Constants and Conversions

Fundamental constants

Gravitational constant: $G = 6.67408 \times 10^{-8} \text{ dyn cm}^2 \text{ g}^{-2}$ $= 6.67408 \times 10^{-8}\,{\rm g}^{-1}\,{\rm cm}^3\,{\rm s}^{-2}$ $= 6.67408 \times 10^{-8} \,\mathrm{erg} \,\mathrm{cm} \,\mathrm{g}^{-2}$ $= 2.960 \times 10^{-4} M_{\odot}^{-1} \text{ AU}^{3} \text{ days}^{-2}$ = 1.327 × 10¹¹ $M_{\odot}^{-1} \text{ km}^{3} \text{ s}^{-2}$ Speed of light: $c = 2.99792458 \times 10^{10} \,\mathrm{cm \, s^{-1}}$ Planck's constant: $h = 2\pi\hbar = 6.6261 \times 10^{-27}$ erg s $= 4.136 \times 10^{-21} \,\mathrm{MeV} \,\mathrm{s}$ $\hbar = 1.0546 \times 10^{-27} \text{ erg s} = 6.5827 \times 10^{-22} \text{ MeV s}$ $\hbar c = 197.3 \,\mathrm{MeV} \,\mathrm{fm} = 197.3 \times 10^{-13} \,\mathrm{MeV} \,\mathrm{cm}$ Electrical charge unit: $e = 4.8032068 \times 10^{-10}$ esu $= 4.8032068 \,\mathrm{erg}^{1/2} \mathrm{cm}^{1/2}$ $= 4.8032068 \,\mathrm{g}^{1/2} \,\mathrm{cm}^{3/2} s^{-1}$ Fine structure constant: $\alpha = (137.036)^{-1} = 0.0073$ Weak (Fermi) constant: $G_{\rm F} = 8.958 \times 10^{-44} \,{\rm MeV \, cm^3}$ $= 1.16637 \times 10^{-5} \,\text{GeV}^{-2} \,[G_{\text{F}}/(\hbar c)^3; \hbar = c = 1]$ Mass of electron: $m_e = 9.1093898 \times 10^{-28} \text{ g}$ $= 5.4858 \times 10^{-4}$ amu $= 0.5109991 \,\mathrm{MeV/c^2}$ Mass of proton: $m_p = 1.6726231 \times 10^{-24} \,\mathrm{g}$ = 1.00727647 amu $= 938.27231 \,\mathrm{MeV/c^2}$ Mass of neutron: $m_n = 1.6749286 \times 10^{-24} \text{ g}$ $= 1.0086649 \, \text{amu}$ $= 939.56563 \,\mathrm{MeV/c^2}$ Atomic mass unit (amu) = $1.6605390 \times 10^{-24}$ g Avogadro's constant: $N_{\rm A} = 6.0221409 \times 10^{23} \,\mathrm{mol}^{-1}$ Boltzmann's constant: $k = 1.38065 \times 10^{-16} \text{ erg K}^{-1}$ $= 8.617389 \times 10^{-5} \,\mathrm{eV} \,\mathrm{K}^{-1}$ Ideal gas constant: $R_{\text{gas}} \equiv N_{\text{A}}k = 8.314511 \times 10^7 \text{ erg K}^{-1} \text{ mole}^{-1}$ Stefan–Boltzmann constant: $\sigma = 5.67051 \times 10^{-5}$ erg cm⁻² K⁻⁴ s⁻¹ Radiation density constant: $a \equiv 4\sigma/c = 7.56591 \times 10^{-15} \text{ erg cm}^{-3} \text{ K}^{-4}$ $= 4.7222 \times 10^{-9} \,\mathrm{MeV} \,\mathrm{cm}^{-3} \mathrm{K}^{-4}$ Planck mass: $M_{\rm P} = 1.2 \times 10^{19} \, {\rm GeV}/c^2$ Planck length: $\ell_P = 1.6 \times 10^{-33}$ cm Planck time: $t_{\rm P} = 5.4 \times 10^{-44} \, {\rm s}$ Planck temperature: $T_{\rm P} = 1.4 \times 10^{32} \, {\rm K}$

Solar quantities

Solar (photon) luminosity: $L_{\odot} = 3.828 \times 10^{33}$ erg/s Solar absolute magnitude $M_{\rm v} = 4.83$ Solar bolometric magnitude $M_{\rm bol}^{\odot} = 4.74$ Solar mass: $M_{\odot} = 1.989 \times 10^{33}$ g Effective surface temperature: $T_{\odot}^{\rm eff} = 5780$ K Solar radius: $R_{\odot} = 6.96 \times 10^{10}$ cm Central density: $\rho_{\odot}^{\rm core} \simeq 160$ g/cm³ Central pressure: $P_{\odot}^{\rm core} \simeq 2.7 \times 10^{17}$ dyn cm⁻² Central temperature: $T_{\odot}^{\rm core} \simeq 1.6 \times 10^7$ K Color indices: B - V = 0.63 U - B = 0.13Solar constant: 1.36×10^6 erg cm⁻² s⁻¹

General quantities

1 tropical year (yr) = $3.1556925 \times 10^7 \text{ s} = 365.24219 \text{ d}$ 1 parsec (pc) = $3.0857 \times 10^{18} \text{ cm} = 206,265 \text{ AU} = 3.2616 \text{ ly}$ 1 lightyear (ly) = $9.4605 \times 10^{17} \text{ cm}$ 1 astronomical unit (AU) = $1.49598 \times 10^{13} \text{ cm}$ Energy per gram from H \rightarrow He fusion = $6.3 \times 10^{18} \text{ erg/g}$ Thomson scattering cross section: $\sigma_{\text{T}} = 6.652 \times 10^{-25} \text{ cm}^2$ Mass of Earth $M_{\oplus} = 5.98 \times 10^{27} \text{ g}$ Radius of Earth $R_{\oplus} = 6.371 \times 10^8 \text{ cm}$

Useful conversion factors

 $1 \text{ eV} = 1.60217733 \times 10^{-12} \text{ ergs} = 1.60217733 \times 10^{-19} \text{ J}$ $1 \text{ J} = 10^7 \text{ ergs} = 6.242 \times 10^{18} \text{ eV}$ $1 \text{ amu} = 1.6605390 \times 10^{-24} \text{ g}$ $1 \,\mathrm{fm} = 10^{-13} \,\mathrm{cm}$ $0 \,\text{K} = -273.16 \,\text{Celsius}$ 1 atomic unit $(a_0) = 0.52918 \times 10^{-8}$ cm 1 atmosphere (atm) = $1.013250 \times 10^{6} \text{ dyn cm}^{-2}$ $1 \text{ Pascal (Pa)} = 1 \text{ N m}^{-2} = 10 \text{ dyn cm}^{-2}$ $1 \operatorname{arcsec} = 1'' = 4.848 \times 10^{-6} \operatorname{rad} = 1/3600 \operatorname{deg}$ $1 \stackrel{\circ}{\mathrm{A}} = 10^{-8} \,\mathrm{cm}$ $1 \text{ barn (b)} = 10^{-24} \text{ cm}^2$ 1 Newton (N) = 10^5 dyn 1 Watt (W) = 1 J s⁻¹ = 10^7 erg s^{-1} 1 Gauss (G) = 10^{-4} Tesla (T) $1 \,\mathrm{g}\,\mathrm{cm}^{-3} = 1000 \,\mathrm{kg}\,\mathrm{m}^{-3}$ Opacity units: $1 \text{ m}^2 \text{ kg}^{-1} = 10 \text{ cm}^2 \text{ g}^{-1}$

Geometrized Units

In gravitational physics it is useful to employ a natural set of units called *geometrized* units or c = G = 1 units that give both the speed of light and the gravitational constant unit value. Setting

$$1 = c = 2.9979 \times 10^{10} \,\mathrm{cm \ s^{-1}}$$
 $1 = G = 6.6741 \times 10^{-8} \,\mathrm{cm^{3} \ g^{-1} \ s^{-2}}$

one may solve for standard units like seconds in terms of these new units. For example, from the first equation

$$1 \text{ s} = 2.9979 \times 10^{10} \text{ cm},$$

and from the second

$$1 g = 6.6741 \times 10^{-8} \text{ cm}^3 \text{ s}^{-2}$$

= 6.6741 × 10⁻⁸ cm³ $\left(\frac{1}{2.9979 \times 10^{10} \text{ cm}}\right)^2$
= 7.4261 × 10⁻²⁹ cm.

So both time and mass have the dimension of length in geometrized units. Likewise, from the preceding relations

$$1 \text{ erg} = 1 \text{ g cm}^2 \text{ s}^{-2} = 8.2627 \times 10^{-50} \text{ cm}$$

$$1 \text{ g cm}^{-3} = 7.4261 \times 10^{-29} \text{ cm}^{-2}$$

$$1 M_{\odot} = 1.477 \text{ km},$$

and so on. Velocity is dimensionless in these units (that is, v is measured in units of c). In geometrized units, all explicit instances of G and c are then dropped in the equations. When quantities need to be calculated in standard units, appropriate combinations of c and G must be reinserted to give the right standard units for each term.

Natural Units in Particle Physics

It is convenient in this context to define natural units where $\hbar = c = 1$. Using the notation [a] to denote the dimension of a and using [L], [T] and [M] to denote the dimensions of length, time, and mass, respectively, for the speed of light c,

$$[c] = [L][T]^{-1}.$$

Setting c = 1 then implies that [L] = [T], and since $E^2 = \mathbf{p}^2 c^2 + M^2 c^4$,

$$[E] = [M] = [\boldsymbol{p}] = [\boldsymbol{k}],$$

where $\boldsymbol{p} = \hbar \boldsymbol{k}$. Furthermore, because

$$[\hbar] = [M][L]^2[T]^{-1}$$

one has

$$[M] = [L]^{-1} = [T]^{-1}$$

if $\hbar = c = 1$. These results then imply that [M] may be chosen as the single independent dimension of our set of $\hbar = c = 1$ natural units. This dimension is commonly measured in MeV (10⁶ eV) or GeV (10⁹ eV). Useful conversions are

$$\hbar c = 197.3 \,\text{MeV fm}$$
 1 fm $= \frac{1}{197.3} \,\text{MeV}^{-1} = 5.068 \,\text{GeV}^{-1}$
1 fm⁻¹ = 197.3 MeV 1 GeV = 5.068 fm⁻¹.

where 1 fm = 10^{-13} cm (one fermi or one femtometer).

Natural Units in Cosmology

In cosmology we often employ a set of $\hbar = c = k_{\rm B} = 1$ natural units, where $k_{\rm B}$ is the Boltzmann constant. Then from $E = k_{\rm B}T$ and $k_{\rm B} = 8.617 \times 10^{-14} \,\text{GeV K}^{-1} = 1$,

$$1 \,\text{GeV} = 1.2 \times 10^{13} \,\text{K}$$

where K denotes kelvins. From §12.6 we then have for the Planck mass, Planck energy, Planck temperature, Planck length, and Planck time in these natural units,

$$M_{\rm P} = E_{\rm P} = T_{\rm P} = \ell_{\rm P}^{-1} = t_{\rm P}^{-1}$$

To convert to standard units, note that from Eq. (12.16) the gravitational constant may be expressed as

$$G = \frac{1}{M_{\rm P}^2},$$

where the Planck mass is

$$M_{\rm P} = 1.2 \times 10^{19} \,{\rm GeV}.$$

From Eqs. (12.17), (B.14), and (B.11), the corresponding Planck length is

$$\ell_{\rm P} = \frac{1}{M_{\rm P}} = 1.6 \times 10^{-33} \,\mathrm{cm},$$

multiplying by c^{-1} gives the corresponding Planck time,

$$t_{\rm P} = 5.4 \times 10^{-44} \, {\rm s}$$

and from Eqs. (B.12) and (B.14) the Planck temperature is

$$T_{\rm P} = 1.4 \times 10^{32} \,{\rm K}.$$

	÷	-		
Quantity	Symbol	Geometrized unit	Standard unit	Conversion
Mass	М	L	М	GM/c^2
Length	L	L	L	Ĺ
Time	t	L	T	ct
Spacetime distance	S	L	L	S
Proper time	au	L	T	c au
Energy	Ε	L	$\mathscr{M}(\mathscr{L}/\mathscr{T})^2$	GE/c^4
Momentum	р	L	$\mathscr{M}(\mathscr{L}/\mathscr{T})$	Gp/c^3
Angular momentum	J	\mathscr{L}^2	$\mathscr{M}(\mathscr{L}^2/\mathscr{T})$	GJ/c^3
Luminosity (power)	L	dimensionless	$\mathscr{M}(\mathscr{L}^2/\mathscr{T}^3)$	GL/c^5
Energy density	ε	\mathscr{L}^{-2}	$\mathscr{M}/(\mathscr{LT}^2)$	$G \varepsilon / c^4$
Momentum density	π_i	\mathscr{L}^{-2}	$\mathscr{M}/(\mathscr{L}^2\mathscr{T})$	$G\pi_i/c^3$
Pressure	Р	\mathscr{L}^{-2}	$\mathscr{M}/(\mathscr{LT}^2)$	GP/c^4
Energy/unit mass	ε	dimensionless	$(\mathscr{L}/\mathscr{T})^2$	ε/c^2
Ang. mom. / unit mass	l	L	$\mathscr{L}^2/\mathscr{T}$	ℓ/c
Planck constant	ħ	\mathscr{L}^2	$\mathscr{M}(\mathscr{L}^2/\mathscr{T})$	$G\hbar/c^3$

Conversions between geometrized (G = c = 1) units and standard units

The standard unit of length is \mathcal{L} , the standard unit of mass is \mathcal{M} , and the standard unit of time is \mathcal{T} . *Geometrized to standard conversion:* Replace quantities in column 2 with quantities in the last column. *Standard to geometrized conversion:* Multiply by the factor of *G* and *c* appearing in the last column.