkk,

and by the chain rule

drrr
dt

=
∂ rrr
∂u1

du1

dt
+

∂ rrr
∂u2

du2

dt
+

∂ rrr
∂u3

du3

dt
= u̇1eee1 + u̇2eee2 + u̇3eee3, (15.34)

where (15.11) was used and dui/dt ≡ u̇i. The squared infinitesimal distance along the curve
is then given by

ds2 = drrr ·drrr = duieeei ·du jeee j

= eeei · eee j duidu j

= gi j duidu j, (15.35)
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tFig. 15.3 Distance ds between points a and b along a curve parameterized by t.

where Eq. (15.16) was used. [Notice the notational convention dα2 ≡ (dα)2.] Thus ds2 =

gi j duidu j is the infinitesimal line element implied by the metric gi j, and the length d of a
finite segment of the curve between points a and b is obtained integration,

d =

∫ b

a

(
gi j

dui

dt
du j

dt

)1/2

dt, (15.36)

where t parameterizes the position along the curve, as illustrated in Fig. 15.3.

15.3.8 Euclidean Line Element

The line element for 2D euclidean space in cartesian coordinates (x,y) is

ds2 = dx2 +dy2, (15.37)

which is just the Pythagorean theorem in differential form. The corresponding line element
in plane polar coordinates (r,φ) is then

ds2 = dr2 + r2dφ 2, (15.38)

as worked out in Example 15.4.

Example 15.4 For plane polar coordinates (r,φ)

x = r cosφ y = r sinφ ,

so the position vector (15.8) is

rrr = (r cosφ) iii+(r sinφ) jjj.

Then from Eq. (15.11) the basis vectors of the tangent basis are

eee1 =
∂ rrr
∂ r

= (cosφ)iii+(sinφ) jjj eee2 =
∂ rrr
∂φ

=−r(sinφ) iii+ r(cosφ) jjj.

The elements of the metric tensor are then given by Eq. (15.16),

g11 = cos2 φ + sin2 φ = 1 g22 = r2(cos2 φ + sin2 φ) = r2

and g12 = g21 = 0, or in matrix form,

gi j =

(
1 0
0 r2

)
.
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Then the line element is given by Eq. (15.35),

ds2 = g11(du1)2 +g22(du2)2 = dr2 + r2dφ 2,

where u1 = r and u2 = φ . Equivalently, the line element can be expressed as

ds2 = (dr dφ)
(

1 0
0 r2

)(
dr
dφ

)
= dr2 + r2dφ 2,

in matrix form.

The form of the line element differs between cartesian and polar coordinates, but for any
two nearby points the distance between them is given by ds, for either coordinate system.
Thus, the line element ds is invariant under coordinate transformations. The distance be-
tween two points that are not nearby can be obtained by integrating ds along the curve, so
the distance interval is invariant under coordinate transformations for metric spaces.5 The
line element, which is specified in terms of the metric tensor, characterizes the geometry
of the space because integrals of the line element define distances and angles can be de-
fined in terms of ratios of distances. Indeed, all the axioms of euclidean geometry could be
verified starting from the line elements (15.37) or (15.38).

15.3.9 Integration and Differentiation

It is important to know how the volume element for integrals behaves under change of
coordinates. This is trivial in euclidean space with orthonormal coordinates, but becomes
non-trivial in curved spaces, or in flat spaces parameterized in non-cartesian coordinates.
We may illustrate in flat 2D space with coordinates (x1,x2) and basis vectors (eee1,eee2),
assuming an angle θ between the basis vectors. The 2D volume (area) element in this case
is

dA =
√

detgdx1dx2, (15.39)

where detg is the determinant of the metric tensor matrix gi j. For orthonormal coordinates
gi j is the unit matrix and (detg)1/2 = 1, but in the general case the (detg)1/2 factor is
not unity and its presence is essential to making integration invariant under change of
coordinates.

Derivatives of vectors in spaces defined by position-dependent metrics are crucial in the
formulation of general relativity. Let us introduce the issue with the simpler case of the
derivative of a vector in a flat euclidean space, but parameterized with a vector basis that
depends on the coordinates. A vector VVV may be expanded in a basis eeei,

VVV =V ieeei. (15.40)

5 Mathematically, spaces are equipped with a hierarchy of characteristics and a distance-measuring prescription
(a metric) need not be one of them. If such a prescription is defined, the space is termed a metric space. This
distinction may seem pedantic to a physicist since almost all spaces employed in physics are metric spaces,
but it is important from a fundamental mathematical perspective.
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tFig. 15.4 Rotation of the coordinate system for a vector xxx. The vector is invariant under the rotation
but its components in the original and rotated coordinate systems are different.

Applying the usual (Leibniz) rule for the derivative of a product, the partial derivative is

∂VVV
∂x j =

∂V i

∂x j eeei +V i ∂eeei

∂x j , (15.41)

where the first term represents the change in the component V i and the second term rep-
resents the change in the basis vectors eeei. In the second term the factor ∂eeei/∂x j is itself a
vector and can be expanded in the vector basis (15.40),

∂eeei

∂x j = Γk
i jeeek. (15.42)

The Γk
i j appearing in Eq. (15.42) are called connection coefficients. Later we will see that

the connection coefficients can be evaluated from the metric tensor and and that they may
be used in either curved or flat spacetime to define derivatives and to specify a prescription
for parallel transport of vectors.

15.3.10 Transformations

Often it is essential to be able to express physical quantities in more than one coordinate
system, so we need to understand how to transform between coordinate systems. This issue
is particularly important in both general and special relativity, where it is essential to ensure
that the laws of physics are not altered by transformation between coordinate systems. We
may illustate the principles involved by consider two familiar examples: spatial rotations
and Galilean boosts.

Rotational Transformations

Consider the description of a vector under rotation of a coordinate system about the z axis
by an angle φ , as in Fig. 15.4. The vector xxx has the components x1 and x2 with respect
to basis vectors {eeei} for the original coordinate system before rotation. After rotation of
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the coordinate system to give the new basis vectors {eee′i}, the vector xxx has the components
x′1 and x′2 in the new coordinate system. The vector xxx can be expanded in terms of the
components for either basis:

xxx = xieeei = x′ieee′i, (15.43)

and from the geometry of Fig. 15.4 the components in the two bases are related by (assum-
ing a clockwise rotation)




x′1

x′2

x′3


=




cosφ sinφ 0
−sinφ cosφ 0

0 0 1






x1

x2

x3


 , (15.44)

which may be written compactly as

x′i = Ri
jx

j, (15.45)

where the Ri
j are the elements of the matrix in Eq. (15.44). This transformation law holds

for any vector; indeed, a vector in the x–y plane may be defined by this transformation law.

Galilean Transformations

Another simple example is Galilean transformations between inertial frames in classical
mechanics. Transformations with the same orientation but different relative velocities are
called boosts. In Newtonian physics time t is considered to be the same for all observers
and Galilean boosts for motion along the x axis take the form

xxx′ = xxx′(xxx, t) = xxx− vvvt t ′ = t ′(xxx, t) = t. (15.46)

“Newtonian relativity” asserts that the laws of physics are invariant under Galilean transfor-
mations. The laws of mechanics at low velocity are approximately invariant under (15.46),
but the laws of electromagnetism (Maxwell’s equations) and the laws of mechanics for ve-
locities near that of light are not. Indeed, the failure of Galilean invariance for the Maxwell
equations was a large motivation for Einstein’s belief that the existing laws of mechanics
required modification, leading to the special theory of relativity.

In the absence of gravity, the laws of both special-relativistic mechanics and of electro-
magnetism are invariant under Lorentz transformations but not under Galilean transforma-
tions. In the presence of a gravity, neither Galilean nor Lorentz invariance holds globally
for either electromagnetism or mechanics, and it is necessary to seek a more comprehen-
sive invariance to describe systems subject to gravitational forces. This quest eventually
leads to the theory of general relativity, but that is beyond the scope of these lectures.

Having introduced most of the important concepts in a “toy model” of euclidean space,
let us now turn our attention to application of these ideas to the actual arena of special and
general relativity, 4D spacetime.
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15.4 Spacetime Tensors and Covariance

The principle of relativity implies that coordinates should be viewed as arbitrary labels, so
that the laws of physics are independent of the coordinate system in which they are formu-
lated. We may implement this coordinate independence by formulating the laws of physics
in terms of equations that are covariant with respect to the coordinate transformations.6

The term covariance implies that a set of equations maintains the same mathematical form
under a specified set of transformations. Covariance can be stated most concisely in terms
of tensors, which we may think of as generalizing the idea of vectors. We now give an in-
troduction to tensors, tensor notation, and tensor properties for 4D spacetime, and illustrate
with an application of the tensor formalism to Lorentz covariance, which will lead to the
theory of special relativity.

15.4.1 Spacetime Coordinates

Relativity implies that space and time enter physical descriptions on comparable footings,
so it is useful to unify them into a 4-dimensional continuum termed spacetime. Spacetime is
an example of a differentiable manifold, as described in Box 15.2 (adapted from Ref. [16]).
Spacetime points are defined by coordinates having four components, the first labeling the
time t multiplied by the speed of light c, the other three labeling the spatial coordinates:

x≡ xµ = (x0,x1,x2,x3) = (ct,xxx), (15.47)

where xxx denotes a 3-vector with components (x1,x2,x3) labeling the spatial position. The
first component x0 is termed timelike and the last three components (x1,x2,x3) are termed
spacelike. As for earlier discussion, the upper or lower placement of indices is meaningful.
Bold symbols will denote (ordinary) vectors defined in the three spatial degrees of freedom,
and 4-component vectors in spacetime will be denoted in non-bold symbols. The modern
convention is to number the indices beginning with zero rather than one. The coordinate
systems of interest will be subject only to the requirements that they assign a coordinate
uniquely and be differentiable to sufficient order at each point of spacetime.

A point in an n-dimensional manifold can be labeled using a coordinate system of n
parameters, but the choice of coordinate system is arbitrary. Points may be relabeled by a
passive coordinate transformation that switches the coordinate labels of the points, xµ →
x′µ , with xµ and x′µ labeling the same point but in two different coordinate systems. Our

6 Covariance is defined relative to a particular set of transformations. There is a subtle difference in meaning
between invariance and covariance, with respect to a set of transformations. Invariance means that the phys-
ical observables of the system are not changed by the transformations. Covariance means that the system
is formulated mathematically so that the form of the equations does not change under the transformations.
Manifest covariance means that the invariance is manifest in the formulation of the theory (can be “seen at a
glance”). Thus, a system could be invariant under some set of transformations, but not manifestly covariant
because the invariance is obscured by the way the equations are written. This is the case with the Maxwell
equations. As we shall see in Section 16.8, it isn’t clear whether the Maxwell equations written in their usual
form (1.1) are invariant under Lorentz transformation (because they are not formulated in standard Lorentz
4-vector notation), but they are, and they can be re-written so that the Lorentz invariance is manifest.
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Box 15.2 Manifolds

Loosely, a manifold is a space. More formally, an n-dimensional manifold is a set
that can be parameterized continuously by n independent real coordinates for each
point (member of the set). Physics is usually concerned with differentiable man-
ifolds, which are continuous and differentiable (to a suitable order). Again, more
formally: a manifold is continuous if for every point there are neighboring points
having infinitesimally different coordinates, and differentiable if a scalar field can be
defined on the manifold that is everywhere differentiable. Special and general rela-
tivity assume spacetime to be a Riemannian manifold: a continuous, differentiable
manifold with geometry described by a metric tensor of quadratic form that may
depend on spacetime coordinates.

Coordinates, charts, and atlases
A coordinate system or chart associates n real parameter values (labels) uniquely
with each point of an n-dimensional manifold M through a one-to-one mapping
from Rn (cartesian product of n copies of the real numbers R) to M. For exam-
ple, the set of continuous rotations about a single axis defines a one-dimensional
manifold parameterized by an angle φ ∈R. The one-to-one association of points in
the n-dimensional manifold with the values of their parameter labels is analogous
to mapping points of the manifold to points of an n-dimensional euclidean space.
Thus, locally a manifold looks like euclidean space in its most general properties,
such as dimensionality and differentiability (but not necessarily in geometry, since
this depends on whether the manifold has a metric and its nature).

A single coordinate system is usually insufficient to give a unique correspondence
between points and coordinate labels for all but the simplest manifolds. For example,
the latitude–longitude system for the Earth (viewed as a 2-sphere, S2) is degenerate
at the poles where all values of longitude correspond to a single point. In such cases
the manifold must be parameterized by overlapping coordinate patches (charts),
with transition functions between the different sets of coordinates for points in each
overlap region. An atlas is a collection of charts sufficient to parameterize an entire
manifold. For the latitude–longitude example it may be shown that the atlas must
contain at least two overlapping charts to parameterize the full manifold uniquely.

Curves and surfaces
Subsets of points within a manifold can be used to define curves and surfaces,
which represent submanifolds of the full manifold. Often it is convenient to repre-
sent these parametrically, with an m-dimensional submanifold parameterized by m
parameters. A curve is a one-dimensional submanifold parameterized by a single
parameter, while a hypersurface is a surface of one less dimension than the full
manifold, parameterized by n−1 real numbers.
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generic concern is with a transformation between one set of spacetime coordinates denoted
by (x0,x1,x2,x3), and a new set

x′µ = x′µ(x) (µ = 0,1,2,3), (15.48)

where x = xµ denotes the original (untransformed) coordinates. This notation is an eco-
nomical form of

x′µ = f µ(x0,x1,x2,x3) (µ = 0,1, . . .), (15.49)

where the single-valued, continuously-differentiable function f µ assigns new (primed) co-
ordinates (x′0,x′1,x′2,x′3) to a point of the manifold with old coordinates (x0,x1,x2,x3),
which may be abbreviated to x′µ = f µ(x) and, even more tersely, to Eq. (15.48). The coor-
dinates in Eq. (15.48) are just labels so the laws of physics cannot depend on them. Hence
the system x′µ is not privileged and Eq. (15.48) should be invertible.

The generalized form of the Einstein summation convention that we introduced earlier
will be assumed for all subsequent equations: for any term on one side of an equation any
index that is repeated, once as a superscript and once as a subscript, implies a summation
over that index. A superscript (subscript) in a denominator counts as a subscript (super-
script) in a numerator. We will use Greek indices (α,β , . . .) to denote the full set of space-
time indices running over 0, 1, 2, 3, while roman indices (i, j, . . .) will denote the indices 1,
2, 3 running only over the spatial coordinates. Thus xµ means any of the components x0,
x1, x2, x3, but xi means any of the components x1, x2, x3.

15.4.2 Vectors in Non-Euclidean Space

Spacetime is characterized by a non-euclidean manifold. In euclidean space we are used
to representing vectors as directed line segments of finite length. This picture will not do
in curved spacetime, which is locally but not globally, euclidean so extended straight lines
have no clear meaning. Thus we need a more general way to define vectors that works in
both euclidean and (possibly curved) non-euclidean manifolds. The standard solution is to
define vectors for an n-dimensional manifold, not in manifold itself, but in n-dimensional
euclidean tangent spaces, with an independent tangent space TP attached to each point P of
the manifold. This is illustrated in Fig. 15.5 for 1D and 2D spheres.7 Just as vectors may be
defined in tangent spaces attached to each point of a manifold, dual vectors my be defined
in cotangent spaces T ∗P attached to each point of a manifold.

A tangent bundle T M for a manifold M is a manifold constructed from the disjoint union
of all the tangent spaces TP defined on the manifold M. Likewise, a contangent bundle for
a manifold M is the disjoint union of all the cotangent spaces defined on the manifold.
Such bundles and their generalization form the basis of the theory of fiber bundles. We will
sometimes use the bundle terminology but will not use the theory of fiber bundles directly
in our discussion.

7 The idea conveyed by Fig. 15.5 in which planes tangent to a 2D surface are shown embedded in a 3D space
is useful conceptually, but defining the tangent space at each point is an intrinsic process with respect to a
manifold and does not require embedding it in a higher-dimensional manifold, as will be shown below.
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tFig. 15.5 Tangent spaces in curved manifolds, illustrated (a) for the manifold S1 and (b) for the
manifold S2. As illustrated for S2, vectors (indicated by arrows) are defined in the tangent
spaces at each point, not in the curved manifold. Embedding the 1D tangent-space
manifold in 2D euclidean space and the 2D tangent space in 3D euclidean space is for
visualization purposes only; the tangent space has a specification that is intrinsic to the
manifold.

15.4.3 Coordinates in Spacetime

A universal coordinate system can be chosen in euclidean space, with basis vectors that
are mutually orthogonal and constant, and these constant basis vectors can be normalized
to unit length for convenience. Much of ordinary physics may be described using such an
orthonormal basis. The situation is more complicated in non-euclidean (possibly curved)
manifolds. Because of the position-dependent metric of curved spacetime, it is most con-
venient to choose basis vectors that depend on position and that need not be orthogonal,
and it usually is not useful to normalize them since they are position dependent.

The key to specifying vectors in curved space (which will also work in flat space)
is to separate the “directed” part from the “line segment” part of the usual con-
ception of a vector as a directed line segment, because the direction for vectors
of infinitesimal length can be defined consistently in curved or flat spaces using
directional derivatives.

15.4.4 Coordinate and Non-Coordinate Bases

Consider a curve in a differentiable manifold along which one coordinate xµ varies while
all others xν(ν ̸= µ) are held constant. This curve will be termed the coordinate curve
xµ . Four such coordinate curves will pass through any point P in a spacetime manifold,
corresponding to the coordinate curves xµ with µ = (0,1,2,3). A set of position-dependent
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basis vectors eµ(µ = 0,1,2,3) can be defined at an arbitrary point P in the manifold by

eµ = Lim
δxµ→0

δ s
δxµ , (15.50)

where δ s is the infinitesimal distance along the coordinate curve xµ between the point P
with coordinate xµ and a nearby point Q with coordinate xµ + δxµ . For a parameterized
curve xµ(λ ) having a tangent vector t with components tµ = dxµ/dλ ,

t = tµ eµ =
dxµ

dλ
eµ ,

the directional derivative of an arbitrary scalar function f (xµ) defined in the neighborhood
of the curve is

d f
dλ
≡ Lim

ε→0

[
f (xµ(λ + ε))− f (xµ (λ ))

ε

]
=

dxµ

dλ
∂ f
∂xµ = tµ ∂ f

∂xµ ,

and since f (x) is arbitrary this implies the operator relation

d
dλ

=
dxµ

dλ
∂

∂xµ = tµ ∂
∂xµ . (15.51)

Hence the components tµ are associated with a unique directional derivative and the partial
derivative operators ∂/∂xµ may be identified with the basis vectors eµ ,

eµ =
∂

∂xµ ≡ ∂µ , (15.52)

which permits an arbitrary vector to be expanded as

V =V µ eµ =V µ ∂
∂xµ =V µ ∂µ . (15.53)

Position-dependent basis vectors specified in this way define a coordinate basis or holo-
nomic basis; a basis using orthonormal coordinates is then termed a non-coordinate basis
or an anholonomic basis. A coordinate basis is illustrated schematically in Fig. 15.6 for a
generic curved 2D manifold.

The definition of a vector in terms of directional derivatives evaluated at a point
of the manifold is valid in any curved or flat differentiable manifold. It replaces
the standard idea of a vector as the analog of a displacement vector between two
points, which does not generalize to curved manifolds.

From Eq. (15.50) the separation between nearby points is ds = eµ(x)dxµ , from which

ds2 = ds ·ds = (eµ · eν)dxµ dxν = gµν dxµ dxν

with the metric tensor gµν defined by,

eµ(x) · eν(x)≡ gµν(x). (15.54)

The scalar product of vectors A and B in a coordinate basis is given by

A ·B = (Aµ eµ) · (Bν eν) = gµν Aµ Bν . (15.55)
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tFig. 15.6 Tangent space TP at a point P for a curved 2D manifold M. The vectors tangent to the
coordinate curves at each point define a coordinate or holonomic basis. This figure is a
generalization of Fig. 15.5 to an arbitrary curved 2D manifold with a position-dependent,
non-orthogonal (coordinate) basis. This embedding of M in 3D euclidean space is for
visualization purposes only; the basis vectors e1 and e2 of the tangent space are specified
by directional derivatives of the coordinate curves evaluated entirely in M at the point P, as
described in Eqs. (15.50)–(15.53).

Equation (15.54) may be taken as a definition of a vector coordinate basis {eµ}.
The preceding discussion has been specifically for vectors and involves defining a basis

for the tangent space TP at each point P using the tangents ∂/∂xµ to coordinate curves
passing through P. A similar intrinsic procedure can be invoked to construct a basis for
dual vectors in the cotangent space T ∗P at a point P using gradients to define basis vectors.
This leads to equations analogous to (15.54)–(15.55), but with the indices of the basis
vectors in the upper position. A set of dual basis vectors eµ may be used to expand dual
vectors ω as8

ω = ωµ eµ , (15.56)

allowing the metric tensor with upper indices to be defined through

eµ(x) · eν(x)≡ gµν(x), (15.57)

with the scalar product of arbitrary dual vectors α and β given by

α ·β = gµν αµ βν . (15.58)

Equation (15.57) may be taken as a definition of a dual-vector coordinate basis {eµ}.
Just as Eqs. (15.54) or (15.57) are characteristic of a coordinate basis, an orthonormal-

ized non-coordinate basis is specified by the requirement

eµ̂(x) · eν̂(x) = ηµ̂ ν̂ , (15.59)

where η = diag{−1,1,1,1}. In this expression, hats on indices indicate explicitly that this
is an orthonormal and not coordinate basis. Our discussion will seldom require display of

8 The same symbol e will be used for vector and dual vector basis vectors, with the index in the lower position
for a vector basis and upper position for a dual vector basis. The justification for this notation is given in
Section 15.3.5.
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explicit basis vectors but usually we will assume implicitly the use of a coordinate basis
such that Eqs. (15.50)–(15.58) are valid.

15.4.5 Tensors and Coordinate Transformations

In formulating special and general relativity we are interested in how quantities that enter
physical descriptions change when the spacetime coordinates are transformed as in Eq.
(15.48). This requires understanding the transformations of fields, their derivatives, and
their integrals. To this end, it is useful to introduce spacetime tensors. These have a funda-
mental definition without reference to specific coordinate systems. but it often proves con-
venient to view tensors as objects expressed in a basis with components that carry some
number of upper and lower indices, and that change in a specific way under coordinate
transformations. This more practical interpretation of tensors will be developed below.9

The rank of a tensor will be given a more fundamental definition below but practically it
is equal to the total number of indices required to label its components when evaluated in a
basis. Thus scalars are tensors of rank zero and vectors or dual vectors are tensors of rank
one. This may be generalized to tensors carrying more than one index. Tensors carrying
only lower indices are termed covariant tensors, tensors carrying only upper indices are
termed contravariant tensors, and tensors carrying both lower and upper indices are termed
mixed tensors.

Tensor Types: It is convenient to indicate the type of a tensor by the ordered pair
(p,q), where p is the number of contravariant (upper) indices for components,
q is the number of covariant (lower) indices for components, and the rank of
the tensor is p+ q. In principle p and q can take any non-negative value, but
practically most physical applications of tensors involve ranks of four or less.

Thus a dual vector is a tensor of type (0,1) with a rank of one, while the Kronecker delta
δ ν

µ is a mixed tensor of type (1,1) and rank 2.

15.4.6 Tensors as Linear Maps to Real Numbers

The characterization of tensors in terms of their transformation properties in a particular
representtion that will be discussed in Section 15.5 below is the most pragmatic approach
to the mathematics required to solve realistic problems. However, mathematicians prefer
to define tensors in a more abstract manner that makes manifest that they are independent
of representation in a particular coordinate system. This approach, which frequently goes
by the name index-free formalism, is described in this section.

9 Hermann Minkowski introduced the use of tensors for the theory of special relativity. In his original special
relativity paper, Einstein had not used tensors and at first he dismissed Minkowski’s tensor formulation of
special relativity as needlessly pedantic. However, Einstein soon realized the power of this new (for physicists,
not for mathematicians) approach and adopted the framework of tensors and differential geometry in his later
formulation of general relativity.
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Fundamentally, a tensor of type (n,m) has input slots for n vectors and m dual
vectors, and acts linearly on these inputs to produce a real number.

For example, if ω is a (0,1) tensor (that is, a dual vector) and A and B are (1,0) tensors
(that is, vectors), linearity implies

ω(aA+bB) = aω(A)+bω(B) ∈ R, (15.60)

where a and b are arbitrary scalars and R denotes the set of real numbers. This definition
makes no reference to components of the vectors or dual vectors, so the tensor map must
give the same real number, irrespective of any choice of coordinate system.

Thus, a tensor may be viewed as a function of the vectors and dual vectors them-
selves, rather than as a function of their components, or as an operator that ac-
cepts vectors and dual vectors as input and outputs a real number.

Example 15.5 As a warmup exercise, consider a real-valued function of the coordinates
f (x). Since this function takes no vectors or dual vectors as input and yields a real number
(the value of the function at x) as output, it is a tensor of rank zero (a scalar).

Let’s now give a few less-trivial examples of how this approach works, beginning with
vectors and dual vectors.

Vectors and Dual Vectors

Vector spaces are discussed in Box 15.3. Suppose a vector field to be defined on a manifold
such that each point P has associated with it a vector V that may be expanded in a vector
basis eµ ,

V =V µ eµ , (15.61)

and that there is a corresponding dual vector field ω defined at each point P that may be
expanded in a dual-vector basis eµ ,

ω = ωµ eµ , (15.62)

where the basis vectors eµ are defined in the tangent space TP and the basis dual vectors
eµ are defined in the cotangent space T ∗P at each point P of the manifold, as described in
Section 15.4.2. Hence the eµ are basis vectors in the tangent bundle and the eµ are basis
vectors in the cotangent bundle. As discussed in Section 15.3.5, the vector spaces for V
and ω are said to be dual in the following sense.
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Box 15.3 Vector spaces

A vector space has a precise axiomatic definition in mathematics, but for our pur-
poses it will be sufficient to view it more loosely as a set of objects (the vectors)
that can be multiplied by real numbers and added together in a linear way while
exhibiting closure: any such operations on elements of the set give back a linear
combination of elements. For arbitrary vectors A and B, and arbitrary scalars a and
b, one expects then that expressions like

(a+b)(A+B) = aA+aB+bA+bB

should be satisfied. A few other things are necessary: a zero vector that serves
as an identity under vector addition, an inverse for every vector, and the usual as-
sortment of associativity, distributivity, and commutativity rules, for example; but it
is clear that it isn’t very hard to be a vector space. Vector spaces of use in physics
often have additional structure like a norm and inner product, but that is over and
above the minimal requirements for being a bonafide vector space.

A basis for a vector space is a set of vectors that span the space (any vector is
a linear combination of basis vectors) and that are linearly independent (no basis
vector is a linear combination of other basis vectors). The number of basis vectors
is the dimension of the space. For spacetime the vector spaces of interest will be
defined at each point of the manifold and will be of dimension four.

Duality of Vectors and Dual Vectors: For a manifold, the space of vectors (tan-
gent bundle) consists of all linear maps of dual vectors to the real numbers; con-
versely, the space of dual vectors (cotangent bundle) consists of all linear maps
of vectors to the real numbers.

This duality of vector and dual vector spaces can be implemented systematically by requir-
ing the basis vectors to satisfy

eµ(eν) = eµ · eν = δ µ
ν , (15.63)

where the Kronecker delta is given by

δ µ
ν =

{
1 µ = ν
0 µ ̸= ν

.

Note that A(B), which indicates the action of A on B, can be expressed in the alternative
form ⟨A,B⟩, so Eq. (15.63) is also commonly written as ⟨eµ , eν⟩= δ µ

ν . From Eqs. (15.60)–
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(15.63) it follows that a dual vector ω acts on a vector V in the manner

ω(V ) = ⟨ω,V ⟩= ωµ eµ(V ν eν)

= ωµV ν eµ(eν)

= ωµV ν δ µ
ν

= ωµV µ ∈ R, (15.64)

where R denotes the real numbers.10 This illustrates clearly that a dual vector is an operator
that accepts a vector as an argument and produces a real number (the scalar product ωµV µ ,
which is unique and independent of basis) as output. By the same token, a vector is an
operator that accepts a dual vector as an argument and produces a real number equal to
the scalar product, V (ω) = ωµV µ . These definitions involve no uncontracted indices, so
the results are independent of any basis choice. This suggests that vectors and dual vectors
may be defined fundamentally in terms of linear maps to the real numbers:

1. A dual vector is an operator that acts linearly on a vector to return a real number.
2. A vector is as an operator that acts linearly on a dual vector to return a real number.

For those having a knowledge of linear algebra or quantum mechanics this may sound
vaguely familiar, as suggested by the following example.

Example 15.6 In the language of linear algebra, vectors may be represented as column
vectors and dual vectors as row vectors, and their matrix product is a number. For example,

A≡ (a b) B≡
(

c
d

)
AB = (a b)

(
c
d

)
= ac+bd ∈ R

may be regarded as the dual vector A acting linearly on the vector B to produce the real
number ac+bd: A(B) ∈ R. For Dirac notation in quantum mechanics, |a⟩ may be viewed
as representing a vector and ⟨a| as representing a dual vector in Hilbert space, and mathe-
matically the vector space of ⟨a| is the dual of the vector space of |a⟩ (see Ref. [37]). Thus
the overlap ⟨ f | i⟩ is a number, and a matrix element ⟨ f |M |i⟩ is a map from vectors and
dual vectors of Hilbert space to the real numbers.

15.4.7 Evaluating Components in a Basis

The preceding definitions of vectors and dual vectors are independent of any choice of
basis, but practically it often is convenient to work in a basis. The components of a vec-
tor or dual vector in a specific basis are obtained by evaluating them with respect to the

10 As has been noted previously, basis vectors are defined in the tangent bundle and basis dual vectors are defined
in the cotangent bundle of the manifold. Thus for applications in spacetime our concern is really with the action
of vector fields on dual vector fields and vice versa, in which case what is returned is not a real number but
rather a scalar field of real numbers defined over the manifold. We trust that the reader is sophisticated enough
at this point to realize when “thing” really means “field of things”.
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corresponding basis vectors and dual basis vectors; for example,

V µ =V (eµ) = eµ ·V ωµ = ω(eµ) = eµ ·ω, (15.65)

which follows from Eq. (15.63). Equations such as (15.65) may be interpreted (for exam-
ple) as a vector accepting a basis vector eµ as input and acting linearly on it to return a real
number that is the component of the vector evaluated in that basis.

Example 15.7 The validity of Eqs. (15.65) may be checked easily:

eµ ·V = eµ · (V α eα) =V α eµ(eα) =V α δ µ
α =V µ ,

eµ ·ω = eµ · (ωα eα) = ωα eµ(eα) = ωα δ α
µ = ωµ ,

where the expansions (15.61)–(15.62), the linearity requirement (15.60), and the orthogo-
nality condition (15.63) were employed.

Vector and dual vector components as in Eq. (15.65), and more generally tensor compo-
nents, are then found to obey the same transformation laws and tensor calculus that will
be presented in following sections as alternative defining characteristics of tensors. Exam-
ple 15.8 illustrates for dual vectors and vectors.

Example 15.8 Consider a coordinate transformation xµ → x′µ on a dual vector ω =

ωµ eµ and on a vector V =V µ eµ . The basis dual vectors eµ and basis vectors eµ transform
as

eµ → e′µ =
∂x′µ

∂xν eν eµ → e′µ =
∂xν

∂x′µ
eν .

How do the components ωµ transform? This may be determined by noting that the dual
vector ω is a geometrical object having an existence independent of representation in a
specific coordinate system, so it must be invariant under coordinate transformations. This
will be ensured only if the components of ω transform as

ων → ω ′ν =
∂xα

∂x′ν
ωα ,

since then the dual vector ω is invariant under xµ → x′µ :

ω ′ = ω ′µ e′µ

=
∂xα

∂x′µ
ωα

∂x′µ

∂xν eν

=
∂xα

∂x′µ
∂x′µ

∂xν ωα eν

= ωα eν δ α
ν

= ωα eα = ω.
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This transformation law for the components ων is the same one that will be used to define
a dual vector in Eq. (15.71). By a similar proof, vector components V µ may be shown to
have the transformation law (15.73).

In later sections, such transformation laws will be offered as a definition of tensors. In the
index-free picture currently under discussion tensors are defined instead as linear maps of
some number of vectors and dual vectors to the real numbers, with the transformation laws
and associated tensor calculus that will be discussed in Sections 15.5–15.8 following as a
consequence of that definition.

Let us now greatly simplify keeping track of the distinction between upper indices and
lower indices on tensors by demonstrating that the metric tensor map may be used to estab-
lish a one-to-one relationship between a vector in the tangent space and a corresponding
dual vector in the cotangent space.

15.4.8 Identification of Vectors and Dual Vectors

Consider the metric tensor, viewed as a rank-2 covariant tensor that accepts two vector
inputs and acts on them (multi-)linearly to give a real number. Schematically, this may be
written as the operator g(· , ·), where the dots indicate the input slots for the two vectors.
Suppose that a vector V is inserted into only one of the slots, giving g(V, ·). What is this
object? It has one open slot that can accept a vector, on which it will act linearly to return
a real number. But that should sound familiar: it is the definition of a dual vector! Because
it is associated directly with the vector V , let us call this dual vector Ṽ ≡ g(V , ·). The
components of this dual vector may be evaluated by inserting a basis vector as argument in
the usual way,

Vµ ≡ Ṽ (eµ) = g(V,eµ)

= g(V ν eν ,eµ)

=V ν g(eν ,eµ)

= gµνV ν . (15.66)

Likewise, by using that gµν and gµν are matrix inverses, V µ = gµνVν . Summing over
repeated indices in tensor products is called contraction. Thus, the properties of the metric
tensor allow vectors and dual vectors to be treated effectively as if they were both vectors,
one with an upper index and one with a lower index, with the two related by contraction
with the metric tensor,

Vµ = gµνV ν V µ = gµνVν . (15.67)

This is of great practical importance since it allows the same symbol to be used for a
vector and its corresponding dual vector, and it reduces the handling of vectors and dual
vectors to keeping proper track of the vertical position of indices in the Einstein summation
convention. This identification works only for manifolds with metric tensors but that is no
limitation for special or general relativity, which deal only with metric spaces.
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Once the operations of raising and lowering indices by contraction with the metric tensor
are established through Eq. (15.67), the scalar product between two vectors U and V can
be calculated as the complete contraction UαV α of one of the vectors with the dual vector
associated with the other vector:

g(U,V ) = gµνU µV ν =UνV ν . (15.68)

The scalar product has no indices left after contraction and is said to be fully contracted.
Because tensors of higher rank are products of vectors and dual vectors, the preceding
discussion is easily generalized and contraction with the metric tensor can be used to raise
or lower any index for a tensor of any rank. For example,

Aµν = gµα gνβ Aαβ Aµνλσ = gµρ Aρ
νλσ .

Since indices can be raised or lowered at will by a metric, tensors may be thought of as
objects of a particular tensorial rank, irrespective of their particular vertical arrangement
of indices (for example, the identification of vectors and dual vectors discussed above). Of
course this is true only in the abstract; index placement matters when tensors are evaluated
in a basis.

15.4.9 Index-Free versus Component Transformations

The material in this section has been a brief introduction to the index-free formulation of
tensors favored by mathematicians. The discussion above and that in Section 15.5 indi-
cates that the index-free formalism leads to the same transformation laws for tensors. Thus
the practical outcome will be the same with application of either approach to the issues
addressed in these lectures, but index-free concepts provide a more solid mathematical
foundation for physical results while often the component transformation approach affords
a more direct path to obtaining them.

15.5 Tensors Specified by Transformation Laws

In the preceding discussion tensors have been introduced at a fundamental level through
linear maps from vectors and dual vectors to the real numbers, but it was shown also that
these linear maps imply that when tensors of a given type are expressed in an arbitrary basis
(see Section 15.4.7) their components obey well-defined transformation laws under change
of coordinates. This view of tensors as groups of quantities obeying particular transforma-
tion laws is often the most practical for physical applications because (1) it is less abstract
and requires less new mathematics for the novice, (2) a physical interpretation often re-
quires expression of the problem in a well-chosen basis anyway, and (3) the component
index formalism has a built-in error checking mechanism of great practical utility in solv-
ing problems: failure of indices to balance on the two sides of an equation is a sure sign of
an error.

This section summarizes the use of tensors to formulate invariant equations by exploiting
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the transformation properties of their components. Tensors may be viewed as generalizing
the idea of scalars and vectors, so let’s begin with these more familiar quantities. The fol-
lowing discussion is an adaptation to 4-dimensional (possibly curved) spacetime of many
concepts discussed earlier in Section 15.3 for simpler euclidean spaces; you are urged to
review that material if any conceptual difficulties are encountered in the following material.

15.5.1 Scalar Transformation Law

Consider the behavior of fields under the coordinate transformations introduced in Section
15.4.1. The simplest possibility is that the field has a single component at each point of the
manifold, with a value that is unchanged by the transformation (15.48),

φ ′(x′) = φ(x). (15.69)

Quantities such as φ(x) that are unchanged under the coordinate transformation are called
scalars. As the notation indicates, scalar quantities are generally functions of the coordi-
nates but their value at a given point does not change if the coordinate system changes.11

Scalar quantities may be expected to play a central role in physical theories because mea-
surable observables must be scalars if the goal of formulating physical laws such that they
do not depend on the coordinate labels is to be fulfilled.

15.5.2 Dual Vector Transformation Law

In parallel with the discussion of vectors defined in the tangent and dual bases for euclidean
space in Section 15.6, it is useful to define two kinds of spacetime vectors having distinct
transformation laws. Both will be termed vectors because sets of each type separately obey
the axioms to form a vector space, as discussed in Box 15.3, and because of the duality
discussed in Section 15.3.5. By the argument in Section 15.4.8, the same symbol will be
used for both but they will be distinguished by vertical placement of indices. By the rules
of ordinary partial differentiation the gradient of a scalar field φ(x) obeys

∂φ(x)
∂x′µ

=
∂φ(x)
∂xν

∂xν

∂x′µ
. (15.70)

Now consider a vector having a transformation law mimicking that of the scalar field gra-
dient (15.70),

A′µ(x
′) =

∂xν

∂x′µ
Aν(x) (dual vector). (15.71)

A quantity transforming in this way is termed a dual vector (it also goes by the names one-
form, covariant vector, or covector). Understand clearly that in (15.71) the two sides of the
equation refer to the same point in spacetime. Thus, the argument is x′ on the left side and
x on the right side, and these label the same spacetime point in two different coordinate

11 This may be contrasted with the behavior of the components of a vector under coordinate transformation,
which will be discussed shortly. Geometrically the components of a vector are projections of the vector on
particular coordinate axes. Thus, if the coordinate system is changed the components of a vector at a given
point typically change their values, but the length of the vector, which is a scalar, is invariant.
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systems. Before continuing we stop to note that even the relatively simple expressions that
have been introduced so far emphasize the importance of the compact notation that we are
using. For example, Eq. (15.71) is a concise way to write the matrix equation




A′0
A′1
A′2
A′3


=




∂x0/∂x′0 ∂x1/∂x′0 ∂x2/∂x′0 ∂x3/∂x′0

∂x0/∂x′1 ∂x1/∂x′1 ∂x2/∂x′1 ∂x3/∂x′1

∂x0/∂x′2 ∂x1/∂x′2 ∂x2/∂x′2 ∂x3/∂x′2

∂x0/∂x′3 ∂x1/∂x′3 ∂x2/∂x′3 ∂x3/∂x′3







A0

A1

A2

A3


 .

Furthermore, although we usually suppress it in the notation, the partial derivatives appear-
ing in these transformation equations depend on spacetime coordinates in the general case
and all partial derivatives are understood implicitly to be evaluated at a specific point P
labeled by x in one coordinate system and x′ in the other.

15.5.3 Vector Transformation Law

Now consider application of the rules of partial differentiation to transformation of the
differential,

dx′µ =
∂x′µ

∂xν dxν . (15.72)

This suggests a second vector transformation rule,

A′µ(x′) =
∂x′µ

∂xν Aν(x) (vector). (15.73)

A quantity behaving in this way is termed a vector.12 Most physical quantities that are
thought of loosely as “vectors” (displacement or velocity, for example) are vectors in the
restricted sense defined by the transformation law (15.73).

Example 15.9 Equations (15.71) and (15.73) may be viewed as matrix equations,

A′µ(x
′) = Ûν

µ Aν(x) A′µ(x′) =U µ
ν Aν(x), (15.74)

with the matrices U = ∂x′/∂x and Û = ∂x/∂x′ obeying ÛU = I, where I is the unit matrix.
In these transformations the matrix U is called the Jacobian matrix and the matrix Û is
called the inverse Jacobian matrix.

15.5.4 Duality of Vectors and Dual Vectors

The preceding discussion distinguishes two kinds of “vectors”: dual vectors, which carry
a lower index and transform like (15.71), and vectors, which carry an upper index and

12 Some authors call vectors contravariant vectors, indicating explicitly that when expanded in a basis the com-
ponent index is in the upper position, and call dual vectors covariant vectors, indicating explicitly that the
component index is in the lower position.
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transform like (15.73). This distinction is analogous to that introduced in Section 15.6
for vectors and dual vectors in euclidean spaces. In particular instances vectors and dual
vectors may be considered equivalent as a practical matter (albeit with some loss of mathe-
matical rigor), but generally they are not. However, the duality discussed in Section 15.4.8
allows us to use the same symbol for vectors and dual vectors, with the distinction between
them residing in upper and lower positioning of indices in the summation convention.

15.6 Scalar Product of Vectors

Just as was found in Section 15.3.4 for euclidean spaces, the introduction of vectors and
dual vectors, and their relationship through the metric tensor, allows a natural definition of
a scalar product

A ·B≡ Aµ Bµ , (15.75)

where the dual vector Aµ and the corresponding vector Aµ are related through the metric
tensor according to Aµ = gµν Aν . This product transforms as a scalar because from Eqs.
(15.71) and (15.73),

A′ ·B′ = A′µ B′µ =
∂xν

∂x′µ
Aν

∂x′µ

∂xα Bα =
∂xν

∂x′µ
∂x′µ

∂xα Aν Bα

=
∂xν

∂xα Aν Bα = δ ν
α Aν Bα = Aα Bα = A ·B, (15.76)

where the Kronecker delta δ ν
µ is given by

δ µ
ν =

∂x′µ

∂x′ν
=

∂xµ

∂xν =

{
1 µ = ν
0 µ ̸= ν

, (15.77)

which is a rank-2 tensor with the unusual property that its components take the same value
in all coordinate systems.

15.7 Tensors of Higher Rank

Three types of rank-2 tensors (0,2), (1,1), and (2,0) may be distinguished; they have the
transformation laws

T ′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ , (15.78)

T ′νµ =
∂xα

∂x′µ
∂x′ν

∂xβ T β
α , (15.79)

T ′µν
=

∂x′µ

∂xα
∂x′ν

∂xβ T αβ . (15.80)
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Table 15.1 Some tensor transformation laws

Tensor Transformation law

Scalar φ ′ = φ

Dual vector A′µ =
∂xν

∂x′µ
Aν

Vector A′µ =
∂x′µ

∂xν Aν

Covariant rank-2 T ′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ

Contravariant rank-2 T ′µν =
∂x′µ

∂xα
∂x′ν

∂xβ T αβ

Mixed rank-2 T ′νµ =
∂xα

∂x′µ
∂x′ν

∂xβ T β
α

These transformation rules may be generalized easily to tensors of any rank. In such a
generalization,

1. Each upper index on the left side requires a right-side “factor” of the form ∂x′µ/∂xν

(prime in the numerator), and
2. each lower index on the left side requires a right-side “factor” of the form ∂xµ/∂x′ν

(prime in the denominator).

This “position of the left-side index equals position of the right-side primed coordinate”
rule for the partial derivative factors is a useful aid in remembering the forms of the tensor
transformation equations. Transformation laws for tensors through rank 2 are summarized
in Table 15.1.

15.8 The Metric Tensor

By analogy with the discussion in Section 15.3.7, a rank-2 tensor of special importance is
the metric tensor gµν , because it is associated with the line element

ds2 = gµν dxµ dxν (15.81)

that determines the geometry of the manifold. The metric tensor is symmetric in its indices
(gµν = gνµ ) and satisfies the (0,2) tensor transformation law

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ . (15.82)

The contravariant form of the metric tensor gµν is defined by the requirement

gµα gαν = δ ν
µ , (15.83)
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so gµν and gµν are matrix inverses. Contractions with the metric tensor may be used to
raise and lower (any number of) tensor indices; for example,

Aµ = gµν Aν Aµ = gµν Aν T µ
ν = gνα T µα T α

βγ = gαµ gγε T ε
µβ . (15.84)

Thus, the scalar product of vectors may be expressed as

A ·B = gµν Aµ Bν ≡ Aν Bν = gµν Aµ Bν ≡ Aν Bν . (15.85)

Because such products are scalars, they are unchanged by coordinate-system transforma-
tions. A specific example of such a conserved quantity is an invariant length such as the
line element of Eq. (15.81).

In mixed-tensor expressions like the third or fourth ones in Eq. (15.84) the relative hori-
zontal order of upper and lower indices can be important. For example, in T µ

ν = gνα T µα

the notation indicates that the mixed tensor on the left side of the equation was obtained
by lowering the rightmost index of T µα on the right side (since in T µ

ν the lower index ν is
to the right of the upper index µ). This distinction is immaterial if the tensor is symmetric
under exchange of indices but which index is lowered or raised by contraction matters for
tensors that are antisymmetric under index exchange (see Section 15.9): T µ

ν = gνα T µα

and T µ
ν = gνα T αµ are equivalent if T is symmetric, but different if T is antisymmetric.

Vectors and dual vectors are distinct entities that are defined in different spaces (see
Section 15.4.2). However, Eqs. (15.83)–(15.85) and the discussion in Section 15.3.5, and
Section 15.4.8 make it clear that for the special case of a manifold with metric, indices
on any tensor may be raised or lowered at will by contraction with the metric tensor, as
in Eq. (15.84). Defining a metric establishes a relationship that permits vectors and dual
vectors to be treated as if they were (in effect) different representations of the same vector.
Our discussion will usually proceed as if Aµ and Aµ are different forms of the same vector
that are related by contraction with the metric tensor, while secretly remembering that they
really are different, and that it is only for metric spaces that this conflation is not likely to
land us in trouble.

The preceding discussion makes clear why the convention in much of nonrelativistic
physics to ignore the mathematical distinction between vectors and dual vectors causes few
problems. For example, the gradient operator is commonly termed a vector in elementary
physics but Section 15.5.2 shows that it is in truth a dual vector. However, physics assumes
metric spaces, so vectors and dual vectors are related trivially through the metric tensor and
no lasting harm is done by calling the gradient a vector if the bookkeeping is done correctly
in equations. Specifically, the gradient dual vector may be converted to the corresponding
vector by contracting with the metric tensor to raise the index. The issue is particularly
simple if the problem is formulated in euclidean space using cartesian coordinates, in which
case the metric tensor is just the unit matrix and the components of the vector and dual
vector are the same. The mathematician is required to be more circumspect because the
definition of a manifold does not automatically imply existence of a metric to enable this
identification.
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15.9 Symmetric and Antisymmetric Tensors

The symmetry of tensors under exchanging pairs of indices is often important. An arbi-
trary rank-2 tensor can always be decomposed into a symmetric and antisymmetric part
according to the identity

Tαβ = 1
2 (Tαβ +Tβα)+

1
2 (Tαβ −Tβα), (15.86)

where the first term is clearly symmetric and the second term antisymmetric under ex-
change of indices. For completely symmetric and completely antisymmetric rank-2 tensors

Tαβ =±Tβα T αβ =±T βα ,

where the plus sign holds if the tensor is symmetric and the minus sign if it is antisym-
metric. More generally, a tensor of rank two or higher is said to be symmetric in any two
of its indices if exchanging those indices leaves the tensor invariant and antisymmetric (or
skew-symmetric) in any two indices if it changes sign upon switching those indices.

15.10 Algebraic Tensor Operations

Various algebraic operations are permitted for tensors in equations. These valid operations
include:

1. Multiplication by a scalar: A tensor may be multiplied by a scalar (meaning that each
component is multiplied by the scalar) to produce a tensor of the same rank. For exam-
ple, aAµν = Bµν , where a is a scalar and Aµν and Bµν are rank-2 contravariant tensors.

2. Addition or subtraction: Two tensors of the same type may be added or subtracted
(meaning that their components are added or subtracted) to produce a new tensor of the
same type. For example, Aµ −Bµ =Cµ , where Aµ , Bµ , and Cµ are vectors.

3. Multiplication: Two or more tensors may be multiplied by forming products of their
components. The rank of the resultant tensor will be the product of the ranks of the
tensor factors. For example, Aµν = UµVν , where Aµν is a rank-2 covariant tensor and
Uµ and Vν are dual vectors.

4. Contraction: For a tensor or tensor product with covariant rank n and contravariant
rank m, a tensor of covariant rank n−1 and contravariant rank m−1 may be formed by
setting one upper and one lower index equal and taking the implied sum. For example,
A = Aµ

µ , where A is a scalar and Aµ
ν is a mixed rank-2 tensor, or Aµ = gµν Aν , where

the metric gµν is a rank-2 covariant tensor, Aν is a vector, and Aµ is a dual vector.

In addition to these algebraic manipulations, it will often be necessary to integrate or dif-
ferentiate in tensor expressions. This tensor calculus is addressed in the following section.
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15.11 Tensor Calculus on Curved Manifolds

To formulate physical theories in terms of tensors requires the ability to manipulate ten-
sors mathematically. In addition to the algebraic rules for tensors described in preceding
sections, we must formulate a prescription to integrate tensor equations and one to differ-
entiate them. Tensor calculus is mostly a straightforward generalization of normal calculus
but additional complexity arises for two reasons:

1. It must be ensured that integration and differentiation preserve the symmetries and in-
variances embodied in the tensor equations.

2. To preserve the utility of the tensor formalism, it must be ensured that the results of
these operations on tensor quantities are themselves tensor quantities.

As will now be shown, the first requirement implies a simple modification of the rules for
ordinary integration while the second implies a less-simple modification with far-reaching
mathematical and physical implications for the rules of partial differentiation.

15.11.1 Invariant Integration

Under a change of coordinates the volume element for integration over the spacetime co-
ordinates changes according to

d4x′ = det
(

∂x′

∂x

)
d4x = Jd4x, (15.87)

where d4x ≡ dx0dx1dx2dx3 and J ≡ det(∂x′/∂x) is the Jacobian determinant (determi-
nant of the 4× 4 matrix of partial derivatives relating the x and x′ coordinates; see Ex-
ample 15.9). Notice that the right side of Eq. (15.82) may be viewed as a triple ma-
trix product and recall that the determinant of a matrix product is the product of deter-
minants. Thus Eq. (15.82) implies that the determinant of the metric tensor g ≡ detgµν
transforms as g′ = J−2g. Hence J =

√
|g|/
√
|g′|, where the absolute value signs are nec-

essary because the determinant of gµν is negative in 4D spacetime with Lorentzian met-
ric signature [see Eq. (16.6)], and this result may be substituted into Eq. (15.87) to give√
|g′|d4x′ =

√
|g|d4x. This implies that an invariant volume element,

dV =
√
|g|d4x, (15.88)

must be employed in tensor integration to ensure that the results are invariant under a
change of coordinate system. A simple demonstration of using invariant integration to
determine an area for a 2-dimensional curved manifold is given in Example 15.10.

Example 15.10 The metric for a 2-dimensional spherical surface (the 2-sphere S2) is
specified by the line element dℓ2 = R2dθ 2 +R2 sin2 θdφ 2, which may be written as the
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matrix equation

dℓ2 = (dθ dφ)
(

R2 0
0 R2 sin2 θ

)(
dθ
dφ

)
.

The area of the 2-sphere may then be calculated as

A =
∫ 2π

0
dφ
∫ π

0

√
detgi j dθ

=
∫ 2π

0
dφ
∫ π

0
R2 sinθdθ = 4πR2,

where the metric tensor gi j is the 2×2 matrix in the first equation for the line element. In
this 2-dimensional example the sign of the determinant is positive, so no absolute value is
required under the radical in Eq. (15.88).

Thus, the extension of ordinary integration to integration over tensor fields requires only
that the volume element be made invariant according to the prescription in Eq. (15.88).
What about the derivatives of tensor quantities? This is a more complicated issue that we
must now address.

15.11.2 Partial Derivatives

Before proceeding it will be useful to introduce a more compact way to write partial deriva-
tives. Two shorthand notations are in common use, as illustrated by the following exam-
ples.13

∂µ φ = φ,µ ≡
∂φ(x)
∂xµ ∂ ′µ φ ′ = φ ′,µ ≡

∂φ ′(x′)
∂x′µ

∂ µ φ = φ ,µ ≡ ∂φ(x)
∂xµ

. (15.89)

All three of the notations exhibited for partial derivatives in these equations will be used
at various places in this book. Let us now consider the covariance of the partial derivative
operation applied to tensors.

The transformation law for the derivative of a scalar is given by Eq. (15.70), which is
just the transformation law (15.71); therefore the derivative of a scalar is a dual vector and
scalars and their first derivatives have well-defined tensorial properties. So far, so good, but
now consider the derivative of a dual vector,

A′µ,ν ≡
∂A′µ
∂x′ν

=
∂

∂x′ν

(
Aα

∂xα

∂x′µ

)

=
∂Aα

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν ∂x′µ

=
∂Aα

∂xβ
∂xβ

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν ∂x′µ

= Aα,β
∂xβ

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν ∂x′µ
. (15.90)

13 Higher-order derivatives can be denoted by additional subscripts. For example ∂ 2φ/∂xµ ∂xν = φ,µν .
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The first term in the last line transforms as a (rank-2) tensor but the second term does
not since it involves second derivatives, ultimately because the partial-derivative matrix
implementing the transformation is position dependent in curved spacetime. In flat space it
is possible to choose coordinates where the second term vanishes but in curved spacetime
it cannot be transformed away globally. By a similar procedure it is found that the partial
derivatives of vectors and all higher-order tensors exhibit a similar pathology:

With the exception of derivatives of scalars, ordinary partial differentiation of
tensors is not a covariant operation in curved spacetime because it fails to pre-
serve the tensor structure of equations.

This will complicate the formalism immensely because the utility of the tensor framework
rests on the preservation of tensor structure under transformations. It is desirable to define
a new covariant derivative operation that does this automatically. In general the terms that
violate the tensor transformation laws for partial derivatives of tensors will involve second
derivatives, as in Eq. (15.90). The non-tensorial contributions can be eliminated system-
atically by introducing additional fields on the manifold, which can be done in more than
one way, each leading to a different form of covariant differentiation. Three common ap-
proaches are (1) covariant derivatives and (2) absolute derivatives, which use derivatives
of the metric tensor field to cancel non-tensorial terms, and (3) Lie derivatives, which use
derivatives of an auxiliary vector field defined on the manifold to the same end. We will
discuss here only covariant derivatives, which will be introduced in Section 15.11.3

15.11.3 Covariant Derivatives

For the manifolds important in general relativity, the most common approach to converting
partial differentiation into an operation that preserves tensor structure is to use particular
linear combinations of metric-tensor derivatives to create new non-tensorial terms that ex-
actly cancel the non-tensorial terms arising from taking the partial derivative. Notice that
if the Christoffel symbols Γλ

αβ are introduced and required to obey a transformation law

Γ′λαβ = Γκ
µν

∂xµ

∂x′α
∂xν

∂x′β
∂x′λ

∂xκ +
∂ 2xµ

∂x′α ∂x′β
∂x′λ

∂xµ , (15.91)

it may be shown that
(

A′µ,ν −Γ′λµν A′λ
)
=
(

Aα,β −Γκ
αβ Aκ

) ∂xα

∂x′µ
∂xβ

∂x′ν
. (15.92)

Comparing with Eq. (15.78), the quantity in brackets is seen to transform as a rank-2
covariant tensor. This suggests the utility of introducing a new derivative operation: the
covariant derivative of a dual vector is defined to be

Aµ;ν ≡ Aµ,ν −Γλ
µν Aλ , (15.93)

where now a subscript comma denotes ordinary partial differentiation and a subscript semi-
colon denotes covariant differentiation with respect to the variables following it. It will be
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useful to introduce also an alternative notation for the covariant derivative,

∇ν Aµ = Aµ;ν ≡ ∂ν Aµ −Γλ
µν Aλ . (15.94)

This covariant derivative of a dual vector then transforms as a covariant tensor of rank 2:
neither of its terms is a tensor but their difference is. Likewise, the covariant derivative of
a vector can be introduced in either of the notations

Aλ
;µ = Aλ

,µ +Γλ
αµ Aα ∇µ Aλ = ∂µ Aλ +Γλ

αµ Aα , (15.95)

where the result of (15.95) is a mixed rank-2 tensor, and the covariant derivatives of the
three possible rank-2 tensors through

Aµν ;λ = Aµν ,λ −Γα
µλ Aαν −Γα

νλ Aµα , (15.96)

Aµ
ν ;λ = Aµ

ν ,λ +Γµ
αλ Aα

ν −Γα
νλ Aµ

α , (15.97)

Aµν
;λ = Aµν

,λ +Γµ
αλ Aαν +Γν

αλ Aµα , (15.98)

or in alternative notation

∇λ Aµν = ∂λ Aµν −Γα
µλ Aαν −Γα

νλ Aµα , (15.99)

∇λ Aµ
ν = ∂λ Aµ

ν +Γµ
αλ Aα

ν −Γα
νλ Aµ

α , (15.100)

∇λ Aµν = ∂λ Aµν +Γµ
αλ Aαν +Γν

αλ Aµα , (15.101)

where the derivatives in Eqs. (15.96)–(15.101) define rank-3 tensors. In the general case
the covariant derivative of a tensor is a tensor of one rank higher than the tensor being
differentiated and the heuristic for constructing it is to form the ordinary partial derivative
and add one Christoffel symbol term having the sign and form for a dual vector for each
lower index, and one having the sign and form for a vector for each upper index of the
tensor (see Example 15.11).

In general relativity the Christoffel symbols are equivalent to connection coefficients
(hence the same notation will be employed for both), which have a geometrical significance
on the manifold and can be defined in terms of the derivatives of the metric tensor as

Γσ
λ µ = 1

2 gνσ
(

∂gµν

∂xλ +
∂gλν
∂xµ −

∂gµλ

∂xν

)
.

Thus the correction terms in Eqs. (15.93)–(15.101) that cancel non-tensorial character are
indeed composed of derivatives of the metric tensor, as promised above.

Rules for covariant differentiation: Most of the rules for partial differentiation carry
over with suitable generalization for covariant differentiation. For instance, the ordinary
(Leibniz) rule for differentiating a product applies also to covariant differentiation,

(Aµ Bν);λ = Aµ;λ Bν +Aµ Bν ;λ . (15.102)

The most important exception concerns the results of successive covariant differentiations.
Partial derivative operators normally commute: if two are applied successively, the out-
come does not depend on the order in which they are applied. However, covariant deriva-
tive operators generally do not commute and two successive covariant differentiations may



265 Tensor Calculus on Curved Manifolds

give results that depend on the order in which they are applied. It may be shown that co-
variant derivatives, and their non-commuting nature, arise naturally from a prescription for
parallel transport of vectors in curved spaces.

Example 15.11 The Leibniz differentiation rule for the product of two vectors may
be used to derive the expressions (15.96)–(15.98) for the covariant derivatives of rank-2
tensors from those given for vectors in Eqs. (15.93) and (15.95). For example,

(UαV β );γ =UαV β
;γ +Uα

;γ V β

=UαV β
,γ +Uα(Γβ

ργ V ρ)+Uα
,γ V β +(Γα

ργU ρ)V β

= (UαV β ),γ +Γβ
ργ(UαV ρ)+Γα

ργ(U
ρV β ),

where Eq. (15.95) and UαV β
,γ +Uα

,γV β = (UαV β ),γ were used in the second and third
lines, respectively. This is equivalent to

Aαβ
;γ = Aαβ

,γ +Γβ
ργ Aαρ +Γα

ργ Aρβ ,

where Aαβ ≡UαV β , which is Eq. (15.98) for the covariant derivative of a contravariant
rank-2 tensor.

Carrying out similar manipulations as in this example for the rank-2 tensors Aµν and Aν
µ

suggests the rule given after Eq. (15.101): differentiate in the normal way and add one
Christoffel symbol term having the sign and form for a dual vector for each lower index,
and one having the sign and form for a vector for each upper index of the tensor.

Implications of covariant differentiation: One rather important consequence of requir-
ing that differentiation preserve tensor structure in the manner described above is that the
covariant derivative of the metric tensor vanishes at all points of a manifold,14

∇α gµν = gµν ;α = 0. (15.103)

This means that in manipulating tensor equations the operation of covariant differentiation
commutes with the operation (15.84) of raising or lowering an index by contraction with
the metric tensor. For example,

gαβ ∇γV β = ∇γ(gαβV β ) = ∇γVα .

Thus the order of covariant differentiation and contraction with the metric tensor can be
interchanged without altering the result.

14 The validity of Eq. (15.103) is a consequence of particular assumptions concerning the nature of parallel
transport in curved spacetime.
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15.12 Invariant Equations

The properties of tensors elaborated above ensure that any equation will be form-invariant
under general coordinate transformations if it equates tensor components having the same
upper and lower indices. For example, if the quantities Aµ

ν and Bµ
ν each transform as

mixed rank-2 tensors according to Eq. (15.79) and Aµ
ν = Bµ

ν in the x coordinate system,
then in the x′ coordinate system A′µν = B′µν . Likewise, an equation that equates any ten-
sor to zero (that is, sets all its components to zero) in some coordinate system is covariant
under general coordinate transformations, implying that the tensor is equal to zero in all
coordinate systems. However, equations such as Aν

µ = 10 or Aµ =Bµ might hold in partic-
ular coordinate systems but generally are not valid in all coordinate systems because they
equate tensors of different kinds (a mixed rank-2 tensor with a scalar in the first example
and a dual vector with a vector in the second).

The preceding discussion suggests that invariance of a theory under general coordinate
transformations will be guaranteed by carrying out the following steps.

1. Formulate all quantities in terms of tensors, with tensor types matching on the two sides
of any equation, and with all algebraic manipulations corresponding to valid tensor
operations (addition, multiplication, contraction, . . . ).

2. Redefine any integration to be invariant integration, as discussed in Section 15.11.1.
3. Replace all partial derivatives with the covariant derivatives introduced in Section 15.11.3.
4. Take care to remember that a covariant differentiation generally does not commute with

a second covariant differentiation, so the order matters.

This prescription in terms of tensors will provide a powerful formalism for dealing with
mathematical relations that would be much more formidable in standard notation.

Background and Further Reading

Significant parts of this chapter have been adapted from Refs. [16] and [17]. The discussion
of coordinate transformations in euclidean space is based on the presentation of Ref. [10].
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Problems

15.1 Consider the following torus, parameterized by the angles θ and φ .

φ

θ

x

y

z

ba

Points on the torus are defined by

x = (a+bcosφ)cosθ y = (a+bcosφ)sinθ z = bsinφ ,

where a and b are constants. Construct the tangent basis vectors for θ and φ , and the
corresponding metric tensor.

15.2 (a) Verify explicitly that the Lorentz transformation of Eq. (16.25)

cdt ′ = ccoshξ dt + sinhξ dx

dx′ = csinhξ dt + coshξ dx

dy′ = dy

dz′ = dz

leaves invariant the Minkowski line element ds2.
(b) Use the Lorentz transformations (16.31) expressed in differential form to obtain
the velocity transformation rules consistent with Lorentz invariance. Show that for
the special case of two inertial frames moving along the x axis with relative velocity
v, the velocity transformation law is

u′ =
u− v

1−uv/c2 ,

and that this embodies the constancy of the speed of light in all inertial frames, but
reduces to the result expected from Galilean invariance for small v.

15.3 Use tangent and dual basis vectors to construct metric tensor components gi j and gi j,
and the line element, for the coordinate system (u,v,w) of Example 15.3. Verify that
the matrices gi j and gi j found for this problem are inverses of each other. ***

15.4 Show that if index raising and lowering operations are defined by expressions like

T µ
ν = gνα T µα Tµν = gµα gνβ T αβ ,
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then these are valid tensor operations. That is, show that if these relations are true in
one coordinate system they are true in all coordinate systems.

15.5 A theorem useful in various contexts states that if a set of quantities produces a tensor
when contracted with a tensor, then that set of quantities is necessarily a tensor. This
is called the quotient theorem. (a) Use the definition of the scalar product of vectors
and the quotient theorem to argue that the metric gµν is a tensor. (b) Use the quotient
theorem to show explicitly that if for an arbitrary vector V γ

T α
βγV γ =

∂x′α

∂xδ
∂xε

∂x′β
T δ

εφV φ ,

then T α
βγ is necessarily a tensor of type (1,2). ***



16 Special Relativity

In this chapter we shall build on the mathematical foundation of Ch. 15 to describe the spe-
cial theory of relativity and use that to demonstate the Lorentz invariance of the Maxwell
equations. Let’s begin by noting the natural scientific and historical affinity of the Maxwell
equations and the special theory of relativity.

16.1 Maxwell’s Equations and Special Relativity

Scientifically, electrical charges may be viewed as classical objects (for example, as having
positions and momenta that are simultaneously well defined) so that quantum mechanics
is not required, but the motion of these classical charges could be described by Newtonian
mechanics at low velocities, or by special relativity at velocities that are significant frac-
tions of the speed of light c.1 Historically, classical electromagnetism and special relativity
have been intertwined because Einstein was influenced strongly by the beauty and symme-
try properties of the Maxwell equations in his formulation of the special theory of relativity.
In particular he was motivated by comparing the Lorentz invariance of the Maxwell equa-
tions with the Galilean invariance of classical mechanics to propose that it was classical
mechanics, not electromagnetism, that required revision if one wanted the laws of elec-
tromagnetism and of classical particle motion to be mutually consistent. This led him to
propose the radical notion that the speed of light is constant in all inertial frames, which is
consistent with Maxwell’s equations but not with Newtonian mechanics, and which forms
the basis of the special theory of relativity.

16.2 Minkowski Space

A manifold equipped with a prescription for measuring distances is termed a metric space
and the mathematical function that specifies distances is termed the metric for the space.2

1 If strong gravity is important, as it would be in various electromagnetic phenomena in astrophysics (for ex-
ample, accretion disks for black holes), one must extend the description of charged-particle motion to curved
spacetime. This requires use of the general theory of relativity. Here we will consider only relativistic electro-
dynamics in flat spacetime, so special but not general relativity will be necessary. The interested reader will
find a tractable introduction to general relativity and its relationship to special relativity in Ref. [15].

2 Physicists almost always work in metric spaces and usually take existence of a metric for granted (it is hard
to do physics without measurement of distance). However, mathematicians are quite familiar with respectible
manifolds that need not include a metric among their attributes.

269
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In this section those ideas are applied to flat 4-dimensional spacetime, which is commonly
termed Minkowski space. Although many concepts will be similar to those for euclidean
manifolds, fundamentally new features will enter. Many of these new features are associ-
ated with the indefinite metric of Minkowski space.

16.2.1 The Indefinite Metric of Spacetime

Although Minkowski space is flat it is not euclidean, for it does not possess a euclidean
metric. A metric that can be put into a diagonal form in which the signs of the diagonal
entries can all be chosen positive is termed positive definite. In contrast, we have see in
Ch. 15 that the Minkowski metric has an essential property that the diagonal entries cannot
all be chosen positive. Such a metric is termed indefinite, and it leads to properties of
Minkowski space differing fundamentally from those of euclidean spaces.

16.2.2 Scalar Products and the Metric Tensor

In a particular inertial frame, introduce unit vectors e0, e1, e2, and e3 that point along the t,
x, y, and z axes, respectively, allowing any 4-vector A to be expressed as

A = A0e0 +A1e1 +A2e2 +A3e3. (16.1)

Thus (A0,A1,A2,A3) are the (contravariant) components of the 4-vector A.3 The scalar
product of 4-vectors is given by

A ·B = B ·A = (Aµ eµ) · (Bν eν) = eµ · eν Aµ Bν . (16.2)

Introducing the definition

ηµν ≡ eµ · eν , (16.3)

we may express the scalar product as

A ·B = ηµν Aµ Bν . (16.4)

The metric tensor ηµν is just a special case of the general metric tensor for spacetime that
is generally denoted gµν ; however, in flat spacetime gµν is a constant matrix independent
of the coordinates and it is standard to give it the special symbol ηµν .

16.2.3 The Line Element

The line element ds2 in Minkowski space measures the square of the distance between
points with infinitesimal separation and is given by

ds2 =−c2dτ2 = ηµν dxµ dxν =−c2dt2 +dx2 +dy2 +dz2, (16.5)

3 Recall that non-bold symbols denote 4-vectors, bold symbols denote 3-vectors, and that a notation such as Aµ

may stand for the full 4-vector, or for a component of it, depending on context.
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where τ is the proper time (the time measured by a clock carried in an inertial frame; thus,
it is the time measured between events that are at the same spatial point), and where the
metric tensor of flat spacetime may be represented by the constant diagonal matrix

ηµν =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


≡ diag (−1,1,1,1). (16.6)

Then Eq. (16.5) for the line element may be written as the matrix equation

ds2 = (cdt dx dy dz)




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







cdt
dx
dy
dz


 , (16.7)

where ds2 represents the square of the spacetime interval between x and x+dx with

x = (x0,x1,x2,x3) = (ct,x1,x2,x3). (16.8)

A point in Minkowski space defines an event and the path followed by an object in space-
time is termed the worldline for the object. This 4-dimensional spacetime with indefinite
metric is termed a Lorentzian manifold (or sometimes a pseudo-euclidean manifold).

Example 16.1 Given a Minkowski vector with components (A0,A1,A2,A3), what are
the components of the corresponding dual vector? From Eq. (15.84) with ηµν substituted
for the metric tensor, the indices may be lowered through the contraction Aµ = ηµν Aν .
Therefore, using the metric tensor (16.6) the elements of the corresponding dual vector are
Aµ = (−A0,A1,A2,A3). This illustrates explicitly that vectors and dual vectors generally
are not equivalent in non-euclidean manifolds, but that they are in one-to-one correspon-
dence though contraction with the metric tensor.

16.2.4 Invariance of the Spacetime Interval

Special relativity follows from two assumptions: (1) the speed of light is constant for all
observers and (2) the laws of physics cannot depend on spacetime coordinates. The pos-
tulate that the speed of light is a constant is equivalent to a statement that the spacetime
interval ds2 of Eq. (16.5) is an invariant that is unchanged by transformations between
inertial systems (the Lorentz transformations to be discussed below). This is not true for
the euclidean spatial interval dx2 +dy2 +dz2, nor is it true for the time interval c2dt2; it is
true only for the particular combination of spatial and time intervals defined by Eq. (16.5).
Because of this invariance, Minkowski space is the natural manifold for the formulation of
special relativity.
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Example 16.2 The metric can be used to determine the relationship between the time
coordinate t and the proper time τ . From Eq. (16.5)

dτ2 =
−ds2

c2 =
1
c2 (c

2dt2−dx2−dy2−dz2)

= dt2

{
1− 1

c2

[(
dx
dt

)2

+

(
dy
dt

)2

+

(
dz
dt

)2
]}

=

(
1− v2

c2

)
dt2. (16.9)

where v is the magnitude of the velocity. Therefore, the proper time that elapses between
coordinate times t1 and t2 is

τ12 =

∫ t2

t1

(
1− v2

c2

)1/2

dt . (16.10)

The proper time interval τ12 is shorter than the coordinate time interval t2− t1 because the
square root in the integrand of Eq. (16.10) is always less than one. This is the special-
relativistic time dilation effect, stated in general form. For the special case of constant
velocity, (16.10) yields

∆τ =

(
1− v2

c2

)1/2

∆t, (16.11)

which is the formulation of special-relativistic time dilation that is found commonly in
textbooks. From this example it is clear that the origin of time dilation in special relativity
lies in the geometry of spacetime, specifically in the indefinite nature of the Minkowski
metric.

The first postulate of special relativity (constant speed of light for all observers) is ensured
by the invariance of the interval (16.5) under transformations between inertial frames. As
was suggested by the discussion in Ch. 15, the second postulate (coordinate invariance of
physical law) can be ensured by formulating the equations of special relativity in terms of
tensors defined in Minkowski space, which we now address.

16.3 Tensors in Minkowski space

In Minkowski space the transformations between coordinate systems are particularly sim-
ple because they are independent of spacetime coordinates. Furthermore, in flat space
the correction terms disappear and partial derivatives are equivalent to covariant deriva-
tives. Therefore, the derivatives appearing in the general definitions of Table 15.1 for ten-
sors are constants and the transformation of a coordinate vector xµ may be expressed as
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x′µ = Λµ
ν xν , where the matrix Λµ

ν does not depend on the spacetime coordinates. Hence,
for flat spacetime the tensor transformation laws simplify to

ϕ ′ = ϕ Scalar (16.12)

A′µ = Λµ
ν Aν Vector (16.13)

A′µ = Λ ν
µ Aν Dual vector (16.14)

T ′µν = Λµ
γ Λν

δ T γδ Contravariant rank-2 tensor (16.15)

T ′µν = Λ γ
µ Λ δ

ν Tγδ Covariant rank-2 tensor (16.16)

T ′µν = Λµ
γ Λ δ

ν T γ
δ Mixed rank-2 tensor (16.17)

and so on. In addition, for flat spacetime it is possible to choose a coordinate system for
which non-tensorial terms like the second term of Eq. (15.90) can be transformed away
so covariant derivatives are equivalent to partial derivatives in Minkowski space. In the
transformation laws (16.17) the Λµ

ν are elements of Lorentz transformations that we will
now discuss in more detail.

16.4 Lorentz Transformations

Inertial frames enjoy a privileged role in Newtonian mechanics. Newton’s first law is un-
changed in special relativity and inertial frames can be constructed in the same way as for
Newtonian mechanics. What is different about the inertial frames of special relativity is that
because of the requirements imposed by the constant speed of light and principle of rel-
ativity postulates, the transformations between inertial frames are no longer the Galilean
transformations of Newtonian mechanics but rather the Lorentz transformations. Hence,
the inertial frames of special relativity are often termed Lorentz frames. Rotations are an
important class of transformations in euclidean space because they change the direction
but preserve the length of an arbitrary 3-vector. It is desirable to generalize this idea to
investigate abstract rotations in the 4-dimensional Minkowski space that change the direc-
tion but preserve the length of 4-vectors. As we will now demonstrate, such rotations in
Minkowski space are just the Lorentz transformations alluded to above.

16.4.1 Rotations in Euclidean Space

First we consider a rotation of the coordinate system in euclidean space, as illustrated in
Fig. 15.4. The condition that the length of an arbitrary vector be unchanged by this trans-
formation corresponds to the requirement that the transformation matrix R implementing
the rotation [see Eq. (15.45)] act on the metric tensor gi j in the following way

Rgi jRT = gi j, (16.18)

where RT denotes the transpose of R. For euclidean space the metric tensor is just the
unit matrix so the requirement (16.18) reduces to RRT = 1, which is the condition that R
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be an orthogonal matrix. Thus, we have obtained the well-known result that rotations in
euclidean space are implemented by orthogonal matrices in a rather pedantic manner. But
Eq. (16.18) is valid generally, not just for euclidean spaces. Therefore, it may be used as
guidance for constructing more general rotations in Minkowski space.

16.4.2 Generalized 4D Minkowski Rotations

By analogy with the above discussion of rotations in euclidean space, which left the length
of 3-vectors invariant, let us now seek a set of transformations that leave the length of a
4-vector invariant in the Minkowski space. The coordinate transformation may be written
in matrix form,

dx′µ = Λµ
ν dxν , (16.19)

where the transformation matrix Λµ
ν is expected to satisfy the analog of Eq. (16.18) for

the Minkowski metric ηµν ,

Ληµν ΛT = ηµν , (16.20)

or explicitly in terms of components, Λ ρ
µ Λσ

ν ηρσ = ηµν .4 This property may now be used
to construct the elements of the transformation matrix Λµ

ν . The possible transformations
include rotations about the spatial axes (corresponding to rotations within inertial systems)
and transformations between inertial systems moving at different constant velocities that
are termed Lorentz boosts.

Two inertial frames may differ in displacement, rotational orientation, and uniform ve-
locity. This corresponds to 10 possible transformations between inertial frames: three ve-
locity boosts along the spatial axes, three rotations about the three spatial axes, and four
translations in the space and time directions. These 10 transformations form a group called
the Poincaré group (see Box 16.1). The six Lorentz transformations correspond to the ve-
locity boosts and spatial rotations, and they form a group called the Lorentz group that is a
subgroup of the Poincaré group, also discussed in Box 16.1. Consider first the simple case
of rotations about the z axis.

16.4.3 Lorentz Spatial Rotations

Rotations about a single spatial axis in Minkowski space correspond to a 2-dimensional
problem with euclidean metric, so the condition (16.18) may be written as

(
a b
c d

)(
1 0
0 1

)(
a c
b d

)
=

(
1 0
0 1

)
, (16.21)

4 Note that in this discussion we are using the (common) convention that ηµν is either a symbol standing for the
full tensor or a specific component of the tensor distinguished by indices µ and ν , depending on context. In
a matrix equation like (16.20) the order of the factors matters because matrices don’t generally commute, but
when the matrix equation is written out in terms of sums over component products as in Λ ρ

µ Λσ
ν ηρσ = ηµν

the order of factors can be rearranged at will, since the components of the matrices are just numbers that
commute with each other. The matrices Λ are symmetric so horizontal placement of indices isn’t crucial, but
a typical convention is to define Λµ

ν = ∂x′µ/∂xν and Λ ν
µ = ∂xν/∂x′µ (compare Table 15.1).
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Box 16.1 Symmetries and groups [16]

A group is a set G = {x,y, . . .} for which a binary operation a · b = c called group
multiplication is defined that has the following properties

(i) Closure: If x and y are elements of G, then x · y is an element of G also.
(ii) Identity: An identity element e exists such that e · x = x · e = x for x ∈ G.
(iii) Existence of an Inverse: For every group element x there is an inverse x−1 in

the set such that xx−1 = e.
(iv) Associativity: Multiplication is associative: (x · y) · z = x · (y · z) for x,y,z ∈ G.

For groups of transformations multiplication corresponds to applying first one and
then the other transformation. The group definition requires associativity but not
commutivity. A group consisting of commutative elements only is abelian; otherwise,
it is nonabelian.

Example: The Lorentz group
There are six independent Lorentz transformations: three rotations about the spatial
axes parameterized by real angles, and three boosts along the spatial axes param-
eterized by boost velocities. Because rotation angles and boost velocities can take
continuous real values, the set of Lorentz transformations is infinite. The Lorentz
transformations form a group:

1. Two successive transformations are equivalent to some other transformation.
2. Every Lorentz transformation has an inverse that is the transformation in the

opposite direction (for example, v→−v for boosts).
3. The identity corresponds to no transformation.
4. It doesn’t matter how three successive transformations are grouped, so multipli-

cation is associative, but the order matters, so the Lorentz group is nonabelian.

An important class of groups corresponds to transformations that are continuous
(analytical) in their parameters. These are called Lie groups. The Lorentz group
is a Lie group. Groups also can be classified according to whether their parameter
spaces are closed and bounded (compact groups) or not (noncompact groups). Be-
cause boost velocities can approach c asymptotically but never reach it, the Lorentz-
group parameter space is not closed (the limit v = c is not part of the set) and the
group is noncompact.

Example: The Poincaré group
The Poincaré group is formed by adding to the Lorentz transformations the uniform
translations along the four spacetime axes. It is a non-abelian, noncompact Lie
group, and contains the Lorentz group as a subgroup (a subset of group elements
that satisfy the same group postulates as the parent group).
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v

x' xtFig. 16.1 A Lorentz boost along the positive x axis by a velocity v.

where a, b, c, and d parameterize the transformation matrices. Carrying out the matrix
multiplications explicitly on the left side gives

(
a2 +b2 ac+bd
ac+bd c2 +d2

)
=

(
1 0
0 1

)
,

and comparison of the two sides of the equation implies the conditions

a2 +b2 = 1 c2 +d2 = 1 ac+bd = 0.

Obviously one choice of parameters that satisfies these conditions is

a = cosθ b = sinθ c =−sinθ d = cosθ .

This leads to the standard result
(

x′1

x′2

)
= R

(
x1

x2

)
=

(
cosθ sinθ
−sinθ cosθ

)(
x1

x2

)
, (16.22)

which is Eq. (15.44) restricted to rotations about a single axis. Now we shall apply this
same technique to determine the elements of a Lorentz boost transformation.

16.4.4 Lorentz Boost Transformations

Consider a boost from one inertial system to a second one moving in the positive direction
at uniform velocity along the x axis, as illustrated in Fig. 16.1. Since the y and z coordinates
will not be affected, this is a 2-dimensional problem in the time coordinate t and the spatial
coordinate x. The transformation is of the general form

(
cdt ′

dx′

)
=

(
a b
c d

)(
cdt
dx

)
, (16.23)

and the condition (16.20) can be written out explicitly as
(

a b
c d

)(−1 0
0 1

)(
a c
b d

)
=

(−1 0
0 1

)
, (16.24)

which is identical in form to the rotation case, except for the indefinite metric. Multiplying
the matrices on the left side and comparing with the right side gives the conditions

a2−b2 = 1 − c2 +d2 = 1 −ac+bd = 0,
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Box 16.2 Minkowski rotations

The respective derivations make clear that the appearance of hyperbolic functions
in Eq. (16.25) instead of trigonometric functions as in Eq. (16.22) traces to the role of
the indefinite metric diag(−1,1) in Eq. (16.24) relative to the positive-definite met-
ric diag(1,1) in Eq. (16.21). The boost transformations are in a sense “rotations”
in Minkowski space, but these rotations have unusual properties relative to normal
rotations in euclidean space since they mix space and time, and may be viewed
as rotations through imaginary angles. These properties follow from the metric be-
cause the invariant interval is neither the length of vectors in space nor the length
of time intervals, but rather the specific mixture of space and time intervals implied
by the Minkowski line element (16.5) with indefinite metric (16.6). This is quite dif-
ferent from Newtonian mechanics, where time is a universal parameter common to
all observers and the Galilean transformations conserve only the space interval.

which clearly are satisfied by the parameterization

a = coshξ b = sinhξ c = sinhξ d = coshξ ,

where ξ is a hyperbolic variable taking the values −∞≤ ξ ≤ ∞. Therefore, we may write
the boost transformation as

(
cdt ′

dx′

)
=

(
coshξ sinhξ
sinhξ coshξ

)(
cdt
dx

)
. (16.25)

A geometrical interpretation of this result is discussed in Box 16.2.
The Lorentz boost transformation (16.25) can be put into a more familiar form by ex-

changing the boost parameter ξ for the boost velocity. For convenience, let’s replace the
differentials in Eq. (16.25) with finite space and time intervals (dt→ t and dx→ x). The ve-
locity of the boosted system is v = x/t. From Eq. (16.25), the origin (x′ = 0) of the boosted
system is given by

x′ = ct sinhξ + xcoshξ = 0.

Therefore, x/t =−csinhξ/coshξ , from which it may be concluded that

β ≡ v
c
=

x
ct

=− sinhξ
coshξ

=− tanhξ . (16.26)

This relationship between ξ and β is plotted in Fig. 16.2. Utilizing the identity 1= cosh2 ξ−
sinh2 ξ and the definition

γ ≡
(

1− v2

c2

)−1/2

(16.27)
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tFig. 16.2 Dependence of the Lorentz parameter ξ on β = v/c.

of the Lorentz γ-factor, we may write

coshξ =

√
cosh2 ξ

1
=

1√
1− sinh2 ξ/cosh2 ξ

=
1√

1− v2/c2
= γ, (16.28)

and from this result and (16.26),

sinhξ =−β coshξ =−βγ. (16.29)

Inserting (16.28)–(16.29) into (16.25) for finite intervals gives
(

ct ′

x′

)
= γ

(
1 −β
−β 1

)(
ct
x

)
(16.30)

and writing this matrix expression out explicitly gives the Lorentz boost equations (for the
specific case of a positive boost along the x axis) in standard textbook form,

t ′ = γ
(

t− vx
c2

)
x′ = γ(x− vt) y′ = y z′ = z, (16.31)

with the inverse transformation corresponding to the replacement v→−v. By inspection,
these reduce to the Galilean boost equations (15.46) if v/c→ 0 and it is easy to verify that
the Lorentz transformations leave invariant the spacetime interval ds2.

16.5 Lightcone Diagrams

The line element (16.5) defines a cone, implying that Minkowski spacetime may be clas-
sified according to the lightcone diagram exhibited in Fig. 16.3. The lightcone is a 3-
dimensional surface in the 4-dimensional spacetime and intervals relative to the origin may
be characterized according to whether they are inside of, outside of, or on the lightcone.
Assuming the metric signature (− + ++) employed here, the standard terminology is

• If ds2 < 0 the interval is termed timelike.
• If ds2 > 0 the interval is termed spacelike.
• If ds2 = 0 the interval is called lightlike (or null).



279 Lightcone Diagrams

Timelike

Timelike

Spacelike

Spacelike

F
u
tu
re

P
a
s
t

Now

ct

x

y

tFig. 16.3 Lightcone diagram for flat spacetime in two space and one time dimensions. The future
lightcone is the surface swept out by a spherical light pulse emitted from the origin.

These regions for flat spacetime are labeled in Fig. 16.3. This classification can be extended
also to surfaces. For example, a spacelike surface is a collection of points for which any
pair of points has a spacelike separation and a lightlike surface is a collection of points
for which any pair of points has a lightlike separation. The lightcone classification makes
clear the distinction between Minkowski spacetime and a mere 4-dimensional euclidean
space in that two points in the Minkowski spacetime may be separated by a distance that
when squared could be positive, negative, or zero. This is not possible in a euclidean met-
ric. Notice in particular that for lightlike particles, which have worldlines confined to the
lightcone, the square of the spacetime interval between any two points on a worldline is
zero.

Example 16.3 The Minkowski line element (16.5) in one space and one time dimension
[which often is termed (1+ 1) dimensions] is given by ds2 = −c2dt2 + dx2. Thus, if the
spacetime interval is lightlike, ds2 = 0 and

−c2dt2 +dx2 = 0 −→
(

dx
dt

)2

= c2 −→ v =±c.

This result can be generalized easily to the full space, leading to the conclusion that events
in Minkowski space separated by a null interval (ds2 = 0) are connected by signals moving
at light velocity, v = c. If the time axis (ct) and space axes have the same scales, this means
that the worldline of a freely-propagating photon (or any massless particle, necessarily
moving at light velocity) always makes ±45◦ angles in the lightcone diagram. By similar
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tFig. 16.4 Lightcones are local concepts. Each point of spacetime should be imagined to have its
own lightcone.
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tFig. 16.5 Worldlines for (a) massive (timelike) particles and (b) massless (lightlike) particles. For
massive particles the trajectory must always lie inside the local light cone at each point; for
massless particles it must always lie on the lightcone at each point.

arguments, events at timelike separations (inside the lightcone) are connected by signals
with v < c, and those with spacelike separations (outside the lightcone) could be connected
only by causality-violating signals with v > c.

The lightcone illustrated in Fig. 16.3 was placed at the origin for illustration but each
point in the spacetime has its own lightcone, as illustrated in Fig. 16.4. From Example 16.3,
the tangent to the worldline of any particle at a point defines the local velocity of the particle
at that point and constant velocity implies straight worldlines. Therefore, as illustrated in
Fig. 16.5(b), light travels in a straight line in flat spacetime and always on the lightcone
because it has constant local velocity, v = c, while the worldline for any massive particle
must lie inside the local lightcone because it must always have v ≤ c (in the jargon, a
worldline for a massive particle is always timelike). The worldline for the massive particle
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in Fig. 16.5(a) is curved, indicating an acceleration since the velocity is changing with
time. For non-accelerated massive particles the worldline would be straight, but always
within the local lightcone.

In the Galilean relativity of Newtonian mechanics an event picks out a hyperplane of
simultaneity in the spacetime diagram consisting of all events occurring at the same time
as the event. All observers agree on what constitutes this set of simultaneous events because
in Galilean relativity simultaneity is independent of the observer. In Einstein’s relativity,
simultaneity depends on the observer and hyperplanes of constant coordinate time have no
invariant meaning. However, all observers agree on the lightcones associated with events,
because the speed of light is an invariant for all observers. Thus, the lightcones define an
invariant spacetime structure permitting unambiguous causal classification of events.

16.6 The Causal Structure of Spacetime

The causal properties of Minkowski spacetime are encoded in its invariant lightcone struc-
ture. Each spacetime point lies at the apex of its lightcone (“Now” in Fig. 16.3), as il-
lustrated in Fig. 16.4. From Example 16.3, the lightcone defines a set of points that are
connected to the origin by signals moving at light velocity c, events inside the lightcone
may be connected to the origin by signals moving at v < c, and events outside the light-
cone may be connected to the origin only by signals having v > c. Thus, the event at the
origin of a local lightcone may influence any event within its forward lightcone (“Future”
in Fig. 16.3) through signals propagating at v < c. Likewise, the event at the origin may
be influenced by events within its backward lightcone (“Past” in Fig. 16.3) through sig-
nals with speeds less than that of light. Conversely, events at spacelike separations may
not be influenced, or have an influence on, the event at the origin except by signals that
require v > c. Finally, events on the lightcone are connected by signals that travel exactly
at c. Thus, events at spacelike separations are causally disconnected and the lightcone is
a surface separating the knowable from the unknowable for an observer at the apex of the
lightcone.

This lightcone structure of spacetime ensures that all velocities obey locally the con-
straint v ≤ c. Since velocities are defined and measured locally, covariant field theories in
either flat or curved spacetime are guaranteed to respect the speed limit v≤ c, irrespective
of whether velocities appear to exceed c globally. For example, in the Hubble expansion of
the Universe galaxies beyond a certain distance (the horizon) appear to recede at velocities
in excess of c because of the expansion of space, and light coming to us from near the
horizon is stretched in wavelength and takes longer to propagate to us than it would in a
flat, non-expanding spacetime. However, all local measurements in that expanding, possi-
bly curved spacetime would determine the velocity of light to be c, in accordance with the
axioms of special relativity and the associated lightcone structure of spacetime.
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Box 16.3 Time Machines and Causal Paradoxes

Discussions of time travel are usually about going backward in time; it requires no
special talent to travel forward in time, and various scenarios can be arranged that
are consistent with relativity where a person could travel into a future time even
faster than normal (at least as thought experiments; I leave procurement and engi-
neering details to you!). For example, in the twin paradox it is possible to arrange
for the traveler to arrive back at Earth centuries in the future relative to clocks that
remain on Earth, which is a kind of time travel. Similar possibilities exist using the
gravitational time dilation in strong gravity. However, the real question is, could you
go back in time to explore your earlier history and potentially influence it?

Our current understanding of special and general relativity, and of the nature
of the Universe, says no! Bending a forward-going timelike worldline continuously
into a backward-going one requires going outside the local lightcone, implying a
violation of the relativity constraint v ≤ c. If closed timelike loops were permitted
in general relativity, travel to earlier times might be possible. However, they are
forbidden in our present understanding if there are no negative energy densities
and the Universe has the topology in evidence. Thus, the committed time traveler
must find some negative energy, or find structures with an exotic spacetime topology
allowing closed timelike loops.

However, negative energy is probably forbidden in classical gravity, and there is
no evidence at present for exotic spacetime topologies with closed timelike loops,
which bodes ill for time travelers. The reader is warned that these statements are
based entirely on classical gravity considerations (general relativity). It is unclear
at present whether some future understanding of quantum gravity could alter the
prospects for time travel.

Example 16.4 Time machines are of enduring interest in science fiction and in the pub-
lic imagination. The local lightcones of Minkowski spacetime embody the causal struc-
ture of special relativity, and general relativity inherits the local lightcone structure of
Minkowski space. Therefore, as explored further in Box 16.3, lightcone diagrams provide
a simple way to answer the question of whether special or general relativity allow going
back in time to prevent your own birth, which in turns prevents you from going back in
time to prevent your own birth, . . .

From the preceding discussion we may conclude that the axioms of special relativity
are fundamentally at odds with the Newtonian concept of absolute simultaneity, since the
demand that light have the same speed for all observers necessarily means that the apparent
temporal order of two events depends upon the observer. However, the abolishment of
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absolute simultaneity introduces no causal ambiguity, because all observers agree on the
lightcone structure of spacetime and hence all observers agree that event A can cause event
B only if A lies in the past lightcone of B, for example.

16.7 Lorentz Transformations in Spacetime Diagrams

It is instructive to examine the action of Lorentz transformations in the spacetime (light-
cone) diagram. If consideration is restricted to boosts only in the x direction, the relevant
part of the spacetime diagram in some inertial frame corresponds to a plot with axes ct and
x, as illustrated in Fig. 16.6.

16.7.1 Lorentz Boosts and the Lightcone

What happens to the axes in Fig. 16.6 under a Lorentz boost? From the first two of Eqs.
(16.31),

ct ′ = cγ
(

t− vx
c2

)
x′ = γ(x− vt). (16.32)

The t ′ axis corresponds to x′ = 0, which implies from the second of Eqs. (16.32) that
ct = xβ−1, with β = v/c, is the equation of the t ′ axis in the (ct,x) coordinate system.
Likewise, the x′ axis corresponds to t ′ = 0, which implies from the first of Eqs. (16.32) that
ct = xβ . The x′ and ct ′ axes for the boosted system are also shown in Fig. 16.6(a) for a boost
corresponding to a positive value of β . The time and space axes are rotated by the same
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angle, but in opposite directions by the boost (a consequence of the indefinite Minkowski
metric). The angle of rotation is related to the boost velocity through tanφ = v/c.

Many characteristic features of special relativity are apparent from Fig. 16.6. For exam-
ple, relativity of simultaneity follows directly, as illustrated in Fig. 16.6(b). Points A and B
lie on the same t ′ line, so they are simultaneous in the boosted frame. But from the dashed
projections on the ct axis, in the unboosted frame event A occurs before event B. Likewise,
points C and D lie at the same value of x′ in the boosted frame and so are spatially congru-
ent, but in the unboosted frame xC ̸= xD. Relativistic time dilation and space contraction
effects follow rather directly from these observations, as illustrated in the example below.

Example 16.5 Consider the following schematic representation of the spacetime dia-
gram illustrated in Fig. 16.6, where a rod of length L0, as measured in its own rest frame
(t,x), is oriented along the x axis.

x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

The frame (t ′,x′) is boosted by a velocity v along the +x axis relative to the (t,x) frame.
Therefore, in the primed frame the rod will have a velocity v in the negative x′ direc-
tion. Determining the length L observed in the primed frame requires that the positions of
the ends of the rod be measured simultaneously in that frame. The axis labeled x′ corre-
sponds to constant t ′ [see Fig. 16.6(b)], so the distance marked as L is the length in the
primed frame. This distance seems longer than L0, but this is deceiving because a slice
of Minkowski spacetime is being represented on a piece of euclidean paper. Much as a
Mercator projection of the globe onto a euclidean sheet of paper gives misleading distance
information (Greenland isn’t really larger than Brazil), the metric must be trusted to deter-
mine the correct distance in a space. From the Minkowski indefinite metric and the triangle
in the figure above, L2 = L2

0− (c∆t)2. But from Eq. (16.32) it was found that the equation
for the x′ axis is c∆t = (v/c)L0, from which it follows that

L = (L2
0− (c∆t)2)1/2 =

(
L2

0−
(v

c
L0

)2
)1/2

= L0(1− v2/c2)1/2,

which is the familiar length-contraction formula of special relativity: L is shorter than L0,
even though it appears to be longer in the figure above.
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16.7.2 Spacelike and Timelike Intervals

As noted previously, the spacetime interval between any two events may be classified in a
relativistically invariant way as timelike, lightlike, or spacelike by constructing the light-
cone at one of the points, as illustrated in Fig. 16.7(a). This geometry and that of Fig. 16.6
then suggest another important distinction between events at spacelike separations [the line
AB in Fig. 16.7(a)] and timelike separations [the line AC in Fig. 16.7(a)]:

(i) If two events have a timelike separation, a Lorentz transformation exists that can bring
them into spatial congruence. Figure 16.7(b) illustrates geometrically a coordinate sys-
tem (ct ′,x′), related to the original system by an x-axis Lorentz boost of v/c = tanφ1,
in which A and C have the same coordinate x′.

(ii) If two events have a spacelike separation, a Lorentz transformation exists that can
synchronize the events. Figure 16.7(c) illustrates an x-axis Lorentz boost by v/c =

tanφ2 to a system in which A and B have the same time t ′.

Maximum values of φ1 and φ2 are limited by the v = c line. The Lorentz transformation to
bring A into spatial congruence with C exists only if C lies to the left of v = c (C separated
by a timelike interval from A). Likewise, the Lorentz transformation to synchronize A with
B exists only if B lies to the right of v = c (B separated by a spacelike interval from A).

16.8 Lorentz Invariance of Maxwell’s Equations

We conclude this chapter by examining the Lorentz invariance of the Maxwell equations
that describe classical electromagnetism. There are several motivations.
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1. It provides a nice example of how useful Lorentz invariance and Lorentz tensors can be
in application to a physical problem.

2. It is of considerable historical interest because the beauty and properties of the Maxwell
equations had strong influence on Einstein in his development of the special theory of
relativity.

3. There are many useful parallels between general relativity and the Maxwell theory,
particularly for weak gravity where the Einstein field equations may be linearized.5

In the following sections we write the Maxwell equations in standard form, introduce a
covariant notation for them, and finally rewrite them in a way that is manifestly Lorentz
invariant because all quantities appearing in the equations will be Lorentz tensors.

16.8.1 Maxwell Equations in Non-Covariant Form

Let us first write the Maxwell equations in the usual non-covariant way. Departing from
our normal SI units, we choose to do this in Heaviside–Lorentz units (see Appendix B.3),
which will be recognized as very similar to SI units but with the speed of light set to c = 1.
The free-space Maxwell equations may be written in Heaviside–Lorentz units as

∇∇∇ ·EEE = ρ (16.33a)

∂BBB
∂ t

+∇∇∇×EEE = 0 (16.33b)

∇∇∇ ·BBB = 0 (16.33c)

∇∇∇×BBB− ∂EEE
∂ t

= JJJ, (16.33d)

where EEE is the 3-vector electric field, BBB is the 3-vector magnetic field, ρ is the scalar charge
density, and JJJ is the current 3-vector, with the density and current required to satisfy the
usual equation (1.3) of continuity

∂ρ
∂ t

+∇∇∇ · JJJ = 0.

The Maxwell equations are consistent with the special theory of relativity. However, in the
form of Eqs. (16.33) this covariance is not manifest, since these equations are formulated
in terms of 3-vectors and separate derivatives with respect to space and time, not in terms
of Minkowski tensors. It is useful in a number of contexts to reformulate the Maxwell
equations in a manner that is manifestly covariant with respect to Lorentz transformations.
The usual route to accomplishing this begins by replacing the electric and magnetic fields
by new variables.

5 For example, this is particularly useful in understanding the propagation of gravitational waves far from strong
sources. Then the highly-nonlinear Einstein equations that describe strong gravity can be linearized and the
resulting formalism exhibits many similarities to the Maxwell equations of classical electromagnetism (see
Section 22.2 of Ref. [16]).
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16.8.2 Scalar and Vector Potentials

The electric and magnetic fields appearing in the Maxwell equations may be eliminated in
favor of a vector potential AAA and a scalar potential Φ through the definitions

BBB≡ ∇∇∇×AAA EEE ≡−∇∇∇Φ− ∂AAA
∂ t

. (16.34)

The vector identities

∇∇∇ · (∇∇∇×BBB) = 0 ∇∇∇×∇∇∇Φ = 0, (16.35)

may then be used to show that the second and third Maxwell equations are satisfied identi-
cally, and the identity

∇∇∇×(∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇∇∇2AAA, (16.36)

may be used to write the remaining two Maxwell equations as the coupled second-order
equations

∇∇∇2Φ+
∂
∂ t

∇∇∇ ·AAA =−ρ (16.37)

∇∇∇2AAA− ∂ 2AAA
∂ t2 −∇∇∇

(
∇∇∇ ·AAA+

∂Φ
∂ t

)
=−JJJ. (16.38)

These equations may then be decoupled by exploiting a fundamental symmetry of electro-
magnetism termed gauge invariance.

16.8.3 Gauge Transformations

Because of the identity ∇∇∇×∇∇∇Φ = 0, the simultaneous transformations

AAA→ AAA+∇∇∇χ Φ→Φ− ∂ χ
∂ t

(16.39)

for an arbitrary scalar function χ do not change the EEE and BBB fields; thus, they leave the
Maxwell equations invariant. The transformations (16.39) are termed (classical) gauge
transformations. This freedom of gauge transformation may be used to decouple Eqs.
(16.37)–(16.38). For example, if a set of potentials (AAA,Φ) that satisfy

∇∇∇ ·AAA+
∂Φ
∂ t

= 0, (16.40)

is chosen, the equations decouple to yield

∇∇∇2Φ− ∂ 2Φ
∂ t2 =−ρ ∇∇∇2AAA− ∂ 2AAA

∂ t2 =−JJJ, (16.41)

which may be solved independently for AAA and Φ.
A constraint of the sort (16.40) is termed a gauge condition and the imposition of such

a constraint is termed fixing the gauge. This particular choice of gauge that leads to the
decoupled equations (16.41) is termed the Lorentz gauge. Another common gauge is the
Coulomb gauge, with a gauge-fixing condition

∇∇∇ ·AAA = 0, (16.42)
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which leads to the equations

∇∇∇2Φ =−ρ ∇∇∇2AAA− ∂ 2AAA
∂ 2t

= ∇∇∇
∂Φ
∂ t
− JJJ. (16.43)

Let us utilize the shorthand notation for derivatives introduced in Eq. (15.89):

∂ µ ≡ ∂
∂xµ

= (∂ 0,∂ 1,∂ 2,∂ 3) =

(
− ∂

∂x0 , ∇∇∇
)
,

∂µ ≡
∂

∂xµ = (∂0,∂1,∂2,∂3) =

(
∂

∂x0 , ∇∇∇
)
,

(16.44)

where, for example, ∂1 = ∂/∂x1 and

∇∇∇≡ (∂ 1,∂ 2,∂ 3) (16.45)

is the 3-divergence. A compact and covariant formalism then results from introducing the
4-vector potential Aµ , the 4-current Jµ , and the d’Alembertian operator □ through

Aµ ≡ (Φ,AAA) = (A0,AAA) Jµ ≡ (ρ,JJJ) □≡ ∂µ ∂ µ . (16.46)

Thus the time-like component of the 4-vector potential Aµ is the scalar potential Φ and the
spacelike components are the 3-vector potential AAA, while the timelike component of the
4-current Jµ is the charge density ρand the spacelike components are the 3-vector current
JJJ. Then a gauge transformation takes the form

Aµ → Aµ −∂ µ χ ≡ A′µ (16.47)

and the preceding examples of gauge-fixing constraints become

∂µ Aµ = 0 (Lorentz gauge) ∇∇∇ ·AAA = 0 (Coulomb gauge), (16.48)

with the notation in Eq. (16.48) indicating explicitly that

1. the Lorentz condition is a covariant constraint because it is formulated in terms of 4-
vectors, but

2. the Coulomb gauge condition is not covariant because it is formulated in terms of only
three of the components of a 4-vector.

The d’Alembertian operator □ is Lorentz invariant because under Lorentz transformations
between coordinate systems,

□′ = ∂ ′µ ∂ ′µ = Λ ν
µ Λµ

λ ∂ν ∂ λ = ∂µ ∂ µ =□.

Thus, the Lorentz-gauge wave equation may be expressed in the compact and manifestly
covariant form

□Aµ = Jµ (16.49)

and the continuity equation (1.3) becomes becomes

∂µ Jµ = 0, (16.50)

when written in covariant form.
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The covariance of the Maxwell wave equation (16.49) in the Lorenz gauge, cou-
pled with the general gauge invariance of electromagnetism, ensures that the
Maxwell equations are covariant in all gauges.

However, as was seen in our original formulation of he Maxwell equations Eq. (1.1) and
in the example of the Coulomb gauge, this covariance may not be manifest for a particular
choice of notation or gauge. In Section 16.8.4 we shall address this issue by constructing a
manifestly (Lorentz) covariant form of the Maxwell equations.

16.8.4 Maxwell Equations in Manifestly Covariant Form

The Maxwell equations may be cast in a form that is manifestly covariant by appealing to
Eqs. (16.34) to construct the components of the electric and magnetic fields in terms of the
potentials. Proceeding in this manner, we find that the six independent components of the
3-vectors EEE and BBB are elements of an antisymmetric rank-2 electromagnetic field tensor

Fµν =−Fνµ = ∂ µ Aν −∂ ν Aµ , (16.51)

which may be expressed in matrix form as

Fµν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 . (16.52)

That is, the electric field EEE and the magnetic field BBB are vectors in three-dimensional eu-
clidean space but in Minkowski space their six components together form an antisymmetric
rank-2 tensor. Now let us employ the Levi–Civita symbol εαβγδ , which has the value +1
for αβγδ = 0123 and cyclic permutations, −1 for odd permutations, and zero if any two
indices are equal, and which further satisfies εαβγδ =−εαβγδ . If the dual field tensor F µν

is then defined by

F µν = 1
2 εµνγδ Fγδ =




0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


 , (16.53)

the Maxwell equations (16.33a) and (16.33d) may be written

∂µ Fµν = Jν , (16.54)

and the Maxwell equations (16.33b) and (16.33c) may be expressed as

∂µF µν = 0. (16.55)

The Maxwell equations in this form are manifestly covariant because they are formulated
exclusively in terms of Lorentz tensors.
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Background and Further Reading

For an introduction to special relativity, see Kogut [23]. Special and general relativity are
introduced at an accessible level in Guidry [16]. The use of linearized gravity in describing
gravitational waves far from strong sources, and the similarity of the linearized Einstein
equations to the Maxwell equations, is discussed in Ch. 22 of Ref. [16]. Manifest Lorentz
covariance of the Maxwell equations is discussed in Jackson [19].
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Problems

16.1 The primed axes (x′, t ′) plotted in the coordinate system of the unprimed axes in Fig.
16.6 do not appear to be orthogonal, but they must be since the unprimed axes are
orthogonal (their scalar product vanishes) and the scalar product is preserved under
Lorentz transformations. Show generally that two vectors in a spacetime diagram are
orthogonal if each makes the same angle with respect to the lightcone. Use this result
to show that a lightlike vector is necessarily orthogonal to itself. ***

16.2 If a Lorentz transformation matrix is denoted by Λµ
ν , prove that the Lorentz trans-

formation given by Λ ν
µ = ηµα ηνβ Λα

β is its inverse.
16.3 (a) Prove that the Maxwell field tensor Fµν is invariant under a gauge transformation

of the 4-vector potential Aµ . (b) By appealing to the definitions (16.34), show that
the Maxwell field tensor Fµν has components given by Eqs. (16.51) and (16.52).

16.4 Show that the Maxwell equations written in the covariant form (16.54) and (16.55)
are equivalent to the non-covariant form of the Maxwell equations given by Eqs.
(16.33a)–(16.33d).

16.5 Two events in Minkowski space have a timelike separation. Use the invariance of the
interval ds2 to show that the time between the events as measured by any inertial
observer is always greater than or equal to the proper time between the events. ***



17
Action Formulation of Classical

Electromagnetism

In this chapter we will demonstrate that classical electromagnetism can be formulated in
terms of a least-action principle such that the Lagrangian and Hamiltonian methods of
classical mechanics can be applied to the electromagnetic field.

17.1 A Lagrangian Formulation of Electromagnetism

Since the starting point for a field theory is typically a Lagrangian from which the fields
can be derived through a variational principle, it is useful write down a Lagrangian density
(a Lagrangian evaluated at a single spacetime point) appropriate for the electromagnetic
field.

17.1.1 Principle of Extremal Proper Time

The motion of free particles in Minkowski spacetime is governed by a simple principle:
the worldline for free particles between points separated by timelike intervals extremizes
the proper time. This is called the principle of extremal proper time and is illustrated in
Fig. 17.1. The proper time between the points A and B in Fig. 17.1 can be computed from
Eq. (16.5) as,

τAB =
∫ B

A
(dt2−dx2−dy2−dz2)1/2. (17.1)

A

B

x

ct

Timelike

paths

tFig. 17.1 Principle of Extremal Proper Time: of all the possible classical paths between two
timelike-separated points A and B in spacetime, a free particle follows one that extremizes
the proper time. Adapted from Ref. [16].
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Parameterizing a path by a variable σ that varies continuously from 0 to 1 as the particle
moves from A to B, the path is specified by xµ = xµ(σ) and

τAB =

∫ 1

0

[(
dt
dσ

)2

−
(

dx
dσ

)2

−
(

dy
dσ

)2

−
(

dz
dσ

)2
]1/2

dσ . (17.2)

The solution to finding the path that extremizes the action is described in Box 17.1, where
the condition for an extremum is found to be

δ
∫

dτ = 0. (17.3)

Defining a Lagrangian L as

L =

(
−gµν

dxµ

dσ
dxν

dσ

)1/2

, (17.4)

where gµν is the metric tensor, so that

τAB =
∫ 1

0
Ldσ , (17.5)

then results in the Euler–Lagrange equation of motion

− d
dσ

(
∂L

∂ (dxµ/dσ)

)
+

∂L
∂xµ = 0. (17.6)

Requiring that the Lagrangian L obey the differential equation (17.6) satisfies the varia-
tional condition (17.3).

17.1.2 Construction of Classical Fields

The standard approach to classical field theory is to define fields that obey appropriate
equations of (classical) motion. The classical action S is defined by

S =
∫

d 4xL =
∫ t2

t1
Ldt, (17.7)

where L = L (x) is the Lagrangian defined at a Minkowski spacetime point (the La-
grangian density). The total Lagrangian L is then given by

L =
∫

d 3xL (x). (17.8)

We may view the action S as the central quantity for field quantization. It determines the
equations of motion for the classical fields to be quantized in the canonical method, and
in the path integral method each path in the functional integral is weighted by a factor
exp(iS).

The formal starting point for developing a field theory is to construct the appro-
priate Lagrangian density, which then leads to the action through Eq. (17.7), and
thus to the equations of motion for the field (17.6).

Thus, we need appropriate Lagrangian densities for the fields of interest.
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Box 17.1 The Euler–Lagrange Equations [16]

Consider the paths in spacetime between the fixed points labeled A and B in
Fig. 17.1. For a function L(xµ(σ), ẋµ(σ)), where σ parameterizes the path and
ẋµ ≡ dxµ/dσ , define the path integral

S =
∫ B

A
L(xµ(σ), ẋµ(σ)) dσ .

For an arbitrary small variation in the path xµ(σ)→ xµ(σ) + δxµ(σ), the corre-
sponding variation in the value of the integral is

δS≡
∫ B

A
δLdσ =

∫ B

A

(
∂L

∂ ẋµ(σ)
δ ẋµ(σ)+

∂L
∂xµ(σ)

δxµ(σ)

)
dσ .

The first term can be integrated by parts, giving

δS =
∂L

∂ ẋµ(σ)
δxµ(σ)

∣∣∣∣∣
B

A
+

∫ B

A

[
− d

dσ

(
∂L

∂ ẋµ(σ)

)
+

∂L
∂xµ(σ)

]
δxµ(σ)dσ ,

but the variation δxµ(σ) vanishes at the fixed endpoints so the first term is zero and

δS =

∫ B

A

[
− d

dσ

(
∂L

∂ ẋµ(σ)

)
+

∂L
∂xµ(σ)

]
δxµ(σ)dσ .

For paths that extremize the integral δS = 0 and for arbitrary variations δxµ(σ) this
will be true only if the expression inside the square brackets of the above integrand
vanishes. Thus

− d
dσ

(
∂L

∂ ẋµ(σ)

)
+

∂L
∂xµ(σ)

= 0,

which is the Euler–Lagrange equation (17.6). Satisfying the variational condition
δS = 0 characterizing an extremal path is equivalent to requiring that the function L
satisfy the Euler–Lagrange equation.

17.1.3 Lagrangian Densities for Photons and Charged Fields

The Lagrangian densities that we require are constructed precisely to yield the appropriate
fields when the variational principle (17.3) is applied. Let’s summarize a few important
wave equations entering into formulations of a field theory for electromagnetism and for
charged particles coupled to electromagnetism.

1. The Maxwell wave equation for massless vector fields Aµ(x) is, in Lorentz gauge,

□Aµ(x) = jµ (Lorenz gauge), (17.9)

which is quadratic in ∂ µ .
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2. The Klein–Gordon equation for scalar (single-component) fields Φ(x)

(□+m2)Φ(x) = 0 □≡ ∂µ ∂ µ , (17.10)

which is quadratic in ∂µ and carries no Lorentz index.
3. The Dirac equation for 4-component Lorentz spinor fields Ψ(x)

(−iγµ ∂µ +m)Ψ(x) = 0, (17.11)

which is linear in ∂ µ .
4. The massive vector or Proca field Aµ(x), with an equation

(□+m2)Aµ(x) = 0 (17.12)

that is quadratic in ∂ µ .

The corresponding Lagrangian densities that yield the wave equations given above are
summarized in the following.

Massless Vector Field: In terms of the rank-2 electromagnetic field tensor Fµν = ∂ µ Aν −
∂ ν Aµ introduced in Eq. (16.51) through the 4-vector potential Aµ defined in Eq. (16.46),
the free-field Lagrangian density appropriate for the massless vector (photon) field is

L0 =−
1
4

Fµν Fµν (Massless vector field). (17.13)

This Lagrangian density describes massless vector particles like the photon and satisfies
the wave equation (17.9) in Lorentz gauge.

Complex Scalar or Pseudoscalar Fields: A complex scalar (or pseudoscalar) field φ(x)
may be expressed in terms of two real scalar fields φ1(x) and φ2(x) having the same mass
(m1 = m2 ≡ m),

φ =
1√
2
(φ1 + iφ2) φ † =

1√
2
(φ1− iφ2) , (17.14)

where the corresponding free Lagrangian density is

L0 = (∂ µ φ)†(∂µ φ)−m2φ †φ (Complex scalar field). (17.15)

Separate variations of φ and φ † then lead to two independent Klein–Gordon equations
(17.10),

(□+m2)φ(x) = 0 (□+m2)φ †(x) = 0. (17.16)

Charged scalar or pseudoscalar particles are associated with complex scalar fields.

Dirac Spinor Field: For a Dirac field ψ(x) and a conjugate (adjoint spinor) field ψ(x)
defined by

ψ(x)≡ ψ†(x)γ0, (17.17)

where the matrix γ0 is defined through the 4×4 matrices γµ satisfying the anticommutator

{γµ ,γν } ≡ γµ γν + γν γµ = 2ηµν (17.18)
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Table 17.1 Properties of the Dirac γ-matrices [17]

{αi,α j }= 2δi j {αi,β }= 0 α2
i = β 2 = 1

γ0 = γ0 ≡ β γi ≡ γ0αi γ5 = γ5 ≡ iγ0γ1γ2γ3 σ µν ≡ i
2 [γ

µ ,γν ]

{γµ ,γν }= 2ηµν γ0γ†
µ γ0 = γµ {γ5,γµ }= 0 (γ i)2 =−1

(γ0)2 = 1 (γ5)2 = 1 (γ0)
† = γ0 (γ i)† =−γ i (γ5)† = γ5

Pauli–Dirac representation (4×4 matrices):

γ0 =

(
1 0
0 −1

)
γ i =

(
0 σi

−σi 0

)
γ5 =

(
0 1
1 0

)
αi =

(
0 σi

σi 0

)

β =

(
1 0
0 −1

)
σ i j = εi jk

(
σk 0
0 σk

)
σ0k = i

(
0 σk

σk 0

)

Weyl (chiral) representation (4×4 matrices):

γ0 =

(
0 1
1 0

)
γ i =

(
0 −σi

σi 0

)
γ5 =

(
1 0
0 −1

)

Majorana representation (4×4 matrices):

γ0 =

(
0 σ2

σ2 0

)
γ1 =

(
iσ1 0
0 iσ1

)
γ2 =

(
0 σ2
−σ2 0

)

γ3 =

(
−iσ3 0

0 iσ3

)
γ5 =

(
σ2 0
0 σ2

)

Standard Pauli matrices (2×2 matrices):

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

that are termed the (Dirac) γ-matrices. Explicit forms in different representations and gen-
eral properties of the gamma-matrices are summarized in Table 17.1. The Lagrangian den-
sity for a free Dirac spinor field is

L0 = ψ(i∂/−m)ψ (Dirac spinor field), (17.19)

where m is the mass and Feynman slash notation has been used: a slash through a quantity
indicates a 4-vector contracted completely with the γ-matrices: ∂/≡ γµ ∂µ . The Lagrangian
density (17.19) then yields the Dirac equation (17.11),

(i∂/−m)ψ = 0, (17.20)

as the equation of motion for a charged fermion spinor field.

Massive Vector Field: For a vector field of finite mass m, the appropriate free-field La-
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grangian density is obtained from Eq. (17.13) by adding a Lorentz-invariant mass term,

L0 =−
1
4

Fµν Fµν +
1
2

m2Aµ Aµ (Massive vector field). (17.21)

This implies an equation of motion (□+m2)Aµ = 0 corresponding to the wave equation
(17.12) for a massive vector field.

Background and Further Reading

See Wald [40], Zangwill [42], and Garg [11].
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Problems

17.1 No problems yet for this chapter.



18
Electromagnetism as an Abelian

Gauge Field Theory

As we have alluded to in various places, modern relativisitic quantum field theory, in par-
ticular the Standard Model of elementary particle physics, is a quantized generalization of
the gauge invariance principle of classical electromagnetism. In this chapter we provide
some remarks intended to outline the relationship of classical gauge invariance to the more
complex gauge symmetries prominent in modern gauge field theories. These more com-
plex gauge symmetries are typically implemented in (usually relativistic) quantum field
theories, so our discussion will occasionally touch on a quantum description. Therefore,
the reader will be assumed to have an understanding of basic concepts from quantum me-
chanics.

18.1 Symmetry and Gauge Invariance

Symmetries and broken symmetries are of fundamental importance in the generalization
of the classical gauge invariance exhibited by the Maxwell equations to the varied man-
ifestation of gauge invariance in modern quantum field theory. The natural language for
describing gauge symmetries in their most general form is the theory of Lie groups and
Lie algebras. The rudiments are described in Box 18.1. The essential difference between
the gauge symmetry of electromagnetism and the gauge symmetries associated with the
electromagnetic, weak, and strong interactions in the Standard Model is that electromag-
netism is governed by a symmetry called U(1) (described in Box 18.2) that is abelian,
but the weak and strong interactions are governed by gauge symmetries that correspond to
larger and more complex nonabelian gauge groups.

18.2 The Minimal Coupling Prescription

Gauge invariance is of fundamental importance in classical electromagnetism and becomes
even more so in quantum field theory. In either case it is important to ask what coupling
terms between fields in Lagrangians or Hamiltonians are permitted that preserve gauge
invariance. Note first that a classical particle carrying charge q and moving with 3-velocity
vvv in an electromagnetic field experiences the Lorentz force of classical electromagnetism,

FFF = q(EEE + vvv×BBB), (18.1)

299
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Box 18.1 Symmetries and Groups [16]

A group is a set G = {x,y, . . .} for which a binary operation a · b = c called group
multiplication is defined that has the following properties

(i) Closure: If x and y are elements of G, then x · y is an element of G also.
(ii) Identity: An identity element e exists such that e · x = x · e = x for x ∈ G.
(iii) Existence of an Inverse: For every group element x there is an inverse x−1 in

the set such that xx−1 = e.
(iv) Associativity: Multiplication is associative: (x · y) · z = x · (y · z) for x,y,z ∈ G.

For groups of transformations multiplication corresponds to applying first one and
then the other transformation. The group definition requires associativity but not
commutivity. A group consisting of commutative elements only is abelian; otherwise,
it is nonabelian.

Example: The Lorentz group
There are six independent Lorentz transformations: three rotations about the spatial
axes parameterized by real angles, and three boosts along the spatial axes param-
eterized by boost velocities. Because rotation angles and boost velocities can take
continuous real values, the set of Lorentz transformations is infinite. The Lorentz
transformations form a group:

1. Two successive transformations are equivalent to some other transformation.
2. Every Lorentz transformation has an inverse that is the transformation in the

opposite direction (for example, v→−v for boosts).
3. The identity corresponds to no transformation.
4. It doesn’t matter how three successive transformations are grouped, so multipli-

cation is associative, but the order matters, so the Lorentz group is nonabelian.

An important class of groups corresponds to transformations that are continuous
(analytical) in their parameters. These are called Lie groups. The Lorentz group is
a Lie group. Groups also can be classified according to whether their parameter
spaces are closed and bounded (compact groups) or not (noncompact groups).a

Because boost velocities can approach c asymptotically but never reach it, the
Lorentz-group parameter space is bounded by v < c but not closed (the limit v = c
is not part of the set since Lorentz transformations diverge for v = c) and the group
is noncompact.

Example: The Poincaré group
The Poincaré group is formed by adding to the Lorentz transformations the uniform
translations along the four spacetime axes. It is a non-abelian, noncompact Lie
group, and contains the Lorentz group as a subgroup (a subset of group elements
that satisfy the same group postulates as the parent group).

a A closed set contains all its limit points. In a bounded set all point lie within some maximum fixed dis-
tance from each other. Example: [0,a) (where “[′′ denotes a closed interval and “)′′ an open interval)
is not a closed subset of the real numbers R because it contains 0 but doesn’t contain a.
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Box 18.2 The Gauge Group U(1)

A gauge transformation in electromagnetism corresponds to simultaneous transfor-
mations on the scalar potential Φ and vector potential Ai,

Φ→Φ′ = eiqχΦ Ai→ A′i = Ai +∂µ χ

(in h̄ = 1 units), where q is the electrical charge and χ = χ(x) is an arbitrary scalar
function depending on the spacetime coordinates x. Gauge symmetry then implies
that classically (Φ,Ai) and (Φ′,A′i) are physically equivalent.a Thus, the gauge
transformation acts on the charged scalar field Φ by multiplying it by a space-
time dependent phase factor. Mathematically, multiplication by a phase factor cor-
responds to a unitary map U:C→C on the complex numbers z ∈C that is defined
in this case by Uz = eiqχz, where U implements a unitary transformation.b The set
of all unitary maps on C constitute a group (see Box 18.1) with the “multiplication”
operation defined by composition (successive application) of maps. This group is
commonly labeled U(1) in physics, where U denotes “unitary” and 1 denotes a 1D
complex vector space C. Since the complex vector space is one-dimensional, the
group elements eiqχ of U(1) are parameterized by a single parameter χ and the
group is abelian. The unitary maps Uz = eiqχz are in one-to-one correspondence
with the real numbers χ modulo 2π/q, so the manifold of U(1) (the space traced out
by allowing the group parameter χ to vary over all possible values) is represented
naturally by a circle S1 of circumference 2π/q.

a They lead to the same classical electric and magnetic fields, and thus to the same solutions of the
Maxwell equations. Since χ(x) is a local function of the coordinates, this is termed a local gauge
transformation (a global gauge transformation corresponds to a constant χ). As discussed in Section
11.3 and Box 11.2, gauges related by the same gauge transformation constitute an equivalence class.

b A unitary transformation Uz is a linear map with the property
∣∣Uz2

∣∣=
∣∣z2
∣∣), so it preserves the modulus∣∣z2

∣∣ for all z ∈ C). Such transformations are said to be unimodular.

provided that the classical Hamiltonian function is given by

H =
1

2m
(ppp−qAAA)2 +qφ , (18.2)

where EEE is the electric field, BBB is the magnetic field, ppp is the 3-momentum, AAA is the 3-
vector potential, and φ is the scalar potential. Quantizing this Hamiltonian assuming non-
relativistic quantum mechanics gives the modified Schrödinger equation

[
1

2m
(−i∇∇∇−qAAA)2 +qφ

]
ψ(xxx, t) = i

∂ψ(xxx, t)
∂ t

. (18.3)

Comparing this expression with the free-particle Schrödinger equation

− 1
2m

∇∇∇2ψ(xxx, t) = i
∂ψ(xxx, t)

∂ t
,
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suggests that a Schrödinger equation accounting for gauge-invariant coupling of charged
particles to an electromagnetic field can be constructed from the free-particle Schrödinger
equation by making the operator substitutions

∇∇∇→ DDD≡ ∇∇∇− iqAAA
∂
∂ t
→ D0 ≡ ∂

∂ t
+ iqφ . (18.4)

In covariant notation this becomes

∂ µ → Dµ ≡ ∂ µ + iqAµ , (18.5)

where we have defined the 4-vectors Aµ = (φ ,AAA) and Dµ = (D0,DDD). The replacement
(18.5) is just the replacement of the partial derivative by the covariant derivative as in Eq.
(15.95), with the notational change ∇∇∇µ → Dµ . Equation (18.5) is termed the minimal cou-
pling prescription or the minimal substitution. The Schrödinger equation (18.3) is invariant
under the local gauge transformation (11.10),

AAA→ AAA+∇∇∇χ Φ→Φ− ∂ χ
∂ t

, (18.6)

provided that the wavefunction is transformed simultaneously as

ψ(xxx, t)→ eiqχ(x)ψ(xxx, t), (18.7)

where χ is an arbitrary scalar function that is a local function of the spacetime coordinates.
For completeness we note that for relativisitic wave equations, minimal substitution in

the Klein–Gordon equation (17.10) (appropriate for charged scalar or pseudoscalar parti-
cles if Φ is complex) gives the wave equation

(
Dµ Dµ +m2)ψ(x) = 0, (18.8)

while minimal substitution in the Dirac equation (17.11) (appropriate for charged fermions
if Ψ is complex) gives

(
iγµ Dµ −m

)
ψ(x) = 0. (18.9)

Both Eqs. (18.8) and (18.9) are invariant under a gauge transformation

Aµ → Aµ −∂ µ χ(x) ψ → eiqχ(x)ψ, (18.10)

where we note again that these are local gauge transformations since χ is a function of the
spacetime coordinate x. Summarizing:

Minimal Substitution: In a free charged-particle wave equation, replace all
derivatives with covariant derivatives

∂ µ → Dµ ≡ ∂ µ + iqAµ .

The resulting wave equation couples the electromagnetic and charged-particle
fields and is invariant under a local gauge transformation

Aµ → Aµ −∂ µ χ(x) ψ → eiqχ(x)ψ,

where q is charge, Aµ is the 4-vector potential, and χ(x) is a local scalar field.
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This is called minimal substitution or the minimal coupling prescription because it, and
not a more complicated coupling, is adequate for implementing gauge-invariant coupling
of charged particles to the electromagnetic field.

18.3 Gauge Invariance and the Photon Mass

The Lagrangian density for a massless vector field is given by Eq. (17.13). Since Fµν Fµν
is gauge invariant, the massless vector field (photon field) is gauge invariant. A massive
vector field has a Lagrangian density given by Eq. (17.21). The first term for (17.21) is
gauge invariant but the second (mass) term is not, since under the gauge transformation
Aµ → Aµ −∂ µ χ ,

Aµ Aµ → (Aµ −∂ µ χ)(Aµ −∂µ χ) ̸= Aµ Aµ .

We reach a conclusion that has far-reaching implications for gauge symmetry and its influ-
ence on modern physics:

Gauge invariance of the electromagnetic field is tied directly both to charge con-
servation and to masslessness of the vector boson (the photon) that mediates the
electromagnetic interaction. If the photon had a finite restmass, the correspond-
ing vector field would break gauge symmetry.

That local gauge symmetry implies massless gauge bosons is crucial in understanding
abelian and non-abelian gauge theories in the Standard Model. However, that is beyond
the scope of our discussion here.

18.4 Conserved Currents and Charges

Observables in quantum field theory are often formulated through generalizations of elec-
tromagnetic charges and currents. Field-theory symmetries may be expressed in terms of
conservation of those charges and currents.

18.4.1 Noether’s Theorem

Conservation laws for field theories formulated in terms of Lagrangian densities often are
expressed in terms of Noether’s theorem:

Noether’s Theorem: For each continuous symmetry of a field theory Lagrangian
there is a corresponding conserved quantity.
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Conserved quantities may involve spacetime or internal symmetries and are termed con-
served Noether tensors. Let’s illustrate by deriving conservation of 4-momentum from
invariance under spacetime translations.

18.4.2 Conservation of Energy and Momentum

This solution follows a discussion in Quigg [33]. Poincaré invariance1 requires that the
action be unchanged by a spacetime transformation xµ → x′µ = xµ + aµ , where the in-
finitesimal displacement aµ is independent of xµ . The corresponding change in a scalar
field Lagrangian density is

δL = L (x′)−L (x) = aµ ∂µL . (18.11)

Assuming the Lagrangian density to be translationally invariant in spacetime (independent
of spacetime coordinates x), but to depend on the field φ and ∂µ φ , we may also write

δL =
∂L

∂φ
δφ +

∂L

∂ (∂µ φ)
δ (∂µ φ) δφ ≡ φ(x′)−φ(x) = aµ ∂µ φ ,

δ (∂µ φ)≡ ∂µ φ(x′)−∂µ φ(x) = aν ∂ν(∂µ φ).
(18.12)

But from the Euler–Lagrange equations (17.6),

∂L

∂φ
= ∂µ

(
∂L

∂ (∂µ φ)

)
, (18.13)

and from Eqs. (18.13) and (18.12),

δL =

(
∂ν

∂L

∂ (∂ν φ)

)
aµ ∂µ φ +

∂L

∂ (∂ν φ)
aµ ∂µ(∂ν φ) = ∂ν

∂L

∂ (∂ν φ)
aµ ∂µ φ ,

where the last step may be checked by taking the derivative of the product. Equating this
expression with Eq. (18.11) and rearranging (remember that repeated indices are dummy
indices that can be changed without affecting the validity of the equation) leads to

aν ∂µ

(
∂L

∂ (∂µ φ)
∂ ν φ −ηµνL

)
= 0,

where ηµν is the metric tensor of flat spacetime. This relation must evaluate to zero for
arbitrary displacements aν , which implies that

∂µ

(
∂L

∂ (∂µ φ)
∂ ν φ −ηµνL

)
= 0.

Let us define the stress–energy–momentum tensor

Θµν ≡ ∂L

∂ (∂µ φ)
∂ ν φ −ηµνL , (18.14)

1 The Poincaré group appends the generators of spacetime translations to the Lorentz transformations; see
Box 18.1. Thus Poincaré symmetry means that the system is invariant under Lorentz transformations (which
preserve the invariant spacetime interval) and also under uniform translations in spacetime (which implies
conservation of energy and momentum).
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for which it may be shown that Θ00 is the energy density and the Θ0k are momentum
densities. This leads to a local conservation law

∂µ Θµν(x) = 0,

for energy and momentum. The quantity Θµν is an example of a conserved Noether tensor
that in this case links 4-momentum conservation with spacetime translational invariance.
In this example the symmetry is a spacetime symmetry, but probably the most important
applications of Noether’s theorem are to conserved charges and currents associated with
internal degrees of freedom for elementary particles, particularly the gauge degrees of free-
dom.

18.4.3 Internal Noether Currents and Charges

For an internal symmetry with a symmetry group described by a set of matrix generators
T a and a Lagrangian density L , the conserved Noether currents Ja

µ are given by

Ja
µ =−i

∂L

∂ (∂ µ φi)
T a

i jφ j, (18.15)

where a labels an internal symmetry generator, µ is a spacetime index, and i and j label
entries in the matrix T a. Given a local 4-current

Jµ =
(
J0(x),J1(x),J2(x),J3(x)

)
,

as in Eq. (18.15), an associated charge Q(t) may be defined by

Q(t)≡
∫

J0(x)d3x. (18.16)

For example, the electromagnetic 4-current j = (ρ, jjj) implies an electrical charge

Qe =
∫

ρ(x)d 3x =
∫

j0(x)d 3x . (18.17)

The charge operator satisfies the Heisenberg equation of motion for quantum operators,

Q̇≡ dQ(t)
dt

= i [H,Q(t) ], (18.18)

where H is the Hamiltonian operator and the commutator of operators A and B is denoted
by [A,B]≡ AB−BA. If Jµ has vanishing 4-divergence,

∂µ Jµ ≡ ∂0J0 +∇∇∇ · JJJ = ∂0J0 +∂kJk = 0. (18.19)

Then [H,Q ] = 0 and Q is a constant of motion.

Conserved Charges: If a 4-current Jµ(x) satisfies ∂µ Jµ = 0, the charge Q defined
by the spatial integral of J0(x) is conserved.
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This establishes a formal link between conserved Noether currents in a Lagrangian formu-
lation of a problem (which have vanishing 4-divergence) and conserved charges that are
constants of motion in a Hamiltonian formulation of the same problem (the charge operator
commutes with the Hamiltonian).

Example 18.1 The electromagnetic 4-current jµ = (ρ, jjj) has ∂µ jµ = 0, implying that
the electrical charge Qe of Eq. (18.17) is conserved.

Example 18.1 is well known for electrical charges and currents. However, the preced-
ing derivation implies that any charge defined through Eq. (18.16) is conserved (it is a
constant of motion) if the 4-divergence of the associated current Jµ vanishes. In the gener-
alizations of the gauge symmetry of classical electromagnetism that underly the Standard
Model of elementary particle physics, one encounters gauge charges and associated cur-
rents that generalize the electromagnetic charge and current. The U(1) symmetry of elec-
tromagnetism (see Box 18.2) has generators that can be represented as 1×1 matrices and
the symmetry is abelian. For Standard Model gauge symmetries many of the symmetry
groups are non-abelian and the matrices entering Eq. (18.15) are n×n matrices with n > 1.

18.5 The Aharonov–Bohm Effect

The Aharonov–Bohm effect [1] demonstrates that the electromagnetic 4-vector potential
can have measurable consequences in a quantum theory, even for regions having no electric
or magnetic fields. This contrasts with classical electromagnetism, where electric and mag-
netic fields are fundamental and vector potentials are only a mathematical convenience.

18.5.1 Experimental Setup

An experimental setup to test the Aharonov–Bohm effect is illustrated in Fig. 18.1(a).
It is a two-slit, electron-scattering interference experiment, with a long, thin solenoid is
placed behind the screen and between the two classical paths that electrons passing through
the slits would follow to reach the screen. The solenoid confines the magnetic field to
regions that that classically the electrons cannot pass through, but experiments show that
the solenoid alters the interference pattern for the electrons scattering through the two slits
[6]. We now show that this results from the gauge symmetry of the electromagnetic field
and the non-trivial topology of the scattering plane due to the solenoid [35].

18.5.2 Analysis of Magnetic Fields

From Fig. 18.1(a), the phase difference between waves of de Broglie wavelength λ associ-
ated with paths 1 and 2 is δ = 2πa/λ , implying that x≃ Lλδ/2πd, where we’ve assumed



307 The Aharonov–Bohm Effect

d

L

a

x
Solenoid

Slits Screen

Electron
source

(a) (b)

Trajectory 1

Trajectory 2

ϕ

r

zS
o
le

n
o
id

R

x y

z

tFig. 18.1 (a) Aharonov–Bohm experiment. (b) Cylindrical coordinates for the Aharonov–Bohm effect.

B

BR

2

R0

0 r

B = B
z 

= B

B = 0

A
ϕ

= BR
2
/2 rA ϕ

=
B
r /

2

tFig. 18.2 Magnetic field B and vector potential Aφ for a solenoid of radius R in Fig. 18.1(a).

a ≃ (x/L)d for x≪ L. In the cylindrical coordinate system of Fig. 18.1(b) the vector po-
tential takes the form

Inside solenoid: Ar = Az = 0 Aφ =
Br
2
,

Outside solenoid: Ar = Az = 0 Aφ =
BR2

2r
,

(18.20)

so that the components of the magnetic field BBB = ∇∇∇×AAA are

Inside solenoid: Br = 0 Bφ = 0 Bz = B,

Outside solenoid: Br = 0 Bφ = 0 Bz = 0.
(18.21)

Outside the solenoid the magnetic field BBB vanishes but the vector potential Aφ remains
finite, falling off as 1/r for r > R (Fig. 18.2). Experimentally, one can use a very thin
solenoid and shielding to ensure that the electrons never enter the solenoid and therefore
never encounter a finite magnetic field. Classically, a particle of charge q in an electro-
magnetic field experiences a Lorentz force, FFF = q(EEE + vvv×BBB), where vvv the velocity, EEE the
electric field and BBB the magnetic field. Thus classically electrons experience no Lorentz
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force in the Aharonov–Bohm experiment. However, the electrons pass through regions
where vector potential is finite, which has non-trivial implications in quantum theory.

18.5.3 Phase of the Electron Wavefunction

The free-electron wavefunction is ψ = |ψ|eiα , where α ≡ ppp · rrr/h̄. Gauge invariance re-
quires the minimal substitution ppp→ ppp−eAAA, where AAA is the 3-vector potential, altering the
electron phase to,

α → 1
h̄
(ppp · rrr− eAAA · rrr) = α− e

h̄
AAA · rrr.

Then over a trajectory τ the change in phase is

∆α =− e
h̄

∫

τ
AAA ·drrr, (18.22)

and the shift in phase between trajectories 1 and 2 is

∆δ =
e
h̄

(∫

1
AAA ·drrr−

∫

2
AAA ·drrr

)
=

e
h̄

∮
AAA ·drrr. (18.23)

Now apply Stokes’ theorem:
∮

C
AAA ·drrr =

∫

S
(∇∇∇×AAA) ·nnndS≡

∫

S
(∇∇∇×AAA) ·dSSS, (18.24)

where SSS is the surface enclosed by the contour C and nnn is an outward normal to the surface,
giving

∆δ =
e
h̄

Φ Φ≡ πR2B, (18.25)

where Φ is the magnetic flux through the solenoid. Thus, the solenoid shifts the interference
pattern of Fig. 18.1(a) by

∆x =
Lλ
2πd

∆δ =
Lλ
2πd

e
h̄

Φ, (18.26)

even though the electrons never encounter the magnetic field BBB. This predicted shift has
been verified experimentally.

18.5.4 Topological Origin of the Aharonov–Bohm Effect

The magnetic field is related to the vector potential by BBB = ∇∇∇×AAA. Outside the solenoid
there is an electromagnetic vacuum with BBB = 0. This is satisfied by the obvious choice
AAA = 0, but by gauge invariance BBB is invariant under the transformation Aµ → Aµ +∂µ χ ≡
A′µ , where χ is an arbitrary scalar function. Thus, a gauge transform of the trivial vacuum
Aµ = 0, which is given by Aµ = ∂µ χ, also satisfies the boundary condition. It follows that
in the cylindrical coordinates of Fig. 18.1(b),

AAA = (Ar,Aφ ,Az) = ∇∇∇χ (18.27)
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0 −1 +1 +2 −2tFig. 18.3 Some winding numbers characterizing the topology of the U(1) manifold S1. Intuitively the
winding number is the number of times the dashed curve is wrapped around the solid
circle, clockwise (+) or counterclockwise (−).

is the most general vector potential giving a vanishing electromagnetic field. The scalar
function χ is then

χ =
1
2

BR2φ , (18.28)

and χ increases by πBR2 as φ increases by 2π and isn’t single-valued. This is possible be-
cause the vacuum configuration of the Aharonov–Bohm experiment isn’t simply connected.

From Fig. 18.1, the Aharonov–Bohm experiment corresponds to a plane pierced by a
hole corresponding to the solenoid; topologically this is the product of the real numbers and
a circle, R×S1. As discussed in Box 18.2, the gauge group for electromagnetism is U(1),
which has a manifold that is S1 topologically. Thus, we must consider mappings between
R×S1 and S1. But R is simply connected so S1→ S1 is the only part of the mapping that
matters topologically, and this mapping is characterized by an infinity of integer winding
numbers giving how many times one circle is wrapped around the other, as illustrated
in Fig. 18.3. Therefore, the gauge function χ is multivalued because the mappings are
not all deformable to the trivial mapping χ = constant, which would give Aµ = 0 and no
Aharonov–Bohm effect, by virtue of Eq. (18.27).

18.6 Primacy of the Potentials in Electromagnetism

Two pieces of evidence that become completely clear only in a full quantum treatment of
electromagnetism demonstrate that it is the magnetic vector potential potential AAA and the
scalar potential Φ that are fundamental in electromagnetism, not the magnetic field BBB and
the electric field EEE:

1. The gauge invariant coupling of charged particles and the electromagnetic field can
be implemented only through the minimal coupling prescription described in Section
18.2, which requires the 4-vector potential Aµ and cannot be formulated in terms of the
electric and magnetic fields.

2. The Aharonov–Bohm effect described in Section 18.5 can be accounted for only through
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the influence of the magnetic vector potential AAA, not through the magnetic field BBB, which
the test particle never encounters.

This primacy of the scalar and vector potentials is contrary to what one would infer from
classical electromagnetism alone, where the Maxwell equations and Lorentz force imple-
menting the full scope of classical electromagnetism are defined in terms of the electric and
magnetic fields, and the vector and scalar potentials seem to be only optional mathematical
conveniences.

Background and Further Reading

Chapter 9 of Wald [40] elaborates on some of the themes of this chapter. Gauge field
theories in elementary particle physics are described in Guidry [14] and gauge fields in
modern quantum field theory are discussed extensively from the perspective of symmetry
and broken symmetry in Guidry and Sun [17].
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Problems

18.1 The Euler–Lagrange equation (17.6) is used in a field-theory context in this chapter,
but it is applicable to a broad range of problems. Show that inserting a Lagrangian
L(x, ẋ) = 1

2 ṁ2−V (x) in Eq. (17.6) leads to Newton’s 2nd law of motion.
18.2 Show that if Eq. (18.19) is true, the charge Q defined in Eq. (18.16) is conserved.

Hint: Use the Heisenberg equation of motion (18.18).
18.3 Show that the Lagrangian density of Eq. (17.13) leads to the field equation (16.54)

for a free field in electromagnetism.
18.4 Use Eqs. (17.19) and (17.13) to write the Lagrangian density corresponding to non-

interacting Dirac and electromagnetic fields. Introduce a gauge-invariant coupling
between the fields by the minimal substitution, ∂µ→ ∂µ + ieAµ , where e is the charge
of the particle described by the Dirac field and Aµ is the vector potential field asso-
ciated with electromagnetism, to give a Lagrangian density

L = ψ(i∂/−m)ψ− 1
4

Fµν Fµν − eψA/ψ

(where A/≡ γµ Aµ and ∂/≡ γµ ∂ µ ), indicating that the minimal substitution has intro-
duced an interaction term Lint =−eψA/ψ between the fields. Show that independent
variation of this Lagrangian density with respect to the fields leads to the coupled
equations of motion

(i∂/−m)ψ(x) = eA/(x)ψ(x),

∂ν Fµν(x) = eψ(x)γµ ψ(x),

for the charged fermion and electromagnetic fields. ***





A Appendix A Mathematics Review

This Appendix reviews mathematics required in this book. Readers are assumed to have
some prior acquaintance with this and mostly we list equations and concepts without proof.
Books such as Griffiths [13] or Schey [38] may be consulted for proofs and more detail.

A.1 Vectors and other Tensors

Every physics student learns at her mother’s knee that vectors have magnitude and direc-
tion, so they are specified by more than one number, and that this is indicated graphically
by an arrow, with length indicating magnitude and orientation indicating direction. This
view of vectors as directed line segments works in introductory physics but it can lead to
erroneous views. For example, the directed line segment invites one to think of vectors as
connecting two points in a manifold. This is wrong: a vector is defined at a single point; it
does not connect two points. We can often get away with this sloppy thinking for flat man-
ifolds, but how is one to interpret an extended straight line segment in a curved manifold?
A more rigorous definition is required for advanced applications, particularly if the space
is curved and/or described by non-cartesian coordinates.

At a somewhat more rigorous level, vectors are a special case of tensors, which we may
think of (with the naive pragmatism of physicists unconstrained by rigorous mathematical
training) as objects that obey particular transformation laws under a change of coordinate
system, and that require n indices when expanded in a basis, with n termed the rank of the
tensor. General transformation laws for 4D spacetime tensors with n < 3 are

φ ′(x′) = φ(x) (Scalar), (A.1a)

V ′µ(x′) =
∂x′µ

∂xν V ν(x) (Vector), (A.1b)

V ′µ(x
′) =

∂xν

∂x′µ
Vν(x) (Dual vector), (A.1c)

T ′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ (x) (Covariant rank-2 tensor), (A.1d)

T ′νµ(x
′) =

∂xα

∂x′µ
∂x′ν

∂xβ T β
α(x) (Mixed rank-2 tensor), (A.1e)

T ′µν
(x′) =

∂x′µ

∂xα
∂x′ν

∂xβ T αβ (x) (Contravariant rank-2 tensor). (A.1f)

In these equations, unprimed coordinates refer to the original coordinate system, primed
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coordinates refer to the transformed coordinate system, and all partial derivatives in the
general case depend on the spacetime coordinates and are understood to be evaluated at a
specific spacetime point labeled by x in one coordinate system and by x′ in the other coor-
dinate system.1 Note that we are using the usual conventions of special relativity, where the
manifold is considered to be 4D spacetime [Minkowski space with coordinates ct,x,y,z)]
and the use of greek indices signifies that the index can range over the time and all three
spatial components.

Furthermore, in Eqs. (A.1) (and in various other places in these lectures) we employ
the Einstein summation convention, where a repeated index, once in an upper position and
once in a lower position signifies an implicit summation on that index. For example, from
Eqs. (A.1) for vectors and contravariant rank-2 tensors, respectively,

V ′µ(x′) =
∂x′µ

∂xν V ν(x)≡∑
ν

∂x′µ

∂xν V ν(x),

T ′µν
(x′) =

∂x′µ

∂xα
∂x′ν

∂xβ T αβ (x)≡∑
α

∑
β

∂x′µ

∂xα
∂x′ν

∂xβ T αβ (x).

Note that a repeated index on the right side does not appear on the left side of the equation
because it has been summed over, and indices that aren’t repeated on the right side of the
equation appear in the same positions (upper or lower) on the left side of the equation.

Before proceeding, let us concede that we are being rather sloppy mathematically by
referring to objects carrying indices and obeying particular transformation laws as ten-
sors. The indexed quantities appearing in Eqs. (A.1) are actually tensor components that
have been expressed in a particular basis. Tensors are geometrical objects, meaning that
their properties are independent of expression in a particular basis, as explained further in
Box A.1. For example,

1. A rank-0 tensor or scalar transforms as φ ′(x′) = φ(x) (it is unchanged by a coordinate
transformation) and requires a single real number to specify it. “Ordinary numbers”,
such the age of your dog in years, are scalars.

2. There are two kinds of rank-1 tensors. Loosely in physics applications they are often
both termed vectors, and the distinction is not of much practical importance for carte-
sian coordinates in non-curved spaces. However, in the general case of non-cartesian
coordinate systems in possibly curved spaces, mathematical consistency requires that
one must distinguish

a. vectors (also called contravariant vectors), which transform as Eq. (A.1b),

V ′µ(x′) =
∂x′µ

∂xν V ν(x)≡∑
ν

∂x′µ

∂xν V ν(x),

and require a single index in an upper position, V α , when expanding in a basis, from
1 The partial derivatives in Eqs. (A.1) are generally functions of the spacetime coordinate but for the special

case of flat Minkowski space and special relativity they are constants taking the same value at each spacetime
point. A transformation where points in spacetime are merely relabeled in a new coordinate system is termed a
passive transformation. A simple example is a plot displayed in cartesian coordinates (x,y,z) that is replotted
in spherical polar coordinates (r,θ ,φ). The physical content is unchanged but each point formerly labeled by
values of the old coordinates (x,y,z) is now labeled by values of the new coordinates (r,θ ,φ).
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b. dual vectors (also called covariant vectors or 1-forms), which transform as Eq.
(A.1c),

V ′µ(x
′) =

∂xν

∂x′µ
Vν(x),

and require a single index in a lower position, Vα , when expanded in a basis.

3. Rank-2 tensors require two indices, when expanding in a basis. Generalizing the distinc-
tion between vectors and dual vectors for rank-1 tensors when expanding in a basis, the
two indices required for rank-2 tensor components can be in upper or lower positions,
so there are three kinds of rank-2 tensors.

a. Contravariant rank-2 tensors, which transform as Eq. (A.1f),

T ′µν
=

∂x′µ

∂xα
∂x′ν

∂xβ T αβ ,

and require two indices in an upper position, T αβ , when expanding in a basis.
b. Covariant rank-2 tensors, which transform as Eq. (A.1d),

T ′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ ,

and require a two indices in a lower position, Tαβ , when expanding in a basis.
c. Mixed rank-2 tensors, which transform as Eq. (A.1e),

T ′νµ =
∂xα

∂x′µ
∂x′ν

∂xβ T β
α ,

and require a one index in a lower position and one in an upper position, T β
α , when

expanding in a basis.

In a similar way, tensors of higher rank can be defined. For most physics applications ten-
sors of rank 0, 1, and 2 are sufficient, but some applications require tensors of rank greater
than two. For example, the curvature of 4D spacetime in general relativity is described by
a rank-4 tensor called the Riemann curvature tensor, which may be viewed as the general-
ization of gaussian curvature from 2D space to 4D spacetime.

A.2 Vector Algebra

The scalar product of two vectors is

AAA ·BBB = ABcosθ (Scalar product), (A.2)

where θ is the angle between the vectors AAA and BBB. The vector product or cross product of
two vectors is

AAA×BBB = ABsinθ n̂nn =

∣∣∣∣∣∣

x̂xx ŷyy ẑzz
Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
(Vector or cross product), (A.3)
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Box A.1 Geometrical Definition of Tensors

Tensors in Eqs. (A.1) were introduced in terms of the the transformation properties
of their components when they are expressed a basis. For real physics or engineer-
ing problems it is often simplest to work with the components of tensors expressed
in a basis rather than with the tensors themselves, so this is of practical utility. How-
ever, viewing tensors in terms of basis components obscures considerable mathe-
matical beauty and elegance associated with tensor properties being independent
of expression in any particular basis. Thus mathematicians prefer to define tensors
geometrically (independent of expression in a particular basis), in terms of linear
maps to the real numbers. For example,

1. a dual vector is mathematically an operator that accepts a vector as input and
returns a real number, or

2. a dual vector is an object with components (when expanded in a basis) that
transforms as Eq. (A.1c),

V ′µ(x
′) =

∂xν

∂x′µ
Vν(x),

at a point labeled by x in one coordinate system and by x′ in a second coordinate
system.

The two approaches embody different tradeoffs between utility and elegance, but
lead to the same physical results if manipulated correctly. A more extensive dis-
cussion of these ideas and a general introduction to spacetime tensors in possibly
curved spacetime as the basis for describing special and general relativity may be
found in Ref. [16].

where | | indicates the determinant, n̂nn is a unit vector perpendicular to the plane containing
AAA and BBB (with ambiguity of up and down resolved by the right-hand rule), θ is the angle
between AAA and BBB, and the cartesian unit vectors are denoted by (x̂xx, ŷyy, ẑzz). Note: The cross
product doesn’t commute: AAA×BBB ̸= BBB×AAA, but the scalar product does: AAA ·BBB = BBB ·AAA.

The scalar triple product is

AAA · (BBB×CCC) = BBB · (CCC×AAA) =CCC · (AAA×BBB) =

∣∣∣∣∣∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
. (A.4)

The vector triple product is

AAA× (BBB×CCC) = BBB(AAA ·CCC)−CCC (AAA ·BBB). (A.5)
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A.3 Useful Vector Identities

Some identities that are useful in manipulating vector equations are collected here, with AAA
assumed to be an arbitrary vector and f assumed to be an arbitrary scalar.

∇∇∇ · (∇∇∇×AAA) = 0, (A.6)

∇∇∇× (∇∇∇ f ) = 0, (A.7)

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA. (A.8)

Proofs may be found in standard books such as Griffiths [13].

A.4 Vector Calculus

Let’s now consider the extension of the principles of calculus to vector equations, first for
derivatives and then for integrals.

A.4.1 First Derivatives

The gradient ∇∇∇ of a scalar function F ,

∇∇∇F =
∂F
∂x

x̂xx+
∂F
∂y

ŷyy+
∂F
∂ z

ẑzz (Gradient), (A.9)

is a vector quantity. The gradient can be viewed as a vector operator

∇∇∇ = x̂xx
∂
∂x

+ ŷyy
∂
∂y

+ ẑzz
∂
∂ z

(Gradient operator) (A.10)

that acts upon a scalar argument following it. The notation ∇∇∇x means explicitly that the
gradient acts on the coordinate xxx while ∇∇∇x′ means that the gradient acts on the coordinates
xxx′. (In the text we will often use the abbreviations ∇∇∇≡ ∇∇∇x and ∇∇∇′ ≡ ∇∇∇x′ . Useful identities
involving the gradient and Laplacian:

∇∇∇x

(
1

|xxx− xxx′|

)
=− xxx− xxx′

|xxx− xxx′|3
, (A.11a)

∇∇∇x′

(
1

|xxx− xxx′|

)
=

xxx− xxx′

|xxx− xxx′|3
, (A.11b)

∇∇∇x

(
xxx− xxx′

|xxx− xxx′|3

)
= 4πδ (xxx− xxx′), (A.11c)

∇∇∇x′

(
xxx− xxx′

|xxx− xxx′|3

)
=−4πδ (xxx− xxx′), (A.11d)

∇∇∇2
x

(
1

|xxx− xxx′|

)
= ∇∇∇2

x′

(
1

|xxx− xxx′|

)
=−4πδ (xxx− xxx′), (A.11e)
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It will be useful to define the completely antisymmetric rank-3 tensor (Levi–Civita sym-
bol) by

εi jk =





1 ( If i, j,k is cyclic permutation of 1,2,3),

−1 (If i, j,k is cyclic permutation of 1,2,3),

0 (Otherwise),

(A.12)

The εi jk obey two important identities

εi jkεlmn = δilδ jmδkn +δ jlδkmδin +δklδimδ jn

−δ jlδimδkn−δklδ jmδin−δilδkmδ jn, (A.13)

and

∑
i

εi jkεimn = δ jmδkn−δkmδ jn. (A.14)

The divergence of a vector VVV is

∇∇∇ ·V =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂ z
(Divergence). (A.15)

Note: The divergence of a vector is a scalar.
The curl (∇∇∇×) of a vector VVV is

∇∇∇×VVV =

∣∣∣∣∣∣∣

x̂xx ŷyy ẑzz
∂
∂x

∂
∂y

∂
∂ z

Vx Vy Vz

∣∣∣∣∣∣∣

=

(
∂Vz

∂y
− ∂Vy

∂ z

)
x̂xx+
(

∂Vx

∂ z
− ∂Vz

∂x

)
ŷyy+
(

∂Vy

∂x
− ∂Vx

∂y

)
ẑzz (Curl), (A.16)

which can also be written as

(AAA×BBB)i = ∑
jk

εi jkA jBk (A.17)

Note: The curl of a vector is a vector.
Derivatives of products appear commonly in realistic problems and product rules for

vector derivatives can be proved that are similar to product rules for ordinary derivatives.
For example,

∇∇∇( f g) = f ∇∇∇g+g∇∇∇ f , (A.18a)

∇∇∇(AAA ·BBB) = AAA× (∇∇∇×BBB)+BBB× (∇∇∇×AAA)+(AAA ·∇∇∇)BBB+(BBB ·∇∇∇)AAA, (A.18b)

∇∇∇ · ( f AAA) = f (∇∇∇ ·AAA)+AAA · (∇∇∇ f ), (A.18c)

∇∇∇ · (AAA×BBB) = BBB · (∇∇∇×AAA)−AAA · (∇∇∇×BBB), (A.18d)

∇∇∇× ( f AAA) = f (∇∇∇×AAA)−AAA× (∇∇∇ f ), (A.18e)

∇∇∇× (AAA×BBB) = (BBB ·∇∇∇)AAA− (AAA ·∇∇∇)BBB+AAA(∇∇∇ ·BBB)−BBB(∇∇∇ ·AAA), (A.18f)

where AAA and BBB are arbitrary vectors and f and g are arbitrary scalar functions,
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A.4.2 Second Derivatives

As shown above in Section A.4.1, the first derivatives that can be constructed using the
operator ∇∇∇ defined in Eq. (A.10) are

1. the gradient of a scalar, ∇∇∇ f ,
2. the divergence of a vector, ∇∇∇ ·AAA, and
3. the curl of a vector, ∇∇∇×AAA.

Second derivatives can be constructed by applying two first-derivative operators in succes-
sion. Lets consider the possibilities for second derivatives in vector equations.

1. The divergence of a gradient, ∇∇∇ · (∇∇∇ f ), gives in cartesian coordinates

∇∇∇ · (∇∇∇ f ) =
(

x̂xx
∂
∂x

+ ŷyy
∂
∂y

+ ẑzz
∂
∂ z

)
·
(

x̂xx
∂ f
∂x

+ ŷyy
∂ f
∂y

+ ẑzz
∂ f
∂ z

)

=
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 .

This second derivative operator appears often and it is useful to define it as ∇2; this is
called the Laplacian operator, and we rewrite the preceding result as

∇2 f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 . (A.19)

Notice that the Laplacian applied to a scalar gives a scalar.

2. The curl of a gradient is always equal to zero, ∇∇∇× (∇∇∇ f ) = 0, by the identity (A.7).

3. The gradient of a divergence ∇∇∇(∇∇∇ ·AAA) is a valid mathematical operation but it is rela-
tively uncommon in physical problems and has no special name.

4. The divergence of a curl always vanishes, ∇∇∇ · (∇∇∇×AAA) = 0, by the identity (A.6).

5. The curl of a curl evaluates to

∇∇∇× (∇∇∇×AAA) = ∇∇∇(∇∇∇ ·AAA)−∇2AAA

[see identity (A.8)], which gives nothing new since the first term on the right is just a
number and the second is the Laplacian of a vector, which we considered in Eq. (A.19).

Thus we need consider only two kinds of second derivatives: (1) the Laplacian in Eq.
(A.19), which will play a fundamental role in electromagnetism, and the gradient of the di-
vergence, which isn’t very common. By similar procedures we could evaluate third deriva-
tives in vector equations, but we will omit them since they seldom occur for the types of
problems that we shall encounter.

A.4.3 Integrals

A line integral (or path integral) of a vector function VVV between points AAA and BBB is given by
∫ BBB

AAA
VVV ·dlll dlll ≡ x̂xxdx+ ŷyydy+ ẑzzdz (Line integral). (A.20)
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The integral is carried out over a prescribed path from AAA to BBB, with dlll the infinitesimal
displacement vector along the specified path (with magnitude equal to the length of the
infinitesimal displacement and direction tangent to the path at that point). If the line integral
is carried out over a closed loop (BBB = AAA), the line integral is called a cyclic integral and
denoted ∮

VVV ·dlll (Closed line integral). (A.21)

A surface integral of a vector function VVV over a surface S is denoted by
∫

S
VVV ·dsss (Surface integral), (A.22)

where dsss ≡ nnnds is a vector associated with an infinitesimal patch of surface area having
magnitude equal to the area of the patch and direction given by the normal nnn to the surface
at the patch (implying that the sign is ambiguous since, there are two normals—“up” and
“down”—at each point). If the surface is closed, the surface integral is denoted

∮

S
VVV ·dsss (Integral over closed surface), (A.23)

A volume integral of a scalar function over a volume V is indicated by
∫

V
Fdτ (Scalar volume integral), (A.24)

where F is a scalar function and dτ is an infinitesimal volume element. (For example, in
cartesian coordinates dτ = dxdydz.) A volume integral for a vector function FFF is given by

∫
FFF dτ =

∫

V
(Fxx̂xx+Fyŷyy+Fzẑzz)

= x̂xx
∫

V
Fx dτ + ŷyy

∫
Fy dτ + ẑzz

∫
Fz dτ (Vector volume integral), (A.25)

where the unit vectors (x̂xx, ŷyy, ẑzz) have been pulled out of the integrals in the last step because
they are constants.

A.5 Fundamental Theorems

Let us now list some fundamental theorems of calculus and of vector calculus that will be
of use. The fundamental theorem of (ordinary) calculus is
∫ b

a

(
∂ f
∂x

)
dx=

∫ b

a
F(x)dx= f (b)− f (a) (Fundamental theorem of calculus), (A.26)

where F(x) ≡ d f/dx. Thus the fundamental theorem of calculus tells us how to integrate
F(x): find a function f (x) that has a derivative equal to F(x), which implies that integration
and differentiation are inverse operations. In vector calculus there are three fundamental
types of derivatives:

1. the gradient of Eq. (A.9),
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2. the divergence of Eq. (A.15), and
3. the curl of Eq. (A.16).

For each type of vector derivative one can formulate a “fundamental theorem” having the
same general structure as the fundamental theorem of calculus given in Eq. (A.26):

The integral of a derivative of a function over some region is determined by the
values of the function on the boundaries of the region.

Let us consider the fundamental theorems of vector calculus for gradients, divergences,
and curls.

A.5.1 Fundamental Theorem of Gradients

For gradients, the fundamental theorem takes the form
∫ BBB

AAA
(∇∇∇F) ·dlll = F(BBB)−F(AAA) (Fundamental theorem of gradients), (A.27)

for a scalar function F(x,y,z) evaluated on a path from AAA to BBB. Notice that Eq. (A.27) has
the same structure as Eq. (A.26): the integral (a line integral here) of a derivative (a gradient
here) is determined by the values of the function at the boundaries (AAA and BBB here).

A.5.2 Fundamental Theorem of Divergences

For divergences, the fundamental theorem takes the form [see Eqs. (A.23) and (A.24)],
∫

V
(∇∇∇ ·AAA)dτ =

∮

S
AAA ·dsss (Divergence theorem), (A.28)

where AAA is a vector field and dsss = nnnda with nnn the normal to the surface. This may be
termed the fundamental theorem for divergences,2 but it is commonly termed the diver-
gence theorem in the literature and we will typically adopt that terminology.

A.5.3 Fundamental Theorem of Curls

The fundamental theorem for curls is given by
∫

S
(∇∇∇×AAA) ·dsss =

∮

P
AAA ·dlll (Stokes’ theorem), (A.29)

where the left side is a surface integral over S and the right side is a line integral on the
perimeter of the surface. This is the fundamental theorem for curls3 but, as we have indi-

2 Note that it has the same structure as Eq. (A.26): the integral of a derivative (here the divergence) over a region
(here the volume V ) is determined by the value of the function on the boundaries (the boundary of the volume
V is the surface S. In this case the boundary term is a surface integral.

3 Analogous to Eq. (A.26), the integral of a derivative (here the curl) over a region (here a patch of surface S) is
determined by the value of the function on the boundary (the perimeter P of the surface patch). Notice that the
boundary term in this case is itself an integral.
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cated, it is commonly called Stokes’ theorem in the literature and we will typically use that
terminology. Further discussion of Stokes’ theorem is given in Box 2.3.

A.6 Laws, Theorems, and Definitions

Some important laws, theorems, and definitions of classical electromagnetism are listed
here. In some cases both the integral and differential forms of the laws are given. Unless
otherwise noted, SI units are assumed in all equations.

Coulomb’s law (forces): The force between two charges is

FFF =
q1q2

4πε0

xxx1− xxx2

|xxx1− xxx2|3
(A.30)

where the charges q1 and q2 are located at the points xxx1 and xxx2, respectively.

Coulomb’s law (electric fields): For a continuous charge distribution,

EEE(xxx) =
1

4πε0

∫
ρ(xxx′)

xxx− xxx′

|xxx− xxx′|3 d3x′, (A.31)

where ρ(xxx) is the charge density.

Gauss’s law: For a continuous charge distribution ρ(xxx),

∇∇∇ ·EEE =
ρ
ε0

∮
EEE ·nnnda =

1
ε0

∫

V
ρ(xxx)d3x, (A.32)

where the integration is over the volume V contained within the surface S (see Fig. 2.4).

Divergence theorem: For a vector field defined within a volume V that is enclosed by a
surface S, ∮

S
AAA ·nnnda =

∫

V
∇∇∇ ·AAAd3x, (A.33)

where the left side is the surface integral of the outwardly directed normal component of
the vector AAA and the right side is the volume integral of the divergence of AAA [equivalent to
fundamental theorem for divergences given in Eq. (A.28)].

Stokes’ theorem: For a 3D vector field AAA (see Box 2.3),
∮

C
AAA ·drrr =

∫

S
(∇∇∇×AAA) ·nnnds≡

∫

S
(∇∇∇×AAA) ·dsss, (A.34)

where S is the 2D surface enclosed by the 1D boundary C and the outward normal to the
surface is nnn [equivalent to fundamental theorem for curls given in Eq. (A.29)].

Scalar potential: For an electric field EEE and scalar potential Φ,

EEE =−∇∇∇Φ Φ(xxx) =−
∫ xxx

O
EEE(xxx) ·dlll, (A.35)

where O is an arbitrary reference point.
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Vector potential: The vector potential AAA is defined through

BBB = ∇∇∇×AAA, (A.36)

where BBB is the magnetic field. Eqs. (A.35) and (A.36) then allow the electric and magnetic
fields to be eliminated in favor of vector and scalar potentials.

Poisson’s equation: For a scalar field Φ,

∇2Φ =− ρ
ε0
, (A.37)

where the charge density is ρ .

Laplace’s equation: For a scalar field Φ,

∇2Φ = 0. (A.38)

This is Poisson’s equation with zero charge density.

Lorentz force: For electric field EEE and magnetic field BBB,

FFF = q(EEE + vvv×BBB), (A.39)

where q is the charge and vvv is the velocity of the particle.

A.7 Curvilinear Coordinate Systems

It is often advantageous to formulate electromagnetic problems in non-cartesian coordi-
nates. We include some relevant equations in this Appendix for spherical coordinates and
cylindrical coordinates.

A.7.1 Spherical Coordinates

The standard spherical coordinates (r,θ ,φ) are related to cartesian coordinates (x,y,z) by

x = r sinθ cosφ y = r sinθ sinφ z = r cosθ . (A.40)

Spherical unit vectors are related to cartesian unit vectors by

r̂rr = sinθ cosφ x̂xx+ sinθ sinφ ŷyy+ cosθ ẑzz,

θ̂θθ = cosθ cosφ x̂xx+ cosθ sinφ ŷyy− sinθ ẑzz, (A.41)

φ̂φφ =−sinφ x̂xx+ cosφ ŷyy,

or in matrix form, the transformation from cartesian to spherical coordinates is



r̂rr
θ̂θθ
φ̂φφ


=




sinθ cosφ sinθ sinφ cosθ
cosθ cosφ cosθ sinφ −sinθ
−sinφ cosφ 0






x̂xx
ŷyy
ẑzz


 . (A.42)
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The transformation matrix is orthogonal so the inverse matrix is the transpose (interchange
rows and columns) and the matrix transformation from spherical to cartesian coordinates
is given by




x̂xx
ŷyy
ẑzz


=




sinθ cosφ cosθ cosφ −sinφ
sinθ sinφ cosθ sinφ cosφ

cosθ −sinθ 0






r̂rr
θ̂θθ
φ̂φφ


 . (A.43)

This means that an arbitrarary vector VVV can be decomposed as

VVV = (r̂rr ·VVV )r̂rr+(θ̂θθ ·VVV )θ̂θθ +(φ̂φφ ·VVV )φ̂φφ . (A.44)

The spherical line element is

dlll = dr r̂rr+ r dθθ̂θθ + r sinθdφ φ̂φφ , (A.45)

and the spherical volume element is

dτ = r2 sinθdr dθ dφ . (A.46)

The vector derivatives are given by

Gradient: ∇∇∇F =
∂F
∂ r

r̂rr+
1
r

∂F
∂θ

θ̂θθ +
1

r sinθ
∂F
∂θ

φ̂φφ , (A.47)

Divergence: ∇∇∇ ·VVV =
1
r2

∂
∂ r

(r2Vr)+
1

r sinθ
∂

∂θ
(sinθVθ )+

1
r sinθ

∂Vφ

∂φ
, (A.48)

Curl: ∇∇∇×VVV =
1

r sinθ

[
∂

∂θ
(sinθVφ )−

∂Vθ
∂φ

]
r̂rr

+
1
r

[
1

sinθ
∂Vr

∂φ
− ∂

∂ r
(rVφ )

]
θ̂θθ +

1
r

[
∂
∂ r

(rVθ −
∂Vr

∂θ

]
φ̂φφ , (A.49)

Laplacian: ∇2F =
1
r2

∂
∂ r

(
r2 ∂F

∂ r

)

+
1

r2 sinθ
∂

∂θ

(
sinθ

∂F
∂θ

)
+

1
r2 sin2 θ

∂ 2F
∂φ 2 , (A.50)

when expressed in spherical coordinates.

A.7.2 Cylindrical Coordinates

Standard cylindrical coordinates (ρ,φ ,z) are related to cartesian coordinates (x,y,z) by

x = ρ cosφ y = ρ sinφ z = z, (A.51)

the line element is

dlll = dρρ̂ρρ +ρdφ φ̂φφ +dz ẑzz, (A.52)

and the volume element is

dτ = ρdρ dφ dz. (A.53)
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The vector derivatives are given by

Gradient: ∇∇∇F =
∂F
∂ρ

ρ̂ρρ +
1
ρ

∂F
∂φ

φ̂φφ +
∂F
∂ z

ẑzz, (A.54)

Divergence: ∇∇∇ ·VVV =
1
ρ

∂
∂ρ

(ρVρ)+
1
ρ

∂Vφ

∂φ
+

∂Vz

∂ z
, (A.55)

Curl: ∇∇∇×VVV =

(
1
ρ

∂Vz

∂φ
− ∂Vφ

∂ z

)
ρ̂ρρ

+

(
∂Vρ

∂ z
− ∂Vz

∂ρ

)
φ̂φφ +

1
ρ

[
∂

∂ρ
(ρVφ −

∂Vρ

∂φ

]
ẑzz, (A.56)

Laplacian: ∇2F =
1
ρ

∂
∂ρ

(
ρ

∂F
∂ρ

)
+

1
ρ2

∂ 2F
∂φ 2 +

∂ 2F
∂ z2 , (A.57)

when expressed in cylindrical coordinates.

A.8 Taylor Series Expansion

In one dimension a Taylor series expansion may be written for infinitesimal ε as

f (x+ ε) = f (x)+ ε
d f
dx

+
1
2!

e2 d 2 f
dx2 + · · ·

=

[
1+ ε

d
dx

+
1
2!

(
ε

d
dx

)2

+ · · ·
]

f (x) = exp
(

ε
d
dx

)
f (x). (A.58)

For a function of three variables this generalizes to

f (x+ εx,y+ εy,z+ εz) = exp
(

εx
∂
∂x

)
exp
(

εy
∂
∂y

)
exp
(

εz
∂
∂ z

)
f (x,y,z), (A.59)

which may be written in vector notation as

f (rrr+ εεε) = exp(εεε ·∇∇∇) f (rrr) =
[

1+ εεε ·∇∇∇+
1
2!
(εεε ·∇∇∇)2 + · · ·

]
f (rrr). (A.60)

A.9 Binomial Expansion

The binomial expansion is

(1+a)n = 1+na+
n(n−1)

2!
a2 +

n(n−1)(n−2)
3!

a3 + · · · (A.61)

It is particularly useful when a≪ 1, since then (1+a)n ≃ 1+na.
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A.10 Miscellaneous Equations

LAW OF COSINES:

θ

B

A
C

C2 = A2 +B2−2ABcosθ (Law of cosines). (A.62)

A.11 Integration by Parts

For scalar functions u and v, by basic calculus manipulations
∫ b

a

d
dx

(uv)dx = uv|ba =
∫ b

a
u
(

dv
dx

)
dx+

∫ b

a
v
(

du
dx

)
dx,

from which we may write
∫ b

a
u
(

dv
dx

)
dx = uv|ba−

∫ b

a
v
(

du
dx

)
dx, (A.63)

which is often expressed more compactly as
∫

udv = uv−
∫

vdu. (A.64)

This is called integration by parts, and is often useful when it is necessary to itegrate a
function multiplied by a derivative of another function. The net effect of integration by
parts is to transfer the derivative operation from one function to the other, at the expense of
adding a boundary term uv|ba. For vector calculus this generalizes to equations of the form

∫

V
φ(∇∇∇ ·AAA)dτ =−

∫

V
AAA · (∇∇∇φ)dτ +

∮

S
φAAA ·daaa, (A.65)

∫

S
φ(∇∇∇×AAA) ·daaa =

∫

S
[AAA× (∇∇∇φ)] ·daaa+

∮

P
φAAA ·dlll, (A.66)

∫

V
BBB · (∇∇∇×AAA)dτ =

∫

V
AAA · (∇∇∇×BBB)dτ +

∮

S
(AAA×BBB) ·daaa, (A.67)

where AAA and BBB are arbitrary vectors, φ is an arbitrary scalar function, a subscript V indicates
a volume integral, a subscript S indicates a surface integral, and a subscript P indicates a
line integral. Notice that in these expressions also one is integrating a function times a
vector derivative (divergence or curl) of a function, and the operation transfers the deriva-
tive from one function to the other (as a gradient or curl), at the expense of an additional
boundary term. Such equations can be derived by using the product rules and fundamental
theorems of vector calculus.
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A.12 The Dirac Delta Function

In one dimension the Dirac delta function is a (mathematically improper) function written
δ (x−a) and having the properties that

δ (x−a) =
{

0 (if x ̸= a),
∞ (if x = a),

(A.68)

with the normalization
∫ +∞

−∞
δ (x−a)dx = 1. (A.69)

The Dirac delta function can be viewed intuitively (but non-rigorously) as the limit of
a peaked curve that becomes higher and higher as it is made narrower and narrower, in
such as way that the area under the curve remains constant.4 For an arbitrary continuous
function f (x),

f (x)δ (x−a) = f (a)δ (x−a) (A.70)

and insertion of a Dirac delta function in an integral over a function picks out the value of
the integrand at x = a,

∫ +∞

−∞
f (x)δ (x−a)dx = f (a). (A.71)

In n dimensions the Dirac delta function δ n(xxx−XXX) can be written as a product of n 1D
delta functions; for example, in a 3D space parameterized by cartesian coordinates xxx =

(x1,x2,x3),

δ 3(xxx−XXX)≡ δ (x1−X1)δ (x2−X2)δ (x3−X3). (A.72)

This vanishes everywhere except at xxx = XXX , and generalizing Eqs. (A.68) and (A.69) to 3D,

∫

∆V
δ 3(xxx−XXX)d3x =

{
1 (If ∆V contains xxx = XXX),
0 (If ∆V doesn’t contain xxx = XXX),

(A.73)

where ∆V is the integration volume over d3x, while Eq. (A.71) generalizes to
∫

∆V
f (xxx)δ 3(xxx−aaa)d3x = f (aaa). (A.74)

Thus, just as in 1D the 3D Dirac delta function δ 3(xxx−aaa) picks out the point xxx= aaa in the in-
tegration. Notice from the preceding definitions that a Dirac delta function in n dimensions

4 The Dirac delta function was first introduced by Dirac to aid in normalization of probability integrals in quan-
tum mechanics. It was met by considerable initial skepticism from mathematicians. However, contrary to what
might be inferred from our loose discussion here, the Dirac delta function can be placed on a mathematically
rigorous footing by viewing it as a generalized function or distribution (meaning a quantity that only makes
sense when it is integrated over) over the real numbers, which has a value of zero everywhere except at zero,
and has an integral over the entire real number line that is equal to one. See Lighthill [25] for a more complete
exposition.
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has the dimensionality of inverse volume in n-dimensional space. Applying the Laplacian
operator ∇2 to |xxx− xxx′|−1 gives a result proportional to a 3D δ -function,

∇2
(

1
|xxx− xxx′|

)
=−4πδ 3(xxx− xxx′), (A.75)

which can be of considerable utility in evaluating electrostatic integrals (see Example 2.8).
By evaluating

∫ b

a

dδ (x)
dx

f (x)dx

by “parts” for f (x) an arbitrary function, one can show that the delta function anticommutes
with derivative operators such as ∇∇∇ under an integral; schematically,

d
dx

δ =−δ
d
dx

. (A.76)

(One can show that this “parts” operation is legitimate, even though δ is not a true func-
tion.)



B Appendix B Electromagnetic Units

We have used SI units systematically throughout this book except for employing Heaviside–
Lorentz units in discussing the Lorentz invariance of the Maxwell equations in Section
16.8. This Appendix gives the Maxwell equations and Lorentz force equations expressed
in SI units, gaussian or CGS units, and Heaviside–Lorentz units.

B.1 Maxwell Equations in SI Units

In SI units the vacuum Maxwell equations are

∇∇∇ ·EEE =
ρ
ε0

(Gauss’s law), (B.1a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (B.1b)

∇∇∇ ·BBB = 0 (No magnetic charges), (B.1c)

∇∇∇×BBB− 1
c2

∂EEE
∂ t

= µ0JJJ (Ampère–Maxwell law), (B.1d)

where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, JJJ is the current
vector, ε0 is the permittivity of free space [defined for SI units in Eq. (2.3)], and µ0 is the
permeability of free space (which are related by ε0µ0 = 1/c2). The corresponding Lorentz
force in SI units is

FFF = q(EEE + vvv×BBB) (Lorentz force), (B.2)

where q is the charge and bbb the velocity of a test charge.

B.2 Maxwell Equations in Gaussian (CGS) Units

In gaussian (CGS) or electrostatic units the vacuum Maxwell equations are

∇∇∇ ·EEE = 4πρ (Gauss’s law), (B.3a)

∇∇∇×EEE +
1
c

∂BBB
∂ t

= 0 (Faraday’s law), (B.3b)

∇∇∇ ·BBB = 0 (No magnetic charges), (B.3c)

∇∇∇×BBB− 1
c

∂EEE
∂ t

=
4π
c

JJJ (Ampère–Maxwell law), (B.3d)
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where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, and JJJ is the
current vector. The corresponding Lorentz force in CGS units is

FFF = q
(

EEE +
1
c

vvv×BBB
)

(Lorentz force), (B.4)

where q is the charge and vvv the velocity of a test charge.

B.3 Maxwell Equations in Heaviside–Lorentz Units

In Heaviside–Lorentz units (common in high energy physics) the vacuum Maxwell equa-
tions are given by

∇∇∇ ·EEE = ρ (Gauss’s law), (B.5a)

∇∇∇×EEE +
∂BBB
∂ t

= 0 (Faraday’s law), (B.5b)

∇∇∇ ·BBB = 0 (No magnetic charges), (B.5c)

∇∇∇×BBB− ∂EEE
∂ t

= JJJ (Ampère–Maxwell law), (B.5d)

where EEE is the electric field, BBB is the magnetic field, ρ is the charge density, and JJJ is the
current vector. The corresponding Lorentz force in CGS units is

FFF = q
(

EEE +
1
c

vvv×BBB
)

(Lorentz force), (B.6)

where q is the charge and vvv the velocity of a test charge.
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Ørsted, H. C., 1, 177

absolute derivatives, 263
action, 294
action at a distance, 17
aether, 184, 202, 224, 225
Aharonov–Bohm effect, 163

and 4-vector potential, 306
and gauge invariance, 308
experimental setup, 306
magnetic fields, 306
phase of electron wavefunction, 308
topological origin, 309

alignment
of magnetic dipoles in magnetic fields, 160, 161

amber, 1
Ampère’s law, see also Ampère–Maxwell law

and magnetic field of solenoid, 148
compared with Ampére–Maxwell law, 182
derived from Biot–Savart law, 147, 148
in magnetized matter, 161
modified by Maxwell, 3, 182, 185

Ampère, A.–M., 1, 177
Ampère–Maxwell law

consistency with continuity equation, 185
far-reaching implications, 3, 182, 185
in medium, 115
in vacuum, 2
integral form, 116
integral form in medium, 116
Maxwell’s modification, 3, 182, 185

Ampèrian loops, 149
ampere (amp) unit, 145
anholonomic basis, see non-coordinate basis
associated Legendre polynomials

and derivative of Legendre polynomial, 120
orthogonality, 121
relation to spherical harmonics, 66

atlas, 243
atomic polarization, see polarization

ball
closed, 23
open, 23

baryon (definition), 9
basis

and directional derivatives, 245–247
anholonomic, 245–247

coordinate, 240, 245–247
dual, 231
for a vector space, 250
holonomic, 245–247
non-coordinate, 245–247
orthonormal, 231, 245
tangent, 230

binomial expansion, 67, 325
Biot, J.-B., 142
Biot–Savart law

differential form, 146
discovery, 142
for line currents, 142
for surface currents, 150
for volume currents, 150
integral form, 142, 146
magnetic field of circular current loop, 145
starting point for magnetostatics, 146

boost transformations, 276
bound charge, see also free charge

definition for dielectrics, 98
surface, 110
volume, 110

boundary conditions
Cauchy, 51, 52
Dirichlet, 48, 51, 52
discontinuities at charge layers, 44, 45
matching at interface of different media, 110,

116–119
matching tangential and normal components, 120
mixed, 51, 52
naturalness of Dirichlet vs. Neumann, 48
Neumann, 48, 51, 52
overdetermined, 51, 52
physically acceptable, 5

boundary value problems, 13

capacitance
capacitor, 91
and fringing fields, 109
definition, 90
effect of dielectrics, 91, 96–98
energy stored in capacitor, 92
parallel plate capacitor, 91, 129
vacuum diode, 129
work done in charging a capacitor, 92

capacitor, see capacitance
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Cauchy theorem, 196
causal structure of spacetime, 281
Cavendish, H., 1
charge

accelerated, 5–7
and gauge invariance, 4
bound, 98, 110
conservation of, 3, 4, 184
free, 98
induced, 88
is conserved locally, 184
of neutron, 11
of proton, 11
quantization of, 8
space, 130
surface, 111, 112
volume, 111, 112

charge conservation, 182, 185
Child–Langmuir law, 131
Christoffel symbols

are not tensors, 263
definition, 263
transformation law, 263

classical linear regime, 18
closed timelike loops, 282
closure, 250
color confinement, see quantum chromodynamics
commutator, 247
Compton wavelength, 7
conduction

conduction electrons, 132
Drude model, 132

conductivity
and Ohm’s law, 132
and resistivity, 133
conductivity tensor, 133, 136

conductors, 88, 95, 132
conservation laws

in classical electromagnetism, 200
symmetries of the Maxwell equations, 4

conservative force, 29, 30
constituitive relationship

in electrostatics, 108, 109
in magnetostatics, 163
non-linear for ferromagnets, 164

continuity equation, 3, 128, 182, 184, 185
contravariant vectors, see vectors
convective derivative, see derivative
coordinate basis, 245–247
coordinate curve, 245–247
coordinate patches, 243
coordinate systems

basis vectors, 228
dual basis, 231
euclidean, 227
non-orthogonal, 231

orthogonal, 231
parameterizing, 228
spacelike components, 242
tangent basis, 230
timelike components, 242

cosine law, see law of cosines
cotangent bundles, 244
Coulomb excitation, 72
Coulomb gauge, 152, 153, 190, 207
Coulomb potential

acts instantaneously, 191
and causality, 191
solution in Coulomb gauge, 190, 191

Coulomb’s law, 322
definition, 13, 322
deviations from, 16
starting point for electrostatics, 146

Coulomb, C.-A., 1
covariance, 242

manifest, 289
of Maxwell equations, 289

covariant derivative, 239, 261, 263
and Christoffel symbols, 263
and minimal substitution, 302
and parallel transport, 265
implications, 265
is non-commuting operation, 264, 266
Leibniz rule for derivative of product, 265
of metric tensor vanishes, 265
rules for, 264

covariant vectors, see dual vectors (one-forms)
covectors, see dual vectors (one-forms)
Curie temperature, see ferromagnetism
curl

and the Helmholtz theorem, 53
definition, 318
fundamental theorem of (Stokes’ theorem), 321

currents
and conservation of charge, 128
continuity equation, 128
convection current density, 129
field lines of steady current density, 129
in matter, 131
steady-current condition, 128
vacuum, 129

curvature
and radius of curvature, 90
and tangent spaces, 244
vectors in curved space, 244

cyclotron motion, 141, 143, 158

d’Alembertian operator
definition, 193, 288
for electromagnetic waves, 288
in Green function, 193
in wave equations, 295
Lorentz invariance, 288
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derivative
convective, 179
directional, 45
normal, 45
product rules, 318
second derivatives, 319

diamagnetic material, see diamagnets
diamagnets

definition, 160
magnetic field lines, 165
physical explanation, 163, 165

dielectric constant, 109
dielectrics

definition, 88
dielectric constant, 109
polarization in capacitor, 96
properties, 95

differentiation
absolute, 263
covariant, 263
in non-cartesian coordinates, 239
in spaces with position-dependent metrics, 239
of tensors, 256, 261
partial, 256, 262

dipole moment
definition, 67
in multipole expansion, 64, 66, 67
intrinsic, 95
magnetic, 161
sources in matter, 95
vector, 101

Dirac delta function
anticommutes with derivative operator, 328
as a distribution or generalized function, 327, 328
definition in 1D, 327, 328
definition in 3D, 327, 328
dimensionality, 328

Dirac equation, 295
Dirac matrices, 296
Pauli–Dirac representation, 296
Weyl representation, 296

Dirac monopoles, 8
directional derivatives, 245–247
Dirichlet boundary condition

see boundary conditions, 1
discontinuity equations, 119
displacement, 108, 109, 163
displacement current, 3, 182, 185
divergence

and Helmholtz theorem, 53
definition, 318
fundamental theorem of (divergence theorem), 321

divergence theorem, 22, 115, 322
Drude model

and Hall experiment, 157
and modern atomic theory, 134

and Ohm’s law, 135
description, 132, 134
enabled by discovery of electron, 2
relaxation time (mean collision time), 135

dual vectors (one-forms)
and row vectors, 251
as maps to real numbers, 234, 249
defining in curved space, 234, 244
duality with vectors, 234, 249, 256
transformation law, 255

Earnshaw’s theorem, 46, 86
Einstein summation convention, 233, 244, 314
Einstein, A., 2
electric field

and the scalar potential, 28
curl of, 27
definition, 15, 18
discontinuous at charge layer, 44, 45
energy, 5–7
for discrete set of charges, 19
intrinsic strength relative to magnetic field, 140
is conservative, 29
of a point charge, 16
of continuous charge distribution, 19
of line charge, 19
of long straight wire, 19
of solid spherical ball, 23
time variation produces a magnetic field, 177

electric flux
and field lines, 34
definition, 34

electric permittivity, 109
electric potential, see scalar potential
electric susceptibility, 95, 109
electromagnetic induction

and unification of electricity and magnetism, 1, 177
discovery by Faraday, 1, 177

electromagnetic waves
and Maxwell equations, 3
and the displacement current, 182
circular polarization, 213
dispersion, 217
dispersive, 216
elliptical polarization, 213
energy density, 209
energy flux density, 210
in simple matter, 216
in terms of fields, 205
in terms of potentials, 207
in vacuum, 205, 210
index of refraction, 217
interpreted as light, 185
left circularly polarized (LCP, 213
momentum density, 210
non-dispersive, 216
plane polarization, 213
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Poynting vector, 210
reflection, 217
refraction (transmission), 217
right circularly polarized (RCP, 213
transverse polarization, 2, 205, 210, 212, 214
wave equation, 205

electromotive force (EMF)
definition, 177, 178
proportional to time derivative of flux, 178, 179

electron
classical radius, 6
discovery of, 134
free electron approximation, 134
independent electron approximation, 134
self energy, 6

electrostatic induction, 13
electrostatic polarization, 13
electrostatics

Coulomb’s law, 13
electric field, 15
Gauss’s law, 20
Poisson and Laplace equations, 38
relationship of electric field and scalar potential, 27
scalar potential, 25
superposition principle, 16, 35
work and energy in electric fields, 29

EMF, see electromotive force (EMF)
energy, see also work

of charge distribution in external field, 72
stored in capacitor, 92

equipotential surfaces, see scalar potential
equivalence classes

definition, 187, 188
of gauge transformations, 187, 301

Euler formula, 204
Euler–Lagrange equation, 293, 294

farad (unit), 90, 91
Faraday’s law

differential form, 180
Faraday’s experiments, 177
generalized as a relationship between fields, 179
in medium, 115
in vacuum, 2
integral form, 116, 179
integral form in medium, 116
production of transient current, 177

Faraday, M., 1, 177
ferroelectricity, 139
ferromagnetism

and permanent magnetism, 160
Curie temperature, 164
definition, 160
depends on magnetic history, 160, 164
hard ferromagnets, 167
hysteresis, 164
microscopic alignment of spins, 139

non-linear constituitive relationship, 164
spontaneously broken symmetry, 139

ferromagnets, see ferromagnetism
fiber bundle

cotangent bundle, 244, 249
example of non-metric space, 239
tangent bundle, 244, 249

field theory
and action at a distance, 17
conserved currents and charges, 306
Lagrangian densities, 295, 296
Noether’s theorem, 303, 306
quantization of classical fields, 293
the classical action, 293

Fourier series, 203
Fourier transforms

conversion of PDE to algebraic equation, 193
definition, 193
inverse transform, 193
normalization convention, 194
of distributions, 193
of functions, 193
to obtain Green functions, 193, 194

free charge, see also bound charge
and macroscopic current density in medium, 162
definition for dielectrics, 98
not bound in dielectrics, 98

fringing fields, 109
fundamental theorem

of calculus, 320
of curls (Stokes’ theorem), 321
of divergences (divergence theorem), 321
of gradients, 321

Galilean invariance
and Maxwell equations, 4, 178
in Faraday’s law at low velocity, 180
superceded by special relativity, 225

gauge bosons, 9
mediators of force, 17
quanta of gauge fields, 17

gauge fields, 17
gauge invariance, see also gauge symmetry

Aharonov–Bohm effect, 308
and photon mass, 303
in quantum mechanics, 302, 303
minimal substitution, 302, 303

gauge symmetry
abelian, 8
and charge conservation, 3, 4, 182, 185
and decoupling of Maxwell equations, 188, 190
and quantum electrodynamics, 3, 182, 185
and the Standard Model, 3, 182, 185
and unification of fundamental interactions, 7
definition (classical, non-relativistic), 152
gauge transformations, 152
gauge-fixing condition, 188, 190
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in quantum mechanics, 302
local, 301
Lorenz gauge, 188, 190
minimal substitution, 302, 308
non-abelian, 8

gauge transformations, see also gauge symmetry
Coulomb gauge, 153
definition (classical, non-relativistic), 152
gauge-fixing constraint, 287
in electromagnetism, 287
invariance of electromagnetism under, 152
to Coulomb gauge, 153
to Lorenz gauge, 190

gauss G (unit), 142
Gauss’s law

definition, 20–23, 322
in medium, 115
in vacuum, 2
integral form, 116
integral form in medium, 116

Gaussian surface, 23
general relativity

and action at a distance, 17
gravitational waves, 191
replaces Newtonian gravity, 191
the speed of gravity, 191

geometrical object, 228, 252
geometry

and metric tensor, 239
euclidean, 227

Gibbs, J. Willard, 2
gradient

definition, 317
identities, 317, 318
with respect to x, 147, 317
with respect to x′, 147, 317

gradients
fundamental theorem of, 321

Green functions
and lightwaves, 188
and the image method, 59
boundary-value problems, 52
causal, 197
definition, 52, 55
difficulty of determining, 56
for conducting sphere, 59
for driven oscillator, 54
of free space, 55
retarded, 193, 194, 196, 197
solution of electrostatics problems, 52
solution with Fourier transforms, 194
symmetry of, 60

Green’s first identity, 50
Green’s second identity, see Green’s theorem
Green’s theorem (Green’s second identity), 50
groups, see also symmetries

abelian, 300
definition, 300
Lorentz group, 300
nonabelian, 300
Poincaré group, 300
representations, 67
U(1) gauge group, 301

Gupta–Bleuler mechanism, 193

hadron (definition), 9
Hall effect

and tensor resistivity, 133
classical, 143
consequence of Lorentz force, 141
Hall field, 143
Hall resistance, 143
quantum, 143

Heaviside, O., 2
Helmholtz decomposition, see Helmholtz theorem
Helmholtz theorem, 53, 152, 190
Herz, H., 2
Higgs mechanism, 165
holonomic basis, see coordinate basis
homogeneous differential equation, 52, 53
hypersurface, 243
hysteresis, see ferromagnetism

image charges, 57, 58
image method, 56–58

relation to Green functions, 59
indefinite metric, 270
index of refraction, 217
induced charge, 88
induction, see electromagnetic induction
inertial frames

no preferred ones in special relativity, 225
preferred aether frame hypothesis, 202

inhomogeneous differential equation, 52, 53
insulators, see dielectrics
integration

area of 2-sphere by invariant integration, 261
by parts, 326
covariant volume element, 261
invariant, 239, 261
of tensors, 261

irrotational current, 190

Jacobian determinant, 261
Jacobian matrix, 256
jumping ring demonstration, 179, 181

Klein–Gordon equation, 295
Kronecker delta, 236, 237, 248, 249, 257

Lagrangian, 294
Lagrangian density

and the classical action, 293
and the Lagrangian, 293
for complex scalar or pseudoscalar field, 295
for Dirac field, 295
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for massive vector field, 296
for massless vector field, 295

Laplace’s equation
definition, 323
in cartesian coordinates, 38
linearity of, 39, 76, 78

Laplacian operator
applied to 1/r, 39, 328
in cartesian coordinates, 38
in cylindrical coordinates, 38, 325
in spherical coordinates, 38, 324

lattice gauge theory, 10
law of cosines, 99, 326
Legendre polynomial

(table), 83
definition, 82
multipole expansions, 63
orthogonality relation, 83
Rodrique’s formula, 82
spherical harmonic addition theorem, 65

legendre polynomial
and rotational invariance, 82
connection to spherical harmonics, 82

Legendre’s equation, 82
Lenz’s law, 165, 179
lepton (definition), 9
Levi–Civita symbol, 318
Lie bracket, 247
Lie derivative

and covariant differentiation, 263
contrasted with covariant derivative, 263

lightcone, 278
and causality, 197, 281
and simultaneity, 281
and the constant speed of light, 281
lightlike intervals, 285
null intervals, 285
spacelike intervals, 285

lightlike intervals, see lightcone, null intervals
line element, 237

euclidean, 238
for plane polar coordinates, 238

line integral, 319
lodestone, 1
London penetration depth, see superconductors
longitudinal current, 190
Lorentz covariance

of Maxwell equations, 4, 285
Lorentz factor

in special relativity, 278
Lorentz force, 5, 140, 143, 185, 308, 323
Lorentz invariance, see also special relativity

and electromagnetism, 4, 140
in Lorenz gauge, 188
superceded Galilean invariance, 225

Lorentz transformations, 273

and Maxwell equations, 178
and spacetime diagrams, 283
and special relativity, 225
as rotations in Minkowski space, 274
boosts between inertial systems, 274, 276, 278, 283
Lorentz group, 275, 300
spatial rotations, 274

Lorentzian manifold, 271
Lorenz gauge, 188, 190, 207
luminiferous aether, see aether

macroscopic (averaged) quantities
for electric fields, 107
for magnetic fields, 162
preserves BBB = ∇∇∇×AAA for magnetic fields, 162
preserves EEE =−∇∇∇Φ for electric fields, 107

magnetars, 142
magnetic charges

absence of, 2, 115, 116, 147, 154
Dirac monopoles, 8

magnetic dipole
and quantum nature of spin, 155
averaged over small volume, 161
classical relation to orbital angular momentum, 155
definition, 154
equivalence to current loops, 161
in matter, 160
in multipole expansion, 154
torque exerted by magnetic field, 161

magnetic field
alignment of magnetic dipoles, 160, 161
Ampèrian model, 160
at surface of Earth, 142
Biot–Savart law, 142
Gilbert model, 160
in matter, 160
intrinsic strength relative to electric field, 140
lines of, 144
magnetic flux, 144, 179
of localized current distribution, 153
of long straight wire, 145
produced by circular current loop, 145
strongest known in Universe, 142
terminology, 163
time variation produces an electric field, 177
units, 142

magnetic flux, see magnetic field, 178
magnetic force, see Lorentz force
magnetic moment, see magnetic dipole
magnetic moment density, see magnetization
magnetic monopoles, see Dirac monopoles
magnetic permeability, 163
magnetic scalar potential, 151, 167
magnetic shielding, 174
magnetic susceptibility, 163, 165
magnetization

approximately constant for hard ferromagnets, 167
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definition, 154, 161
in diamagnetic media, 165
in ferromagnets, 164
in paramagnetic media, 165
linear for paramagnets and diamagnets, 165
magnetic moment, 154
magnetic moment density, 154

magnetization currents, 139
magnetized matter, 160
magnetostatics

and special relativity, 139
definition, 138, 139
first law, 147
second law, 147

manifold, see also space
atlas, 243
charts, 243
coordinate patches, 243
definition, 243
differential, 243
Riemannian, 243
spacetime, 242

mapping, 234
Maxwell equations, 285

and aether, 224
and causality, 191
and Galilean invariance, 224
and linear superposition, 18
covariance, 289
gauge transformations, 287
in gaussian units, 329
in Heaviside–Lorentz units, 285, 330
in medium, 115
in SI units, 2, 329
in simple matter, 216
in vacuum, 2, 115, 329, 330
in vacuum and in medium, 115
integral form, 116
integral form in polarizable media, 116
Lorentz covariance, 4, 285
Maxwell’s original form, 2
scalar and vector potentials, 287
source-free in vacuum, 205
symmetries, 4
vector calculus notation, 2

Maxwell wave equation, 294
Maxwell, J. C., 182
Maxwell, J. C. , 1
mean value theorem, see Earnshaw’s theorem, 46
Meissner effect, see superconductors
Mercator projection, 284
metric

definition, 235
indefinite, 271, 277
metric space, 235, 239
metric tensor, 258

signature, 227
metric space, see metric
metric tensor

and geometry of space, 239
and line element, 237, 258
and scalar products, 270
contravariant components, 236
covariant components, 236
covariant derivative vanishes, 265
in euclidean space, 236
in Minkowski space, 270
indefinite metric, 270
properties, 236
signature, 271
used to raise and lower indices, 258, 259, 271

Michelson–Morley experiment, 202, 225
microscopic quantities, 107
minimal coupling prescription, 163, 299, 302, 308,

309
minimal substitution, see minimal coupling

prescription
Minkowski space

and causality, 281
definition, 269
event, 271
indefinite metric, 270
invariance of spacetime interval, 271
lightcone structure, 278
lightlike intervals, 285
line element, 226, 248, 270
Lorentz transformations, 273
metric signature, 227, 271
metric tensor, 226, 248, 270
null (lightlike) intervals, 278, 285
rotations, 277
scalar product, 270
spacelike intervals, 278, 285
spacetime, 225
tensors, 272
timelike intervals, 278
worldline, 271

Minkowski, Hermann, 225
monopole (electric)

in multipole expansion, 66, 67
multipole expansion, see also multipole moments

binomial expansion, 99
cartesian coordinates, 67
electric field components, 71
in Legendre polynomials, 63
in spherical harmonics, 62, 66
molecular charge distribution, 100
of potential, 99
spherical coordinates, 66
Taylor series, 62

multipole moments, see also multipole expansion
cartesian vs. spherical definition, 67
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definition may depend on coordinate system, 67
dipole potential, 64
in atomic nuclei, 72
quadrupole potential, 64
reducible and irreducible representations, 67

Neumann boundary condition
see boundary conditions, 1

neutrinos
flavors in Standard Model, 9

neutron stars, 142
Newtonian gravity

and causailty, 191
gravitational potential, 191

Noether’s theorem, 306
4-momentum conservation, 305
and conserved charges and currents, 303
definition, 304
for internal symmetries, 305
Noether charges, 305
Noether currents, 305
Noether tensors, 304, 305

non-coordinate basis, 245–247

Ohm’s law, 132, 133, 135, 177
ohmic conductors, 132
ohms Ω (unit), 132
one-forms, see dual vectors (one-forms)
ordinary differential equation (ODE), 46
overdetermined system, 51

paramagnetic material, see paramagnets
paramagnets

definition, 160
magnetic field lines, 165
physical explanation, 163, 165

parameterization
of curves, 229
of surfaces, 229

partial differential equation (PDE), 46
passive transformation, see transformations
path integral, see line integral
permeability of free space, 14, 142
permittivity of free space, 14
photon

mass of, 16
mass through the Higgs mechanism, 165

Poincaré transformations, 275, 300, 304
Poisson’s equation

definition, 38, 323
for continuous 3D charge distribution, 39
for vector potential in Coulomb gauge, 153
in cartesian coordinates, 38
magnetic, 167
solution at retarded time, 197

polar molecules, 102
polarization

amount of charge displacement in dielectric, 96
and induced dipole moment, 123

asymmetric, 101, 103
atomic polarizability, 95, 101, 102
atomic polarizability (table), 104
definition, 104, 105, 123
density of dipole moments, 104, 107, 123
non-uniform, 108, 112
of dielectric, 96
of noble gas elements, 102
polarization density, 105
polarization tensor, 101, 103
polarization-charge density, 105, 108
uniformly polarized ball, 112, 124

polarization (waves)
circular polarization, 213
elliptical polarization, 213
linear (plane) polarization, 212, 213
of cosmic microwave background radiation, 211
polarization ellipse, 211

polarization(waves)
elliptical polarization, 216
linear (plane) polarization, 216
Poincaré sphere, 215, 216
Stokes parameters, 215, 216

polarization(waves)circular polarization, 216
polarization(waves)polarization ellipse, 216
potential, see scalar potential
Poynting vector, 210
principle of extremal proper time, 292
principle of relativity, 242
Proca (massive vector) field, 295
proper time, 270
pseudo-euclidean manifold, see Lorentzian manifold

QCD, see quantum chromodynamics
QED, see quantum electrodynamics
QFT, see quantum field theory
quadrupole moment

as rank-2 tensor, 67
in multipole expansion, 66, 67
traceless, 67

quantum chromodynamics (QCD)
color confinement, 10
gauge symmetry, 8

quantum electrodynamics (QED), 3, 8, 182, 185, 192
quarks

color confinement, 10
electrical charge, 10
flavors in Standard Model, 9
quantum numbers, 10

radiation gauge, see Coulomb gauge
regularizations of integrals, 195
relativity principle, see principle of relativity
renormalization (in quantum field theory), 6
repeated indices, see Einstein summation convention
resistance, 132
resistivity

and Ohm’s law, 132, 133, 135
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and resistance in Hall experiment, 133
resistivity tensor, 133, 135

retarked time, 197
Rodrique’s formula, see Legendre polynomial

Savart, F., 142
scalar potential

and the vector potential, 151
definition, 27, 186, 322
displaying graphically, 32
equipotential surfaces, 32
for point charge, 63
magnetic scalar potential, 151
solving Maxwell equations, 186

self energy of point particles, 5–7, 31
separation of variables, 79

cartesian coordinates, 76
cylindrical coordinates, 85
spherical coordinates, 80

solenoidal current, 190
space, see also manifold

metric, 235, 239
Minkowski, 226, 269
non-metric, 235, 239

space charge, 130
spacelike surface, 279
spacetime, see also space

causal structure, 281
indefinite Minkowski metric, 270
invariance of interval, 271
Minkowski space, 269

special relativity, see also Lorentz invariance
and causality, 191
and electric and magnetic fields, 140
and electromagnetism, 140
constant speed of light, 225
event, 271
limiting speed for signals, 17, 184, 191
Lorentz invariance, 4
Lorentz transformations, 273
no preferred inertial systems, 225
proper time, 270
relativity of simultaneity, 281, 284
removes need for aether in electromagnetism, 202
space contraction, 284
time dilation, 272, 284
twin paradox, 284
worldline, 271

speed of gravity, 191
spherical harmonic

addition theorem, 65
and rotational invariance, 82
completeness relation, 66
connection to Legendre polynomials, 82
multipole expansion, 66, 67
orthogonality condition, 66
relation to associated Legendre polynomials, 66

spontaneous symmetry breaking, 164, 165
Standard Electroweak Model, see Standard Model
Standard Model (of elementary particle physics)

and gauge symmetry, 3, 7, 8, 182, 185, 306
conserved charges and currents, 306
generations, 9
Higgs mechanism, 165
particles of, 9, 10

steampunk, 184
Stokes’ theorem, 115

and the Berry phase, 308
and the scalar potential, 27
definition, 25, 26, 322
physical interpretation, 26
right-hand rule for, 26

stress–energy–momentum tensor, 304
summation convention, see Einstein summation

convention
summation problems, 13
superconductors

and diamagnetism, 165
London penetration depth, 165
Meissner effect, 165

superposition principle, 16, 18, 52, 193
surface charge, see also charge

discontinuity of displacement field, 118
discontinuity of electric field, 44, 45, 118
polarization charge on boundary of a dielectric, 105

surface integral, 320
surface-charge density, 110
symmetries, see also groups

and gauge invariance, 299
group theory, 275, 300
Lorentz group, 275, 300
Poincaré group, 275, 300
U(1) gauge group, 301

tangent bundles, 244
tangent space

and parallel transport, 244
and vectors in curved space, 244

Taylor series, 67, 325
tensors

and covariance, 242
and form invariance of equations, 266
antisymmetric (skew symmetric), 260
antisymmetrizing operation, 260
as geometrical objects, 314, 316
as linear maps, 248, 249
as operators, 248
calculus, 261
contravariant, 248
covariant, 248
defined by their transformation law, 248, 254, 258
differentiation, 261
dual vectors (one-forms), 255
Einstein summation convention, 233, 244
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horizontal placement of indices, 259
in linear algebra, 251
in Minkowski space, 272
in quantum mechanics, 251
index-free formalism, 248, 249
integration, 261
Kronecker delta, 248
Lorentz, 316
metric tensor, 258, 259
mixed, 248
rank, 248
rank of, 313
rank-2, 257
scalars, 254
spacetime, 316
symmetric, 260
symmetrizing operation, 260
tensor fields, 316
transformation laws, 313
transformation laws (table), 258
type, 248
vectors, 254, 256
vertical placement of indices, 231, 233, 242, 244

tesla T (unit), 142
thermionic emission, 129
Thomson, J. J., 2
time machines, see time travel
time travel, 281, 282
topological matter, 143
total time derivative, 179
transformations

between coordinate systems, 240
boosts, 276
Galilean, 178, 241
gauge, 152
gauge in electromagnetism, 287
Lorentz, 178, 225, 241
of derivatives, 248
of fields, 248
of integrals, 248
of scalars, 255
of vectors, 255
passive, 242, 314
Poincaré, 275, 300
rotations, 240
rotations in euclidean space, 273
rotations in Minkowski space, 274
spacetime, 242
symmetry under, 227
unitary, 301
vectors, 255

transverse current, 190
transverse gauge, see Coulomb gauge
twin paradox, 284

uniqueness theorems
and boundary conditions, 51, 52

by Green’s methods, 49
definition, 48
method of images, 56, 58
Uniqueness Theorem I, 49, 56
Uniqueness Theorem II, 49

units
esu (CGS or Gaussian), 14
Heaviside–Lorentz, 14
SI, 14

vacuum diodes, 129
vacuum polarization, 18
vector area, 161
vector field

longitudinal, 53
transverse, 53

vector identities, 317
vector potential

and minimal coupling prescription, 163
definition, 151, 186, 323
hard ferromagnets, 168
in Coulomb gauge, 153
multipole expansion, 153
solving Maxwell equations, 186

vector space
definition, 250
for vectors or dual vectors, 234

vector spherical harmonics, 153, 154
vectors

and column vectors, 251
and tangent spaces, 244
as geometrical objects, 228
as maps to real numbers, 234, 249
defining in curved space, 234, 244
dual vector spaces, 234, 249
dual vectors, 255
duality with dual vectors, 234, 249, 256
expansion in basis, 233
scalar product, 233, 257
transformation law, 256
vector space, 234, 249, 250

vertical position of indices, see Einstein summation
convention

volume charge, see charge
volume integral, 320

wave equation
linearity, 203
scalar field, 203
sinusoidal solution, 203

waveguides, 48
waves

electromagnetic, 202
monochromatic, 208
phase velocity, 202, 203
phaseshift, 203
plane waves, 208
speed, 202, 203
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wave equation, 202
work, see also energy

done in charging a capacitor, 92
done in electrical field, 30
energy of charge distribution in external field, 72
independent of path in electric field, 30
no work done by magnetic field, 141, 142

Yukawa potential, 16


