
Modern General Relativity Lecture Notes

Mike Guidry

This document summarizes all chapters of the first edition of Modern General

Relativity: Black Holes, Gravitational Waves, and Cosmology by Mike Guidry

(Cambridge University Press, 2019) in a format suitable for presentation. In

the interest of conciseness, these presentation notes generally omit references

and sources. These are documented fully in the book Modern General Rela-

tivity. This document is produced with LaTeX in amsmath style. For adopters

who may wish to customize these lectures the LaTeX source files are avail-

able from the resources page for Modern General Relativity at the Cambridge

University Press website.



Contents

I General Relativity 1

1 Introduction 3

2 Coordinate Systems and Transformations 7

2.1 Coordinate Systems in Euclidean Space . . . . . . . . . . . . . . . 9

2.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Non-Euclidean Geometry . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Tensors and Covariance 55

3.1 Spacetime Coordinates and Transformations . . . . . . . . . . . . . 56

3.2 Covariance and Tensor Notation . . . . . . . . . . . . . . . . . . . 60

3.3 Tangent and Cotangent Bundles . . . . . . . . . . . . . . . . . . . 65

3.4 Coordinates in Spacetime . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Tensors and Coordinate Transformations . . . . . . . . . . . . . . . 79

3.6 Tensors as Linear Maps to Real Numbers . . . . . . . . . . . . . . 84

3.7 Tensors Specified by Transformation Laws . . . . . . . . . . . . . . 104

3.8 Symmetric and Antisymmetric Tensors . . . . . . . . . . . . . . . . 119

3.9 Summary of Algebraic Tensor Operations . . . . . . . . . . . . . . 122

3.10 Tensor Calculus on Curved Manifolds . . . . . . . . . . . . . . . . 123

1



2 CONTENTS

3.11 The Covariant Derivative . . . . . . . . . . . . . . . . . . . . . . . 129

3.12 Absolute Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.13 Lie Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.14 Invariant Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4 Lorentz Covariance and Special Relativity 145

4.1 Minkowski Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.2 Tensors in Minkowski Space . . . . . . . . . . . . . . . . . . . . . 154

4.3 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . . . 156

4.4 Lightcone Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 166

4.5 Causal Structure of Spacetime . . . . . . . . . . . . . . . . . . . . 173

4.6 Lorentz Transformations in Spacetime Diagrams . . . . . . . . . . 178

4.7 Lorentz Covariance of Maxwell’s Equations . . . . . . . . . . . . . 193

5 Lorentz-Invariant Dynamics 203

5.1 Geometrized Units . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.2 Velocity and Momentum for Massive Particles . . . . . . . . . . . . 210

5.3 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

5.4 Principle of Extremal Proper Time . . . . . . . . . . . . . . . . . . 215

5.5 Light Rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.6 Observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.7 Isometries and Killing Vectors . . . . . . . . . . . . . . . . . . . . 225

6 The Principle of Equivalence 231

6.1 Inertial and Gravitational Mass . . . . . . . . . . . . . . . . . . . . 232

6.2 Strong Equivalence Principle . . . . . . . . . . . . . . . . . . . . . 234

6.3 Deflection of Light in a Gravitational Field . . . . . . . . . . . . . 236

6.4 The Gravitational Redshift . . . . . . . . . . . . . . . . . . . . . . 238

6.5 Equivalence and Riemannian Manifolds . . . . . . . . . . . . . . . 242

6.6 Local Inertial Frames and Inertial Observers . . . . . . . . . . . . . 245



CONTENTS 3

6.7 Lightcones in Curved Spacetime . . . . . . . . . . . . . . . . . . . 249

6.8 The Road to General Relativity . . . . . . . . . . . . . . . . . . . . 250

7 Curved Spacetime and General Covariance 251

7.1 Covariance and Poincaré Transformations . . . . . . . . . . . . . . 252

7.2 Curved Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

7.3 Curved 2D Spaces and Gaussian Curvature . . . . . . . . . . . . . 254

7.4 A Covariant Description of Matter . . . . . . . . . . . . . . . . . . 262

7.5 Covariant Derivatives and Parallel Transport . . . . . . . . . . . . . 269

7.6 Gravity and Curved Spacetime . . . . . . . . . . . . . . . . . . . . 280

7.7 The Local Inertial Coordinate System . . . . . . . . . . . . . . . . 284

7.8 The Affine Connection and the Metric Tensor . . . . . . . . . . . . 285

7.9 Uniqueness of the Affine Connection . . . . . . . . . . . . . . . . . 288

8 The General Theory of Relativity 291

8.1 Weak Field Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

8.2 Recipe for Motion in a Gravitational Field . . . . . . . . . . . . . . 297

8.3 Towards a Covariant Theory of Gravity . . . . . . . . . . . . . . . 298

8.4 The Riemann Curvature Tensor . . . . . . . . . . . . . . . . . . . . 300

8.5 Instrinsic and Extrinsic Curvature . . . . . . . . . . . . . . . . . . 301

8.6 The Einstein Equations . . . . . . . . . . . . . . . . . . . . . . . . 303

8.7 Solving the Einstein equations . . . . . . . . . . . . . . . . . . . . 312

9 The Schwarzschild Spacetime 317

9.1 The Form of the Metric . . . . . . . . . . . . . . . . . . . . . . . . 319

9.2 Measuring Distance and Time . . . . . . . . . . . . . . . . . . . . 326

9.3 Precession of Orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 350

9.4 Radial Fall of a Test Particle . . . . . . . . . . . . . . . . . . . . . 357

9.5 Orbits for Light Rays . . . . . . . . . . . . . . . . . . . . . . . . . 360

9.6 Deflection of Light in a Gravitational Field . . . . . . . . . . . . . 362



4 CONTENTS

9.7 Shapiro Time Delay of Light . . . . . . . . . . . . . . . . . . . . . 363

9.8 Gyroscopes in Curved Spacetime . . . . . . . . . . . . . . . . . . . 365

9.9 Geodetic Precession . . . . . . . . . . . . . . . . . . . . . . . . . . 367

9.10 Gyroscopes in Rotating Spacetimes . . . . . . . . . . . . . . . . . 373

10 Neutron Stars and Pulsars 385

10.1 A Qualitative Picture of Neutron Stars . . . . . . . . . . . . . . . . 386

10.2 The Oppenheimer–Volkov Equations . . . . . . . . . . . . . . . . . 388

10.3 Interpretation of the Mass Parameter . . . . . . . . . . . . . . . . . 398

10.4 Pulsars and Tests of General Relativity . . . . . . . . . . . . . . . . 401

10.5 Precision Tests of General Relativity . . . . . . . . . . . . . . . . . 407

II Black Holes 421

11 Spherical Black Holes 423

11.1 Schwarzschild Black Holes . . . . . . . . . . . . . . . . . . . . . . 424

11.2 Lightcone Description of a Trip to a Black Hole . . . . . . . . . . . 433

11.3 Eddington–Finkelstein Coordinates . . . . . . . . . . . . . . . . . . 441

11.4 Kruskal–Szekeres Coordinates . . . . . . . . . . . . . . . . . . . . 450

11.5 Black Hole Theorems and Conjectures . . . . . . . . . . . . . . . . 462

12 Quantum Black Holes 465

12.1 Geodesics and Quantum Uncertainty . . . . . . . . . . . . . . . . . 466

12.2 Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 468

12.3 Mass Emission Rates and Black Hole Temperature . . . . . . . . . 472

12.4 Miniature Black Holes . . . . . . . . . . . . . . . . . . . . . . . . 476

12.5 Black Hole Thermodynamics . . . . . . . . . . . . . . . . . . . . . 479

12.6 The Four Laws of Black Hole Dynamics . . . . . . . . . . . . . . . 482

12.7 Gravity and Quantum Mechanics: the Planck Scale . . . . . . . . . 485



CONTENTS 5

12.8 Black Holes and Information . . . . . . . . . . . . . . . . . . . . . 487

13 Rotating Black Holes 491

13.1 The Kerr Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

13.2 Orbits in the Kerr Metric . . . . . . . . . . . . . . . . . . . . . . . 501

13.3 Frame Dragging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

13.4 Extracting Rotational Energy from Black Holes . . . . . . . . . . . 516

14 Observational Evidence for Black Holes 523

14.1 Gravitational Collapse and Observations . . . . . . . . . . . . . . . 524

14.2 Singularity Theorems and Black Holes . . . . . . . . . . . . . . . . 525

14.3 Observing Black Holes . . . . . . . . . . . . . . . . . . . . . . . . 537

14.4 Black Hole Masses in X-ray Binaries . . . . . . . . . . . . . . . . . 538

14.5 Supermassive Black Holes in the Cores of Galaxies . . . . . . . . . 549

14.6 Intermediate-Mass Black Holes . . . . . . . . . . . . . . . . . . . . 561

14.7 Black Holes in the Early Universe . . . . . . . . . . . . . . . . . . 562

14.8 Show Me an Event Horizon! . . . . . . . . . . . . . . . . . . . . . 566

14.9 Summary: A Strong But Circumstantial Case . . . . . . . . . . . . 571

15 Black Holes as Central Engines 573

15.1 Black Holes as Energy Sources . . . . . . . . . . . . . . . . . . . . 574

15.2 Accretion and Energy Release for Black Holes . . . . . . . . . . . . 576

15.3 Maximum Energy Release in Spherical Accretion . . . . . . . . . . 577

15.4 Jets and Magnetic Fields . . . . . . . . . . . . . . . . . . . . . . . 586

15.5 Relativistic Jets and Apparent Superluminal Velocities . . . . . . . 587

15.6 Quasars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

15.7 Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . . . 603

15.8 The Unified Model of AGN and Quasars . . . . . . . . . . . . . . . 613

15.9 Gamma-Ray Bursts . . . . . . . . . . . . . . . . . . . . . . . . . . 636



6 CONTENTS

III Cosmology 677

16 The Hubble Expansion 679

16.1 The Standard Picture . . . . . . . . . . . . . . . . . . . . . . . . . 679

16.2 The Hubble Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

16.3 Limitations of the Standard World Picture . . . . . . . . . . . . . . 711

17 Energy and Matter in the Universe 713

17.1 Expansion and Newtonian Gravity . . . . . . . . . . . . . . . . . . 715

17.2 The Critical Density . . . . . . . . . . . . . . . . . . . . . . . . . . 717

17.3 Cosmic Scale Factor . . . . . . . . . . . . . . . . . . . . . . . . . 720

17.4 Possible Expansion Histories . . . . . . . . . . . . . . . . . . . . . 723

17.5 Lookback Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

17.6 The Inadequacy of Dust Models . . . . . . . . . . . . . . . . . . . 730

17.7 Evidence for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . 731

17.8 Baryonic and Non-Baryonic Matter . . . . . . . . . . . . . . . . . 747

17.9 Baryonic Candidates for Dark Matter . . . . . . . . . . . . . . . . . 750

17.10 Candidates for Non-Baryonic Dark Matter . . . . . . . . . . . . . 752

17.11 Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

17.12 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

17.13 Density Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 757

17.14 The Deceleration Parameter . . . . . . . . . . . . . . . . . . . . . 760

17.15 Problems with Newtonian Cosmology . . . . . . . . . . . . . . . . 767

18 Friedmann Cosmologies 769

18.1 The Cosmological Principle . . . . . . . . . . . . . . . . . . . . . 770

18.2 Homogeneous and Isotropic 2D Spaces . . . . . . . . . . . . . . . 774

18.3 Homogeneous and Isotropic 3D Spaces . . . . . . . . . . . . . . . 776

18.4 The Robertson–Walker Metric . . . . . . . . . . . . . . . . . . . . 781

18.5 Comoving Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 786



CONTENTS 7

18.6 Proper Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . 789

18.7 The Hubble Law and the RW Metric . . . . . . . . . . . . . . . . . 793

18.8 Particle and Event Horizons . . . . . . . . . . . . . . . . . . . . . 794

18.9 The Einstein Equations for the RW Metric . . . . . . . . . . . . . . 807

18.10 Resolution of Difficulties with Newtonian View . . . . . . . . . . . 817

19 Evolution of the Universe 819

19.1 Friedmann Cosmologies . . . . . . . . . . . . . . . . . . . . . . . 820

19.2 Evolution and Scaling of Density Components . . . . . . . . . . . . 831

19.3 Flat, Single-Component Universes . . . . . . . . . . . . . . . . . . 836

19.4 Full Solution of the Friedmann Equations . . . . . . . . . . . . . . 853

20 The Big Bang 883

20.1 Radiation and Matter Dominated Universes . . . . . . . . . . . . . 884

20.2 Evolution of the Early Universe . . . . . . . . . . . . . . . . . . . 890

20.3 Thermodynamics of the Big Bang . . . . . . . . . . . . . . . . . . 891

20.4 Nucleosynthesis and Cosmology . . . . . . . . . . . . . . . . . . . 917

20.5 The Cosmic Microwave Background . . . . . . . . . . . . . . . . . 926

20.6 The Microwave Background Spectrum . . . . . . . . . . . . . . . . 928

20.7 Anisotropies in the Microwave Background . . . . . . . . . . . . . 932

20.8 The Origin of CMB Fluctuations . . . . . . . . . . . . . . . . . . . 938

20.9 Precision Measurement of Cosmology Parameters . . . . . . . . . . 958

20.10 Seeds for Structure Formation . . . . . . . . . . . . . . . . . . . . 963

20.11 Summary: Dark Matter, Dark Energy, and Structure . . . . . . . . 968

21 Extending Classical Big Bang Theory 971

21.1 Successes of the Big Bang . . . . . . . . . . . . . . . . . . . . . . 972

21.2 Problems with the Big Bang . . . . . . . . . . . . . . . . . . . . . 976

21.3 Cosmic Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 985

21.4 The Origin of the Baryons . . . . . . . . . . . . . . . . . . . . . . 997



8 CONTENTS

IV Gravitational Wave Astronomy 1003

22 Gravitational Waves 1005

22.1 Significance of Gravitational Waves . . . . . . . . . . . . . . . . . 1006

22.2 Linearized Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 1010

22.3 Weak Gravitational Waves . . . . . . . . . . . . . . . . . . . . . . 1019

22.4 Gravitational Waves versus Electromagnetic Waves . . . . . . . . . 1029

22.5 Response of Test Particles to Gravitational Waves . . . . . . . . . . 1034

22.6 Gravitational Wave Detectors . . . . . . . . . . . . . . . . . . . . . 1042

23 Weak Sources of Gravitational Waves 1051

23.1 Production of Weak Gravitational Waves . . . . . . . . . . . . . . . 1052

23.2 Gravitational Radiation from Binary Systems . . . . . . . . . . . . 1067

24 Strong Sources of Gravitational Waves 1081

24.1 A Survey of Candidate Sources . . . . . . . . . . . . . . . . . . . . 1082

24.2 Multimessenger Astronomy . . . . . . . . . . . . . . . . . . . . . . 1100

24.3 The Gravitational Wave Event GW150914 . . . . . . . . . . . . . . 1101

24.4 Testing General Relativity in Strong Gravity . . . . . . . . . . . . . 1130

24.5 A New Window on the Universe . . . . . . . . . . . . . . . . . . . 1132

24.6 Gravitational Waves from Neutron Star Mergers . . . . . . . . . . . 1133

24.7 Gravitational Waves and Stellar Evolution . . . . . . . . . . . . . . 1158

V General Relativity and Beyond 1173

25 Tests of General Relativity 1175

25.1 Alternative Theories of Gravity . . . . . . . . . . . . . . . . . . . . 1176

25.2 The Classical Tests of General Relativity . . . . . . . . . . . . . . . 1180

25.3 The Modern Tests of General Relativity . . . . . . . . . . . . . . . 1182

25.4 Strong-Field Tests of General Relativity . . . . . . . . . . . . . . . 1191



CONTENTS 9

25.5 Cosmological Tests of General Relativity . . . . . . . . . . . . . . 1196

26 Beyond Standard Models 1199

26.1 Supersymmetry and Dark Matter . . . . . . . . . . . . . . . . . . . 1201

26.2 Vacuum Energy from Quantum Fluctuations . . . . . . . . . . . . . 1209

26.3 Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . 1219



10 CONTENTS



Part I

General Relativity
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Chapter 1

Introduction

General relativity is a theory of gravity that represents a radical

new view of space and time.

• It supercedes Newtonian mechanics and Newtonian grav-

ity.

• It reduces to those theories in the limit of velocities that

are small with respect to the speed of light c and gravita-

tional fields that are weak.

• It reduces to the theory of special relativity in the limit of

weak gravitational fields, or for sufficiently local regions

of spacetime in the presence of strong gravitational fields.
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4 CHAPTER 1. INTRODUCTION

General relativity revises fundamentally the very meaning of

space, time, and gravity:

• The effects of gravity no longer appear as a force but as

the motion of free particles constrained to move in the

straightest paths possible in a curved spacetime.

• That is, general relativity will identify the effects of grav-

ity as arising from curvature in spacetime itself on free

particles.

John Wheeler: mass tells space how to curve;

curved space tells matter how to move.

• Implied in the circularity of this statement is another ba-

sic feature ofgeneral relativity: it is a highly non-linear

theory:

Only when we know the curvature of space can

we know the distribution and motion of matter, but

the curvature of space is only understood when we

know the distribution and motion of the matter.



5

As a result of the non-linear nature of general relativity and

its formulation on a 4-dimensional spacetime manifold, it is

difficult to find exact solutions and only a few of clear physical

significance are known.

• In the general case one must solve the resulting non-linear

equations numerically (numerical relativity).

• However, we shall see that the simplest known solutions

of general relativity may be formulated in remarkably

transparent and elegant mathematical terms because of

symmetries.

• These formulations may then be used to understand some

of the most intriguing aspects of the theory:

– black holes,

– quasars,

– gamma-ray bursts,

– dark matter,

– dark energy,

– the new cosmology

– gravitational waves.

These lecture notes are an attempt to come to grips with these

ideas at a level appropriate for an advanced undergraduate

physics major.
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Chapter 2

Coordinate Systems and

Transformations

A physical system has a symmetry under some operation if the

system after the operation is observationally indistinguishable

from the system before the operation.

Example: A perfectly uniform sphere has a sym-

metry under rotation about any axis because after

the rotation the sphere looks the same as before the

rotation.

7



8 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

The theory of relativity may be viewed as a symmetry under

coordinate transformations.

• Two observers, referencing their measurements of the

same physical phenomena to two different coordinate sys-

tems should deduce the same laws of physics from their

observations.

• In special relativity one requires a symmetry under only

a subset of possible coordinate transformations (those be-

tween systems that are not accelerated with respect to each

other).

• General relativity requires that the laws of physics be in-

variant under the most general coordinate transformations.

To understand general relativity we must begin

by examining the transformations that are possible

between different coordinate systems.
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2.1 Coordinate Systems in Euclidean Space

Our goal is to describe transformations between coordinates in

a general curved space having

• three space-like coordinates and

• one timelike coordinate.

However, to introduce these concepts we shall begin with the

simpler and more familiar case of vector fields defined in three-

dimensional euclidean space.

• Assume a three-dimensional euclidean (flat) space having

a cartesian coordinate system (x,y,z), and an associated

set of mutually orthogonal unit vectors (iii, jjj,kkk) .

• Assume that there is an alternative coordinate system

(u,v,w), not necessarily cartesian, with the (x,y,z) coor-

dinates related to the (u,v,w) coordinates by

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

• Assume that the transformation is invertible so that we can

solve for (u,v,w) in terms of (x,y,z).



10 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

Example 2.1

Take the (u,v,w) system to be the spherical coordinates (r,θ ,ϕ), in

which case

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

takes the familiar form

x = r sinθ cosϕ y = r sinθ sinϕ z = r cosθ ,

with the ranges of values r ≥ 0 and 0≤ θ ≤ π and 0≤ ϕ ≤ 2π .
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• The equations

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

can be combined into a vector equation that gives a posi-

tion vector rrr for a point in the space in terms of the (u,v,w)
coordinates:

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk.

• For example, in terms of the spherical coordinates

(r,θ ,ϕ),

rrr = (r sinθ cosϕ) iii+(r sinθ sinϕ) jjj+(r cosθ)))kkk.

• The second coordinate system in these examples gener-

ally is not cartesian but the space is still assumed to be

euclidean.

• In transforming from the (x,y,z) coordinates to the

(r,θ ,ϕ) coordinates, we are just using a different scheme

to label points in a flat space.

• This distinction is important because shortly we shall con-

sider general coordinate transformations in spaces that

may not obey euclidean geometry (curved spaces).



12 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

2.1.1 Basis Vectors

At any point P(u0,v0,w0) defined for specified coordinates

(u0,v0,w0), three surfaces pass. They are defined by u = u0,

v = v0, and w = w0, respectively.

• Any two of these surfaces meet in curves.

• From

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk.

we may obtain general parametric equations for coordi-

nate surfaces or curves by setting one or two of the vari-

ables (u,v,w) equal to constants.

• For example, if we set v and w to constant values, v = v0

and w = w0, we obtain a parametric equation for a curve

given by the intersection of v = v0 and w = w0,

rrr(u) = x(u,v0,w0) iii+ y(u,v0,w0) jjj+ z(u,v0,w0)kkk,

• This is a parametric equation in which u plays the role

of a coordinate along the curve defined by the constraints

v = v0 and w = w0.
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(a) 3D space 

parameterized 

by (x, y, z)

y

x

z
θ = constant ,

r = constant curve

φ

P (x0, y0, z0)

x

y

z

1D surface defined by 
intersection of 

z = z0 and x = x0

2D surfaces
2D surface 

defined
by z = z0

2D surface 
defined

by x = x0

(b) 3D space 

parameterized 

by (r, θ, φ)

y

θ = constant 

(cone) 

φ = constant  

(half-plane) 

r = constant 

(sphere) 

P

Figure 2.1: Examples of surfaces and curves arising from constraints. (a) In

3D euclidean space parameterized by cartesian coordinates (x,y,z), the con-

straints x = x0 and z = z0 define 2D planes and the intersection of these

planes defines a 1D surface parameterized by the variable y. (b) In 3D space

described in spherical coordinates (r,θ ,ϕ), the constraint r = constant de-

fines a 2D sphere, the constraint θ = constant defines a cone, and the con-

straint ϕ = constant defines a half-plane. The intersection of any two of

these surfaces defines a curve parameterized by the variable not being held

constant.

Fig. 2.1(b) illustrates for spherical coordinates (r,θ ,ϕ):

• The surface corresponding to r = constant is a sphere pa-

rameterized by the variables θ and ϕ .

• The constraint θ = constant corresponds to a cone param-

eterized by the variables r and ϕ .

• Setting both r and θ to constants defines a curve that is the

intersection of the sphere and the cone, which is parame-

terized by the variable ϕ .



14 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

• Partial differentiation of

rrr = x(u,v,w) iii+ y(u,v,w) jjj+ z(u,v,w)kkk,

with respect to u, v, and w, respectively, gives tangents to

the coordinate curves passing though the point P.

• These may be used to define a set of basis vectors eeei

through

eeeu ≡
∂rrr

∂u
eeev ≡

∂rrr

∂v
eeew ≡

∂rrr

∂w
,

with all partial derivatives evaluated at the point P =

(u0,v0,w0).

• This basis, generated by the tangents to the coordinate

curves, is sometimes termed the natural basis. The fol-

lowing example illustrates for a spherical coordinate sys-

tem.
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Example 2.2

Consider the spherical coordinate system defined through

x = r sinθ cosϕ y = r sinθ sinϕ z = r cosθ .

The position vector rrr is

rrr = (r sinθ cosϕ) iii+(r sinθ sinϕ) jjj+(r cosθ)))kkk,

and the natural basis is obtained from

eee1 ≡ eeer =
∂rrr

∂r
= (sinθ cosϕ) iii+(sinθ sinϕ) jjj+(cosθ)kkk

eee2 ≡ eeeθ =
∂rrr

∂θ
= (r cosθ cosϕ) iii+(r cosθ sinϕ) jjj− (r sinθ)kkk

eee3 ≡ eeeϕ =
∂rrr

∂ϕ
=−(r sinθ sinϕ) iii+(r sinθ cosϕ) jjj.

These basis vectors are mutually orthogonal because

eee1·eee2 = eee2·eee3 = eee3·eee1 = 0

For example,

eee1·eee2 = r sinθ cosθ cos2 ϕ + r sinθ cosθ sin2 ϕ− r cosθ sinθ

= r sinθ cosθ (cos2 ϕ + sin2 ϕ)
︸ ︷︷ ︸

=1

−r cosθ sinθ = 0.
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From the scalar products of the basis vectors with themselves, their

lengths are

|eee1|= 1 |eee2|= r |eee3|= r sinθ

and we can use these to define a normalized basis,

êee1 ≡
eee1

|eee1|
= (sinθ cosϕ) iii+(sinθ sinϕ) jjj+(cosθ)kkk

êee2 ≡
eee2

|eee2|
= (cosθ cosϕ) iii+(cosθ sinϕ) jjj− (sinθ)kkk

êee3 ≡
eee3

|eee3|
=−(sinϕ) iii+(cosϕ) jjj.

These basis vectors are now

• mutually orthogonal and

• of unit length.

They are illustrated in the following figure.
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φ = constant

half-plane

x

y

z

r = constant

surface

θ = constant ,

r = constant curve

φ

er

eφ

eθ

P

Figure 2.2: Basis vectors for the natural basis in spherical coordinates.

Figure 2.2 illustrates the geometry of the basis vectors derived

in the preceding example.
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• In many applications it is usual to assume that the coordi-

nate system is orthogonal so that the basis vectors

eeeu ≡
∂rrr

∂u
eeev ≡

∂rrr

∂v
eeew ≡

∂rrr

∂w
,

are mutually orthogonal, and to normalize these basis vec-

tors to unit length.

• In the more general applications that will interest us, the

natural basis defined by the partial derivatives in the pre-

ceding equation need not be orthogonal or normalized to

unit length

However, in the simple examples shown so far the

natural basis is in fact orthogonal.
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2.1.2 Dual Basis

It is also valid to construct a basis at P by using normals rather

than the tangents to the coordinate surfaces.

• We assume that

x = x(u,v,w) y = y(u,v,w) z = z(u,v,w),

is invertible so we may solve for

u = u(x,y,z) v = v(x,y,z) w = w(x,y,z),

• The gradients

∇∇∇u =
∂u

∂x
iii+

∂u

∂y
jjj+

∂u

∂z
kkk

∇∇∇v =
∂v

∂x
iii+

∂v

∂y
jjj+

∂v

∂z
kkk

∇∇∇w =
∂w

∂x
iii+

∂w

∂y
jjj+

∂w

∂z
kkk

are normal to the three surfaces through P defined by u =
u0, v = v0, and w = w0, respectively.

• Therefore, we may choose as an alternative to the natural

basis

eeeu ≡
∂rrr

∂u
eeev ≡

∂rrr

∂v
eeew ≡

∂rrr

∂w
,

the basis

eeeu ≡ ∇∇∇u eeev ≡ ∇∇∇v eeew ≡ ∇∇∇w.
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• This basis (eeeu,eeev,eeew), defined in terms of normals, is said

to be the dual of the normal basis, defined in terms of

tangents.

• Notice that we have chosen to distinguish the basis

eeeu ≡ ∇∇∇u eeev ≡ ∇∇∇v eeew ≡ ∇∇∇w.

from the basis

eeeu ≡
∂rrr

∂u
eeev ≡

∂rrr

∂v
eeew ≡

∂rrr

∂w
,

by using superscript indices and subscript indices, respec-

tively.

These two bases are equally valid.

• For orthogonal coordinate systems the set of normals to

the planes corresponds to the set of tangents to the curves

in orientation, differing possibly only in length.

• If the basis vectors are normalized, the normal basis and

the dual basis for orthogonal coordinates are equivalent

and our preceding distinction is not significant.

• However, for non-orthogonal coordinate systems the two

bases generally are not equivalent and the distinction be-

tween upper and lower indices is relevant.

The following example illustrates.
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Example 2.3

Define a coordinate system (u,v,w) in terms of cartesian coordinates

(x,y,z) through

x = u+ v y = u− v z = 2uv+w.

The position vector for a point rrr is then

rrr = x iii+ y jjj+ zkkk = (u+ v) iii+(u− v) jjj+(2uv+w)kkk

The natural basis is

eee1≡ eeeu =
∂rrr

∂u
= iii+ jjj+2vkkk

eee2≡ eeev =
∂rrr

∂v
= iii− jjj+2ukkk

eee3≡ eeew =
∂rrr

∂w
= kkk.

Solving the original equations for (u,v,w),

u = 1
2
(x+ y) v = 1

2
(x− y) w = z− 1

2
(x2− y2),

and thus the dual basis is

eee1≡ eeeu = ∇∇∇u =
∂u

∂x
iii+

∂u

∂y
jjj+

∂u

∂z
kkk = 1

2(iii+ jjj)

eee2≡ eeev = ∇∇∇ν =
∂v

∂x
iii+

∂v

∂y
jjj+

∂v

∂z
kkk = 1

2(iii− jjj)

eee3≡ eeew = ∇∇∇w =
∂w

∂x
iii+

∂w

∂y
jjj+

∂w

∂z
kkk =−(u+ v) iii+(u− v) jjj+ kkk.
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• What about orthogonality? We can check by taking scalar prod-

ucts. For example,

eee1·eee2 = (iii+ jjj+2vkkk)·(iii− jjj+2ukkk)

= iii2− jjj2+4uv = 4uv,

where the orthonormality of the basis (iii, jjj,kkk) has been used. For

the natural basis we find in general

eee1·eee2 = 4uv eee2·eee3 = 2u eee3·eee1 = 2v.

Thus the normal basis is non-orthogonal.

• Taking the scalar products of the natural basis vectors with them-

selves gives

eee1·eee1 = 2+4v2 eee2·eee2 = 2+4u2 eee3·eee3 = 1,

so the natural basis is also not normalized to unit length.

• It is also clear from the above expressions that generally eeei is

not parallel to eeei, so in this non-orthogonal case we see that the

normal basis and the dual basis are distinct.
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The preceding example illustrates that for the general case of

coordinate systems that are not orthogonal,

eeeu ≡ ∇∇∇u eeev ≡ ∇∇∇v eeew ≡ ∇∇∇w (dual basis)

and

eeeu ≡
∂rrr

∂u
eeev ≡

∂rrr

∂v
eeew ≡

∂rrr

∂w
(natural basis)

define different but equally valid bases, and the placement of

indices in upper or lower positions is important.

• In general relativity we shall generally be

dealing with non-orthogonal coordinate sys-

tems.

• Henceforth the reader should assume that the

upper or lower placement of indices in equa-

tions is significant.
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2.1.3 Expansion of Vectors

An arbitrary vector VVV may be expanded in terms of the tangent

basis {eeei} and an arbitrary dual vector ωωω may be expanded in

terms of the dual basis {eeei}:

VVV =V 1eee1 +V 2eee2+V 3eee3 =
3

∑
i=1

V ieeei ≡V ieeei (natural basis)

ωωω = ω1eee1+ω2eee2+ω3eee3 =
3

∑
i=1

ωieee
i ≡ ωieee

i (dual basis)

where we have introduced in the last step of each equation the

Einstein summation convention:

• An index appearing twice on one side of an equation, once

as a lower index and once as an upper index, implies a

summation on that index.

• The summation index is termed a dummy index; summa-

tion on a dummy index on one side of an equation implies

that it does not appear on the other side of the equation.

• If an index appears more than twice on the same side of

an equation, it probably indicates a mistake.

• Since the dummy (repeated) index is summed over, it does

not matter what the repeated index is, as long as it is not

equivalent to another index in the equation.

From this point onward, we shall usually assume

the Einstein summation convention.
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2.1.4 Scalar Product of Vectors and the Metric Tensor

• The upper-index coefficients V i of the basis vectors eeei in

VVV=V 1eee1+V 2eee2+V 3eee3

are termed the components of the vector in the basis eeei =
{eee1,eee2,eee3}.

• The lower-index coefficients ωi of the basis vectors eeei in

ωωω=ω1eee1+ω2eee2 +ω3eee3

are termed the components of the dual vector in the basis

eeei = {eee1,eee2,eee3}.

• Remember: Components of vectors and dual vectors gen-

erally are distinct for non-orthogonal coordinate systems.

However,

• Vector and dual vector spaces are related fundamentally.

• This permits vector components V i and dual vector com-

ponents ωi to be treated as if they were different compo-

nents of the same vector.

The first step in establishing this relationship is to

introduce a scalar product and a metric.
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2.1.5 Vector Scalar Product and the Metric Tensor

Utilizing the expansions in a vector basis:

• We can write the scalar product of two vectors AAA and BBB as

AAA·BBB = (Aieeei)·(B jeee j) = eeei·eee j AiB j = gi jA
iB j,

where the metric tensor component gi j is defined by

gi j ≡ eeei·eee j.

• Likewise, for the scalar product of dual vectors ααα and βββ

ααα ·βββ = αieee
i·β jeee

j = gi jαiβ j,

where metric tensor components with upper indices are

gi j ≡ eeei·eee j,

and the scalar product of dual vectors and vectors is

ααα ·BBB = αieee
i·B jeee j = gi

jαiB
j,

where the metric tensor component with mixed indices is

gi
j ≡ eeei·eee j.

General properties of the metric tensor will be dis-

cussed below but first we use it to establish a re-

lationship called duality between vector and dual

vector spaces.
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2.1.6 Relationship of Vectors and Dual vectors

There is little practical difference between vectors and dual vec-

tors in euclidean space with cartesian coordinates.

• However, in a curved space the situation is more complex.

• The essential issue is how to define a vector or dual vector

in a curved space, and what that implies.

The essential mathematics will be discussed in more depth

later, but the salient points are that

1. Vectors are not specified directly in a curved space, but

instead are defined in a euclidean vector space attached to

the manifold at each point called the tangent space.

2. Likewise, dual vectors are defined in a euclidean vector

space attached to the manifold at each spacetime point that

is called the cotangent space.

3. The tangent space of vectors and the cotangent space of

dual vectors at a point P are different but dual to each

other in a manner that will be made precise below.

4. This duality allows objects in the two different spaces to

be treated as effectively the same kinds of objects.

As will be discussed further later, vectors and dual

vectors are special cases of tensors, and this per-

mits an abstract definition in terms of mappings

from vectors and dual vectors to real numbers.
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To be specific,

• Dual vectors ωωω are linear maps of vectors VVV to the real

numbers: ωωω(VVV ) = ωiV
i ∈ R.

• Vectors VVV are linear maps of dual vectors ωωω to the real

numbers: VVV (ωωω) =V iωi ∈ R.

Expressions like ωωω(VVV ) = ωiV
i ∈ R can be read as

• “Dual vectors ωωω act linearly on vectors VVV to produce

ωiV
i ≡ ∑i ωiV

i, which are elements of the real numbers,”

• or “Dual vectors ωωω are functions (maps) that take vectors

VVV as arguments and yield ωiV
i, which are real numbers”,

Linearity of the mapping means, for example,

ωωω(αAAA+β BBB) = αωωω(AAA)+β ωωω(BBB),

where ωωω is a dual vector, α and β are arbitrary real numbers,

and AAA and BBB are arbitrary vectors.

• It is easy to show that the space of vectors and the space

of dual vectors are both linear vector spaces.

• The vector space of vectors and corresponding vector

space of dual vectors are said to be dual to each other

because they are related by

ωωω(VVV ) =VVV (ωωω) =V iωi ∈ R.
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Notice further that AAA ·BBB = gi jA
iB j

• Defines a linear map from the vectors to the real numbers,

since it takes two vectors AAA and BBB as arguments and re-

turns the scalar product, which is a real number.

• Thus one may write

AAA(BBB) = AAA ·BBB≡ AiB
i = gi jA

iB j.

• But since in AiB
i = gi jA

iB j the vector B is arbitrary,

Ai = gi jA
j,

• This specifies a correspondence between a vector with

components Ai in the tangent space and a dual vector with

components Ai in the cotangent space.

• Likewise, the above expression can be inverted using that

the inverse of gi j is gi j to give

Ai = gi jA j.

• Hence, using the metric tensor to raise and lower indices

by summing over a repeated index (contraction),

• we see that vector and dual vector components are related

through contraction with the metric tensor.

• This is the precise sense in which the tangent and cotan-

gent spaces are dual: they are different, but closely related

through the metric tensor.
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The duality of the vector and dual vector spaces may be incor-

porated concisely by

• Requiring that for the basis vectors {eeei} and basis dual

vectors {eeei} satisfy

eeei(eee j) = eeei·eee j = δ i
j,

where the Kronecker delta is defined by

δ i
j =

{

1 i = j

0 i 6= j
.

• This implies that the basis vectors can be used to project

out the components of a vector VVV by taking the scalar

product with the vector,

V i = eeei·VVV Vi = eeei ·VVV .
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A lot of important mathematics has transpired in the last few

equations, so let’s take stock.

• For a space with metric tensor, vectors and dual vectors

are in a one-to-one relationship that permits them to be

manipulated effectively as if a dual vector were just a vec-

tor with a lower index.

• Indices on vectors can be raised or lowered as desired by

contraction with the metric tensor.

Since all spaces of interest here have metrics, this

reduces the practical implications of the distinc-

tion between vectors and dual vectors to keeping

proper track of upper and lower positions for in-

dices.
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2.1.7 Properties of the Metric Tensor

• Because it may be defined through scalar products of basis

vectors, the metric tensor must be symmetric in its indices:

gi j = g ji gi j = g ji.

• Since

gi ja
ib j = gi jb

jai = aibi gi jaib j = gi jb jai = aib
i

are valid for arbitrary vector components, it follows that

gi jb
j = bi gi jb j = bi.

That is,

Contraction with the metric tensor may be used to

raise or lower an index on a vector.

• Thus the scalar product of two vectors may be written in

any of the following equivalent ways,

aaa·bbb≡ aibi ≡ aib
i = gi ja

ib j = gi jaib j = gi
jaib

j.
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• From the preceding expressions

bi = gi jb j = gi j g jkbk

︸ ︷︷ ︸

b j

bi = δ i
kbk,

and since this is valid for arbitrary components bi,

gi jg jk = gk jg
ji = δ i

k.

• Viewing gi j as the elements of a matrix G and gi j as the

elements of a matrix G̃, the equations

gi j = g ji gi j = g ji.

are equivalent to the matrix equations

G = GT G̃ = G̃T,

where T denotes the transpose. The Kronecker delta is

just the 3×3 unit matrix I, implying that

gi jg jk = gk jg
ji = δ i

k

may be written as the matrix equations

G̃G = GG̃ = I.

The matrix corresponding to the covariant com-

ponents of the metric tensor is the inverse of the

matrix corresponding to the contravariant compo-

nents of the metric tensor: one may be obtained

from the other by matrix inversion.
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Box 2.1 The metric tensor for 3-dimensional euclidean space

Components: gi j ≡ eeei ·eee j gi j ≡ eeei ·eee j gi
j ≡ eeei·eee j = δ i

j

Scalar product: AAA·BBB = gi jA
iB j = gi jAiB j = gi

jAiB
j = AiBi = AiB

i

Symmetry: gi j = g ji gi j = g ji

Contractions: gi jA
j = Ai gi jA j = Ai

Orthogonality: gi jg jk = gk jg
ji = δ i

k

Matrix properties : G̃G = GG̃ = I G≡ [gi j] G̃≡ [gi j]

Some basic properties of the metric tensor are summarized in

the box above.
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2.1.8 Line Elements and Distances

• Coordinates u1(t), u2(t), and u3(t) parameterized by t.

• As the parameter t varies, the points characterized by the

specific values of the coordinates

u1 = u1(t) u2 = u2(t) u3 = u3(t)

will trace out a curve in the three-dimensional space.

• The position vector for these points as a function of t is

rrr(t) = x(u1(t),u2(t),u3(t)) iii+ y(u1(t),u2(t),u3(t)) jjj

+z(u1(t),u2(t),u3(t))kkk,

• By the chain rule

drrr

dt
=

∂rrr

∂u1

du1

dt
+

∂rrr

∂u2

du2

dt
+

∂rrr

∂u3

du3

dt

ṙrr = u̇1eee1+ u̇2eee2+ u̇3eee3,

where the definitions

ṙrr ≡ drrr

dt
eeei ≡

∂rrr

∂ui
u̇i ≡ dui

dt

have been used.
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• In summation convention the equation

ṙrr = u̇1eee1+ u̇2eee2+ u̇3eee3,

is ṙrr = u̇ieeei.

• This may be expressed in differential form as drrr = duieeei.

• Thus the squared infinitesimal distance along the curve is

ds2 = drrr·drrr = duieeei·du jeee j

= eeei·eee j duidu j

= gi j duidu j,

where gi j ≡ eeei·eee j has been used.
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• Notice that in expressing the line element

ds2 = gi j duidu j

we use the usual convention that dα2 ≡ (dα)2.

• That is, dα2 means the square of dα , not the differential

of α2.

• Thus ds2 = gi j duidu j is the infinitesimal line element for

the space described by the metric gi j.

• The length d of a finite segment between points a and b is

obtained from the integral

d =

∫ b

a
ds =

∫ b

a

(
gi j duidu j

)1/2
=

∫ b

a

(

gi j
dui

dt

du j

dt

)1/2

dt,

where t parameterizes the position along the segment.

a

b

ds

t
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For example:

• The line element for two-dimensional euclidean space in

cartesian coordinates (x,y) is given by

ds2 = dx2 +dy2,

which is just the Pythagorean theorem for right triangles

having infinitesimal sides.

• The corresponding line element expressed in plane polar

coordinates (r,ϕ) is then the familiar

ds2 = dr2+ r2dϕ2.
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Example 2.4

For plane polar coordinates (r,ϕ) we have

x = r cosϕ y = r sinϕ,

so the position vector may be expressed as

rrr = (r cosϕ) iii+(r sinϕ) jjj.

Then the basis vectors in the natural basis are

eee1 =
∂rrr

∂r
= (cosϕ)iii+(sinϕ) jjj eee2 =

∂rrr

∂ϕ
=−r(sinϕ) iii+ r(cosϕ) jjj.

The elements of the metric tensor then follow from gi j ≡ eeei·eee j:

g11 = cos2 ϕ + sin2 ϕ = 1 g22 = r2(cos2 ϕ + sin2 ϕ) = r2

and g12 = g21 = 0, or in matrix form

gi j =

(

1 0

0 r2

)

.

Then the line element is

ds2 = gi j dxidu j = g11(du1)2+g22(du2)2 = dr2+ r2dϕ2,

where u1 = r and u2 = ϕ .

This can be expressed as the matrix equation

ds2 = (dr dϕ)

(

1 0

0 r2

)(

dr

dϕ

)

= (dr dϕ)

(

dr

r2dϕ

)

= dr2+ r2dϕ2.
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The line elements expressed in cartesian and polar coordinates

in the preceding two examples

• Correspond to the same space, parameterized in terms of

different coordinates.

• The form of the line element is different in the two param-

eterizations, but

• for any two nearby points the distance between them is

given by ds, independent of the coordinate system.

• Thus, the line element ds is invariant under coordinate

transformations.

• Since the distance between any two points that are not

nearby can be obtained by integrating ds, we conclude that

generally

The distance between any two points is invari-

ant under coordinate transformations for metric

spaces.
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The line element, which is specified in terms of the metric ten-

sor, characterizes the geometry of the space because

• integrals of the line element define distances and

• angles can be defined in terms of ratios of distances.

Indeed, we could verify all the axioms of euclidean geometry

starting from the line elements if we chose to do so.
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2.2 Integration

Integration enters into physical theories in various ways, for

example in the formulation of conservation laws.

• It is important to understand how the volume element for

integrals behaves under change of coordinate systems.

• Trivial in euclidean space with orthonormal coordinates.

• Non-trivial in curved spaces, or even in flat spaces param-

eterized in non-cartesian coordinates.

We illustrate in flat 2D space with coordinates (x1,x2) and basis

vectors (eee1,eee2), assuming an angle θ between the basis vectors.

• As you are asked to demonstrate in a problem, the 2D

volume (area) element is in this case

dA =
√

detgdx1dx2,

where detg is the determinant of the metric tensor gi j.

• For orthonormal coordinates gi j is a unit matrix so

(detg)1/2 = 1.

• But in the general case the (detg)1/2 factor is not unity

and its presence is essential to making integration invari-

ant under change of coordinates.

As we will show later, this 2D example generalizes easily to

define invariant integration in 4D spacetime.
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2.3 Differentiation

Taking derivatives of vectors in spaces defined by position-

dependent metrics will be crucial in general relativity.

• First consider the simpler case of taking the derivative of

a vector in a euclidean space, but one parameterized with

a vector basis that may depend on the coordinates.

• We may expand a vector VVV in a convenient basis eeei,

VVV =V ieeei.

• By the usual product rule, the partial derivative is given by

a sum of two terms,

∂VVV

∂x j
=

∂V i

∂x j
eeei

︸ ︷︷ ︸
component

+ V i ∂eeei

∂x j
︸ ︷︷ ︸

basis

,

1. The first term represents the change in the component

V i.

2. The second term represents the change in the basis

vectors eeei.

• For the situation where we can choose a basis that is in-

dependent of coordinates, the second term is zero and we

recover the expected formula.

• However, if the basis depends on the coordinates the sec-

ond term will generally not be zero.



44 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

In the second term of

∂VVV

∂x j
=

∂V i

∂x j
eeei

︸ ︷︷ ︸
component

+ V i ∂eeei

∂x j
︸ ︷︷ ︸

basis

,

• The factor ∂eeei/∂x j resulting from the action of the deriva-

tive operator on the basis vectors is itself a vector and can

be expanded in the vector basis,

∂eeei

∂x j
= Γk

i jeeek.

• The expansion coefficients Γk
i j may be interpreted as spec-

ifying the projection on the k axis of the rate of change in

the j direction of a basis vector pointing in the i direction.
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To give a concrete example, consider the 2D euclidean plane

parameterized by polar (r,θ) = (x1,x2) coordinates.

• Taking basis vectors (eeer,eeeθ ), we have (for example)

∂eeer

∂θ
= Γi

rθ = Γr
rθ eeer +Γθ

rθ eeeθ ,

• Where the coefficient Γr
rθ is associated with the rate of

change of the basis vector eeer with respect to θ in the di-

rection eeer

• The coefficient Γθ
rθ is associated with the rate of change

of the basis vector eeer with respect to θ in the direction eeeθ .
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• The coefficients Γk
i j are called connection coefficients or

Christoffel symbols.

• Their generalization to 4-dimensional spacetime will be

discussed more extensively later.

• There we shall see that the connection coefficients are cen-

tral to

1. The definition of derivatives

2. A prescription for parallel transport of vectors in

curved spacetime.
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Figure 2.3: Measuring the circumference of a circle in curved space.

2.4 Non-Euclidean Geometry

Let us now consider non-euclidean geometries. A simple ex-

ample is afforded by a sphere, as in Fig. 2.3.

• Imposing a standard polar coordinate system (θ ,ϕ) on the

surface of the sphere, the line element for a sphere is given

by

ds2 = R2(dθ 2 + sin2 θdϕ2),

where R is the radius of the sphere.
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Let’s calculate the ratio of the circumference of a circle to its

radius for this non-euclidean space.

• We may define a circle in the two-dimensional space by

marking a locus of points lying a constant distance S from

a reference point (north pole in above figure).

• The θ angle subtended by S is S/R and r = Rsin(S/R).
Then from the geometry in the above figure, the circum-

ference of the circle is

C = 2πr = 2πRsin
S

R
= 2πS

(

1− S2

6R2
+ . . .

)

.

• Alternatively, we may obtain the same result by integrat-

ing the line element ds2 = R2(dθ 2 + sin2 θdϕ2),

C =
∮

ds =
∫ 2π

0
Rsin

S

R
dϕ = 2πRsin

S

R
.



2.4. NON-EUCLIDEAN GEOMETRY 49

φ

θ

R

r

C = 2πr 

S

x

y

z

• If the radius of the circle is much less than the radius of

the sphere, the higher-order terms in the expansion of the

sine may be ignored and we obtain the euclidean result

C ≃ 2πS.

• But more generally the deviation of the circumference of

small circles drawn on the sphere from 2πS is a measure of

how much the sphere deviates from euclidean geometry.

Later, we will see how to use such considerations

to define a quantitative measure of curvature for

non-euclidean surfaces.
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2.5 Transformations

It often proves useful to express physical quantities in more

than one coordinate system.

• It therefore becomes necessary to understand how to trans-

form between coordinate systems.

• This issue becomes particularly important in general rela-

tivity where it is essential to ensure that the laws of physics

are not altered by the most general transformation be-

tween coordinate systems.

Let’s consider two simple examples.
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Figure 2.4: Rotation of coordinate system for a vector xxx.

2.5.1 Rotational Symmetries

Consider the familiar example of the description of a vector

under rotation of a coordinate system about the z axis by an

angle ϕ , as illustrated in Fig. 2.4.

• In terms of the original basis vectors {eeei} the vector xxx has

the components x1 and x2.

• After rotation of the coordinate system by the angle ϕ to

give the new basis vectors {eee′i}, the vector xxx has the com-

ponents x′1 and x′2 in the new coordinate system.

• The vector xxx can be expanded in terms of the components

for either of these bases:

xxx = xieeei = x′ieee′i,



52 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

e1

e2

φ
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φ

• We may use the geometry of the above figure to find that

the components in the two bases are related by the trans-

formation






x′1

x′2

x′3







=







cosϕ sinϕ 0

−sinϕ cosϕ 0

0 0 1













x1

x2

x3






,

which may also be expressed as

x′i = Ri
jx

j,

where the Ri
j are the elements of the matrix in the preced-

ing equation.

• This transformation law holds for any vector. (We may, in

fact, define a vector in the x–y plane to be a quantity that

obeys this transformation law.)
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2.5.2 Galilean Transformations

Another simple example of a transformation is that between

inertial frames in classical mechanics.

• Transformations between inertial frames with the same

orientation are called boosts.

• In Newtonian physics time is considered an absolute quan-

tity and boosts take the Galilean form

xxx′ = xxx′(xxx,t) = xxx− vvvt t ′ = t ′(xxx,t) = t.

• The Newtonian version of relativity asserts that the laws of

physics are invariant under such Galilean transformations.

• Although the laws of mechanics at low velocity are in-

variant under Galilean transformations, the laws of elec-

tromagnetism (Maxwell’s equations) are not.

• Indeed, the failure of Galilean invariance for the Maxwell

equations was a large motivation in Einstein’s eventual

demonstration that the laws of mechanics are not invariant

with respect to Galilean transformations at high velocity.
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• As we shall discuss further later, in the absence of grav-

ity the laws of both mechanics and electromagnetism are

generally only invariant under Lorentz transformations.

• In the presence of a gravitational field, neither Galilean

nor Lorentz invariance holds and we will be forced to seek

a more general invariance to describe systems that are sub-

ject to gravitational forces.



Chapter 3

Tensors and Covariance

The term covariance implies a formalism in which the laws of

physics maintain the same form under a specified set of trans-

formations.

EXAMPLE: Lorentz covariance implies equations that are con-

structed in such a way that they do not change their form under

Lorentz transformations (three boosts between inertial systems

and three rotations).a

aAn inertial system is a frame of reference in which Newton’s first law of

motion holds. Thus, for example, rotating frames and accelerated frames are

not inertial. An inertial system is therefore in uniform translational motion

with respect to any other inertial frame.

55
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3.1 Spacetime Coordinates and Transformations

We will be concerned extensively with spacetime, which is an

example of what mathematicians call a manifold.

• An n-dimensional manifold is

– a set that can be parameterized continuously by

– n independent real coordinates for each point (mem-

ber of the set).

• We will assume the manifold to be differentiable at each

point. Then we have a differentiable manifold.

• A coordinate system

– associates n real parameters (labels) uniquely with

each point of an n-dimensional manifold M

– through a one-to-one mapping from R
n (cartesian

product of n copies of the real numbers R) to M.

A cartesian product X ×Y of two sets X and Y is

the set of all possible ordered pairs (x,y) with x an

element of X and y an element of Y .

• Generally, more than one overlapping set of coordinates

is required to parameterize an entire manifold uniquely.

– (See the discussion of charts and atlases in the book.)

– For example, at least 2 overlapping sets of coordi-

nates are required to parameterize a 2D sphere.
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• Subsets of points within a manifold define

– curves and

– surfaces,

which represent submanifolds of the full manifold.

• The manifolds that will interest us will be endowed with

additional structure (in particular a geometry specified by

a quadratic metric called Riemannian geometry).

• However, this will be sufficient definition for our initial

purposes. We will get to Riemannian geometry and its

central place in general relativity later.

We will sometimes use loose physics language and

refer to manifolds simply as spaces.
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Because relativity implies that space and time enter descrip-

tions of nature on comparable footings,

• it will be useful to unify them into a 4-dimensional con-

tinuum termed spacetime.

• Spacetime is an example of a differentiable manifold.

• In spacetime points will be defined by coordinates having

four components,

– the first labeling the time multiplied by the speed of

light c,

– the other three labeling the spatial coordinates:

x≡ xµ = (x0,x1,x2,x3) = (ct,xxx),

where xxx denotes a vector with three components

(x1,x2,x3) labeling the spatial position.

• The first component x0 is termed timelike and the last three

components (x1,x2,x3) are termed spacelike.

• As for the earlier discussion, the placement of indices in

upper or lower positions is meaningful.

• Bold symbols will be used to denote (ordinary) vectors

defined in the three spatial degrees of freedom,

• with 4-component vectors in spacetime denoted in non-

bold symbols.

• For spacetime the modern convention is to number the in-

dices beginning with zero rather than one.
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The coordinate systems of interest will be assumed to be quite

general, subject only to the requirement that

• they assign a coordinate uniquely to every point of space-

time, and that they be

• differentiable to sufficient order for the task at hand at ev-

ery spacetime point.
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3.2 Covariance and Tensor Notation

• We shall be concerned generically with a transformation

between one set of spacetime coordinates, denoted by

x≡ xµ = (x0,x1,x2,x3)

and a new set

x′µ = x′µ(x) µ = 0,1,2,3

where x = xµ denotes the original coordinates.

• This notation is an economical form of

x′µ = ξ µ(x1,x2,x3,x4) (µ = 1,2, . . .)

• where the single-valued, continuously differentiable func-

tions ξ µ

• assign a new (primed) coordinate (x′1,x′2,x′3,x′4) to a

point of the manifold with old coordinates (x1,x2,x3,x4).

This transformation may be abbreviated to x′µ =
ξ µ(x) and, even more tersely, to x′µ = x′µ(x).

• Coordinates are just labels, so laws of physics cannot de-

pend on them. Hence the system x′µ is not privileged and

this transformation should be invertible.

• Notice carefully that we are talking about the same point

described in two different coordinate systems.
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As introduced in Chapter 2, we shall generally use the Einstein

summation convention for 4D spacetime:

• An index that is repeated, once as a superscript and once

as a subscript, implies a summation over that index.

• Such an index is a dummy index that is removed by the

summation and should not appear on the other side of the

equation.

• A repeated (dummy) index may be replaced by any

other index not already in use without altering equation:

AαBα = Aβ Bβ .

• A superscript (subscript) in a denominator counts as a sub-

script (superscript) in a numerator.

• Greek indices (α,β , . . .) denote the full set of spacetime

indices running over 0, 1, 2, 3.

• Roman indices (i, j, . . .) denote the indices 1, 2, 3 running

only over the spatial coordinates.

• Placement of indices matters: generally xα and xα will be

different quantities.

• At all stages of manipulating equations, the indices on the

two sides of an equation (including their up or down place-

ment) must match.
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As a minimum, we must consider the transformations of

• Fields

• Derivatives of fields

• Integrals of fields.

The first two are necessary to formulate equations of motion,

and the latter enter into various conservation laws.

To facilitate this, we shall introduce a set of math-

ematical quantities called tensors that are a gener-

alization of the idea of scalars and vectors to more

components.

As a starting point, we must look more carefully at how to de-

fine vectors in a curved space.
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Figure 3.1: Tangent spaces and vectors in curved spaces, illustrated for the

manifold S2. Vectors (indicated by arrows) are defined in the tangent spaces

at each point, not in the curved manifold. Embedding the 2D manifold in

3D euclidean space is for visualization purposes only; the tangent space has

a specification that is intrinsic to the 2D manifold.

Spacetime is characterized by a manifold that is not euclidean.

• In euclidean space we are used to representing vectors as

directed line segments of finite length.

• This picture won’t do in curved spacetime, which is lo-

cally but not globally euclidean, so extended straight lines

have no meaning.

• Thus in non-euclidean manifolds the first question that we

need to address is how to define a vector at some space-

time point.

• Answer: vectors are not defined in the curved manifold

itself but rather in a tangent space that may be visualized

for a 2D manifold as a plane tangent to the point on the

curved surface, as illustrated in Fig. 3.1 for a 2D sphere.
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• The idea conveyed by the above figure in which planes

tangent to a 2D surface are shown embedded in a 3D space

is useful conceptually but it is potentially misleading.

• Defining the tangent space at each point is an intrinsic

process with respect to a manifold and does not require

embedding it in a higher-dimensional manifold, as will be

shown later.
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3.3 Tangent and Cotangent Bundles

An n-dimensional Riemannian manifold has at each point P

• An n-dimensional euclidean vector space TP with a basis

defined by the directional derivatives evaluated at P for

coordinate curves passing through P.

• This is termed the tangent space and vectors at P are de-

fined within that space.

• An intrinsically-defined n-dimensional euclidean vector

space with a basis defined by viewing the coordinate

curves as scalar fields and evaluating their gradients at P.

• This is termed the cotangent space T ∗P and dual vectors P

are defined within this space.

• The tangent space TP and the cotangent space T ∗P are dual

to each other.

The definitions given above make clear that

• Vectors and dual vectors are local to a point.

• The tangent and cotangent spaces in which they are de-

fined may be constructed from the properties of the mani-

fold alone.

Thus the tangent space and cotangent space at each

point of a manifold have an intrinsic meaning, in-

dependent of embedding in higher dimensions.
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• The tangent bundle TM of a manifold M is a manifold

consisting of all the tangent vectors defined in M, which

is given by the disjoint union of all of its tangent spaces

TP.

• Likewise, a cotangent bundle T ∗M of the manifold M is

defined by the disjoint union of all the cotangent spaces

T ∗P in M.

• Tangent or cotangent bundles are examples of a fiber bun-

dle, which is a manifold E that is locally the cartesian

product E = F×B of two spaces,

– the base space B, and

– the fiber space F (with the fiber at P corresponding to

the tangent space TP at P),

but that globally may have a different topological struc-

ture.

• For a manifold of dimension n the tangent and cotangent

fiber bundles are of dimension 2n.
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Figure 3.2: Tangent bundle T S1 for the 1-dimensional manifold S1.

Fig. 3.2 illustrates the basic idea of a tangent bundle for a man-

ifold corresponding to a circle.

• (a) The manifold M = S1 (the circle) and some of its tan-

gent spaces (lines tangent to the circle).

• (b) The corresponding tangent bundle (locally and glob-

ally R1×S1).

• (c) Figure (b) cut vertically and rolled out flat. Figure (b)

corresponds to identifying A↔ A′ and B↔ B′.

• (d) Tangent bundle with nontrivial topology (Möbius

band) generated by identifying

A↔ B′ B↔ A′

in (c).

• This is locally R1×S1, but not globally.
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The lines corresponding to the tangent spaces (fibers) should

be imagined extending to infinity to accommodate vectors of

arbitrary length.

• The overlaps of these lines in (a) are meaningless since

each tangent space is defined independently at a different

point of the manifold.

• Therefore, in (b) the lines (fibers) corresponding to tan-

gent spaces have been rotated and arrayed perpendicular

to the base manifold so that they do not overlap.

• A location y on a fiber may be interpreted as existing at the

point P = x where the fiber intersects the base space, with

y (vector length) given by the distance to the intersection

of the fiber with the base space.

• Thus (x,y) identifies a point in the fiber bundle manifold

uniquely.
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• Cases (b) and (d) are equivalent locally but distinct topo-

logically: the orientation of the fiber winds through π for

once around the base space in (d), so that (d) cannot be

deformed continuously into (b).
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3.4 Coordinates in Spacetime

A universal coordinate system can be chosen in flat space,

• Basis vectors can be chosen that are mutually orthogonal

and constant.

• Furthermore, these constant basis vectors can be normal-

ized to unit length once and for all.

• Much of ordinary physics is conveniently described using

such orthonormal bases.

• The situation is more complicated in curved manifolds (or

in uncurved manifolds expressed in non-cartesian coordi-

nates).

• Because of the position-dependent metric of curved space-

time it is most convenient in general relativity to choose

basis vectors that

– depend on position and that

– need not be orthogonal.

• Since such basis vectors are position-dependent, it usually

is not useful to normalize them.
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3.4.1 Coordinate and Non-coordinate Bases

The standard conception of a vector as a directed line segment

has ill-defined meaning in a curved manifold.

• The key to specifying vectors in curved space is to sepa-

rate the “directed” part from the “line segment” part of

the usual definition.

• This is because the direction for vectors of infinitesimal

length can be defined consistently in curved or flat spaces

using directional derivatives.
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Consider a curve in a differentiable manifold along which one

of the coordinates xµ varies while all others xν(ν 6= µ) are held

constant.

• This curve will be termed the coordinate curve xµ .

• The figure above illustrates for a 2D manifold.

• Through any point P in spacetime 4 such curves will

pass, corresponding to the coordinate curves xµ with µ =

(0,1,2,3).

• A convenient set of position-dependent basis vectors

eµ(µ = 0,1,2,3) can be defined at each point P in the

manifold by

eµ = Lim
δxµ→0

δ s

δxµ
,

where δ s is the infinitesimal distance along the coordinate

curve xµ between the point P with coordinate xµ and a

nearby point with coordinate xµ +δxµ .
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• For a parameterized curve xµ(λ ) having a tangent vector

t with components tµ = dxµ/dλ (summation convention),

t = tµeµ =
dxµ

dλ
eµ ,

the directional derivative of an arbitrary scalar function

f (xµ) that is defined in the neighborhood of the curve is

d f

dλ
≡ Lim

ε→0

[
f (xµ(λ + ε))− f (xµ (λ ))

ε

]

=
dxµ

dλ

∂ f

∂xµ
= tµ ∂ f

∂xµ
,

• Since f (x) is arbitrary this implies the operator relation

d

dλ
=

dxµ

dλ

∂

∂xµ
= tµ ∂

∂xµ
.

• Hence we find that

– the tangent components tµ are associated with a

unique directional derivative and

– the partial derivative operators ∂/∂xµ define the ba-

sis vectors eµ ,

eµ =
∂

∂xµ
≡ ∂µ .

• This permits an arbitrary vector to be expanded as

V =V µeµ =V µ ∂

∂xµ
=V µ∂µ .
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Figure 3.3: Tangent space TP at a point P for a curved 2D manifold M. The

vectors tangent to the coordinate curves at each point define a coordinate or

holonomic basis. This figure is a generalization of Fig. 3.1 to an arbitrary

curved 2D manifold with a position-dependent, non-orthogonal (coordinate)

basis. This embedding of M in 3D euclidean space is for visualization pur-

poses only; the basis vectors e1 and e2 of the tangent space are specified by

directional derivatives of the coordinate curves evaluated entirely in M at

the point P.

• Position-dependent basis vectors (that generally are nei-

ther orthogonal nor normalized) define a coordinate basis

or holonomic basis.

• A basis using orthonormal coordinates is then termed a

non-coordinate basis or an anholonomic basis.

• A coordinate basis is illustrated schematically in Fig. 3.3

for a generic curved 2D manifold.

• The definition of a vector in terms of directional deriva-

tives is valid in any curved or flat differentiable manifold.

• It replaces the standard idea of a vector as the analog of a

displacement vector between two points, which does not

generalize to curved manifolds.
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The separation between nearby points is

ds = eµ(x)dxµ ,

from which

ds2 = ds ·ds = (eµ · eν)dxµdxν = gµνdxµdxν

with the metric tensor components gµν defined by,

eµ(x) · eν(x)≡ gµν(x),

which implies that in a coordinate basis the scalar product of

vectors A and B is given by

A ·B = (Aµeµ) · (Bνeν) = gµνAµBν .

These equations may be taken as a definition of a

vector coordinate basis {eµ}.
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The preceding discussion has been specifically for vectors and

involves defining a basis for the tangent space TP at each point P

using the tangents ∂/∂xµ to coordinate curves passing through

P.

• By analogy, a similar intrinsic procedure can be invoked

to construct a basis for dual vectors in the cotangent space

T ∗P at a point P using gradients to define basis vectors.

• This leads to equations analogous to those for the tangent

space, but with the indices of the basis vectors in the upper

position.

• A set of dual basis vectors eµ may be used to expand dual

vectors ω as

ω = ωµeµ ,

• This allows the metric tensor with upper indices to be de-

fined through

eµ(x) · eν(x)≡ gµν(x),

with the scalar product of arbitrary dual vectors α and β
given by

α ·β = gµναµβν .

These equations may be taken as a definition of a

dual-vector coordinate basis {eµ}.
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An orthonormalized non-coordinate basis is specified by re-

quiring

eµ̂(x) · eν̂(x) = ηµ̂ ν̂ ,

where (See Ch. 4)

ηµν =










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










= diag(−1,1,1,1)

is the metric tensor of (flat) Minkowski spacetime.

• A common notational convention has been employed of

using hats on indices to indicate explicitly that this is an

orthonormal and not coordinate basis.

• Also, it is common to use η to denote specifically the met-

ric for Minkowski space rather than the more general g.

• As elaborated further in the Problems,

– the basis vectors of a coordinate basis have a vanish-

ing Lie bracket, [eµ ,eν ] = 0, while

– for a non-coordinate basis [eµ̂ ,eν̂ ] 6= 0,

where the Lie bracket of two vector fields A and B is de-

fined by the commutator

[A, B]≡ AB−BA.

• This provides a formal way to identify a coordinate basis.
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• The formulation of general relativity is most natural in a

coordinate (holonomic) basis.

• However, we will see later that curved spacetime is locally

euclidean, and that

• observers in a laboratory of small extent in spacetime can

define a local coordinate system in a non-coordinate basis

for interpreting measurements.

• Thus it is natural to

– formulate general relativity in a coordinate basis, but

– to use a non-coordinate basis for interpretation of

some measurements.

We won’t often need to display a basis explicitly

in applications, but unless stated otherwise a coor-

dinate basis will be assumed.
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3.5 Tensors and Coordinate Transformations

In formulating general relativity we are interested in how quan-

tities that enter the physical description of the Universe change

when the spacetime coordinates are transformed.

• This requires understanding the transformations of

– fields,

– their derivatives, and

– their integrals,

• To facilitate this task, it is useful to introduce a set of

mathematical objects called tensors.

– These have a fundamental definition without refer-

ence to specific coordinate systems.

– However, for physical applications it often proves

convenient to view tensors as components expressed

in a basis that transform in a precise way if the coor-

dinate system is changed.

• We shall develop and use both views of tensors.
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• Let’s note that our interest here almost always will be in

tensor fields, which correspond to tensors of a given type

defined at every point of the manifold.

• Since this is a rather trivial generalization of a tensor de-

fined at a point, the discussion will for brevity often use

shorthand like “vector” or “tensor” to mean “vector field”

or “tensor field”, respectively.

• This is unlikely to engender confusion, since the meaning

should be clear from the context.
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The rank of a tensor will be given a more fundamental defi-

nition below, but practically it is the total number of indices

required to specify its components in some basis.

• Thus scalars are tensors of rank zero and vectors or dual

vectors are tensors of rank one.

• This may be generalized to tensors carrying more than one

index.

• As for vectors and dual vectors, the indices may either be

upper (contravariant) or lower (covariant).

– Tensors carrying only lower indices are termed co-

variant tensors.

– Tensors carrying only upper indices are termed con-

travariant tensors.

– Tensors carrying both lower and upper indices are

termed mixed tensors.

• It is convenient to indicate the type of a tensor by the or-

dered pair (p,q), where when evaluated in a basis

– p is the number of contravariant (upper) indices,

– q is the number of covariant (lower) indices,

and the rank of the tensor is p+q.

Thus a dual vector is a rank-1 tensor of type (0,1)
having one covariant index.
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Not all quantities with indices are tensor components; it is

their mathematical properties that mark objects as tensors, not

merely that they carry indices when evaluated in a basis.
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There are two general views that we might take of tensors:

• Mathematicians prefer to define tensors in an elegant and

abstract manner that often is more precise in defining

some essential underlying mathematical concepts. This

is sometimes called the index-free formalism.

• The characterization of tensors in terms of their transfor-

mation properties is particularly useful from a physical

perspective.

We shall first discuss tensors from the mathemati-

cian’s perspective, and then discuss them in terms

of their transformation properties.
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3.6 Tensors as Linear Maps to Real Numbers

From a fundamental perspective, a tensor of type (n,m)

• has input slots for n vectors and m dual vectors, and

• acts linearly on these inputs to give a real number.

If ω is a (0,1) tensor (dual vector) and A and B are

(1,0) tensors (vectors), linearity of the mapping

implies things like

ω(aA+bB) = aω(A)+bω(B) ∈ R,

where a and b are arbitrary scalars and R denotes

the set of real numbers.

• This definition makes no reference to components of the

vectors or dual vectors.

• Hence the tensor map must give the same real number,

irrespective of any choice of coordinate system.

In summary, a tensor is

• a function of vectors and dual vectors them-

selves, rather than of their components, or

• an operator that accepts vectors and dual vec-

tors as input and produces a real number.
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As a warmup exercise, consider a real-valued function of the

coordinates f (x).

• This function

– takes no vectors or dual vectors as input and

– yields a real number (the value of the function at x) as

output.

• Thus it is a tensor of rank zero (a scalar).

Let’s now give a few less-trivial examples of how

this approach to tensors works, beginning with

vectors and dual vectors.
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Vector Space:

A vector space has a precise axiomatic definition but for our

purposes it will be sufficient to view it more loosely as

• A set of objects (the vectors) that can be

– multiplied by real numbers and

– added in a linear way

while exhibiting closure: any such operations on elements

of the set give back a linear combination of elements.

• For arbitrary vectors A and B, and arbitrary scalars a and

b, one expects then that expressions like

(a+b)(A+B) = aA+aB+bA+bB

should be satisfied.

• A basis for a vector space is a set of vectors that

– span the space (any vector is a linear combination of

basis vectors) and

– are linearly independent (no basis vector is a linear

combination of other basis vectors).

• The number of basis vectors is the dimension of the space.

For spacetime, vector and dual vector spaces are

vector spaces of dimension 4 that are defined at

each point of the manifold.
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Confusion Alert

Be aware that “vector” is being used in our discussion in three

senses:

• As an arbitrary element of an abstract vector space, ac-

cording to the definition given above.

• As an element of an abstract vector space that also is a

vector in the precise sense defined above [a tensor of type

(1, 0)].

• Sometimes as a generic term for an element of an abstract

vector space that is either a vector or a dual vector.

Which meaning is intended is usually clear from

the context.
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3.6.1 Vectors and Dual Vectors

Suppose a vector field to be defined on a manifold such that

• Each point P has associated with it a vector V that may be

expanded in a (coordinate) vector basis eµ ,

V =V µeµ ,

where the basis vectors eµ are defined in the tangent space

TP at each point of the manifold.

• There is a corresponding dual vector field ω defined at

each point P that may be expanded in a (coordinate) dual-

vector basis eµ ,

ω = ωµeµ ,

where the basis dual vectors eµ are defined in the cotan-

gent space T ∗P at each point of the manifold.

• Hence the eµ are basis vectors in the tangent bundle of the

manifold and

• the eµ are basis vectors in the cotangent bundle of the

manifold.
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Duality: As introduced in Chapter 2 for euclidean spaces, the

vector spaces for V and ω are said to be dual:

• The space of vectors (tangent bundle): all linear maps of

dual vectors to the real numbers.

• The space of dual vectors (cotangent bundle): all linear

maps of vectors to the real numbers.

• This duality of vector and dual vector spaces can be im-

plemented systematically by requiring that

eµ(eν)≡ eµ · eν = δ
µ
ν ,

where the Kronecker delta is given by

δ
µ
ν =

{

1 µ = ν

0 µ 6= ν
.

• Alternative notation: A(B)↔ 〈A,B〉, so we can also write

〈eµ , eν〉 ≡ eµ · eν = δ
µ
ν .

• Example: A dual vector ω acts on a vector V as

ω(V ) = 〈ω ,V 〉 = ωµeµ(V νeν) (expand in basis)

= ωµV νeµ(eν) (linearity)

= ωµV νδ
µ
ν (duality: eµ(eν) = δ

µ
ν )

= ωµV µ ∈ R (scalar product ∈ R),

where R denotes the real numbers.
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Note: Basis vectors are defined in the tangent bundle and basis

dual vectors are defined in the cotangent bundle of the mani-

fold.

• Thus for applications in spacetime our concern is really

with the action of vector fields on dual vector fields and

vice versa.

• Thus what is returned is not a real number but rather a

scalar field of real numbers defined over the manifold.

• This is just another example where for simplicity we have

been careless about speaking of some thing when what is

really meant is a field of those things.

We trust that the reader is sophisticated enough by

now to realize when “thing” really means “field of

things”.
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The preceding discussion illustrates clearly that

• A dual vector is an operator that accepts a vector as an

argument and produces a real number: the scalar product

ωµV µ , which is

– unique and

– independent of basis

as output.

• A vector is an operator that accepts a dual vector as an

argument and produces a real number equal to the scalar

product, V (ω) = ωµV µ , that is unique and independent of

basis.

• These definitions involve no uncontracted indices, so the

results are independent of any basis choice.

This suggests that vectors and dual vectors may be defined fun-

damentally in terms of linear maps to the real numbers, with

no reference to a specific basis:

1. A dual vector is an operator that acts linearly

on a vector to return a real number.

2. A vector is as an operator that acts linearly on

a dual vector to return a real number.

For those conversant with linear algebra this may sound famil-

iar, as suggested by the following example.
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In the language of linear algebra,

• vectors may be represented as column vectors and

• dual vectors as row vectors,

and their matrix product is a number.

• For example,

A≡ (a b) B≡
(

c

d

)

AB = (a b)

(

c

d

)

= ac+bd ∈ R

may be regarded as the dual vector A acting linearly on the

vector B to produce the real number ac+bd:

A(B) ∈ R.

• For readers familiar with Dirac notation for matrix ele-

ments in quantum mechanics,

– a ket |a〉 is a vector and

– a bra 〈a| is a dual vector

in the quantum linear vector space called Hilbert space.

• Mathematically the vector space of bras is the dual of the

vector space of kets. Thus the overlap 〈 f | i〉 is a number

(a c-number in quantum lingo).



3.6. TENSORS AS LINEAR MAPS TO REAL NUMBERS 93

Components in a Basis: These definitions of vectors and dual

vectors are independent of any choice of basis but practically it

often is convenient to work in a basis.

• The components of a basis may be constructed from

V µ =V (eµ) = eµ ·V ωµ = ω(eµ) = eµ ·ω ,

which may be interpreted (for example) as

A vector accepts a basis vector eµ as input and acts

linearly on it to return a real number that is the

component of the vector evaluated in that basis.

• The validity of the equations above is easily checked:

eµ ·V = eµ ·(V αeα) =V αeµ(eα) =V αδ
µ
α =V µ ,

eµ ·ω = eµ ·(ωαeα) = ωαeµ(e
α) = ωαδ α

µ = ωµ ,

where we have used

– the basis expansions,

V =V αeα ω = ωαeα .

– linearity,

ω(aA+bB) = aω(A)+bω(B) ∈ R,

– and duality,

eµ(eν) = eµ · eν = δ
µ
ν .
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Transformations: Consider a coordinate transformation xµ →
x′µ on a dual vector ω = ωµeµ and on a vector V =V µeµ .

• Requiring that the distance ds be invariant under coordi-

nate transformation means that the basis vectors eµ and

eµ must transform as (see Problems)

eµ → e′µ =
∂x′µ

∂xν
eν eµ → e′µ =

∂xν

∂x′µ
eν .

• How then do the components ωµ and V µ transform?

• Consider the dual vector ω , which is a geometrical object

existing independent of representation in a coordinate sys-

tem, so it must be invariant under change of coordinates.

• This requires the components of ω to transform as

ων → ω ′ν =
∂xα

∂x′ν
ωα ,

since then ω is invariant under xµ → x′µ :

ω ′ =ω ′µe′µ (expand in basis)

=
∂xα

∂x′µ
ωα

∂x′µ

∂xν
eν (transform basis and components)

=
∂xα

∂x′µ
∂x′µ

∂xν
ωαeν =

∂xα

∂xν
ωαeν (linearity + chain rule)

=ωαeνδ α
ν (apply ∂xα/∂xν ≡ δ α

ν )

=ωαeα = ω (scalar product ∈ R).

This transformation law for the components ων is the same one

that will be used later to define a dual vector.
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We have just shown that the definition of a dual vector as a ge-

ometrical object that maps vectors linearly to the real numbers

• is independent of representation in any particular basis,

but

• in a particular basis the components of dual vectors must

transform as

ων → ω ′ν =
∂xα

∂x′ν
ωα .

• By a similar proof, vector components V µ may be shown

to have the transformation law

V ν →V ′µ =
∂x′µ

∂xν
V ν .

• In the index-free picture currently under discussion

– tensors are defined as linear maps of vectors and dual

vectors to the real numbers, and

– the transformation laws and associated tensor algebra

for representation in a basis follow from that defini-

tion.

Later, we will see that we can turn things around

and use such transformation laws as a definition of

tensors.
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3.6.2 Tensors of Higher Rank

Higher-rank tensors may be constructed by taking tensor prod-

ucts (denoted by ⊗; also termed the direct product or the Kro-

necker product) of lower-rank tensors.

The tensor product of two vector spaces U and V

produces a new vector space U⊗V.

• If U has a basis {u1,u2, . . .} and

• V has a basis {v1,v2, . . .},

then U⊗V is spanned by a basis consisting of all

pairs (ui,v j).

Schematically, a mixed tensor T of rank (p,q) may be ex-

pressed as

T = T
µ1 µ2 ···µp

ν1 ν2 ···νq
eµ1
⊗eµ2

⊗ ·· · ⊗eµp
⊗eν1⊗eν2⊗ ·· · ⊗eνq,

where {eµ} is a vector basis and {eν} is a dual vector basis.
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Components of higher-rank tensors may be evalu-

ated by putting basis vectors in its input slots.

• For example, consider a rank-2 tensor T . Its covariant,

contravariant, and mixed components are given by

T (eµ ,eν) = Tµν T (eµ ,eν) = T µν

T (eµ ,e
ν) = T

ν
µ T (eµ ,eν) = T

µ
ν ,

from which it follows that for vectors A and B,

T (A,B) = T (Aµeµ ,B
νeν)

= T (eµ ,eν)
︸ ︷︷ ︸

Tµν

AµBν = TµνAµBν .

Likewise for contravariant and mixed components.

• As another example, the tensor product U = V ⊗ T of a

vector V and a rank-2 tensor T is a rank-3 tensor with one

possible set of components

U
µ

αβ = (V ⊗T )
µ

αβ= (V ⊗T )(eµ ,eα ,eβ )

= V (eµ)T (eα ,eβ )

= V µTαβ .

In the mixed rank-3 tensor we have offset the up-

per and lower indices horizontally. The reason is

associated with the symmetry under permutation

of indices and will be discussed later.



98 CHAPTER 3. TENSORS AND COVARIANCE

Finally consider the scalar product

A ·B = gµνAµBν .

• The metric tensor g may be interpreted as an operator that

– takes two vectors as input and

– returns their scalar product,

which is a real number. For example:

g(A,B) = g(Aµeµ ,B
νeν)

= g(eµ ,eν)A
µBν

= gµνAµBν

= A ·B ∈ R,

• since it takes two vectors as input and acts linearly on both

of them to return a number (this is an example of a multi-

linear mapping),

• Therefore, gµν represents components of a rank-2 tensor

of type (0,2).
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For quantum mechanics in Dirac notation a ket |i〉 is a vector

and a bra 〈 f | is a dual vector in Hilbert space.

• A matrix element of an operator Q̂ is of the form 〈 f | Q̂ |i〉
in Dirac notation.

• In quantum mechanics, a a matrix element is a scalar.

• Thus the operator Q̂ is a rank-2 tensor of type (1,1), since

it takes one vector and one dual vector as input and pro-

duces a scalar.

(In quantum mechanics a matrix element may be a complex

rather than real number, but that distinction is not important in

the present discussion.)



100 CHAPTER 3. TENSORS AND COVARIANCE

3.6.3 Identification of Vectors and Dual Vectors

Let’s now greatly simplify keeping track of the difference be-

tween vectors and dual vectors by demonstrating that

At a point P the metric tensor map establishes a

one-to-one relationship between a

• vector in the tangent space at P and a

• dual vector in the cotangent space at P.

• Consider the metric tensor, viewed as a rank-2 tensor that

– accepts two vectors as inputs and

– acts on them (multi-)linearly to give a real number.

• Schematically, this may be written as the operator g(· , ·),
where the dots indicate the input slots for the two vectors.

• Suppose that a vector V is inserted into only one of the

slots, giving g(V, ·).

• What is the object g(V, ·)?
– It has one open slot that can accept a vector,

– on which it will act linearly to return a real number.

But that is just the definition of a dual vector!

• Because it is associated directly with the vector V , let’s

call this dual vector Ṽ ≡ g(V , ·).
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• The components of this dual vector may be evaluated by

inserting a basis vector as argument in the usual way,

Vµ ≡ Ṽ (eµ) = g(V,eµ) (definition)

= g(V νeν ,eµ) (expand V in basis)

= V νg(eν ,eµ) (rearrange using linearity)

= gµνV ν (definition of metric components).

• Likewise, using that gµν and gµν are matrix inverses,

V µ = gµνVν .

• Thus, the properties of the metric tensor

– imply that vectors and dual vectors may be treated as

if they were both vectors,

– one with an upper index and one with a lower index,

– with the two related by contraction (summing over

repeated indices) with the metric tensor,

Vµ = gµνV ν V µ = gµνVν .

This is true only for manifolds with a metric, but

that is always the case for GR.
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• The relations

Vµ = gµνV ν V µ = gµνVν .

are of great practical importance since

– they allow the same symbol to be used for a vector

and its corresponding dual vector, and

– they reduce handling of vectors and dual vectors to

– keeping proper track of the vertical position of indices

in the summation convention.

• This identification works only for manifolds with met-

ric tensors but that is no limitation for general relativity,

which deals only with metric spaces.

• The scalar product between two vectors U and V can now

be calculated as

– the complete contraction UαV α of one of the vectors

– with the dual vector associated with the other vector:

g(U,V ) = gµνUµV ν =UνV ν .

The scalar product has no indices left after con-

traction and is said to be fully contracted.
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Because tensors of higher rank are products of vectors and dual

vectors, the preceding discussion is easily generalized:

• Contraction with the metric tensor can be used to raise or

lower any index for a tensor of any rank.

• For example,

Aµν = gµαgνβ Aαβ Aµνλσ = gµρA
ρ

νλσ
.

• Since indices can be raised or lowered at will by a metric,

Tensors may be thought of as geometrical objects

of a particular tensorial rank, irrespective of their

particular vertical arrangement of indices when

evaluated in a specific basis.

• Of course this is true only in the abstract; index placement

matters when tensors are evaluated in a specific basis.
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3.7 Tensors Specified by Transformation Laws

In the preceding discussion tensors have been introduced at a

fundamental level through linear maps from vectors and dual

vectors to the real numbers.

• However, it was shown also that

– when tensors are expressed in an arbitrary basis,

– their components obey well-defined transformation

laws under change of coordinates.

• This view of tensors as groups of quantities obeying par-

ticular transformation laws is often the most practical for

physical applications because

– It is less abstract and requires less new mathematics.

– A physical interpretation often requires expression of

the problem in a well-chosen basis anyway.

– The component index formalism has a handy built-in

error checking mechanism:

Failure of indices to balance on the two sides of an

equation is a sure sign of an error.

• The next sections will summarize the use of tensors to for-

mulate invariant equations by exploiting the transforma-

tion properties of their components.
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3.7.1 Scalar Transformation Law

Tensors may be viewed as generalizing the idea of scalars and

vectors, so let’s begin with these more familiar quantities.

Simplest possibility: A field has a single component (magni-

tude) at each point that is unchanged by the transformation

ϕ ′(x′) = ϕ(x).

Quantities such as ϕ(x) that are unchanged under the coordi-

nate transformation are called scalars.

EXAMPLE: Value of the temperature at different

points on the surface of the Earth.
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3.7.2 Vectors and Dual Vectors

Recall also that we can classify tensors by a notation (n,m),
where n is the number of upper indices and m is the number of

lower indices when evaluated in a basis.

• Thus a scalar is a tensor of type (0,0), since it carries no

indices.

• The sum of n and m is the rank of the tensor. A scalar is a

tensor of rank zero.

There are two kinds of rank-1 tensors, having the index pattern

(0,1) and (1,0), respectively. The first is called a dual vector,

covariant vector, or 1-form:
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DUAL VECTOR:

The gradient of a scalar field ϕ(x) = ∂ϕ(x)/∂x transforms un-

der change of coordinates as

(
∂ϕ(x)

∂x′µ

)

=
∂xν

∂x′µ

(
∂ϕ(x)

∂xν

)

.

Remember in such expressions:

• the Einstein summation convention, and

• that all partial derivatives are understood implicitly to be

evaluated at some point P = x.

A tensor having a transformation law that mimics that of the

scalar field gradient,

A′µ(x′) =
∂xν

∂x′µ
Aν(x) (dual vector)

is of type (0,1) and is termed a dual vector (also 1-form, co-

variant vector, or covector).
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ECONOMY OF NOTATION: The preceding equation

A′µ(x′) =
∂xν

∂x′µ
Aν(x) (dual vector)

really means four equations:

A′µ =
∂x0

∂x′µ
A0+

∂x1

∂x′µ
A1+

∂x2

∂x′µ
A2+

∂x3

∂x′µ
A3 (µ = 0,1,2,3)

each containing four terms. It is equivalent to the matrix equa-

tion















A′0

A′1

A′2

A′3















=

















∂x0

∂x′0
∂x1

∂x′0
∂x2

∂x′0
∂x3

∂x′0

∂x0

∂x′1
∂x1

∂x′1
∂x2

∂x′1
∂x3

∂x′1

∂x0

∂x′2
∂x1

∂x′2
∂x2

∂x′2
∂x3

∂x′2

∂x0

∂x′3
∂x1

∂x′3
∂x2

∂x′3
∂x3

∂x′3































A0

A1

A2

A3















.
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VECTORS: A differential dx transforms like

dx′µ =
∂x′µ

∂xν
dxν ,

which suggests a second rank-1 transformation rule

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

A tensor that behaves in this way is of type (1,0) and is termed

a vector or contravariant vector.

Notice carefully the difference between the transformation laws

for a vector and a dual vector,

A′µ(x′) =
∂xν

∂x′µ
Aν(x) (dual vector),

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

The transformation rules are similar, differing only in

• the vertical placement of the old coordinates x and new

coordinates x′ in the partial derivatives, and

• the corresponding vertical placement of indices required

for consistency in the summation convention.
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The dual vector and vector transformation laws,

A′µ(x′) =
∂xν

∂x′µ
Aν(x) (dual vector)

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

may be viewed as matrix equations,

A′µ(x
′) = Ûν

µ Aν(x) A′µ(x′) =U
µ
ν Aν(x),

with the matrices defined by

U ≡ ∂x′

∂x
Û ≡ ∂x

∂x′
ÛU = I,

where I is the 4×4 unit matrix. In these transformations

• the matrix U is called the Jacobian matrix and

• the matrix Û is called the inverse Jacobian matrix.
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The historical use of covariant to refer to lower indices and

contravariant to upper indices arises from tensor invariance.

• In terms of the Jacobian matrix U and the inverse Jacobian

matrix Û , under the coordinate transformation x→ x′

– a vector transforms as V ′µ =U
µ
ν V ν and

– a dual vector transforms as ω ′µ = Ûν
µ ων ,

with a corresponding change of coordinate basis.

• A vector V is invariant, so the basis vectors must transform

in just such a way to cancel the change in the components.

• Specifically, since invariance of V requires

V =V µeµ =V ′µe′µ ,

the basis vectors must transform as e′µ = Ûν
µ eν so that

V ′µe′µ =U
µ
ν V νÛα

µ eα =U
µ
ν Ûα

µ V νeα =V µeµ ,

where U
µ
ν Ûα

µ = δ α
ν was used.

• By a similar proof the invariance of ω = ωµeµ requires

that the basis dual vectors transform as e′µ =U
µ
ν eν .

• Thus lower-index components transform with Û , just as

the components of the vector basis eµ transform. They co-

vary with the basis and are termed covariant components.

• But upper-index components transform with U and thus

“opposite” to transformation of the basis vectors eµ ; they

contra-vary and are termed contravariant components.
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Summarizing, we expect the possibility of two rank-1 tensors:

1. Dual vectors (also called one-forms, covariant vectors, or

covectors), which carry a lower index and transform like

the gradient of a scalar:

A′µ(x′) =
∂xν

∂x′µ
Aν(x) (dual vector).

2. Vectors (also called contravariant vectors), which carry an

upper index and transform like the coordinate differential:

A′µ(x′) =
∂x′µ

∂xν
Aν(x) (vector).

In the general case they must be distinguished (by

placement—upper or lower—of their indices).
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3.7.3 Scalar Product

Covariant and contravariant indices on vectors permit a scalar

product to be defined as

A·B≡ AµBµ = AµBµ .

This transforms as a scalar because from

A′µ(x′) =
∂xν

∂x′µ
Aν(x) A′µ(x′) =

∂x′µ

∂xν
Aν(x)

we have that

A′·B′ = A′µB′µ =
∂xν

∂x′µ
Aν

∂x′µ

∂xα
Bα =

∂xν

∂x′µ
∂x′µ

∂xα
AνBα

=
∂xν

∂xα
AνBα = δ ν

α AνBα

= AαBα = A·B,

where the Kronecker delta is given by

δ
µ
ν =

∂x′µ

∂x′ν
=

∂xµ

∂xν
=

{

1 (µ = ν)

0 (µ 6= ν)
.

Thus A′·B′ = A·B and the scalar product is invariant.

Eliminating indices by summing over repeated

ones is called contraction. The scalar product has

no tensor indices left so it is fully contracted.
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3.7.4 Rank-2 Tensors

Three kinds of rank-2 tensors transform as

T ′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ ,

T ′νµ =
∂xα

∂x′µ
∂x′ν

∂xβ
T

β
α ,

T ′µν
=

∂x′µ

∂xα

∂x′ν

∂xβ
T αβ .

This pattern may be generalized to tensors of any rank.

• Covariant Tensors: carry only lower indices

• Contravariant Tensors: carry only upper indices

• Mixed Tensors: carry both upper and lower indices

EXAMPLE: the Kronecker delta δ ν
µ is a rank-2 mixed tensor.

Handy to recall:

• Upper index µ on left side requires right-side

“factor” ∂x′µ/∂xν (prime in numerator).

• Lower index ν on left side requires right-side

“factor” ∂xµ/∂x′ν (prime in denominator).

• “Vertical position of index on left = vertical

position of primed coordinate on right”
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Not all quantities carrying indices are tensors! It is

• the transformation laws for components in a basis, or

• that they provide linear maps to the real numbers

that define tensors.

NOTE: We often employ a standard shorthand by

using

• “a tensor Tµν” to mean

• “a tensor with components Tµν” when evalu-

ated in a basis.
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3.7.5 Metric Tensor

A rank-2 tensor of particular importance is the metric tensor

gµν because it is associated with the line element

ds2 = gµνdxµdxν

that defines distances in metric spaces. It is symmetric (gµν =

gνµ) and satisfies the usual rank-2 transformation rule

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ .

The contravariant components of the metric tensor gµν are de-

fined by

gµαgαν = δ ν
µ .

(That is, gµν and gµν are matrix inverses.)
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Contractions with the metric tensor may be used to raise and

lower (any number of) tensor indices; for example,

Aµ = gµνAν Aµ = gµνAν

T
µ
ν = gναT µα T α

βγ = gαµgγεT
ε

µβ
.

Thus, the scalar product of vectors may also be expressed

A·B = gµνAµBν ≡ AνBν .

In mixed-tensor expressions as above the relative horizontal or-

der of upper and lower indices can be important.

• For example, in

T
µ
ν = gναT µα

the notation indicates that the mixed tensor on the left side

of the equation was obtained by lowering the rightmost

index of T µα on the right side.

• This distinction is immaterial if the tensor is symmetric

under exchange of indices (see following pages).

• However, which index is lowered or raised matters for ten-

sors that are antisymmetric under index exchange:

T
µ
ν = gναT µα T

µ
ν = gναT αµ

are equivalent if T is symmetric, but different if T is anti-

symmetric.
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Vectors and dual vectors are distinct entities that are defined in

different spaces.

• However, the preceding discussion make it clear that for

the special case of a manifold with metric,

• indices on any tensor may be raised or lowered at will by

contraction with the metric tensor.

Defining a metric establishes a relationship that

permits vectors and dual vectors to be treated as

if they were (in effect) different representations of

the same vector.

• Our discussion will usually proceed as if Aµ and Aµ are

different forms of the same vector that are related by con-

traction with the metric tensor,

• But secretly we will remember that they really are differ-

ent, and that it is only for metric spaces that this conflation

is not likely to land us in trouble.
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3.8 Symmetric and Antisymmetric Tensors

The symmetry of tensors under exchanging pairs of indices is

often important.

• An arbitrary rank-2 tensor can always be decomposed into

a symmetric part and an antisymmetric part:

Tαβ = 1
2(Tαβ +Tβα)+

1
2(Tαβ −Tβα),

where the first term is clearly symmetric and the second

term antisymmetric under exchange of indices.

• For completely symmetric and completely antisymmetric

rank-2 tensors we have

Tαβ =±Tβα T αβ =±T βα T
β

α =±T
β
α ,

where the plus sign holds if the tensor is symmetric and

the minus sign if it is antisymmetric.

• More generally, we say that a tensor of rank two or higher

is

– Symmetric in any two of its indices if exchanging

those indices leaves the tensor invariant and

– Antisymmetric (sometimes termed skew-symmetric)

in any two indices if it changes sign upon switching

those indices.
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• Symmetrizing and antisymmetrizing operations on tensor

indices may be denoted by a bracket notation in which

– () indicates symmetrization and

– [ ] indicates antisymmetrization

over indices included in the brackets.

• For example, symmetrization over all indices for a rank-N

covariant tensor Tα ,β ,...ω corresponds to

T(α ,β ,...ω) ≡
1

N!
(Sum permutations on indices α,β , . . .ω)

and antisymmetrization over all indices of Tα ,β ,...ω corre-

sponds to

T[α ,β ,...ω ] ≡
1

N!
(±Sum permutations on indices α,β , . . .ω) ,

where the notation ± indicates that terms of the sum have

– a plus sign if they correspond to an even number of

index exchanges and

– a negative sign if they correspond to an odd number

of index exchanges.

• Thus, for rank-2 contravariant tensors we may write

T (αβ ) = 1
2
(T αβ +T βα) T [αβ ] = 1

2
(T αβ −T βα)
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• In the more general case one may be interested in sym-

metrizing or antisymmetrizing over only a subset of in-

dices for higher-rank tensors.

• If the indices are contiguous the above notation suffices

with only the indices to be symmetrized or antisym-

metrized included in the brackets.

• In the event that indices to be symmetrized or antisym-

metrized are not adjacent to each other, the preceding no-

tation may be extended by using vertical brackets to ex-

clude indices from the symmetrization or antisymmetriza-

tion.

Example: The expression

Tα [β |γ |δ ] =
1
2
(Tαβγδ −Tαδγβ )

corresponds to a rank-4 covariant tensor that has

been antisymmetrized in its second and fourth in-

dices only.
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3.9 Summary of Algebraic Tensor Operations

Various algebraic operations are permitted for tensors:

• Multiplication by a scalar: For example,

aAµν = Bµν ,

where a is a scalar and Aµν and Bµν are rank-2 tensors.

• Addition or subtraction: Two tensors of the same type

may be added or subtracted (meaning that their compo-

nents are added or subtracted) to produce a new tensor of

the same type. For example,

Aµ −Bµ =Cµ ,

where Aµ , Bµ , and Cµ are vectors.

• Multiplication: Tensors may be multiplied by forming

products of components. The rank of the resultant tensor

will be the sum of the ranks of the factors. Example:

Aµν =UµVν ,

• Contraction: For a tensor of type (n,m), a tensor of co-

variant rank n− 1 and contravariant rank m− 1 may be

formed by setting one upper and one lower index equal

and taking the implied sum. For example,

A = A
µ

µ ,

where A is a scalar and A
µ

ν is a mixed rank-2 tensor.
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3.10 Tensor Calculus on Curved Manifolds

To formulate physical theories in terms of tensors requires the

ability to manipulate tensors mathematically.

• In addition to the algebraic rules for tensors described in

preceding sections, we must formulate

– a prescription to integrate tensor equations and

– a prescription to differentiate them.

• Tensor calculus is mostly a straightforward generalization

of normal calculus but additional complexity arises for

two reasons:

– It must be ensured that integration and differentiation

preserve any physical symmetries.

– It must be ensured that operations on tensor equations

preserve the tensor structure.

• We will see that

– tensor integration requires a simple modification of

the standard integration rules, but

– derivatives of tensors require a less-simple modifica-

tion with far-reaching mathematical and physical im-

plications.
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3.10.1 Invariant Integration

Change of volume elements for spacetime integration:

d4x = det

(
∂x

∂x′

)

d4x′,

where det(∂ (x)/∂ (x′)) is the Jacobian determinant of the trans-

formation between the coordinates.

• The metric tensor transforms as

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ (triple matrix product).

• Therefore, since:

determinant of a product = product of determinants,

• the determinant of the metric tensor g ≡ detgµν trans-

forms as

g′ = det

(
∂x

∂x′

)

det

(
∂x

∂x′

)

g → det

(
∂x

∂x′

)

=

√

|g′|
√

|g|
,

which gives when inserted into the first equation

√

|g|d4x =
√

|g′|d4x′,

(|g| because g can be negative in 4-D spacetime).
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Therefore, in integrals we shall employ

dV =
√

|g|d4x,

as an invariant volume element.
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Example: The metric for a 2-dimensional spherical manifold

(2-sphere) is specified by the line element

ds2 = gi jdxidx j,

which is explicitly in spherical coordinates

dℓ2 = R2dθ 2+R2 sin2 θdϕ2.

This may be written as the matrix equation

dℓ2 = (dθ dϕ)

(

R2 0

0 R2 sin2 θ

)

︸ ︷︷ ︸
gi j

(

dθ

dϕ

)

.

The area of the 2-sphere may then be expressed as the “invari-

ant volume integration”

A =
∫
√

|g|d2x =
∫ 2π

0
dϕ
∫ π

0

√

detgi j dθ

=

∫ 2π

0
dϕ

∫ π

0
R2 sinθdθ = 4πR2.

where the metric tensor gi j is the 2×2 matrix in the preceding

equation for the line element.

In this 2-dimensional example the sign of the de-

terminant is positive, so no absolute value is re-

quired under the radical.
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3.10.2 Covariant Differentiation

Let’s now consider the derivatives of tensor quantities. First in-

troduce two common compact notations for partial derivatives

∂µϕ = ϕ,µ ≡
∂ϕ(x)

∂xµ
∂ µϕ = ϕ ,µ ≡ ∂ϕ(x)

∂xµ
.

• The derivative of a scalar is a covariant vector and scalars

and their derivatives are well-defined tensors.

• But, for the derivative of a dual vector, by the product rule

A′µ ,ν ≡
∂A′µ
∂x′ν

=
∂

∂x′ν

(

Aα
∂xα

∂x′µ

)

︸ ︷︷ ︸

A′µ

=
∂Aα

∂x′ν
∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν∂x′µ
( ∂/∂x′ of product)

=
∂Aα

∂xβ

∂xβ

∂x′ν
︸ ︷︷ ︸

chain rule

∂xα

∂x′µ
+Aα

∂ 2xα

∂x′ν∂x′µ

= Aα ,β
∂xβ

∂x′ν
∂xα

∂x′µ
︸ ︷︷ ︸

Tensor

+ Aα
∂ 2xα

∂x′ν∂x′µ
︸ ︷︷ ︸

Not a tensor!

where Aα ,β ≡ ∂Aα/∂xβ . In curved spacetime the second

term can’t be eliminated:

Partial differentiation is NOT COVARIANT in

curved spacetime for tensors of rank 1 or higher!
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Partial differentiation is not generally a covariant operation in

curved manifolds.

• This will complicate the formalism immensely because

• the utility of the tensor framework rests on preservation of

tensor structure under transformations.

It is desirable to define a new covariant derivative that ensures

this automatically.

• The terms that violate tensor transformation laws for par-

tial derivatives of tensors will involve second derivatives.

• The offending non-tensorial contributions can be elimi-

nated systematically by introducing additional fields on

the manifold.

• There is more than one way to do this, each leading to

a different form of covariant differentiation. We will ad-

dress three in this chapter:

1. covariant derivatives and

2. absolute derivatives, whichuse derivatives of the met-

ric tensor field to cancel non-tensorial terms, and

3. Lie derivatives, which use derivatives of an auxiliary

vector field defined on the manifold to the same end.

We begin with the covariant derivative.
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3.11 The Covariant Derivative

Let’s define the Christoffel symbols Γλ
αβ by requiring that they

obey a transformation law

Γ′λαβ = Γκ
µν

∂xµ

∂x′α
∂xν

∂x′β
∂x′λ

∂xκ
+

∂ 2xµ

∂x′α∂x′β
∂x′λ

∂xµ
.

(Γλ
αβ is not a tensor—see the 2nd derivatives above!) Then this

transformation law imples that (Problem),

(

A′µ ,ν −Γ′λµνA′λ
)

︸ ︷︷ ︸

≡B′µν

=
(

Aα ,β −Γκ
αβ Aκ

)

︸ ︷︷ ︸

≡Bαβ

∂xα

∂x′µ
∂xβ

∂x′ν
.

For the quantity in parentheses this is the transformation law

for a rank-2 covariant tensor:

B′µν = Bαβ
∂xα

∂x′µ
∂xβ

∂x′ν
.

This suggests that we define the covariant derivative of Aµ as

Aµ ;ν ≡
tensor

︷ ︸︸ ︷

Aµ ,ν
︸︷︷︸

not tensor

− Γλ
µνAλ
︸ ︷︷ ︸

not tensor

where in our notation

• a subscript comma denotes partial differentiation;

• a subscript semicolon denotes covariant differentiation

with respect to the variables following it.
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• Then the covariant derivative of a dual vector

Aµ ;ν ≡
tensor

︷ ︸︸ ︷

Aµ ,ν
︸︷︷︸

not tensor

− Γλ
µνAλ
︸ ︷︷ ︸

not tensor

transforms as a covariant tensor of rank 2, even though

neither of its terms is a tensor.

• It will be useful to introduce also an alternative notation

for the covariant derivative:

∇νAµ = Aµ ;ν ≡ ∂νAµ −Γλ
µνAλ .

where ∇µ denotes an operator that takes the covariant

derivative with respect to xµ :
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Likewise, we can introduce the covariant derivative of a vector

in either of the notations:

Aλ
;µ = Aλ

,µ +Γλ
αµAα ∇µAλ = ∂µAλ +Γλ

αµAα ,

where the result is a mixed rank-2 tensor, and the covariant

derivatives of the three possible rank-2 tensors through

Aµν ;λ= Aµν ,λ −Γα
µλ Aαν −Γα

νλ Aµα ,

A
µ

ν ;λ= A
µ

ν ,λ +Γ
µ
αλ Aα

ν −Γα
νλ A

µ
α ,

A
µν

;λ
= A

µν
,λ
+Γ

µ
αλ

Aαν +Γν
αλ Aµα ,

or in alternative notation

∇λ Aµν= ∂λ Aµν −Γα
µλ Aαν −Γα

νλ Aµα ,

∇λ A
µ

ν= ∂λ A
µ

ν +Γ
µ
αλ

Aα
ν −Γα

νλ A
µ

α ,

∇λ Aµν= ∂λ Aµν +Γ
µ
αλ

Aαν +Γν
αλ Aµα ,

where the derivatives now define rank-3 tensors.
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From the form of equations like

∇λ Aµν= ∂λ Aµν −Γα
µλ Aαν −Γα

νλ Aµα ,

∇λ A
µ

ν= ∂λ A
µ

ν +Γ
µ
αλ

Aα
ν −Γα

νλ A
µ

α ,

∇λ Aµν= ∂λ Aµν +Γ
µ
αλ

Aαν +Γν
αλ Aµα ,

we may formulate simple rules for constructing the covariant

derivative of a tensor having any rank:

• Form the ordinary partial derivative of the tensor

• Add one Christoffel symbol term having the sign and form

for a dual (covariant) vector for each lower index of the

tensor

• Add one Christoffel symbol term having the sign and form

for a (contravariant) vector for each upper index of the

tensor.
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Most rules for partial differentiation carry over with suitable

generalization for covariant differentiation.

Example:

Covariant derivative of a product

(AµBν);λ = Aµ ;λ Bν +AµBν ;λ .

which is the usual (Leibniz rule) result.

The most important exception concerns the properties of suc-

cessive covariant differentiations.

• Although partial derivative operators normally commute,

covariant derivative operators generally do not commute

with each other.

• The covariant derivative of the metric tensor vanishes

(Problem):

∇αgµν = gµν ;α = 0,

Some implications:

– Raising and lowering index by contraction with gµν

commutes with covariant differentiation.

– This will allow in the Einstein field equations a vac-

uum energy term (accelerated expansion and dark en-

ergy) when we address cosmology.
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3.12 Absolute Derivatives

Absolute derivatives (also termed intrinsic derivatives) are

closely related to covariant derivatives.

• Covariant derivatives are defined over an entire manifold

in terms of partial derivatives plus correction terms to can-

cel non-tensorial character.

• Absolute derivatives are defined only along constrained

paths in terms of ordinary derivatives plus correction

terms to cancel non-tensorial behavior.

• Using D/Dσ to denote the absolute derivative along a path

parameterized by σ ,

DAα

Dσ
≡ dAα

dσ
−Γ

β
αγAβ

dxγ

dσ
(Dual vectors),

DAα

Dσ
≡ dAα

dσ
+Γα

βγAβ dxγ

dσ
(Vectors),

with generalizations for higher-order tensors similar to

that discussed earlier for covariant derivatives.

• The essential utility of both covariant and absolute deriva-

tives is that

– When they are applied to tensor fields they produce

tensor fields.

– They provide a prescription for parallel transport in

curved spaces that will be discussed later.
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3.13 Lie Derivatives

The covariant derivative was introduced as a modification of

partial differentiation that respects tensor structure.

• An alternative way to modify partial differentiation so that

when applied to tensors it yields tensors is through the Lie

derivative.

• The covariant derivative uses derivatives of the metric ten-

sor to cancel non-tensorial terms arising in partial differ-

entiation.

• In contrast, the Lie derivative uses derivatives of an auxil-

iary vector field to cancel those same terms.

• We shall use primarily the covariant derivative to imple-

ment differentiation in curved spaces.

• However, it will be important in various contexts to have

at least a conceptual understanding of the Lie derivative.

A primary reason is that symmetries important for

a broad range of physical applications have an in-

timate connection to Lie derivatives.
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Lie drag

(a) (b)

(c)
P

Q

Tensor

at P

x(P)

Tensor
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tensor 

at Q

x(Q)

Figure 3.4: (a) A congruence for a manifold. (b) Tangent vector field for the

curves of the congruence. (c) Lie dragging using the congruence to compare

tensors at two nearby points.

The basic idea: The starting point is the idea of a congruence

for a manifold, which is

• a set of non-intersecting curves that are

• space-filling in that for each point in the manifold exactly

one curve of the congruence passes through it.

• As an example, for the sphere S2 curves corresponding to

lines of latitude define a congruence since for every point

on S2 exactly one curve of latitude passes through it.

Figure 3.4(a) illustrates a congruence for a general manifold.

• For each point in the manifold a basis vector may be de-

fined by a tangent to the curve at that point [Fig. 3.4(b)].

• Thus a congruence defines a vector field on the manifold.

• The converse is also true. For any vector field Xµ defined

on a manifold, a congruence can be generated by finding

the curves for which the vectors of the vector field are

tangent at each point of the curve.
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Lie drag

(a) (b)
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Tensor
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• Such congruences are familiar to the physicist in the guise

of streamlines connecting magnetic field vectors or illus-

trating fluid velocity fields.

• In the present more general context,

– a curve of the congruence for a vector field Xµ is

termed an orbit and

– the vectors Xµ are said to generate the orbit.

Figure (c) above illustrates the main idea of the Lie derivative.

• For a tensor field defined on the manifold, a tensor at the

point P (here illustrated by a vector) is

• “dragged” (prescription given below) from the point P to

the nearby point Q, along a curve of the congruence.

• This process is called Lie dragging.

Then the tensor defined naturally at Q, and the ten-

sor dragged from P, may be subjected to the usual

difference procedure to define a derivative since

they are now located at the same point. The re-

sulting derivative is termed the Lie derivative.
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Lie drag
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Constructing Lie derivatives: Suppose that we have a manifold

with a vector field Xµ and a corresponding congruence.

• Let some tensor field be defined on the manifold.

• To be definite for this example it will be taken to be a

contravariant rank-2 tensor, T µν(x).

• Now consider the transformation for small δu,

x′µ = xµ +Xµ(x)δu.

• This will be regarded as an active transformation in which

– the point P at xµ

– is sent to the point Q at

xµ +Xµ(x)δu,

with both points labeled in the same coordinate system.

By construction the point Q lies on the congru-

ence through P that is generated by Xµ ; see Fig.

(c) above.
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Lie drag
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Now consider the tensor with components T µν(x) at P.

• It is mapped to the tensor with components T ′µν(x′) at Q

by the transformation

x′µ = xµ +Xµ(x)δu.

• That is, the tensor is Lie-dragged from P to Q by the trans-

formation, as illustrated in Fig. (c) above.

• By the usual tensor transformation law,

T ′µν(x′) =
∂x′µ

∂xα

∂x′ν

∂xβ
T αβ (x)

= T µν(x)+
[

∂β XνT µβ +∂αXµT αν
]

δu,

where we have again used

x′µ = xµ +Xµ(x)δu.

• This gives the tensor T µν Lie-dragged from P to Q.



140 CHAPTER 3. TENSORS AND COVARIANCE

• The Lie derivative of T µν with respect to the congruence

of the vector field X is defined by

LX T µν ≡ Lim
δu→0

(
T µν(x′)−T ′µν(x′)

δu

)

.

• The tensor T ′µν(x′) was given above by

T ′µν(x′) =
∂x′µ

∂xα

∂x′ν

∂xβ
T αβ (x)

= T µν(x)+
[

∂β XνT µβ +∂αXµT αν
]

δu,

and the tensor T µν(x′) can be determined by expanding in

a Taylor series around x,

T µν(x′) = T µν(x)+(δu)∂αT µνXα +O

(

δu2
)

.

• Then substituting gives for the Lie derivative of T µν ,

LX T µν = Xα∂αT µν −T µα∂αXν −T αν∂αXµ .

By a similar procedure Lie derivatives for tensors of other ranks

can be determined. For example,

LX ϕ = Xϕ = Xα∂αϕ,

LX Aµ = Xα∂αAµ −Aα∂αXµ ,

LX Aµ = Xα∂αAµ +Aα∂µXα ,

LX Aµν = Xα∂αAµν +Aµα∂νXα +Aαν∂µXα ,

LX Aµν = Xα∂αAµν −Aµα∂αXν −Aαν∂αXµ .



3.13. LIE DERIVATIVES 141

Mathematically the Lie derivative is a more primitive concept

than the covariant derivative because it requires less added

structure on the manifold.

• For example, in the preceding derivations no appeal was

made to either a metric or to connection (Christoffel) co-

efficients.

• For manifolds of interest for general relativity (those hav-

ing a metric and a torsion-free connection; see Section 7.8

of book), all partial derivatives ∂µ may be replaced by co-

variant derivatives ∇µ in the Lie derivative

This is because all terms involving connection co-

efficients cancel identically if ∇µ is substituted for

∂µ in the preceding expressions for Lie derivatives.

For example,

LXAµν = Xα∇αAµν +Aµα∇νXα +Aαν∇µXα

and

LX Aµν = Xα∂αAµν +Aµα∂νXα +Aαν∂µXα ,

are equally valid if the manifold has a torsion-free connection.

This demonstrates explicitly that even though only

partial derivatives were used in its construction,

the Lie derivative of a tensor is a tensor.
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Lie transport and isometries:

A tensor T is said to be

• Lie-transported along a curve of the congruence associ-

ated with the vector field V if the Lie derivative vanishes,

LV T = 0.

• An interesting question for a manifold with metric is

whether there exists a vector field K such that the Lie

derivative of the metric vanishes,

LKgµν = 0.

We shall take this question up later, where it will be shown that

• if LK applied to the metric tensor gives zero,

• then K is a Killing vector field and

• the corresponding Killing vectors indicate directions in

which the metric is invariant.

Such symmetries of the metric are called isome-

tries.



3.14. INVARIANT EQUATIONS 143

3.14 Invariant Equations

The properties of tensors elaborated above ensure that

Any equation will be invariant under general co-

ordinate transformations provided that it equates

tensors of the same type (equates components hav-

ing the same upper and lower indices when ex-

pressed in a basis).

EXAMPLES:

• If A
µ

ν and B
µ

ν each transform as mixed rank-2 tensors

and A
µ

ν = B
µ

ν in the x coordinate system, then in the x′

coordinate system A′µν = B′µν .

• Likewise, an equation that equates any tensor to zero (that

is, sets all its components to zero) in some coordinate sys-

tem is covariant under general coordinate transformations,

implying that the tensor is equal to zero in all coordinate

systems.

• However, equations such as Aν
µ = 10 or Aµ = Bµ might

hold in particular coordinate systems but generally not in

all coordinate systems because they equate tensors of dif-

ferent kinds:

– a mixed rank-2 tensor with a scalar in the first case;

– a dual vector with a vector in the second.
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The preceding discussion suggests that invariance of a theory

under general coordinate transformations will be guaranteed by

carrying out the following steps.

1. Formulate all quantities in terms of tensors,

• with tensor types matching on the two sides of any

equation, and

• with all algebraic manipulations corresponding to

valid tensor operations (addition, multiplication, con-

traction, . . . ).

2. Redefine any integration to be invariant integration.

3. Replace all partial derivatives with covariant derivatives.

4. Take care to remember that a covariant differentiation

generally does not commute with a second covariant dif-

ferentiation.

As will be demonstrated in subsequent chapters,

this prescription in terms of tensors will provide a

powerful formalism for dealing with mathematical

relations that would be much more formidable in

standard notation



Chapter 4

Lorentz Covariance and Special

Relativity

To go beyond Newtonian gravitation we must consider, with

Einstein, the intimate relationship between the curvature of

space and the gravitational field.

• Mathematically, this extension is bound inextricably to the

geometry of spacetime, and in particular to the aspect of

geometry that permits quantitative measurement of dis-

tances.

• Let us first consider these ideas within the 4-dimensional

spacetime termed Minkowski space.

As we shall see, requiring covariance within

Minkowski space will lead us to the special the-

ory of relativity.

145
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4.0.1 The Indefinite Metric of Spacetime

A manifold equipped with a prescription for measuring dis-

tances is termed a metric space and the mathematical function

that specifies distances is termed the metric for the space.

• Familiar examples of metrics were introduced earlier.

• In this section those ideas are applied to flat 4-dimensional

spacetime, which is commonly termed Minkowski space.

• Although many concepts will be similar to those intro-

duced earlier, fundamentally new features will enter.

Many of these new features are associated with the indefinite

metric of Minkowski space.

• Minkowski space is flat but it is not euclidean, for it does

not possess a euclidean metric.

• Many of the metrics employed in earlier chapters could be

put into a diagonal form in which the signs of the diagonal

entries could all be chosen positive.

• Such a metric is termed positive definite.

• In contrast, we will see that the Minkowski metric

– can be put into diagonal form but

– it is an essential property of Minkowski space that the

diagonal entries cannot all be chosen positive.

Such a metric is termed indefinite, and it leads to properties

differing fundamentally from those of euclidean spaces.
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4.1 Minkowski Space

In a particular inertial frame, introduce unit vectors e0, e1, e2,

and e3 that point along the t, x, y, and z axes. Any 4-vector A

may be expressed in the form,

A = A0e0+A1e1+A2e2+A3e3.

and the scalar product of 4-vectors is given by

A·B = B·A = (Aµeµ)·(Bνeν) = eµ ·eνAµBν .

Note that generally we shall use

• non-bold symbols to denote 4-vectors

• bold symbols for 3-vectors.

We sometimes use a notation such as bµ to stand

generically for all components of a 4-vector.

Defining the metric tensor ηµν in Minkowski space,

ηµν ≡ eµ ·eν ,

(it is conventional to denote the metric by ηµν rather than gµν

in Minkowski space) the scalar product may be expressed as

A·B = ηµνAµBν ,
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and the Minkowski-space line element is

ds2 =−c2dt2 +dx2+dy2+dz2 = ηµνdxµdxν ,

where the metric tensor of flat spacetime may be expressed as

ηµν =










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










= diag(−1,1,1,1).

Thus ds2 = ηµνdxµdxν corresponds to the matrix equation

ds2 = (cdt dx dy dz)










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















cdt

dx

dy

dz










,

where ds2 is the spacetime interval between x and x+dx with

x = (x0,x1,x2,x3) = (ct,x1,x2,x3) = (ct,xxx).

• The Minkowski metric is indefinite and is

sometimes termed pseudo-euclidean.

• As explained below, such metrics are also

said to have a Lorentzian signature.
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Example 4.1

Given a Minkowski vector with components

Aµ = (A0,A1,A2,A3),

what are the components of the corresponding dual vector? Using

ηµν for the metric tensor, the indices may be lowered through the

contraction

Aµ = ηµνAν .

Therefore, using the Minkowski metric tensor

ηµν =










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










the elements of the corresponding dual vector are

Aµ = (−A0,A1,A2,A3).

This illustrates explicitly that

• vectors and dual vectors generally are not equivalent in non-

euclidean manifolds, but that

• they are in one-to-one correspondence though contraction with

the metric tensor.
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The Minkowski-space metric

ηµν =










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










is diagonal, with relative sign of the diagonal terms (−+++).

• This sign pattern is termed the signature of the metric.

• (Some authors instead define the signature to be an integer

equal to the difference of the number of positive signs and

number of negative signs.)

• It is also common in the literature to see the opposite sig-

nature, corresponding to the pattern (+ − −−) that re-

sults from multiplying the metric above by −1.

• This choice is conventional (no physics depends on it).

Metrics with the signature (− + ++) or (+ − −−) are

sometimes said to be Lorentzian.

• However, it is an essential property of Minkowski space

that it is not possible to have the same sign for all terms in

the signature of the metric.

The Minkowski metric is indefinite, in contrast to

the positive definite metric of euclidean spaces.
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4.1.1 Invariance of the Spacetime Interval
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Special relativity follows from two assumptions:

• The speed of light is constant for all observers.

• The laws of physics can’t depend on coordinates.

The postulate that the speed of light is a constant is equivalent

to a statement that

The spacetime interval ds2 is an invariant that

is unchanged by transformations between inertial

systems (the Lorentz transformations; see below).

• This invariance does not hold for the euclidean spatial in-

terval dx2 +dy2+dz2,

• nor does it hold for the time interval c2dt2.

• Only the particular combination of spatial and time inter-

vals defined by

ds2 =

not invariant
︷ ︸︸ ︷

−c2dt2

not invariant
︷ ︸︸ ︷

+dx2 +dy2+dz2

︸ ︷︷ ︸

invariant

is (Lorentz) invariant.

Because of this invariance, Minkowski space is the

natural manifold for special relativity.
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Example 4.2

Let’s use the metric to determine the relationship between the time

coordinate t and the proper time τ , with τ2 ≡−s2/c2. From

ds2 =−c2dt2 +dx2+dy2+dz2,

we may write

dτ2 =
−ds2

c2
=

1

c2
(c2dt2−dx2−dy2−dz2)

= dt2







1− 1

c2

[(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2
]

︸ ︷︷ ︸

v2







=

(

1− v2

c2

)

dt2.

where v is the magnitude of the ordinary 3-velocity. Therefore, the

proper time τ that elapses between coordinate times t1 and t2 is

τ12 =
∫ t2

t1

(

1− v2

c2

)1/2

dt.

The proper time interval τ12 is shorter than the coordinate time in-

terval t2− t1 because the square root is always less than one. If the

velocity is constant, this reduces to

∆τ =

(

1− v2

c2

)1/2

∆t,

which is the usual statement of time dilation in special relativity.
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Table 4.1: Rank 0, 1, and 2 tensor transformation laws

Tensor Transformation law

Scalar ϕ ′ = ϕ

Covariant vector A′µ =
∂xν

∂x′µ
Aν

Contravariant vector A′µ =
∂x′µ

∂xν
Aν

Covariant rank-2 T ′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
Tαβ

Contravariant rank-2 T ′µν =
∂x′µ

∂xα

∂x′ν

∂xβ
T αβ

Mixed rank-2 T ′νµ =
∂xα

∂x′µ
∂x′ν

∂xβ
T

β
α

4.2 Tensors in Minkowski Space

In Minkowski space transformations between coordinate sys-

tems are independent of spacetime. Thus derivatives appearing

in the general definitions of Table 4.1 for tensors are constants

and for flat spacetime we have the simplified tensor transfor-

mation laws

ϕ ′= ϕ Scalar

A′µ = Λ
µ

νAν Contravariant vector

A′µ = Λ
ν

µ Aν Covariant vector

T ′µν = Λ
µ

γΛν
δ T γδ Contravariant rank-2 tensor

T ′µν = Λ
γ

µ Λ δ
ν Tγδ Covariant rank-2 tensor

T ′µν = Λ
µ

γΛ δ
ν T

γ
δ Mixed rank-2 tensor

where the Λ
µ

ν don’t depend on the spacetime coordinates.
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In addition, for flat spacetime we may use a coordinate system

for which the second term of

A′µ ,ν = Aα ,β
∂xβ

∂x′ν
∂xα

∂x′µ
︸ ︷︷ ︸

Tensor

+ Aα
∂ 2xα

∂x′ν∂x′µ
︸ ︷︷ ︸

Not a tensor

can be transformed away and in flat spacetime covariant

derivatives are equivalent to partial derivatives.

In the Minkowski transformation laws the Λ
µ

ν are

elements of Lorentz transformations, to which we

now turn our attention.
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4.3 Lorentz Transformations

In 3-dimensional euclidean space, rotations are a particularly

important class of transformations because they change the di-

rection for a 3-vector but preserve its length.

• We wish to generalize this idea to investigate abstract ro-

tations in the 4-dimensional Minkowski space that change

the direction but not the length of 4-vectors.

• Such rotations in Minkowski space are termed Lorentz

transformations.
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e1

e2

φ

x

x1

x2

e1'

e2'

'x1x2'

φ

Consider rotation of a 2D euclidean coordinate system (above)

• The length of an arbitrary vector xxx will be unchanged by

this transformation if we require that xxx·xxx = xxx′·xxx′.

• Since xxx·xxx ≡ gi jx
ix j, this requires that the transformation

matrix R implementing the rotation x′i = Ri
jx

j act on the

metric tensor gi j in the following way

Rgi jR
T = gi j,

where RT is the transpose of R (switch rows and columns).

• For euclidean space the metric tensor is just the unit matrix

so the above requirement reduces to RRT = 1, which is the

condition that R be an orthogonal matrix.

Thus, we obtain by this somewhat pedantic route

the well-known result that rotations in euclidean

space are implemented by orthogonal matrices.
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• But the requirement Rgi jR
T = gi j is valid generally, not

just for euclidean spaces. Thus, let’s use it as guidance to

constructing generalized rotations in Minkowski space.

• By analogy with the above discussion of rotations in eu-

clidean space, we seek a set of transformations that leave

the length of a 4-vector invariant in the Minkowski space.

• We write the coordinate transformation in matrix form,

dx′µ = Λ
µ

νdxν ,

where we expect the transformation matrix Λ
µ

ν to satisfy

the analog of Rgi jR
T = gi j for the Minkowski metric ηµν ,

ΛηµνΛT = ηµν ,

or explicitly in terms of matrix components,

Λ
ρ

µ Λσ
νηρσ = ηµν .

• Let us now use this property to construct the elements of

the transformation matrix Λ
µ

ν . These will include

– rotations about the spatial axes (corresponding to ro-

tations within inertial systems) and

– transformations between inertial systems moving at

different constant velocities (Lorentz boosts).

We consider first rotations about the z axis.
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4.3.1 Rotations

For rotations about the z axis

(

x′1

x′2

)

= R

(

x1

x2

)

=

(

a b

c d

)(

x1

x2

)

,

where a, b, c, and d parameterize the transformation matrix.

• Rotations about a single axis are a 2D problem with eu-

clidean metric, so the condition Rgi jR
T = gi j is

(

a b

c d

)

︸ ︷︷ ︸

R

(

1 0

0 1

)

︸ ︷︷ ︸
gi j

(

a c

b d

)

︸ ︷︷ ︸

RT

=

(

1 0

0 1

)

︸ ︷︷ ︸
gi j

,

• Carrying out the matrix multiplications gives

(

a2+b2 ac+bd

ac+bd c2+d2

)

=

(

1 0

0 1

)

,

and comparing the two sides of the equation implies that

a2+b2 = 1 c2+d2 = 1 ac+bd = 0.

• These requirements are satisfied by the choices

a = cosϕ b = sinϕ c =−sinϕ d = cosϕ,

and we obtain the expected result for an ordinary rotation,

(

x′1

x′2

)

= R

(

x1

x2

)

=

(

cosϕ sinϕ

−sinϕ cosϕ

)(

x1

x2

)

.
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v

x' x

Figure 4.1: A Lorentz boost along the positive x axis.

Now, let’s apply this same technique to determine

the elements of a Lorentz boost transformation.

4.3.2 Lorentz Boosts

Consider a boost from one inertial system to a 2nd one moving

at uniform velocity along the x axis (Fig. 4.1).

• The y and z coordinates are unaffected, so this also is ef-

fectively a 2-dimensional transformation on t and x,

(

cdt ′

dx′

)

=

(

a b

c d

)(

cdt

dx

)

• We can write the condition ΛηµνΛT = ηµν out as

(

a b

c d

)

︸ ︷︷ ︸

Λ

(

−1 0

0 1

)

︸ ︷︷ ︸
ηµν

(

a c

b d

)

︸ ︷︷ ︸

ΛT

=

(

−1 0

0 1

)

︸ ︷︷ ︸
ηµν

,

(identical to rotations, except for the indefinite metric).
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• Multiplying the matrices on the left side and comparing

with the matrix on the right side in

(

a b

c d

) (

−1 0

0 1

) (

a c

b d

)

=

(

−1 0

0 1

)

,

gives the conditions

a2−b2 = 1 − c2+d2 = 1 −ac+bd = 0,

• These are satisfied if we choose

a = coshξ b = sinhξ c = sinhξ d = coshξ ,

where ξ is a hyperbolic variable with −∞≤ ξ ≤ ∞.

• Therefore, the boost transformation may be written as

(

cdt ′

dx′

)

=

(

coshξ sinhξ

sinhξ coshξ

)(

cdt

dx

)

(Lorentz boost).

Which may be compared with the rotational result

(

x′1

x′2

)

=

(

cosϕ sinϕ

−sinϕ cosϕ

)(

x1

x2

)

(Spatial rotation).
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The respective derivations make clear that

• the appearance of hyperbolic functions in the boosts,

rather than trigonometric functions as in rotations, traces

to the role of the indefinite metric

gµν = diag (−1,1)

in the boosts.

• The hyperbolic functions suggest that the boost transfor-

mations are “rotations”in Minkowski space.

• But these rotations

– mix space and time, and

– will have unusual properties since they correspond to

rotations through imaginary angles.

• These unusual properties follow from the metric:

– The conserved invariant interval is not the length of

spatial vectors or time intervals separately.

– Rather it is the specific mixture of time and space in-

tervals implied by the Minkowski line element with

indefinite metric:

ds2 = (cdt dx dy dz)










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



















cdt

dx

dy

dz










.
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v/c

+1-1

=  - tanh
−1 v

c
 
 

 
 ξ

Figure 4.2: Dependence of the Lorentz parameter ξ on β = v/c.

We can put the Lorentz boost transformation into a more famil-

iar form by relating the boost parameter ξ to the boost velocity.

• Let’s work with finite space and time intervals by replac-

ing dt→ t and dx→ x in the preceding equations.

• The velocity of the boosted system is v = x/t. From

(

ct ′

x′

)

=

(

coshξ sinhξ

sinhξ coshξ

)(

ct

x

)

,

the origin (x′ = 0) of the boosted system is

x′ = ct sinhξ + xcoshξ = 0 → xcoshξ =−ct sinhξ .

• Therefore, x/t =−csinhξ/coshξ , so

β ≡ v

c
=

x

ct
=− sinhξ

coshξ
=− tanhξ .

• This relationship between ξ and β is plotted in Fig. 4.2.
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• Using the identity 1= cosh2 ξ−sinh2 ξ , and the definition

γ ≡
(

1− v2

c2

)−1/2

=
1

√

1− v2/c2

of the Lorentz γ factor, we may write

coshξ =

√

cosh2 ξ

1
=

√

cosh2 ξ

cosh2 ξ − sinh2 ξ

=

√

1

1− sinh2 ξ/cosh2 ξ
=

1
√

1−β 2

=
1

√

1− v2/c2
= γ,

• From this result and

β =− sinhξ

coshξ

we obtain

sinhξ =−β coshξ =−β γ.

• Thus, inserting coshξ = γ and sinhξ = −β γ in the

Lorentz transformation for finite intervals gives

(

ct ′

x′

)

=

(

coshξ sinhξ

sinhξ coshξ

)(

ct

x

)

=

(

γ −γβ

−γβ γ

)(

ct

x

)

= γ

(

1 −β

−β 1

)(

ct

x

)

.
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• Writing the matrix expression

(

ct ′

x′

)

= γ

(

1 −β

−β 1

)(

ct

x

)

.

out explicitly for finite intervals gives the Lorentz boost

equations (for the specific case of a positive boost along

the x axis) in standard textbook form,

t ′= γ
(

t− vx

c2

)

x′ = γ(x− vt)

y′= y z′ = z.

• The inverse transformation corresponds to the replace-

ment v→−v.

• Clearly these reduce to the Galilean boost equations

xxx′ = xxx′(xxx,t) = xxx− vvvt t ′ = t ′(xxx,t) = t.

in the limit that v/c vanishes (so γ → 1), as we would

expect.

It is easily verified (Problem) that Lorentz trans-

formations leave invariant the spacetime interval

ds2.
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Figure 4.3: The lightcone diagram for two space and one time dimensions.

4.4 Lightcone Diagrams

By virtue of the line element (which defines a cone)

ds2 =−c2dt2 +dx2+dy2+dz2,

the Minkowski spacetime may be classified according to the

lightcone diagram exhibited in Fig. 4.3.

The lightcone is a 3D surface in 4D spacetime and

events and intervals in spacetime may be charac-

terized according to whether they lie inside of, out-

side of, or on the lightcone.
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The standard terminology [assuming our (−1,1,1,1) metric

signature]:

• If ds2 < 0 the interval is termed timelike.

• If ds2 > 0 the interval is termed spacelike.

• If ds2 = 0 the interval is called lightlike (or sometimes

null).
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The lightcone clarifies the distinction between Minkowski

spacetime and a 4D euclidean space:

• Two points in Minkowski spacetime are separated by the

interval ds defined through

ds2 =−c2dt2 +dx2+dy2+dz2.

This interval could be

– positive,

– negative, or

– zero,

which embodies impossibilities for a euclidean space.

In particular, lightlike particles have worldlines

confined to the lightcone and the square of the sep-

aration of any two points on a lightlike worldline

is ZERO.
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Example 4.3

The Minkowski line element in one space and one time dimension

[often termed (1+ 1) dimensions] is ds2 = −c2dt2 + dx2. Thus, if

ds2 = 0

−c2dt2+dx2 = 0 −→
(

dx

dt

)2

︸ ︷︷ ︸

v2

= c2 −→ v =±c.

We can generalize this result easily to the full 4D spacetime and we

conclude that

• Events in Minkowski space separated by a null interval (ds2 = 0)

are connected by signals moving at light velocity, v = c.

• If the time (ct) and space axes have the same scales, the world-

line of a freely propagating photon (or any massless particle)

always make ±45◦ angles in the lightcone diagram.

• Events at timelike separations (inside the lightcone) are con-

nected by signals with v < c, and

• Those with spacelike separations (outside the lightcone) could

be connected only by signals with v > c (which would violate

causality).
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ct

y

x

Figure 4.4: Each point of spacetime has its own lightcone.

We have placed the lightcone in the earlier illustration at the ori-

gin of our coordinate system, but in general we may imagine a

lightcone attached to every point in the spacetime, as illustrated

in Fig. 4.4.
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World line of

massive 

particle
World line 

of massless

photon

ct

y

x

ct

y

x

(a) (b)

Figure 4.5: Worldlines for massive particles and for massless particles such

as photons.

A tangent to the worldline of any particle defines the local

velocity of the particle and constant velocity implies straight

worldlines. Therefore, as illustrated in Fig. 4.5,

• Light must always travel in straight lines (in Minkowski

space; not in curved space), and always on the lightcone,

since v = c = constant.

• Thus photons have constant local velocities equal to c.

• Worldlines for any massive particle lie inside the local

lightcone since v ≤ c (timelike trajectory, since always

within the lightcone).

• The worldline for the massive particle in this particular

example is curved (acceleration).

• For non-accelerated massive particles the worldline would

be straight, but always within the lightcone.
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Invariance and Simultaneity

• In Galilean relativity, an event picks out a hyperplane of

simultaneity in the spacetime diagram consisting of all

events occurring at the same time as the event.

• All observers agree on what constitutes this set of simul-

taneous events because Galilean relativity of simultaneity

is independent of the observer.

• In Einstein’s relativity, simultaneity depends on the ob-

server and hyperplanes of constant coordinate time have

no invariant meaning.

• However, all observers agree on the classification of

events relative to local lightcones, because the speed of

light is invariant for all observers.

As we shall now discuss, The local lightcones de-

fine an invariant spacetime structure that may be

used to classify events.
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Figure 4.6: The lightcone diagram for two space and one time dimensions.

4.5 Causal Structure of Spacetime

The causal properties of Minkowski spacetime are encoded in

its light cone structure, which requires that v≤ c for all signals.

• Each point in spacetime may be viewed as lying at the

apex of a lightcone (“Now”).

• An event at the origin of a lightcone may influence any

event in its forward lightcone (the “Future”).

• The event at the origin of the lightcone may be influenced

by events in its backward lightcone (the “Past”).

• Events at spacelike separations are causally disconnected

from the event at the origin.

• Events on the lightcone are connected by v = c signals.
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The lightcone is a surface separating the knowable

from the unknowable for an observer at the apex of

the lightcone.

This lightcone structure of spacetime ensures that all velocities

obey locally the constraint v≤ c.

• Velocities are defined and measured locally.

• Hence covariant field theories in either flat or curved space

are guaranteed to respect the speed limit v≤ c.

• This is true irrespective of whether globally velocities ap-

pear to exceed c.

EXAMPLE: In the Hubble expansion of the Uni-

verse,

• Galaxies beyond a certain distance (the hori-

zon) would appear to recede from us at ve-

locities in excess of c.

• However, all local measurements in that ex-

panding, possibly curved, space would deter-

mine the velocity of light to be c.
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4.5.1 Time Machines and Causality Paradoxes

When time travel comes up it is usually about going backward

in time.

• Traveling forward in time requires no special talent.

• It is easy to arrange various scenarios consistent with rel-

ativity where a person could travel into a future time even

faster than normal.

• For example, in the twin paradox discussed later it is pos-

sible to arrange for a traveler to arrive back at Earth cen-

turies in the future relative to clocks that remain on Earth.

• Similar options exist using the gravitational time dilation

to be described later chapters.

However, the real question is, could you go back in time to

explore your earlier history?

• No! Not according to current understanding.

• To bend a forward-going timelike worldline continuously

into a backward-going one requires going outside the lo-

cal lightcone, requiring that v > c.

• If closed timelike loops were permitted, travel to earlier

times might be possible.

• However, they are forbidden if energy densities are never

negative and the Universe has the topology in evidence.
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Thus, the determined time traveler has two options:

• Find some negative energy, or

• Find structures with an exotic spacetime topology allow-

ing closed timelike loops.

Unfortunately for the aspiring time traveler,

• negative energy is probably forbidden in classical gravity

and

• there is no evidence at present for exotic spacetime topolo-

gies with closed timelike loops.

• These statements are based entirely on clas-

sical gravity considerations;

• it is unknown at present whether they could

be modified by some future understanding of

quantum gravity.
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From the preceding discussion we may conclude that

• the axioms of special relativity are fundamentally at odds

with the Newtonian concept of absolute simultaneity,

since

• the demand that light have the same speed for all ob-

servers necessarily means that

• the apparent temporal order of two events depends upon

the observer.

However, the abolishment of absolute simultaneity

• introduces no causal ambiguity because

• all observers agree on the lightcone structure of spacetime.

• Thus, for example, all observers will agree that

Event A can cause event B only if A lies in the past

lightcone of B.
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x

ct

x'

ct'
β =

 1

ct = x β

c
t =

 x
β

-1

φ = tan-1(v/c)

−φ

Figure 4.7: Lorentz boost transformation in a spacetime diagram.

4.6 Lorentz Transformations in Spacetime Diagrams

It is instructive to look at the action of Lorentz transformations

in the spacetime (lightcone) diagram. If we consider boosts

only in the x direction, the relevant part of the spacetime dia-

gram in some inertial frame corresponds to a plot with axes ct

and x, as in the figure above.
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x

ct

x'

ct'
β =

 1

ct = x β

c
t =

 x
β

-1

φ = tan-1(v/c)

−φ

Let’s ask what happens to these axes under the Lorentz boost

ct ′ = cγ
(

t− vx

c2

)

x′ = γ(x− vt).

• The t ′ axis corresponds to x′ = 0. From the 2nd equation

x = vt −→ x/c = (v/c)t = β t,

so the equation for the y′ axis is ct = xβ−1, with β = v/c.

• Likewise, the x′ axis corresponds to t ′ = 0, which implies

from the 1st equation that ct = (v/c)x = xβ .

• Thus, the equations of the x′ and t ′ axes [in the (x,ct) co-

ordinate system] are ct = xβ and ct = xβ−1, respectively.

• The x′ and t ′ axes for the boosted system are also shown

in the figure for a positive value of β .

• Time and space axes rotated by same angle, but in oppo-

site directions (Cause: the indefinite Minkowski metric).

• The rotation angle is given by tanϕ = v/c.
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Ordinary rotations: the two axes rotate by the same angle in

the same direction

e1

e2

φ

x

x1

x2

e1'

e2'

'x1x2'

φ

Lorentz boost “rotations”: the two axes rotate by the same an-

gle but in opposite directions

x

ct

x'

ct'
β =

 1

ct = x β

c
t =

 x
β

-1

φ = tan-1(v/c)

−φ
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Figure 4.8: Comparison of events in boosted and unboosted frames.

Most of special relativity follows from this figure.

• For example, relativity of simultaneity is illustrated above.

• Points A and B lie on the same t ′ line, so they are simulta-

neous in the boosted frame.

• But from the dashed projections on the ct axis, event A

occurs before event B in the unboosted frame.

• Likewise, points C and D lie at the same value of x′ in the

boosted frame and so are spatially congruent, but in the

unboosted frame xC 6= xD.

Relativistic time dilation and space contraction

follow rather directly from these observations.
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Example 4.4

The time registered by a clock moving between two points depends

on the path followed, as suggested by the time-dilation formula.

dτ2 =

(

1− v2

c2

)

dt2.

The proper time τ is the time registered by a clock

carried by an observer on a spacetime path.

That this is true even if the path returns to the initial spatial position

is the source of the twin paradox of special relativity.

• Twins are initially at rest in the same inertial frame.

• Twin 2 travels at v ∼ c to a distant star and then returns at the

same speed to the starting point.

• Twin 1 remains at the starting point.

• The relevant spacetime paths are:

x

ct

ct
2

ct
1

x
0

Distant 

star

Worldline

Twin 1

Worldline

Twin 2

• The elapsed time on the clock carried by Twin 2 is always smaller

than that for the clock carried by Twin 1 (see above equation).
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x

ct

ct
2

ct
1

x
0

Distant 

star

Worldline

Twin 1

Worldline

Twin 2

• The (seeming) paradox arises if one describes things from the

point of view of Twin 2, who sees Twin 1 move away and then

back.

• This seems to be symmetric with the case of Twin 1 watching

Twin 2 move away and then back.

But it isn’t: the twins travel different worldlines,

and different distances along these worldlines.

• For example, Twin 2 experiences accelerations but Twin 1 does

not, so their worldlines cannot be equivalent.

• Their clocks record the proper time on their respective world-

lines and thus differ when they are rejoined.

• This indicates unambiguously that Twin 2 is younger at the end

of the journey.

When properly analyzed, there is no paradox in

the “twin paradox”.
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Space Contraction

Consider a rod of proper length L0, as measured in its own rest

frame (ct,x), that is oriented along the x axis.

x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

Note: “Proper” in relativity denotes a quantity measured in the

rest frame of an object (proper time, proper length, . . . ).

What is the length of the rod L as observed in

the boosted (ct ′,x′) frame? Fundamental measure-

ment issues:

• Distances must be measured between space-

time points at the same time.

• Elapsed times must be measured at spacetime

points at the same place.

Example: Length of an arrow in flight is not given

by the difference between the location of its tip at

one time and its tail at a different time. The mea-

surements must be made at the same time.
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x
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• The frame (ct ′,x′) is boosted by a velocity v along the

positive x axis relative to the (ct,x) frame.

• Therefore, in the primed frame the rod will have a velocity

v in the negative x′ direction.

• Determining the length L observed in the primed frame re-

quires that the positions of the ends of the rod be measured

simultaneously in that frame.

• The axis labeled x′ has constant t ′ (bottom figure), so the

distance L (top figure) is the length in the primed frame.
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x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

• The distance L seems longer than L0, but this is deceiving

because the diagram is in Minkowski spacetime but our

brain has a euclidean-space bias.

• We are familiar with perceived distances being different

from actual distances from flat map projections.

Mercator

(preserves angles,

distorts sizes)

Map Projections

Source: http://www.culturaldetective.com/worldmaps.html
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x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

• A Mercator projection of the globe onto a euclidean

sheet of paper gives misleading distance information—

Greenland isn’t really larger than Brazil, for example,

We must always trust the metric to determine the

correct distance in any space.
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x

ct

x'

ct'

Constant

 

t

L0

L
'

φ = tan-1(v/c)

c∆t = (v/c) L0

• From the Minkowski indefinite-metric line element

ds2 =−c2dt2 +dx2.

and from the triangle (Minkowski Pythagorean theorem),

L2 = L2
0− (c∆t)2.

• But c∆t = (v/c)L0 (because from the diagram tanϕ =
c∆t/L0 and tanϕ = v/c). Therefore,

L = (L2
0− (c∆t)2)1/2

=

(

L2
0−
(v

c
L0

)2
)1/2

= L0

(

1− v2

c2

)1/2

• L is shorter than the proper length L0, even though it

seems longer in the figure. TRUST THE METRIC!

But this is just special relativistic length-

contraction, which is seen to be nothing more than

the Pythagorean theorem for Minkowski space.
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Figure 4.9: (a) Timelike, lightlike (null), and spacelike separations.

(b) Lorentz transformation that brings the timelike separated points A and

C of (a) into spatial congruence (they lie along a line of constant x′ in the

primed system). (c) Lorentz transformation that brings the spacelike sepa-

rated points A and B of (a) into coincidence in time (they lie along a line of

constant t ′ in the primed system.

As we have seen, the spacetime separation between any two

events (spacetime interval) may be classified in a relativisti-

cally invariant way as

1. timelike,

2. lightlike, or

3. spacelike

by constructing the lightcone at one of the points, as illustrated

in Fig. 4.9(a).
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The geometry of the above figures suggests another important

distinction between points at spacelike separations [the line AB

in Fig. (a)] and timelike separations [the line AC in Fig. (a)]:

• If two events have timelike separation, a Lorentz transfor-

mation can bring them into spatial congruence.

• Figure (b) illustrates a coordinate system (ct ′,x′).

– It is related to the original system by an x-axis Lorentz

boost by v/c = tanϕ1,

– in which A and C have the same coordinate x′.
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On the other hand

• If two events have a spacelike separation, a Lorentz trans-

formation exists that can synchronize the two points.

• Figure (c) illustrates an x-axis Lorentz boost by v/c =
tanϕ2 to a system in which A and B have the same time t ′.
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Notice that the maximum values of ϕ1 and ϕ2 are limited by the

v = c line.

• Thus, the Lorentz transformation to bring point A into

spatial congruence with point C

– exists only if point C lies to the left of the v = c line

– and thus is separated by a timelike interval from point

A.

• Likewise, the Lorentz transformation to synchronize point

A with point B

– exists only if B lies to the right of the v = c line,

– meaning that it is separated by a spacelike interval

from A.
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4.7 Lorentz Covariance of Maxwell’s Equations

We conclude this chapter by examining the Lorentz invariance

of the Maxwell equations that describe classical electromag-

netism. There are several motivations.

• It provides a nice example of how useful Lorentz invari-

ance and Lorentz tensors can be.

• The properties of the Maxwell equations influenced Ein-

stein strongly in his development of the special theory of

relativity.

• There are many useful parallels between general relativ-

ity and the Maxwell theory, particularly for weak gravity

where the Einstein field equations may be linearized.

Understanding covariance of the Maxwell equa-

tions will prove particularly important when grav-

itational waves are discussed in later chapters.
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4.7.1 Maxwell Equations in Non-covariant Form

In free space, using Heaviside–Lorentz, c = 1 units, the

Maxwell equations may be written as

∇∇∇·EEE = ρ ,

∂BBB

∂ t
+∇∇∇×EEE = 0,

∇∇∇·BBB = 0,

∇∇∇×BBB− ∂EEE

∂ t
= jjj,

where EEE is the electric field, BBB is the magnetic field, with the

charge density ρ and current vector jjj required to satisfy the

equation of continuity

∂ρ

∂ t
+∇∇∇· jjj = 0.

Maxwell’s equations are consistent with special relativity.

• However, in the above form this covariance is not mani-

fest, since these equations are formulated in terms of 3-

vectors and separate derivatives with respect to space and

time, not Minkowski tensors.

• It proves useful to reformulate the Maxwell equations

in a manner that is manifestly covariant with respect to

Lorentz transformations.

The usual route to accomplishing this begins by replacing the

electric and magnetic fields by new variables.
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4.7.2 Scalar and Vector Potentials

The electric and magnetic fields may be eliminated in favor

of a vector potential AAA and a scalar potential ϕ through the

definitions

BBB≡ ∇∇∇×AAA EEE ≡−∇∇∇ϕ− ∂AAA

∂ t
.

The vector identities

∇∇∇·(∇∇∇×BBB) = 0 ∇∇∇×∇∇∇ϕ = 0,

may then be used to show that the second and third Maxwell

equations are satisfied identically, and the identity

∇∇∇×(∇∇∇×AAA) = ∇∇∇(∇∇∇·AAA)−∇∇∇2
AAA,

may be used to write the remaining two Maxwell equations as

the coupled second-order equations

∇∇∇2ϕ +
∂

∂ t
∇∇∇·AAA = −ρ

∇∇∇2
AAA− ∂ 2AAA

∂ t2
−∇∇∇

(

∇∇∇·AAA+
∂ϕ

∂ t

)

= − jjj.

These equations may then be decoupled by ex-

ploiting a fundamental symmetry of electromag-

netism termed gauge invariance.
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4.7.3 Gauge Transformations

Because of the identity ∇∇∇×∇∇∇ϕ = 0, the simultaneous transfor-

mations

AAA→ AAA+∇∇∇χ ϕ → ϕ− ∂ χ

∂ t

for an arbitrary scalar function χ do not change the EEE and BBB

fields; thus, they leave the Maxwell equations invariant.

• These are termed (classical) gauge transformations.

• This freedom of gauge transformation may be used to de-

couple the Maxwell equations.

• For example, if a set of potentials (AAA,ϕ) that satisfy

∇∇∇·AAA+
∂ϕ

∂ t
= 0,

is chosen, the equations decouple to yield

∇∇∇2ϕ− ∂ 2ϕ

∂ t2
=−ρ ∇∇∇2

AAA− ∂ 2AAA

∂ t2
=− jjj,

which may be solved independently for AAA and ϕ .

• Such a constraint is called a gauge condition and imposing

the constraint is termed fixing the gauge.

The particular choice of gauge in the above exam-

ple is termed the Lorenz gauge.
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Another common gauge is the Coulomb gauge, with a gauge-

fixing condition

∇∇∇·AAA = 0,

which leads to the decoupled Maxwell equations

∇∇∇2ϕ =−ρ ∇∇∇2
AAA− ∂ 2AAA

∂ 2t
= ∇∇∇

∂ϕ

∂ t
− jjj.
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Let’s utilize the shorthand for derivatives introduced earlier:

∂ µ ≡ ∂

∂xµ
= (∂ 0,∂ 1,∂ 2,∂ 3) =

(

− ∂

∂x0
, ∇∇∇

)

,

∂µ ≡
∂

∂xµ
= (∂0,∂1,∂2,∂3) =

(
∂

∂x0
, ∇∇∇

)

,

where, for example, ∂1 = ∂/∂x1 and the 3-divergence is

∇∇∇≡ (∂ 1,∂ 2,∂ 3).

A covariant formalism then results from introducing

• the 4-vector potential Aµ ,

• the 4-current jµ , and

• the d’Alembertian operator ✷

through the definitions

Aµ ≡ (ϕ,AAA) = (A0,AAA) jµ ≡ (ρ , jjj) ✷≡ ∂µ∂ µ .

Then a gauge transformation takes the form

Aµ → Aµ −∂ µ χ ≡ A′µ

and the preceding examples of gauge-fixing constraints become

∂µAµ = 0 (Lorenz gauge) ∇∇∇·AAA = 0 (Coulomb gauge).

The Lorenz condition is covariant (formulated in

terms of 4-vectors); the Coulomb gauge condition

is not covariant (formulated in terms of 3-vectors).
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The operator ✷ is Lorentz invariant since

✷
′ = ∂ ′µ∂ ′µ = Λν

µΛ
µ

λ ∂ν∂ λ = ∂µ∂ µ = ✷.

Thus, the Lorenz-gauge wave equation may be expressed in the

manifestly covariant form

✷Aµ = jµ

and the continuity equation becomes

∂µ jµ = 0.

The Maxwell wave equations in Lorenz gauge are manifestly

covariant.

• This, coupled with the gauge invariance of electromag-

netism, ensures that the Maxwell equations are covariant

in all gauges.

• However—as was seen in the example of the Coulomb

gauge—the covariance may not be manifest for a particu-

lar choice of gauge.

Let’s now see how to formulate the Maxwell equa-

tions in a manifestly covariant form.
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4.7.4 Maxwell Equations in Manifestly Covariant Form

The Maxwell equations may be cast in a manifestly covariant

form by constructing the components of the electric and mag-

netic fields in terms of the potentials (Problems).

• Proceeding in this manner, we find that the six indepen-

dent components of the 3-vectors EEE and BBB are elements of

an antisymmetric rank-2 electromagnetic field tensor

Fµν =−Fνµ = ∂ µAν −∂ νAµ ,

which may be expressed in matrix form as

Fµν =










0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0










.

• That is, the electric field EEE and the magnetic field BBB

– are vectors in 3D euclidean space but

– their six components together form an antisymmetric

rank-2 tensor in Minkowski space.
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Now let’s employ the Levi–Civita symbol εαβγδ , where

• εαβγδ has the value +1 for αβ γδ = 0123 and cyclic per-

mutations,

• −1 for odd permutations, and

• zero if any two indices are equal,

• and use it to define the dual field tensor F µν by

F
µν ≡ 1

2εµνγδ Fγδ =










0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0










.

• Then two of the four Maxwell equations may be written

∂µFµν = jν ,

• and the other two Maxwell equations may be written as

∂µF
µν = 0.

The Maxwell equations in this form are mani-

festly covariant (under Lorentz transformations)

because they are formulated exclusively in terms

of Lorentz tensors.
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Chapter 5

Lorentz-Invariant Dynamics

In the preceding chapter we introduced the Minkowski met-

ric and covariance with respect to Lorentz transformations be-

tween inertial systems. This was shown to lead to the basic

properties of special relativity:

• relativity of simultaneity,

• time dilation, and

• space contraction.

In this chapter we continue that discussion for flat Minkowski

space and consider general properties of trajectories for parti-

cles and for light in Minkowski spacetime.

203
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5.1 Geometrized Units

It is convenient to introduce a new set of units in which c and/or

G can be set to unit value so that they do not appear explicitly

in equations.

• These are called geometrized units or c = G = 1 units.

• Such units are also sometimes called natural units, be-

cause they are suggested by the physics of the problem.

Geometrized units, and how to convert between

standard units and geometrized units, are ex-

plained in examples below and in an Appendix of

the book.
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Assuming c = G = 1 and setting

1 = c = 2.9979×1010 cm s−1

1 = G = 6.6720×10−8 cm3 g−1 s−2,

we may solve for standard units in terms of these new units.

• From the first equation 1 = 2.9979×1010 cm s−1, imply-

ing that

1 s = 2.9979×1010 cm 1 cm = (2.9979×1010)−1 s,

and from the second 1 = 6.6720×10−8 cm3 g−1 s−2, so

1 g = 6.6720×10−8 cm3 s−2

= 6.6720×10−8 cm3

(
1

2.9979×1010 cm

)2

= 7.4237×10−29 cm.

Thus distance, time, and mass all have the dimen-

sion of length in geometrized units.

• Likewise, we may derive from the above relations

1 erg = 1 g cm2 s−2 = 8.2601×10−50 cm,

1 g cm−3 = 17.4237×10−29 cm−2,

1M⊙= 1.4766 km,

and so on.
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• Velocity is dimensionless in these units since

1 cm s−1 = 2.9979×10−10

(that is, v is measured in units of v/c).

From this point onward we shall commonly work

in c = G = 1 (or c = 1 units if gravity isn’t in-

volved), unless the explicit restoration of c or G

factors is desirable

• for clarity,

• to make a particular point, or

• to compute numbers in “engineering units”.
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In geometrized units

• all occurences of G and c are omitted from equations.

• Calculating quantities in standard units then requires rein-

serting appropriate combinations of c and G to give the

right physical dimensions for each term.

Example: it will be shown later that the Schwarzschild radius

defining the event horizon for a spherical black hole in ge-

ometrized units is rS = 2M, where M is the mass.

• Both sides of this equation have dimensions of length in

geometrized units.

• What is the Sun’s Schwarzschild radius in standard units?

The result may be obtained by inspection since

• In geometrized units 1M⊙ = 1.4766 km.

• Thus, for the Sun

rS = 2M⊙ = 2×1.4766 km = 2.95 km.

Alternatively, to convert this equation to CGS units note that

• rS = 2M implies that the right side must be multiplied by

a combination of G and c having the units of cm g−1 to

make it dimensionally correct in the CGS system.

• Clearly this requires the combination G/c2, so in CGS

units the Schwarzschild radius is rS = 2GM/c2.
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Quantity Symbol Geometrized Standard Conversion

unit unit

Mass M L M GM/c2

Length L L L L

Time t L T ct

Spacetime distance s L L s

Proper time τ L T cτ

Energy E L M (L /T )2 GE/c4

Momentum p L M (L /T ) Gp/c3

Angular momentum J L 2 M (L 2/T ) GJ/c3

Luminosity (power) L dimensionless M (L 2/T 3) GL/c5

Energy density ε L −2 M /(LT 2) Gε/c4

Momentum density πi L −2 M /(L 2T ) Gπi/c3

Pressure P L −2 M /(LT 2) GP/c4

Energy / unit mass ε dimensionless (L /T )2 ε/c2

Ang. mom. / unit mass ℓ L L 2/T ℓ/c

Planck constant h̄ L 2 M (L 2/T ) Gh̄/c3

The standard unit of length is L , the standard unit of mass is M , and the standard unit of time is T .

To convert equations to standard units from geometrized units, replace quantities in column 2 with

quantities in the last column. To convert from standard to geometrized units, multiply by the factor of

G and c appearing in the last column.

The Table above (from Appendix of book) also may be used to

read off the same result:

• From the table, conversion of Rs = 2M from natural to

standard units requires the replacements

rs→ rs M→ GM/c2.

• This gives rs = 2GM/c2.
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Finally as a check, if the problem is worked directly in CGS

units:

r⊙S =
2(6.674×10−8 cm3 g−1 s−2)(1.989×1033 g)

(3×1010 cm s−1)2

= 2.95×105 cm

= 2.95 km,

which is the same result as obtained above.
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5.2 Velocity and Momentum for Massive Particles

Particles with finite mass follow timelike worldlines.

• The worldline for a particle is conveniently parameterized

in terms of a variable that changes continuously along the

worldline.

• For timelike trajectories the natural choice for this param-

eter is the proper time τ .

The equation of the worldline may then be expressed as

xµ = xµ(τ)

and we may define a velocity 4-vector (the 4-velocity) by

uµ = (u0,u1,u2,u3) =

(
dx0

dτ
,
dx1

dτ
,
dx2

dτ
,
dx3

dτ

)

.

The proper time interval dτ and spacetime interval ds are re-

lated by

dτ2 =−ds2,

and the coordinate time interval dt and the proper time interval

dτ are related through special-relativistic time dilation:

dτ = dt
(

1− vvv2
)1/2

=
1

γ
dt γ ≡

(

1− vvv2
)−1/2

where vvv is the 3-velocity, vi = dxi/dt. (Note: c = 1 units!)
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x

y

ct

Figure 5.1: The 4-velocity along a timelike worldline.

The 4-velocity for a massive (timelike) particle is

• tangent to the worldline of the particle at any point and

• lies within the forward light cone (Fig. 5.1).

Since dt = γdτ ,

u0 =
dx0

dτ
=

dt

dτ
=

γdτ

dτ
= γ =

(

1− vvv2
)−1/2

ui =
dxi

dτ
=

dxi

dt
︸︷︷︸

vi

dt

dτ
︸︷︷︸

γ

= viγ = vi

(

1− vvv2
)−1/2

so that we may write for the components of the 4-velocity

uµ = (γ,γvvv) γ =
(

1− vvv2
)−1/2

.

(Remember: we are using units where c = 1.)
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Since we have

ds2 =−dτ2 = ηµνdxµdxν ,

which gives, upon dividing by dτ2,

−1 = ηµν
dxµ

dτ

dxν

dτ
= ηµνuµuν = u·u,

the scalar product of u with itself gives the normalization

u·u =−1,

uµ = (γ,γvvv) ηµν =










−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1










.

For massive particles we may always invoke the

condition u·u =−1.
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5.2.1 4-Momenta

We may define the 4-momentum by

pµ ≡ (E, ppp) = muµ ,

where m is the rest mass. Since u·u =−1, the normalization of

the 4-momentum is

p2 ≡ p·p = pµ pµ = m2u·u =−m2.

Because uµ = (γ,γvvv), the components of the 4-momentum are

pµ = (E, ppp) = (γm,γmvvv) −→ pµ = ηµν pν = (−E, ppp),

with γ =
(
1− vvv2

)−1/2
. Thus, p2 = pµ pµ =−m2 implies that

pµ pµ = (−E, ppp)

(

E

ppp

)

=−m2 −→ E =
√

ppp2+m2,

which is just the most famous equation in physics,

E =
√

ppp2c2 +m2c4 −→ E = mc2 (ppp→ 0),

written in c = 1 units.
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5.3 Geodesics

A metric allows us to define geodesics:

• A geodesic for a manifold is a path that represents the

shortest distance between any two points.

• A geodesic may also be viewed as the “straightest possi-

ble path” between two points.

• More technically, a geodesic is a curve that “parallel-

transports its own tangent vector”.

EUCLIDEAN SPACE:

“The shortest distance between two points is a straight line.”

Thus, the geodesics in Euclidean space are given by

r̈rr = 0 (Newton’s 1st law)

MINKOWSKI SPACE:

d2t

dτ2
= 0

d2rrr

dτ2
= 0,

where τ is the proper time (time measured by a clock carried

along a worldline).

In both of the above examples, the geodesics are

straight lines (this generally will not be true in

curved spacetime).
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A

B

x

ct

Figure 5.2: Extremizing the proper time to determine the geodesic for a

particle.

5.4 Principle of Extremal Proper Time

PRINCIPLE OF EXTREMAL PROPER TIME: the

worldline for free particles between timelike sepa-

rated points extremizes the proper time (Fig. 5.2).

From (using c = 1 units)

dτ2 =−ds2 =−(−dt2 +dx2+dy2+dz2,)

the proper time between the points A and B is

τAB =
∫ B

A
(dt2−dx2−dy2−dz2)1/2.
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We may parameterize the path by a variable σ that varies con-

tinuously from 0 to 1 as the particle moves from A to B and

τAB =
∫ 1

0

[(
dt

dσ

)2

−
(

dx

dσ

)2

−
(

dy

dσ

)2

−
(

dz

dσ

)2
]1/2

dσ .

The condition for an extremum is that

δ

∫

dτ = 0,

where the variation is generally of the explicit form

δ f =
∂ f

∂xµ
δxµ .

Defining a Lagrangian for a metric gµν

L≡
(

−gµν
dxµ

dσ

dxν

dσ

)1/2

−→ τAB =
∫ 1

0
Ldσ ,

the variation δ
∫

dτ = 0 then implies the Euler–Lagrange equa-

tion of motion

− d

dσ

(
∂L

∂ (dxµ/dσ)

)

+
∂L

∂xµ
= 0.

(Proved in a Box in the book.)
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EXAMPLE: Consider xµ = x1. The Euler–Lagrange equation

is

− d

dσ

(
∂L

∂ (dxµ/dσ)

)

︸ ︷︷ ︸

derivative dependence

+
∂L

∂xµ
︸ ︷︷ ︸

coordinate dependence

= 0

For constant ηµν the Lagrangian L does not depend on x1 and

the Euler–Lagrange equation reduces to

− d

dσ

(
∂L

∂ (dxµ/dσ)

)

+
∂L

∂xµ
︸︷︷︸

=0

= 0 → d

dσ

(
1

L

dx1

dσ

)

= 0.

Inserting 1/L = dσ/dτ and multiplying by dσ/dτ , gives

d2x1

dτ2
= 0

Applying similar steps to the other terms then gives the general

result (Problem)

d2xµ

dτ2
= 0 → No curvature for geodesic

The principle of extremal proper time implies that

geodesics in Minkowski space are straight lines.
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Principle of Extremal Proper Time (Taylor and Wheeler):

“Spacetime shouts ’Go straight!’ The free stone

obeys. . . . The stone’s wristwatch verifies that its

path is straight.”
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5.5 Light Rays

For particles moving at lightspeed the rest mass is identically

zero.

• Light-like particles such as photons move on the light

cone with the proper time between two points given by

dτ2 =−ds2 = 0,

• Thus photons and other light-like (massless) particles

travel any Minkowski distance in zero proper time.

Therefore the proper time τ is not a useful param-

eterization for the world line of photons and other

massless particles.

However, notice that we may write the curve x = t (correspond-

ing to v = c expressed in c = 1 units) parametrically as

xµ = uµλ

where uµ = (1,1,0,0) is a tangent 4-vector,

uµ =
dxµ

dλ

and λ is a parameter.
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With this choice of parameterization the equation of motion for

the light ray may be put into the same form as that for a massive

particle

du

dλ
= 0

which is analogous to Newton’s first law.

• Parameters λ for which this is true are termed affine pa-

rameters.

• Affine parameters generally are not unique.

• For example, if λ is an affine parameter then λ multiplied

by any constant is also an affine parameter.

Affine parameters are convenient for light rays be-

cause they lead to equations of motion that mimic

those for timelike particles.
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For massive particles u·u = −1, but since for the photon case

uµ = (1,1,0,0) for motion on the x-axis, we have

uµ = ηµνuν = (−1,1,0,0).

Thus for photons

u·u = uµuµ = (−1,1,0,0)×










1

1

0

0










=−1+1 = 0.

The primary differences between

• equations governing the motion of massive particles and

• those governing the motion of massless particles (e.g.,

photons)

in spacetime will be associated with the difference in 4-velocity

normalizations

u·u =−1 (for massive particles),

u·u = 0 (for massless particles).

Otherwise their equations of motion will be similar.
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For photons the energy E and momentum ppp are given by

E = h̄ω ppp = h̄kkk,

where h̄ is Planck’s constant, ω is the frequency, and kkk is the

wavevector. Thus,

pµ = (E, ppp) = (h̄ω , h̄kkk) = h̄kµ = h̄(ω ,kkk).

• Since photons are massless, the 4-momentum and 4-

wavevector are normalized such that

p·p = k·k = 0,

which is E = pc in c = 1 units.

• The equations of motion for photons may also be ex-

pressed in terms of the 4-momentum or 4-wavevector,

dp

dλ
= 0

dk

dλ
= 0,

where λ is an affine parameter.
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Figure 5.3: Unit vectors of a local coordinate system at a point on an ob-

server’s worldline for two space and one time dimension.

5.6 Observers

To test theory against data we must introduce observers.

• An observer may be thought of as occupying a local labo-

ratory moving on a (timelike) worldline in the spacetime.

• She carries 4 orthogonal unit vectors e0̂, e1̂, e2̂, and

e3̂ specifying a local, orthonormal coordinate system

(Fig. 5.3).

• Note: Hats on indices indicate explicitly that this is a local

orthonormal coordinate system, not our usual position-

dependent coordinate basis.

• This coordinate system defines (locally) a time direction

and three space directions to which the observer will ref-

erence all measurements.
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• The timelike component e0̂ will be tangent to the ob-

server’s worldline (the observer’s clock is moving in that

direction if it is at rest in the laboratory).

– Since the 4-velocity u of the observer is a unit tangent

vector (u·u =−1),

e0̂ = u.

– The observer may choose any mutually orthogonal set

of three unit spatial vectors to complete the set, as

long as they are orthogonal to e0̂.

• Observers refer observations to the axes of their lab and

its clocks.

– Thus, they measure components of 4-vectors along

their chosen basis vectors.

– These components may be computed by taking scalar

products with the orthonormal basis 4-vectors.

Example: For the 4-momentum

p = pµ̂eµ̂ ,

we have in particular that the energy measured by

an observer with 4-velocity uobs is given by

E = p0 =−p·e0̂.
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5.7 Isometries and Killing Vectors

In differential geometry, Killing vectors are standard tools for

analyzing symmetries such as those that arise as conservation

laws in the usual Lagrangian or Hamiltonian formulations of

mechanics.

• In all spacetimes, whether flat or not, one constant of mo-

tion may be deduced from the normalization of the 4-

velocity uµ = dxµ/dτ

gµνuµuν =−1,

corresponding to the preservation of u·u for a timelike par-

ticle.

• If there are additional constants of motion, they must arise

from specific symmetries in the problem.

• In ordinary mechanics, continuous symmetries imply con-

servation laws.

Example: conservation of angular momentum fol-

lows from a potential that is spherically symmetric.

• If a spacetime metric has a symmetry (termed an isom-

etry), that too will generally imply that some quantity is

conserved.
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Suppose the metric is independent of one of the spacetime co-

ordinates, say x0, such that

x0→ x0 + constant

leaves the metric unchanged.

• For such an isometry we define a unit vector pointing

along the direction in which the metric is constant,

Kµ = (1,0,0,0).

• The vector Kµ is termed the Killing vector associated with

the symmetry.

In flat 3D space

ds2 = dx2 +dy2+dz2

and conservation of the components of linear mo-

mentum is associated with three Killing vectors

(1,0,0) (0,1,0) (0,0,1)

indicating invariance under translations in the x, y,

and z directions, respectively.
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A symmetry implied by a Killing vector means that

• Some quantity is conserved along a geodesic.

• This quantity may be found using the principle of extremal

proper time (Euler–Lagrange equation).
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Example: The Euler–Lagrange equation is

− d

dσ

(
∂L

∂ (dxµ/dσ)

)

+
∂L

∂xµ
= 0 L≡

(

−gµν
dxµ

dσ

dxν

dσ

)1/2

Let gµν be independent of x1, corresponding to a Killing vector

Kα = (0,1,0,0)

Then ∂L/∂x1 = 0 and (Problem)

∂L

∂ (dx1/dσ)
=− 1

2L

(

g1ν(x)
dxν

dσ
+gµ1(x)

dxµ

dσ

)

=− 1

2L

(

g1µ(x)
dxµ

dσ
+gµ1(x)

dxµ

dσ

)

=−g1µ

L

dxµ

dσ
=−g1µ

L

dxµ

dτ

dτ

dσ
=−g1µ

dxµ

dτ

=−gαµKαuµ =−K ·u,
where we have used that gµν is symmetric and

L =

(

−gµν
dxµ

dσ

dxν

dσ

)1/2
dτ

dσ
= L g1µ = gαµKα .

Then the Euler–Lagrange equation reduces to

d

dσ
(K ·u) = 0 −→ K ·u conserved on geodesic

The quantity K ·u is conserved along a geodesic if

K is a Killing vector and u is the 4-velocity.



5.7. ISOMETRIES AND KILLING VECTORS 229

For most of our applications we will be able to guess the Killing

vectors.

• However, more formally (proved in the book chapter),

Killing vectors satisfy the differential equation

∇νKµ +∇µKν = ∂νKµ +∂µKν = 0.

• This is known as Killing’s equation.

• The vector fields that solve it are the Killing (vector) fields

associated with symmetries of the metric.
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Chapter 6

The Principle of Equivalence

The general theory of relativity rests upon two principles that

are in fact related:

• The principle of equivalence

• The principle of general covariance

Let’s consider the equivalence principle.
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6.1 Inertial and Gravitational Mass

1. The inertial mass is defined through Newton’s second law:

m = F/a.

2. The gravitational mass is defined through Newton’s law

of gravitation: m = r2F/GM.

3. The relationship between inertial and gravitational masses

was suggested by Galileo: different objects fall at the

same rate in a gravitational field,

4. which is equivalent to equality of inertial and gravita-

tional mass.

5. This was first established to high precision in the Eötvös

experiments of 1893.
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Torsion balance

Equal weights of

different materials

A B

Figure 6.1: Measuring the difference between gravitational and inertial

mass.

If the inertial and gravitational masses differ

• In Fig. 6.1 a couple will be produced by the action on

the inertial mass of the centripetal effects associated with

Earth’s rotation and

• the balance will twist if minertial 6= mgravitational.

• Result of the original Eötvös experiment: inertial and

gravitational masses are equivalent, with a sensitivity of

one part in 109 (1013 in more modern experiments).

Weak Principle of Equivalence:

minertial = mgravitational.

Equivalent statement: All objects experience the

same acceleration in a gravitational field, irrespec-

tive of their masses or any other intrinsic property.
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(a) Stationary elevator 

in a gravitational field 

at the surface of a 

planet.

(b) Elevator accelerated 

in interstellar space far 

from any gravitating 

masses

Figure 6.2: The Einstein elevator.

6.2 Strong Equivalence Principle

Einstein extended this idea to the modern equivalence principle

(sometimes called the strong principle of equivalence), based

on a thought experiment. For the elevator illustrated in Fig. 6.2,

the occupant is unable to distinguish

• an acceleration of the elevator at some point

in space where no gravitation fields act from

• the effect of a stationary elevator sitting in a

planetary gravitational field.

Henceforth, by equivalence principle we shall mean the strong

equivalence principle.
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The (strong) equivalence principle can be stated in several

equally-valid ways:

• For an observer in free fall in a gravitational field, the re-

sults of all local experiments are independent of the mag-

nitude of the gravitational field.

• All local, freely falling, non-rotating laboratories are fully

equivalent for the performance of physical experiments.

Such a laboratory is called a local inertial frame or

Lorentz frame.

• In any sufficiently local region of spacetime, the effect of

gravity can be transformed away.

• In any sufficiently local region of spacetime, we may con-

struct a local inertial system in which the special theory of

relativity is valid, even in a very strong gravitational field.

• all forms of mass and energy contribute equivalent quan-

tities of gravitational and inertial mass.

In these statements of equivalence a practical definition of

“freely falling” is weightlessness:

Any experiment would reveal any object to be

weightless in a freely-falling frame.

We shall give a precise definition of “local” shortly.
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Light

emitted

Path seen 

inside elevator

Distance fallen

Distance fallen

Path seen
outside elevator

Figure 6.3: Equivalence and deflection of light in a gravitational field.

6.3 Deflection of Light in a Gravitational Field

By applying the principle of equivalence, Einstein obtained im-

portant results of the general theory of relativity even before

he could solve the corresponding field equations. Consider

Fig. 6.3 where a sealed elevator falls in a gravitational field.

INTERIOR OBSERVER: Equivalence → we may transform

away the effect of gravity. Observer in the interior is unaware

of any gravitational field and sees light travel in a straight line.

EXTERIOR OBSERVER: Aware of the gravitational field (sees

the elevator falling!). The spot at which the light strikes the

right wall has fallen by the same amount as the elevator.

RECONCILE (observers must agree on laws of

physics): Light follows a curved path as it prop-

agates in a gravitational field.
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6.3.1 Strength of the Gravitational Field

Bending of the light in the gravitational field may be character-

ized by a radius of curvature (Problem)

rc =
c2

g
,

Strength of gravitational field at the surface of a gravitating ob-

ject such as a star quantified through:

R

rc
=

GM

Rc2
=

Actual radius

Light curvature radius
,

where g = GM/R2 has been used. If

GM/Rc2 << 1,

the field is weak (Newtonian gravity). May be expressed as

R

rc
=

GM

Rc2
· m

m
=

GMm/R

mc2
=

Eg

E0
=

Gravitational energy

Rest-mass energy
,

• Weak Field: gravitational energy of a test particle of mass

m is much less than its rest mass energy.

• EXAMPLE: White dwarf Sirius B has ρ ∼ 106 g cm−3,

which gives R/rc ≃ 10−4. Even for a white dwarf gravity

is weak on the natural scale set by light curvature.

• EXAMPLE: At the surface of a neutron star or at the event

horizon of a black hole, gravitational curvature radius ∼
actual radius→ general relativity.
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Figure 6.4: Equivalence and the gravitational redshift.

6.4 The Gravitational Redshift

INTERNAL OBSERVER: Free fall, unaware of gravity, ν = ν0.

EXTERNAL OBSERVER: Aware of gravity (sees elevator fall!).

• When light reaches ceiling a time t = h/c has elapsed and

• the elevator has accelerated to a velocity v = gt = gh/c.

Doppler shift :
∆ν

ν
=

v

c
=

gh/c

c
=

GMh

R2c2
since g =

GM

R2

RECONCILE: To avoid contradiction, there must

be a redshift produced by the gravitational field

that exactly cancels the blueshift (produced by ve-

locity, not gravity).
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6.4.1 Total Redshift in a Gravitational Field

Integrated redshift assuming relatively weak gravity

∫ νs

ν0

dν

ν
=−

∫ s

R

GM

r2c2
dr,

Exercise: Integrating, exponentiating, and expanding the right-

side exponential (weak-field assumption) gives at radius s,

νs

ν0
≃ 1− GM

c2

(
1

R
− 1

s

)

.

For a distant observer s→ ∞ and (field is assumed weak)

ν∞

ν0
≃ 1− GM

Rc2
−→ ν0

ν∞
=

(

1− GM

Rc2

)−1

︸ ︷︷ ︸

Expand

≃ 1+
GM

Rc2

which is valid if GM≪ Rc2. The corresponding gravitational

redshift z for the weak field limit is

z≡ λ∞−λ0

λ0
=

ν0

ν∞
−1≃ GM

Rc2
(weak field limit)

where R is the radius of the star and M is its mass.

The full GR solution for the gravitational redshift

in a spherical gravitational field is

1+ z =

(

1− 2GM

Rc2

)−1/2

,

(derived later). Reduces to above in weak field.
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EXAMPLE: for the white dwarf Sirius B

R = 5.85×108 cm M = 1.95×1033 g

Inserting these values

z≃ GM

Rc2
≃ 2.5×10−4

The measured redshift is

z = 2.7±0.2×10−4,

from displacement of spectral lines.
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6.4.2 Gravitational Time Dilation

Gravitational redshift also may be viewed as gravitational time

dilation:

time ∝
1

frequency

One period of light wave = One clock tick

∆t0

∆t∞
≃ ν∞

ν0
≃ 1− GM

Rc2
(weak field limit),

EXAMPLE: For surface of Sirius B

∆t0

∆t∞
≃ 1− GM

Rc2
≃ 0.99972 (∼ One second per hour slow)

The full GR solution for a spherical gravitational field gives

(derived later)

∆t0

∆t∞
=

√

1− 2GM

Rc2

Reduces to above weak-field result when the second term under

the radical is small.

Purely gravitational effect, independent of any

special relativistic time dilation due to relative mo-

tion between source and observer (GPS requires

corrections for both).
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6.5 Equivalence and Riemannian Manifolds

We cannot set up a global cartesian coordinate system on a

curved surface. But if the metric takes the quadratic form

ds2 = a(x,y)dx2 +2b(x,y)dxdy+ c(x,y)dy2

(2D for illustration), the geometry is locally Euclidean:

• Near any point local cartesian coordinates are valid.

• Circumference of a circle: C = 2πr+ higher-order terms

• Sum of the angles of a triangle: π + higher-order terms

• with higher-order terms vanishing smoothly as circles and

triangles are decreased in size.

Such a space is termed a Riemannian manifold, with a corre-

sponding Riemannian metric.

• The spacetime metric,

ds2 = gµνdxµdxν ,

has such a quadratic form: it is a Riemannian manifold.

• Strictly spacetime is pseudo-Riemannian due

to indefinite metric (Lorentzian signature).

• But in GR it is common to call it loosely

“Riemannian”.
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• A Riemannian manifold is locally euclidean (and a

pseudo-Riemannian manifold is locally Minkowski).

• Conversely, if the metric is Euclidean (Minkowski) around

an arbitrary local point P0 the space is necessarily Rieman-

nian (pseudo-Riemannian).
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The preceding considerations suggest that

Gravity ←→ Spacetime curvature

and that

Equivalence principle
︸ ︷︷ ︸

gravity transformed away locally

←→ Riemannian geometry
︸ ︷︷ ︸

spacetime locally flat

which in turn implies

Gravitation ←→ Riemannian Geometry

This relationship was foreshadowed in the work of Gauss and

Riemann during the 19th century:

• Gauss: all inner (intrinsic) properties of a curved surface

are described by the derivatives ∂ξ α/∂xµ of the functions

ξ α(x) implementing the transformation between

– a general coordinate system xµ and

– a local Cartesian coordinate system ξ α(x).

• Because of equivalence, all effects of a gravitational field

are contained in the derivatives ∂ξ α/∂xµ of the ξ α(x).

Thus, the principle of equivalence finds its natural

mathematical expression in Riemannian geometry
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(a) (b)

Tidal

forces

Figure 6.5: (a) The Einstein elevator in two different local inertial frames.

(b) Tidal (differential gravitational) forces; an object experiences tidal

forces if the gravitational force (magnitude or direction) is not the same

for different parts of the object.

6.6 Local Inertial Frames and Inertial Observers

Equivalence: Elevator occupants on opposite sides of Earth

may replace gravity by a local acceleration (Fig. 6.5a).

No Contradiction: The two elevator occupants in this case can-

not be in the same local inertial frame.

Operational Definition of Local: Tidal effects (Fig. 6.5b) are

negligible. (Later: quantitative definition in terms of spacetime

curvature.)
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The preceding ideas may be expressed more precisely by spec-

ifying exactly what is meant by a local inertial frame or LIF.

• By equivalence, at each point P of a curved manifold de-

scribed by a metric gµν(x) a basis exists where the metric

becomes the constant Minkowski metric:

g′µν(x
′
P) = ηµν = diag(−1,1,1,1).

• Specifically, because

– gµν(x) at some arbitrary point x = xP is a real sym-

metric matrix,

– there exists an orthogonal transformation that will di-

agonalize it.

• Once diagonalized each coordinate can be rescaled if

needed to give the metric tensor ηµν = diag(−1,1,1,1).

• Notice two important things, however:

– Such a transformation cannot change the signature of

the metric.

– This transformation is local to the point P.

Generally a different transformation is required to

diagonalize the metric at a different point P′ if the

space is curved.
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Although g′µν(x
′
P) = ηµν is valid only at a point,

• It is possible to choose the transformation so that the first

derivatives of the metric evaluated at xP vanish also:

g′µν(x
′
P) = ηµν = diag(−1,1,1,1)

∂g′µν

∂x′α

∣
∣
∣
∣
∣
x=xP

= 0.

• A coordinate system satisfying these conditions is called

a local inertial frame (LIF).

• However, no transformation satisfying these conditions

makes all second derivatives at xP vanish.

• Thus, “local” means that

– the observer occupies a sufficiently small laboratory

(in both space and time) that

– effects depending on second derivatives of the metric

are negligible.

• Then up to first order the freely-falling laboratory is flat

Minkowski space.

• Since second derivatives of the metric are associated with

tidal forces, an alternative definition is that in a LIF tidal

forces are negligible.

Thus the gravitational effects of spacetime cur-

vature are expected to appear first in the second

derivatives of the metric.
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The preceding discussion means that gravity cannot be identi-

fied with the Newtonian gravitational force:

• By the equivalence principle the Newtonian gravitational

force can be transformed to zero in a suitable reference

frame.

• Thus Newtonian gravity is an inertial force caused by

observation in a non-inertial frame, analogous to ficti-

tious centrifugal or coriolis forces that appear in rotating

frames.

• What cannot be transformed away are the tidal forces aris-

ing from the non-uniformity of the gravitational field, so

in GR tidal forces represent the true effect of gravity.

In summary, by the equivalence principle there are inertial

frames in the spacetime of general relativity. However,

• They are local, freely-falling frames.

• In the presence of gravity these local inertial frames at

different points have accelerations differing in both mag-

nitude and direction.

• Thus they cannot be glued together to form a global iner-

tial frame.

In a gravitational field there are local inertial

frames but no global inertial frames.
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6.7 Lightcones in Curved Spacetime

Because a local inertial frame can be defined at each point of a

curved spacetime,

General relativity inherits the local lightcone

structure of special relativity.

• This structure is a coordinate-invariant statement that the

speed limit is c, so in general relativity

– velocities (defined locally) satisfy v≤ c and

– the local causal classification of events into timelike,

spacelike, and null carries over in curved spacetime.

• However, the global organization of lightcones in curved

spacetime can lead to causal structure that does not exist

for unaccelerated observers in Minkowski space.

• In flat spacetime the lightcone at one point can be obtained

from one at another point by translation without change in

geometry of the lightcone.

• In curved spacetime this is no longer true since the metric

depends on location and the global causal structure can

become complicated.

An extreme consequence of global lightcone orga-

nization will be encountered when event horizons

of black holes are considered in later chapters.
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Curved
space

Locally flat
space

Figure 6.6: Curved spacetime and local flat inertial systems.

6.8 The Road to General Relativity

• Einstein: Inhomogeneity of gravitational field due to in-

homogeneity of gravitating matter→ spacetime is curved,

with curvature related to the distribution of matter.

• Equivalence: Spacetime is a patchwork of locally flat

frames meshed smoothly into a curved space (Fig. 6.6).

• Key to relating curvature and matter distribution: Con-

nection between equivalence and Riemannian geometry.

• Some Sewing Required: Local Euclidean patches (where

special relativity holds) must be “stitched together”

smoothly to form a Riemannian manifold (Fig. 6.6).

• General Relativity: A “stitching together” by finding a

(unique) Riemannian metric determined by a nonlinear re-

lationship among mass, curvature, density.

The next two chapters will give the mathematical

framework needed to implement this prescription.



Chapter 7

Curved Spacetime and General

Covariance

In this chapter we generalize the the preceding discussion to

extend covariance to more general curved spacetimes.
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7.1 Covariance and Poincaré Transformations

• Lorentz covariance makes manifest that the principles of

special relativity (invariance under Lorentz transforma-

tions) are obeyed by a set of equations.

• Poincaré transformations:

– Six Lorentz transformations, plus

– four possible uniform translations in space and time.

Invariance under Poincaré transformations implies that

– Physics does not depend on choice of coordinate sys-

tem origin, orientation, . . . .

– This implies conservation laws (energy, . . . ).

• Covariance with respect to Poincaré transformations is

still insufficient to deal with gravity.

• We seek a more general covariance, valid for gravity.

General Covariance: a physical equation holds in

a gravitational field provided that

• It holds in the absence of gravity (agrees with

special relativity in flat spacetime).

• It maintains its form under the most general

coordinate transformation x→ x′ .
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7.2 Curved Spacetime

The deflection of light in a gravitational field suggests that

Gravity is associated with the curvature of space-

time.

Thus, let us consider the more general issue of covariance in

curved spacetime.
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7.3 Curved 2D Spaces and Gaussian Curvature

Gauss demonstrated that for 2-surfaces there is a single invari-

ant (Gaussian curvature) characterizing the curvature.

• For a 2-D coordinate system (x1,x2) having a diagonal

metric with non-zero elements g11 and g22, the Gaussian

curvature K is

K =
1

2g11g22

×
{

− ∂ 2g22

(∂x1)2
− ∂ 2g11

(∂x2)2
+

1

2g11

[

∂g11

∂x1

∂g22

∂x1
+

(
∂g11

∂x2

)2
]

+
1

2g22

[

∂g11

∂x2

∂g22

∂x2
+

(
∂g22

∂x1

)2
]}

.

The gaussian curvature is generally

• Position-dependent.

• An intrinsic quantity expressed entirely in terms of the

metric for the space and its derivatives.
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For the special case of orthogonal coordinates (x,y),

K(x0,y0) =
1

Rx(x0)Ry(y0)
,

where

• Rx(x0) is the radius of curvature in the x direction and

• Ry(y0) is the radius of curvature in the y direction,

both evaluated at a point (x0,y0).

EXAMPLE: For a 2-sphere, Rx = Ry ≡ R and

K =
1

R2
,

where R is the constant radius of the sphere.

The highly symmetric sphere has the same curvature at all

points, but in the general case curvature can vary from point

to point.
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Figure 7.1: Measuring the circumference of a circle in curved space.

Consider the 2-sphere of Fig. 7.1, defined by

x2 + y2+ z2 = R2,

Let us use the circumference of a circle relative to that for flat

space to measure deviation from flatness.

• A circle may be drawn in the 2D space by marking a lo-

cus of points lying a constant distance S from a reference

point, chosen as the north pole in Fig. 7.1

• The angle θ subtended by S is S/R and

r = Rsinθ = Rsin

(
S

R

)

.

• Then the circumference of the circle is

C = 2πr = 2πRsin
S

R
≃ 2πS

(

1− S2

6R2
+ . . .

)

.
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φ

θ

R

r

C = 2πr 

S
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y

z

• For flat space the circumference of the circle would just

be 2πS, so higher-order terms measure the curvature.

• We have for the gaussian curvature of the sphere K =

1/R2. Substituting R2 = 1/K in

C = 2πr = 2πRsin
S

R
= 2πS

(

1− S2

6R2
+ . . .

)

.

and solving for K in the limit S→ 0 gives

K = Lim
S→0

3

π

(
2πS−C

S3

)

= Lim
S→0

6

S2

(

1− C

2πS

)

.

Thus, we may find the Gaussian curvature for a 2-D sur-

face by measuring the circumference of small circles.

• Later we shall generalize the Gaussian curvature parame-

ter for a 2D surface to a set of parameters (elements of the

Riemann curvature tensor) that describe the curvature of

4D spacetime.
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Notice in this and various other discussions that we often use

the mental aid of embedding a surface in a higher-dimensional

space in order to more easily visualize our arguments. How-

ever, it is important to emphasize that

The intrinsic curvature of a manifold can be

• determined entirely by the properties of the

manifold itself,

• without reference to a higher-dimensional

embedding space.
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We may illustrate determining gaussian curvature intrinsically

by using the geometry of small circles drawn on the unit 2-

sphere (See Box 7.2 in book).

• The line element is

ds2 = dθ 2 + sin2 θdϕ2.

in spherical polar coordinates

• In the coordinates (θ ,ϕ) a line segment from (0,0) to

(λ ,0) has a length

S =

∫ √
ds2 =

∫ λ

0
dθ = λ ,

since ϕ is constant so dϕ2 = 0.

• The set of points (λ ,ϕ) with ϕ ranging from 0 to 2π then

defines a circle of radius S = λ , with

C =

∫ √
ds2 =

∫ 2π

0
sinθdϕ = sinλ

∫ 2π

0
dϕ = 2π sinλ .

for the circumference C.

• Thus, with S = λ the Gaussian curvature is

K = Lim
S→0

6

S2

(

1− C

2πS

)

= Lim
λ→0

6

λ 2

(

1− sinλ

λ

)

.
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Since our interest is in the limit λ → 0, we expand sinλ in a

power series,

sinλ

λ
=

1

λ

(

λ − λ 3

3!
+ . . .

)

≃ 1− λ 2

6
.

This gives

K = Lim
λ→0

6

λ 2

[

1−
(

1− λ 2

6

)]

= 1.

This is the expected result, since it was noted earlier that the

Gaussian curvature of a 2-sphere having radius R is equal to

1/R2 and R = 1 (unit sphere) has been assumed.



7.3. CURVED 2D SPACES AND GAUSSIAN CURVATURE 261

7.3.1 Distance Intervals in Curved Spacetime

In curved spacetime the interval between two events may be

expressed as

ds2 = gαβ (x)dxαdxβ ,

where the metric tensor gαβ (x) in a curved spacetime generally

• has a more complicated form than that for Minkowski

space, and

• is a function of the spacetime coordinates.
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7.4 A Covariant Description of Matter

Curved spacetime is responsible for gravity and mass, energy,

and pressure are responsible for curving spacetime.

• Therefore, it is critical to describe the distribution of these

quantities and their coupling to gravity covariantly.

• To that end, it is convenient to introduce the stress–energy

(or energy–momentum) tensor T µν , with components

1. T 00 = ε (energy density)

2. T ii =Pi (pressure in i direction; equivalently, momen-

tum components per unit area)

3. T 0i (energy flux in the direction i)

4. T i0 (momentum density in the direction i)

5. T i j(i 6= j) (shear of the pressure component Pi in the

j direction).

• By physical arguments the tensor T µν is symmetric, with

10 independent components.

Physically-meaningful results from general rela-

tivity require that the form of T µν be constrained

further by hypotheses that are discussed below.
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It is standard to impose a set of energy conditions on T µν . ba-

sically

• These are assumptions about the way that any reasonable

form of matter should behave, and that

• are obeyed by all presently-known forms of matter.

Three common energy conditions are

1. Weak energy condition: Tµνuµuν ≥ 0 for any unit time-

like vector uµ , which means that the energy density seen

by any observer may not be negative.

2. Strong energy condition: Tµνuµuν + 1
2T

µ
µ ≥ 0 for any

unit timelike vector uµ , implying physically that the en-

ergy density plus the sum of the principle pressures must

be non-negative.

3. Null energy condition: Tµνkµkν ≥ 0 for any null vec-

tor kµ , which means physically that the sum of the energy

density plus any of the principle pressures may not be neg-

ative.

These conditions are more in the nature of recipes

based on classical experience about the way mat-

ter should behave rather than physical law.
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We simplify by restricting attention to perfect fluids, which ne-

glect energy transport and viscosity effects.

• For flat spacetime the most general perfect-fluid stress–

energy tensor consistent with Lorentz invariance is

T µν = (ε +P)uµuν +Pηµν (flat spacetime),

where in this equation

– ηµν is the Minkowski metric,

– P is pressure,

– ε = ρc2 is energy density, and

– uµ = dxµ/dτ is the 4-velocity.

• Conservation of 4-momentum may be expressed by

∂µT µν = 0 (flat spacetime).

• The most general T µν in curved spacetime is

T µν = (ε +P)uµuν +Pgµν (curved spacetime),

where gµν is the metric.

• The generalization of ∂µT µν = 0 in curved spacetime is

∇µT µν = 0 (curved spacetime).

These equations imply a basic difference between

sources of gravity in GR and Newtonian theories.
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General relativity and Newtonian gravity differ quantitatively

in their predictions for physical observables but they also differ

fundamentally in their physical interpretation.

• The form of the stress–energy tensor

T µν = (ε +P)uµuν +Pgµν (curved spacetime),

points to an essential difference between Einstein gravity

and the Newtonian theory.

– All components of the stress–energy tensor contribute

to the curvature and thence to gravity.

– Thus energy, mass, and pressure are all sources of the

gravitational field.

– Only mass is a source of Newtonian gravity.

By smuggling in E = mc2 from special relativity

we can (by a stretch) view energy as a source for

Newton’s gravity, but not pressure.

• But what about the role of pressure in stabilizing stars

against contraction in Newtonian gravity?

– In that case forces opposing gravity are not produced

by pressure but by a pressure gradient.

– In contrast, gravity couples directly to the magnitude

of the local pressure in GR.

– Thus in GR there can be forces associated with pres-

sure even if there is no pressure gradient
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• In a universe having a finite but constant pressure the exis-

tence of the pressure could still be detected by its (general

relativistic) gravitational effect.

• This is precisely the nature of the cosmological vacuum

energy to be discussed later.

• That increasing the pressure increases the strength of grav-

ity in GR also has implications for the gravitational sta-

bility of stars.

• Specifically, it suggests a limit beyond which even in-

creasing the pressure by an arbitrary amount cannot stop a

massive object from collapsing under the influence of its

own gravity.

• This will lead soon to the idea of a black hole.
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Another important difference implied by Einstein gravity con-

cerns

∂µT µν = 0 (flat spacetime).

∇µT µν = 0 (curved spacetime),

These appear to be similar formally but their physical meanings

are different.

• In Newtonian gravity energy and momentum are con-

served and in flat spacetime ∂µT µν = 0 expresses a con-

servation law for 4-momentum.

• In a curved spacetime the constraint ∇µT µν = 0 does not

imply a conservation law because

The gravitational energy is not included in the

stress–energy tensor.

• That is, there is no well-defined concept of local energy

and momentum conservation in general relativity, ulti-

mately because it is difficult to construct a sensible local

expression for gravitational energy.

Remember: By equivalence gravity can be trans-

formed away at a point.

• The best that one can achieve is approximate 4-momentum

conservation over a finite volume.
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7.4.1 Local Energy Conservation

As indicated above, there is no well-defined idea of local en-

ergy and momentum conservation in general relativity.

• This is a consequence of the equivalence principle,

– which requires that all effects of gravity vanish over a

small enough region,

– but it may also be viewed more fundamentally:

• In non-GR physics conservation laws like for momentum

or energy follow from spacetime symmetry (Noether’s

theorem, which is discussed in the book).

– For example, momentum is conserved locally be-

cause of spatial translational invariance.

– Since all physical systems are expected to be transla-

tionally invariant, the law of momentum conservation

is always valid in non-GR physics.

• But in general relativity spacetime is the solution, not a

pre-defined stage on which physics plays out.

• Hence No local symmetries are guaranteed to be common

to all GR spacetimes.

• However, energy is approximately conserved when aver-

aged over a large enough region of spacetime

• Total energy of a spacetime is well-defined if it is asymp-

totically flat (becomes flat on the boundary).
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Tangent point

Tangent

point

Figure 7.2: Tangent planes and vectors in curved spaces.

7.5 Covariant Derivatives and Parallel Transport

• Covariant derivatives have a geometrical interpretation as-

sociated with comparison of vectors located at two differ-

ent spacetime points.

• Constructing the derivative of a vector requires taking the

difference of vectors at two different points.

Recall: Vectors are defined

• in the tangent space, and each point

• has a different tangent space (Fig. 7.2).
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Tangent point

Tangent

point

Recall that the figure above is conceptually useful, but

• defining the tangent space by a local flat coordinate sys-

tem at a point is an intrinsic process with respect to the

original manifold and

• does not require embedding in a higher-dimensional man-

ifold.

Directional derivatives evaluated in the intrinsic

manifold may be used to define the tangent space.

P

x1

x2

e1e2

TP

M
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Tangent point

Tangent

point

Parallel transport of vectors is necessary to compare two vec-

tors at different points (e.g., to define derivatives).

• For a flat space the tangent space corresponds with the

space itself.

• Thus in a flat space we can just move one vector, keeping

its orientation fixed with respect to a global set of coordi-

nate axes, to the position of the other vector and compare.

• On a curved surface this issue is more complicated be-

cause the vectors at two points are defined in different

spaces (see the figure above).
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We would like to construct a new derivative operation on ten-

sors that fulfills three requirements:

• The operation should exhibit the properties expected of a

derivative, such as the Leibniz rule for the derivative of a

product.

• A derivative of a tensor should transform as a tensor.

• The derivative should represent the change of the whole

tensor, not just its components.

As we will now demonstrate geometrically, a

derivative satisfying these requirements corre-

sponds to the covariant derivative already intro-

duced.
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To be definite, let us illustrate for derivatives of vectors. The

formal definition of the derivative that we seek is

∇νV µuνeµ = Lim
δλ→0

(
V‖(λ +δλ )−V(λ )

δλ

)

,

• V‖(λ +δλ ) represents the vector V (λ ) parallel transported

along the curve parameterized by λ from λ to λ +δλ .

• A basis vector field eµ(λ ) is assumed defined in the vicin-

ity of the curve.

• uν ≡ dxν/dλ (chain rule conversion)

• We use the symbol ∇ν , anticipating equivalence with the

covariant derivative already defined.

We must now understand how to transport a vec-

tor from λ to λ +δλ while preserving its intrinsic

properties.
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Tangent

point

Tangent

point

1
2

3

I II

II

A

B

(b) (c)(a)

Figure 7.3: (a) Tangent spaces and vectors in curved spaces (see Fig. 3.1).

(b) Parallel transport of a vector in a closed path on a curved surface. The

vector rotates by 90◦ for parallel transport on the closed path 1→ 2→ 3.

(c) Dependence of parallel transport on the path. Parallel transport from A

to B on the direct path labeled I rotates the vector by a different amount than

for parallel transport from A to B on the two-segment path labeled II.

• Natural notion of parallel transport: keep the vector par-

allel to itself in infinitessimal steps; see Fig. 7.3 (space

locally euclidean).

• As Fig. 7.3 illustrates, parallel transport of vectors on a

curved surface is generally path-dependent.

• Hence parallel transport in curved spaces is not unique and

requires a prescription.

• The apparent rotation of a vector when parallel transported

around a closed path measures curvature of the manifold.

• For 2D, rotation is proportional to Gaussian curvature.

• In 4D spacetime we will find that the rotation depends on

the Riemann curvature tensor.
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7.5.1 The Affine Connection and Covariant Derivatives

Generalizing the discussion in Chapter 2 to curved spacetime,

• Differentiation of a 4-vector V = V µeµ with respect to a

parameter λ gives two contributions,

dV

dλ
=

d

dλ

(
V µeµ

)
=

dV µ

dλ
eµ +

deµ

dλ
V µ ,

• where the first term represents the change in the vector

components in a fixed basis eµ and

• the second term represents the change in the basis in mov-

ing from one point to another.

Introducing uµ ≡ dxµ/dλ and using dV
dλ = ∂

∂xν
dxν

dλ ,

dV

dλ
=

∂

∂xν

dxν

dλ
V µeµ +V µ dxν

dλ

∂

∂xν
eµ

= ∂νV µuνeµ +V µuν∂νeµ .

For infinitesimal separation between x and x′ the second term

will be linear in V µ , so expand in the vector basis eµ ,

dV

dλ
=
(
∂νV µ +Γ

µ
ανV α

)
uνeµ ,

• Γ
µ
αν is called the affine connection coefficient or often just

the connection.

• The Γ
µ
αν define a connection between tangent spaces at

two different points of the manifold.
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• This permits a vector in the tangent space at one point to

be parallel transported and compared with a vector defined

in the (different) tangent space at another point.

• Use of the same notation for the connection coefficient

as for the Christoffel symbol is deliberate because the

connection coefficient and the Christoffel symbol may be

viewed as equivalent.

Specifically, the Christofel symbols are connection

coefficients expressed in a coordinate basis.

• Despite its indices, the Christoffel symbol does not trans-

form as a tensor.

(That’s the point! If it did transform as a tensor it

would be of no use to us.)

It will be shown later that

• The affine connection Γ
µ
αν can be constructed from the

metric tensor and its derivatives,

• Γ
µ
αν vanishes if the metric is constant, and

• The Riemann tensor describing the local intrinsic curva-

ture of the spacetime may be constructed from Γ
µ
αν .

Thus the affine connection is central to developing

the theory of general relativity.
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Assuming equivalence of the Christoffel coefficients and con-

nection coefficients,

• comparison of with the expression from Chapter 3 for the

covariant derivative,

∇µAλ = ∂µAλ +Γλ
αµAα ,

with the above definition

dV

dλ
=
(
∂νV µ +Γ

µ
ανV α

)

︸ ︷︷ ︸

Covariant derivative

uνeµ ,

• indicates that the quantity in parentheses in the above

equation corresponds to the covariant derivative of the

vector V µ ,

∇νV µ = ∂νV µ +Γ
µ
ανV α .

• The covariant derivative represents the change of the

whole vector V , not only its components V µ .

Thus the derivative representing the change of a

vector under parallel transport along a path is the

covariant derivative evaluated along that path.
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7.5.2 Absolute Derivatives and Parallel Transport

Consider in more detail parallel transport of a vector.

• For euclidean space, parallel transport along a path pa-

rameterized by λ means that

– The length and direction of the vector (referenced to a

universal cartesian coordinate system) don’t change.

– Thus in flat space the components of the vector satisfy

dV µ/dλ = 0 under parallel transport

• For a curved manifold both the components and the basis

vectors change and this condition generalizes to

∇νV µuν = ∂νV µuν +Γ
µ
ανV αuν = 0,

where V =V µeµ and uν ≡ dxν/dλ .

• But ∂νV µuν = dV µ/dλ by the chain rule and comparison

with the definition of the absolute derivative (Ch. 3),

DV µ

Dλ
≡ dV µ

dλ
+Γ

µ
ανV α dxν

dλ
,

indicates that along a path parameterized by λ ,

DV µ

Dλ
= 0

is the condition for parallel transport of a vector.

• By this prescription, at each infinitesimal step the vector

is parallel transported.
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Summary of properties of the affine connection Γν
µα .

• Γν
µα is called the

– affine connection, or

– the connection coefficient, or

– the metric connection, or just

– the connection.

• The equivalence of notation for the affine connection and

the Christoffel symbol introduced earlier is deliberate be-

cause they may be viewed as equivalent.

• Γν
µα can be constructed from the metric and its derivatives.

• Γν
µα vanishes in a space with constant metric.

• Γν
µα does not follow from differential geometry of the

manifold but is additional imposed structure that specifies

how tangent spaces at different points are related.

• The Riemann curvature tensor describing the local intrin-

sic curvature of the spacetime may be constructed from

the affine connection.

Thus the affine connection is central to

• defining the covariant derivative,

• implementing parallel transport of tensors, and

• measuring quantitatively the curvature of a manifold.

It will play an important role in general relativity.
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7.6 Gravity and Curved Spacetime

Free Particle: A particle moving solely under the influence of

gravity is termed a free particle in general relativity, because

• The classical gravitational force will be replicated by par-

ticles propagating with no forces acting on them, but

• the propagation is in a curved spacetime.

Equivalence Principle: in a freely-falling coordinate system

labeled by coordinates ξ µ , the special theory of relativity is

valid and the equation of motion is given by

d2ξ µ

dτ2
= 0,

(the special relativistic generalization of Newton’s second law).

The proper time interval dτ is

dτ2 = ηµνdξ µdξ ν

and the Minkowski metric is defined by

ηµν = diag(−1,1,1,1),

which by equivalence is valid in the coordinates ξ µ .
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Introduce another arbitrary coordinate system xµ (not neces-

sarily inertial).

• The freely-falling coordinates ξ µ are functions of the new

coordinates, ξ µ = ξ µ(x), and by the chain rule

d2ξ α

dτ2
=

d

dτ

(
dξ α

dτ

)

=
d

dτ







Chain rule
︷ ︸︸ ︷

∂ξ α

∂xµ

dxµ

dτ







︸ ︷︷ ︸

Derivative of product

= 0

∂ξ α

∂xµ

d2xµ

dτ2
+

d

dτ

(
∂ξ α

∂xµ

)
dxµ

dτ
= 0

∂ξ α

∂xµ

d2xµ

dτ2
+

∂

∂xν

(
∂ξ α

∂xµ

)
dxν

dτ
︸ ︷︷ ︸

Chain rule

dxµ

dτ
= 0

∂ξ α

∂xµ

d2xµ

dτ2
+

∂ 2ξ α

∂xµ∂xν

dxµ

dτ

dxν

dτ
= 0.

• Multiply by ∂xλ/∂ξ α (note the implied sum on α)

∂xλ

∂ξ α

∂ξ α

∂xµ
︸ ︷︷ ︸

δ λ
µ

d2xµ

dτ2
+

∂xλ

∂ξ α

∂ 2ξ α

∂xµ∂xν
︸ ︷︷ ︸

≡Γλ
µν

dxµ

dτ

dxν

dτ
= 0

to obtain the geodesic equation,

d2xλ

dτ2
+Γλ

µν
dxµ

dτ

dxν

dτ
= 0 Γλ

µν ≡
∂xλ

∂ξ α

∂ 2ξ α

∂xµ∂xν
(connection)



282 CHAPTER 7. CURVED SPACETIME AND GENERAL COVARIANCE

The proper time interval in this coordinate system is

dτ2 = ηαβ dξ αdξ β

= ηαβ
∂ξ α

∂xµ
dxµ ∂ξ β

∂xν
︸ ︷︷ ︸

chain rule

dxν

= ηαβ
∂ξ α

∂xµ

∂ξ β

∂xν
︸ ︷︷ ︸

≡gµν

dxµdxν .

Thus, the proper time interval may be written as

dτ2 = gµνdxµdxν ,

where the metric tensor is defined by

gµν = ηαβ
∂ξ α

∂xµ

∂ξ β

∂xν
.

It is clear that

• gµν 6= ηµν , and generally

• gµν = gµν(x) is a function of the spacetime coordinates

because

• ∂ξ α/∂xµ generally depend on the spacetime coordinates.
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Much of the mathematics of general relativity lies in the disci-

pline of differential geometry. However,

• The affine connection is not part of differential geometry

since

– it is not a natural consequence of differential struc-

ture on the manifold, and

– it is in fact not even a tensor.

• The affine connection is an augmentation of differential

geometry that

– gives “shape and curvature” to a manifold;

– it is a defined rule for parallel transport on curved sur-

faces.

• The affine connection generally is not unique because we

can define many notions of parallel transport for a curved

surface.

• Nevertheless, we shall see that

Under conditions that are assumed to be satis-

fied in general relativity, the affine connection is

uniquely determined by the metric tensor.



284 CHAPTER 7. CURVED SPACETIME AND GENERAL COVARIANCE

7.7 The Local Inertial Coordinate System

We now demonstrate explicitly that the affine connection Γλ
µν

in an arbitrary coordinate system xµ defines the local inertial

coordinates ξ α at any point X . Multiply

Γλ
µν =

∂xλ

∂ξ α

∂ 2ξ α

∂xµ∂xν
.

through by ∂ξ β/∂xλ and utilize

∂ξ β

∂xλ

∂xλ

∂ξ α
= δ

β
α

to give the differential equation for the inertial coordinates

∂ 2ξ β

∂xµ∂xν
=

∂ξ β

∂xλ
Γλ

µν .

This has a power series solution near the point X

ξ α(x) = ξ α(X)+
∂ξ α(X)

∂xµ
(xµ −Xµ)

+
1

2

∂ξ α(X)

∂xλ
Γλ

µν(x
µ −Xµ)(xν −Xν)+ . . .

Thus, Γλ
µν and the partial derivatives ∂ξ/∂x at the point X de-

termine the local inertial coordinates ξ α up to order (x−X)2.

This is sufficient, since the inertial coordinates are

valid only in the vicinity of the point X .
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7.8 The Affine Connection and the Metric Tensor

We have seen from the preceding derivation that

• The affine connection Γλ
µν determines the gravitational

force through the geodesic equation.

• Thus, the affine connection is the gravitational field.

• The metric tensor determines the properties of the interval

dτ through

dτ2 = gµνdxµdxν .

• This suggests that the effect of gravity is determined by

– the affine connection Γλ
µν and

– the metric tensor gµν .

• Now we show that, in fact,

– the metric tensor gµν alone determines the full effect

of gravity because

– the connection Γλ
µν can be expressed in terms of the

metric tensor and its derivatives.

• Thus, we shall now show that

The metric tensor may be viewed as the gravita-

tional potential.
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Let’s first differentiate

gµν = ηαβ
∂ξ α

∂xµ

∂ξ β

∂xν

with respect to xλ ,

∂gµν

∂xλ
=

∂ 2ξ α

∂xλ ∂xµ

∂ξ β

∂xν
ηαβ +

∂ξ α

∂xµ

∂ 2ξ β

∂xλ ∂xν
ηαβ .

But we have shown that the inertial coordinates ξ α obey the

differential equation

∂ 2ξ β

∂xµ∂xν
=

∂ξ β

∂xλ
Γλ

µν .

Inserting this in the preceding equation gives

∂gµν

∂xλ
= Γ

ρ
λ µ

∂ξ α

∂xρ

∂ξ β

∂xν
ηαβ

︸ ︷︷ ︸
gρν

+Γ
ρ
λν

∂ξ β

∂xρ

∂ξ α

∂xµ
ηαβ

︸ ︷︷ ︸
gρµ

= Γ
ρ
λ µ

gρν +Γ
ρ
λν

gρµ ,

where

gµν = ηαβ
∂ξ α

∂xµ

∂ξ β

∂xν

has been used.
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As described in more detail in the book chapter, this equation

may be solved by switching indices and exploiting that Γσ
λ µ and

gµν are symmetric under exchange of lower indices to give

Γσ
λ µ =

1

2
gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

=
1

2
gνσ

(
gµν ,λ +gλν ,µ−gµλ ,ν

)
.

Therefore the connection—and hence the gravitational field—

are determined entirely by the metric tensor and its derivatives:

In general relativity, the metric tensor is the source

of the gravitational field.
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7.9 Uniqueness of the Affine Connection

The affine connection is

• an additional feature imposed on the differential structure

of a manifold

• through a definition that generally is not unique.

• However, if a manifold has both

– a metric and

– a connection

defined for it,

• one usually makes certain compatibility demands that con-

strain the connection.

• If the manifold has a metric tensor, the divergence of a

vector field and the metric are said to be compatible if

the inner (scalar) product of two arbitrary vectors is pre-

served under parallel transport.

• In proving preceding results we have assumed symmetry

of Γλ
µν in its lower indices.

• The torsion tensor is defined by

T λ
µν =

tensor
︷ ︸︸ ︷

Γλ
µν
︸︷︷︸

not tensor

− Γλ
νµ
︸︷︷︸

not tensor

.

It measures deviation from symmetry in the lower indices.
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The connection defined on a manifold with metric gµν is unique

and determined completely by the metric if

1. The manifold is torsion-free: T λ
µν = 0.

2. The covariant derivative of the metric tensor vanishes on

the entire manifold,

∇αgµν = 0,

which is sufficient to ensure that

3. the scalar product of vectors is preserved under parallel

transport.

In this case the connection is termed a metric connection.

The previous result that

Γσ
λ µ =

1

2
gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

determines the affine connection uniquely in terms

of the metric tensor

• is a consequence of the assumptions (1) and

(2) above.

• These assumptions are then justified after the

fact by concordance of the resulting theory

and observations.
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Chapter 8

The General Theory of Relativity

We shall now employ the central ideas introduced in the previ-

ous two chapters:

• The metric and curvature of spacetime

• The principle of equivalence

• The principle of general covariance

to construct the general theory of relativity and the correspond-

ing theory of gravitation.

We know that the weak-field, low-velocity limit of

this theory must be Newtonian gravitation, so we

begin by asking what the weak-field limit of a co-

variant theory of gravity would look like.

291
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8.1 Weak Field Limit

We begin by considering the weak field limit of Einstein’s the-

ory as a guide to what the full theory should look like.

In the weak field limit we should recover Newton’s

gravitational theory.

The Newtonian gravitational field may be derived from a scalar

potential ϕ that obeys the Poisson equation,

∇∇∇2ϕ = 4πGρ ∇∇∇≡ î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

• The Newtonian equation of motion is then

d2xi

dt2
= F i =−∂ϕ

∂xi
,

where FFF is the gravitational force.

• For a point-like mass M the potential is

ϕ =−GM

r
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Earlier we showed that

d2xλ

dτ2
+Γλ

µν
dxµ

dτ

dxν

dτ
= 0 (geodesic equation)

For the special case of vanishing gravity:

1. The metric is flat

gµν(x) = ηµν = constant,

in which case ∂gµν(x)/∂xα = 0.

2. The affine connection vanishes

Γσ
λ µ = 1

2gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

= 0.

3. Covariant derivatives equal partial derivatives.

4. The equation of motion becomes that of a free particle in

Minkowski space:

d2xλ

dτ2
= 0.

Generally though, space is curved by mass,

• which produces gravity, and

• the second term in the geodesic equation does

not vanish.
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Assume for the moment gravitational fields that

• are varying slowly in time

• are weak, and

• produce low velocities, v << c.

This implies the conditions

∂gµν

∂x0
= 0

︸ ︷︷ ︸

Slowly varying

dxi

dτ
<< 1

︸ ︷︷ ︸

Weak

dx0

dτ
≃ 1 (→ dt ≃ dτ).

︸ ︷︷ ︸
v<<c

The geodesic equation of motion in this limit reduces to

d2xµ

dτ2
+Γ

µ
µν

dxµ

dτ

dxν

dτ
= 0 −→ d2xµ

dτ2
+Γ

µ
00

(
dx0

dτ

)2

= 0,

and the connection reduces to

Γ
µ
00 =

1
2
gµρ







∂g0ρ

∂x0
+

∂g0ρ

∂x0
︸ ︷︷ ︸

Neglect

−∂g00

∂xρ







=−1
2
gµρ ∂g00

∂xρ
.
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Since the field is weak, expand the metric around the flat one,

gµν = ηµν +hµν

where hµν is a small correction. Then, ∂g00/∂xρ = ∂h00/∂xρ

and to lowest order in hµν

Γ
µ
00 =−

1

2
gµρ ∂g00

∂xρ
−→ Γ

µ
00 =−

1

2
ηµρ ∂h00

∂xρ
.

From the metric ηµν = diag(−1,1,1,1) the connection com-

ponents are explicitly

Γ0
00 =

1

2

∂h00

∂x0
= 0 Γi

00 =−
1

2

∂h00

∂xi
.

and we thus obtain (restoring c)

d2x0

dτ2
= 0

d2xi

dt2
=

1

2
c2 ∂h00

∂xi
.

Comparing with the Newtonian equation

d2xi

dt2
= F i =−∂ϕ

∂xi
,

we conclude that h00 =−2ϕ/c2 and thus that

g00 = η00+h00 =−
(

1+
2ϕ

c2

)

.
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This implies a scalar-field source for weak gravity

ϕ =−1
2c2(g00 +1).

Thus we obtain in the weak-gravity limit a clear

manifestation of the Einstein conjecture that

• gravity derives from the geometry of space-

time, with

• the metric tensor gµν as its source.

At the surface of spherical gravitating object of mass M and

radius R, the potential is ϕ =−GM/R and

g00 ≃−
(

1+
2ϕ

c2

)

=−
(

1− 2GM

Rc2

)

.

The second term 2GM/Rc2 measures the strength of the gravi-

tational field at the surface of the object.

• It is about 10−6 for the Sun.

• It is only of order 10−4 even for a white dwarf.

• It is about 0.3 for the surface of a neutron star, which in-

validates the assumptions of the weak-gravity derivation.

Neutron star densities imply significant curvature

of spacetime and non-negligible general relativis-

tic corrections to Newtonian gravity.
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8.2 Recipe for Motion in a Gravitational Field

The preceding discussion suggests a general recipe for writing

the equations of motion in a gravitational field.

• Invoke the equivalence principle to justify a local

Minkowski coordinate system ξ µ and formulate the ap-

propriate equations of motion for flat Minkowski space-

time in tensor form.

• Replace the Minkowski coordinates ξ µ by general curvi-

linear coordinates xµ in all equations.

• Replace all derivatives by the corresponding covariant

derivatives.

• Replace all integral volume elements by invariant volume

elements.

The resulting equations describe physics in a grav-

itational field.

• Because of the structure of the covariant derivatives, this

procedure clearly implies a relationship

gravity ↔ spacetime curvature ↔ mass/energy.

that we will now exploit.
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8.3 Towards a Covariant Theory of Gravity

Combining the Poisson equation

∇∇∇2ϕ = 4πGρ

with the density expressed in terms of the time–time component

of the stress–energy tensor,

T00 = ρc2 −→ ρ =
1

c2
T00,

and the weak-gravity scalar field,

ϕ =−1
2c2(g00 +1),

gives

∇∇∇2
g00 =

8πG

c4
T00 (First stab at covariant gravity)

This expression is clearly not yet satisfactory:

• Not covariant: it is expressed in tensor com-

ponents, not tensors.

• Not generally valid: It was derived assuming

weak, slowly-varying fields.

But the limit is correct, so let’s use it as a guide to

guessing the form of a fully covariant gravitational

theory.
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1. The right side of

∇∇∇2
g00 =

8πG

c4
T00

is not a tensor, but

• since the Newtonian limit is proportional to one com-

ponent of the stress–energy tensor,

• we guess that the right side should be modified by the

replacement T00→ Tµν .

2. The right side now transforms as a rank-2 tensor, so co-

variance requires that the left side be replaced by some-

thing having the same transformation properties.

3. We assume for requirements on the new left side:

• The weak-field limit is proportional to a curvature

∇∇∇2
g00, so the left side should be a covariant measure

of spacetime curvature.

• It must be a rank-2 covariant tensor to match the

right side.

• It must be symmetric in its lower indices to match the

corresponding property of Tµν on the right side.

• It must be divergenceless with respect to covariant

differentiation since Tµν ;ν = 0.

4. The candidate field equations must reduce to the Pois-

son equation describing Newtonian gravitation for weak,

slowly-varying fields and non-relativistic velocities.
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8.4 The Riemann Curvature Tensor

We must first generalize Gaussian curvature to 4D spacetime.

• Let’s introduce the rank-4 Riemann curvature tensor,

Rσ
µνλ = Γσ

µλ ,ν −Γσ
µν ,λ +Γσ

ανΓα
µλ −Γσ

αλ Γα
µν .

Lowering an index by contraction with gµν , it has the

symmetries

Rσ µνλ =−Rµσνλ =−Rσ µλν

Rσ µνλ = Rνλσ µ Rσ µνλ +Rσλ µν +Rσνλ µ = 0

and also satisfies the Bianchi Identity:

Rσ
µνλ ;ρ +Rσ

µρν ;λ +Rσ
µλρ ;ν = 0.

Because of the symmetries, only 20 of the 44 = 256 compo-

nents of the Riemann tensor are independent in 4-D spacetime.

2-D: 15 symmetry relations on 24 components→
1 independent component (Gaussian curvature).

• All components of Rσ
µνλ vanish in flat spacetime.

• Conversely, if Rσ
µνλ vanishes, spacetime is flat.

20 independent components of the Riemann tensor

generalize Gaussian curvature to 4-D spacetime.
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8.5 Instrinsic and Extrinsic Curvature

The curvature tensor has n4 components in n dimensions.

• However, symmetries (discussed below) reduce that to

n2(n2−1)/12 independent components.

• Thus in 4D the curvature tensor has 20 independent com-

ponents and

• in 3D it has 6 independent components.

• In 2D there are 15 symmetry relations on the 24 = 16 com-

ponents of the Riemann curvature tensor.

• This leaves only one independent component of

curvature—the Gaussian curvature already introduced.

• In 1D we find that curvature cannot be defined.

The assertion that curvature cannot be defined in 1D may not

seem right—what about a curved line?

• But curvature is meant here as an intrinsic property of a

manifold and in 1D there can be no intrinsic curvature.

• What is really meant by a “curved line” is the embedding

of a 1D surface in a higher-dimensional manifold.

• The perceived curvature of the line then is a property of

the embedding, not an intrinsic property of the 1D space.
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A manifold embedded in a higher-dimensional manifold

• inherits an induced metric from the embedding.

• The apparent curvature of embedded spaces having no in-

trinsic curvature results from this induced metric.

• This is termed extrinsic curvature.

In a similar vein, a cylinder is a flat 2D surface:

• Its Gaussian curvature vanishes and it is constructed by

• identifying two opposite edges of a flat surface.

• This also may be verified by parallel transporting a vector

in a closed rectangular path on the cylinder.

• Unlike for a sphere, the vector remains unchanged under

parallel transport on the cylinder.

• The curvature perceived for the cylinder is an artifact of

embedding the 2D cylinder in a 3D space.

GR usually deals with intrinsic curvature.

• Intrinsic curvature is specified by the Rie-

mann curvature tensor.

• Intrinsic curvature is independent of any em-

bedding in higher dimensions.

Our sole concern here will be intrinsic curvature.
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8.6 The Einstein Equations

Having now a covariant description of

• matter,

• energy,

• pressure, and

• spacetime curvature,

we possess the tools to implement a covariant theory of gravity.

• The Riemann curvature tensor is rank-4, but

• our previous reasoning indicates that we need

rank-2 tensors to describe gravity.

• This suggests that we need contractions of

the Riemann tensor with the metric tensor to

form a covariant theory of gravity.
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First form the symmetric Ricci tensor Rµν by contracting the

Riemann tensor,

Rµν = Rνµ = gλσ Rλ µσν = Rσ
µσν ,

= Γλ
µν ,λ −Γλ

µλ ,ν +Γλ
µνΓσ

λσ −Γσ
µλ Γλ

νσ (Ricci tensor),

and the Ricci scalar R by a further contraction,

R = gµνRµν (Ricci scalar).

Finally multiply the Bianchi identity

Rσ
µνλ ;ρ +Rσ

µρν ;λ +Rσ
µλρ ;ν = 0.

by gµν and gσρ and do the implied sums to give (Problem)

∇λ Rµναβ +∇β Rµνλα +∇αRµνβλ = 0
︸ ︷︷ ︸

Bianchi identity

−→



Rµν − 1
2gµνR

︸ ︷︷ ︸

Einstein tensor





;ν

= 0

where the symmetric Einstein tensor is defined by the quantity

in parentheses,

Gµν ≡ Rµν − 1
2gµνR (Einstein tensor).

and has vanishing convariant 4-divergence:

G
µν
;ν = ∇νGµν = 0.
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The Einstein tensor

Gµν ≡ Rµν − 1
2gµνR (Einstein tensor).

is in fact the tensor that we seek to replace the left side of the

weak-field equation:

• It is a rank-2 tensor.

• It is symmetric in its indices.

• It is a covariant measure of spacetime curvature because

• it is formed by contractions of the Riemann tensor.

• It has vanishing covariant 4-divergence.

Thus, we may express the covariant theory of gravitation in

terms of the Einstein equation,

Gµν ≡
(
Rµν − 1

2
gµνR

)
=

8πG

c4
Tµν .

or even more compactly in c = 1 or c = G = 1 units,

Gµν = 8πGTµν = 8π Tµν .

The tensors are symmetric so this expression represents 10

coupled, partial, non-linear differential equations that must be

solved to determine the effect of gravitation.

We shall see later that additional symmetries can

reduce this to fewer equations to be solved in some

favorable cases.
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By contraction with the metric tensor the Einstein equation can

also be written in the alternative form (Problem)

Rµν =
8πG

c4
(Tµν − 1

2gµνT α
α ),

where the full contraction T α
α represents the trace of the stress–

energy tensor expressed as a mixed rank-2 tensor.

Vacuum Solutions: If the region where the solution is valid is a

vacuum,

Tµν = T α
α = 0.

• Then the Einstein equations reduce to the vacuum Einstein

equation

Rµν = 0,

• which involves only the Riemann curvature tensor, not the

full Einstein tensor.

Vacuum solutions of the Einstein equation satisfy the differen-

tial equation

Rµν = 0.

Even though the Ricci tensor Rµν vanishes for

this solution, that does not necessarily mean that

spacetime curvature is zero, as we now discuss.
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Only Rµν is needed to construct the vacuum Einstein equation,.

• However, only the full Riemann curvature tensor Rσ µνλ

with its 20 independent components contains complete in-

formation about the spacetime curvature.

• Because they are contracted quantities

– the Ricci tensor Rµν has only 10 independent compo-

nents and

– the Ricci scalar R only one independent component.

When Rσ µνλ vanishes for the entire space then so do Rµν and

R, but the converse need not hold. For example,

• A manifold for which Rµν = 0 is termed Ricci flat.

• But such a manifold need not be geometrically flat.

• Only the vanishing of the full curvature tensor Rσ µνλ en-

sures geometrical flatness.

Example: the Schwarzschild metric (see Ch. 9):

• It satisfies Rµν = 0 (Ricci flat), but corre-

sponds to a curved spacetime manifold.

• This is because Rσ µνλ has non-vanishing

components, even though Rµν = 0.

Indeed, the curvature is so strong that it can lead

to a black hole with an event horizon.
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To fix ideas, lets illustrate calculation of the quan-

tities that enter the Einstein tensor in a simple 2D

case with uniform curvature.

Example: Consider a 2D spherical surface in 3D Euclidean

space. Let’s find the components of

• the metric tensor,

• the non-zero connection coefficients,

• the Riemann curvature tensor,

• the Ricci tensor, and

• the Ricci scalar curvature.

In standard polar coordinates the line element is

ds2 = a2(dθ 2 + sin2 θdϕ2),

where a is the radius of the sphere. This corresponds to a diag-

onal metric with

gθθ = a2 gϕϕ = a2 sin2 θ gθϕ = gϕθ = 0,

and since gµν is the matrix inverse of gµν ,

gθθ =
1

a2
gϕϕ =

1

a2 sin2 θ
.
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The connection coefficients are given by

Γσ
λ µ = 1

2gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

.

Thus from the metric

gθθ = a2 gϕϕ = a2 sin2 θ gθϕ = gϕθ = 0,

the connection coefficients with θ as an upper index are

Γθ
ϕϕ =−sinθ cosθ Γθ

θθ = Γθ
θϕ = Γθ

ϕθ = 0

and the connection coefficients with ϕ as an upper index are

Γ
ϕ
θϕ = Γ

ϕ
ϕθ = cotθ Γ

ϕ
θθ = Γ

ϕ
ϕϕ = 0.

This then permits us to calculate the Riemann tensor and its

contractions.
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The Riemann curvature tensor is given by

Rσ
µνλ = Γσ

µλ ,ν −Γσ
µν ,λ +Γσ

ανΓα
µλ −Γσ

αλ Γα
µν .

This is a 2D space so there will be only one independent com-

ponent, which (up to symmetries) can be taken as

Rθ
ϕθϕ =

∂Γθ
ϕϕ

∂θ
−

∂Γθ
ϕθ

∂ϕ
+Γθ

αθ Γα
ϕϕ −Γθ

αϕΓα
ϕθ

=
∂Γθ

ϕϕ

∂θ
−Γθ

ϕϕΓ
ϕ
ϕθ = sin2 θ .

The metric tensor may be used to lower the upper index,

Rµναβ = gµλ Rλ
ναβ , which leads to

Rθϕθϕ = Rϕθϕθ = a2 sin2 θ ,

where the symmetry Rσ µνλ = Rνλσ µ has been used. The Ricci

tensor is then given by

Rµν = Γλ
µν ,λ −Γλ

µλ ,ν +Γλ
µνΓσ

λσ −Γσ
µλ Γλ

νσ ,

and its non-vanishing components are

Rϕϕ = gθθ Rθϕθϕ = sin2 θ Rθθ = gϕϕRϕθϕθ = 1.

Finally, the Ricci scalar curvature is the full contraction of the

Ricci tensor with the metric tensor,

R = gµνRµν = gϕϕRϕϕ +gθθ Rθθ =
2

a2
,

which is, up to a multiplicative factor, the Gaussian curvature.
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8.6.1 Limiting Cases of the Einstein Tensor

It is not hard to show that the Einstein tensor

Gµν ≡ Rµν − 1
2
gµνR

has the following limiting behavior:

• For weak, non-relativistic fields,

G00→ ∇2g00 ∇∇∇≡ î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
,

as required in our derivation of the weak-field limit.

• If spacetime is flat (no curvature), Gµν → 0.

• If there were no

– matter

– energy

– pressure

in the universe, then Gµν → 0.

These are exactly the properties expected from a

theory of gravity

• in which gravity is curved spacetime and

• mass–energy–pressure curves spacetime

that reduces to Newtonian gravity for weak fields.
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8.7 Solving the Einstein equations

The foregoing development has produced a set of field equa-

tions describing gravity covariantly.

• However, to apply this formalism systematically it is nec-

essary to find solutions for the field equations.

• This is no easy task, given that

– the Einstein equations represent a set of coupled, non-

linear, partial differential equations, and that

– the appropriate boundary conditions may involve

tricky issues, particularly in the limit of strong grav-

ity.

In subsequent chapters it will be found that two assumptions

can be used to find important solutions analytically that appear

to represent physically-observable objects:

• Assume the field to be weak, or

• Assume the metric describing the field to have a high de-

gree of symmetry.



8.7. SOLVING THE EINSTEIN EQUATIONS 313

8.7.1 Solutions in the Limit of Weak Fields

Analytical solutions may be obtained by positing a relatively

weak gravitational field.

• Then it is justified to expand the metric about the

Minkowski-space metric.

• Since most gravitational fields are weak, this can be very

useful.

• Earlier this approach was used to show that Newtonian

gravity is the weak-field limit of general relativity.

• Later, it will be used to predict the existence of gravita-

tional waves.
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8.7.2 Solutions with a High Degree of Symmetry

A second assumption that can lead to meaningful analytical so-

lutions of the field equations is to idealize the problem by as-

suming a high degree of symmetry.

• Then it is possible to decouple the Einstein equations and

reduce the problem to solving a subset of the original

equations.

• In this case it may be possible to obtain solutions without

making a weak-field assumption.

• This will be the approach that we shall take to finding an-

alytical solutions relevant for black holes and for cosmol-

ogy in later chapters.
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8.7.3 Solutions by Numerical Relativity

If gravity is strong without a high degree of symmetry for the

source it is necessary to resort to numerical relativity, where

solutions are obtained from large-scale computer simulations.

• Standard approaches to solution of partial differential

equations on a computer often require that the usual text-

book representation of general relativity be reformulated.

• Ideally one would like to use a model of an object de-

scribed by general relativity to supply some “initial data”.

• Then these initial data are evolved numerically according

to the Einstein field equations to some final equilibrium

situation.

• The problem is that the coordinate independence of the

usual formulation of GR means that

– there is no natural notion of “time” and

– “initial data” has no clearly-defined meaning.

• A typical approach is to reformulate general relativity by

splitting spacetime into 3+1 dimensions of space and time.

• In this formulation Einstein’s equations take a form better

adapted to solving the initial value problem numerically

on a computer.
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• Full-blown numerical relativity is beyond the scope of our

presentation because it involves advanced issues in

– general relativity,

– numerical analysis, and

– computational science.

• However, it is assuming increasing importance with the

emphasis on

– black holes and

– gravitational waves.

in modern astrophysics.

Although we will not cover numerical relativity in

any depth, we will

• give some allusions to it,

• use some of its results, and

• cite some literature references

in the course of our discussion.



Chapter 9

The Schwarzschild Spacetime

One of the simplest solutions of the Einstein equations corre-

sponds to

• a metric that describes the gravitational field exterior to a

mass that is

– static,

– spherical,

– uncharged,

– without angular momentum, and

– isolated from all other mass.

• It was obtained by Schwarzschild in 1916.

Schwarzschild found the solution while serving in

World War I, before Einstein could find any exact

solutions for his field equations.

317
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The Schwarzschild solution is

• A solution of the vacuum Einstein equations

Rµν = 0.

• Only valid in the absence of matter and non-gravitational

fields (Tµν = 0).

• Spherically symmetric and

• time independent.

• (Later we will see that time independence and spherical

symmetry are related to each other for the Schwarzschild

solution.)

Thus, the Schwarzschild solution

• is valid outside spherical mass distributions,

but

• the interior of a star will be described by a

different metric.

since it is a vacuum solution valid only in the ab-

sence of matter or energy.
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9.1 The Form of the Metric

Let’s work in spherical coordinates (r,θ ,ϕ) and seek a time-

independent solution assuming that

• The angular part of the metric will be unchanged from its

form in flat space because of the spherical symmetry.

• The parts of the metric describing dt and dr will be modi-

fied by functions that depend only on the radial coordinate

r.

Therefore, let us write the 4-D line element as

ds2 = −B(r)dt2+A(r)dr2

︸ ︷︷ ︸

Modified from flat space

+r2dθ 2+ r2 sin2 θdϕ2

︸ ︷︷ ︸

Same as flat space

,

where A(r) and B(r) are unknown functions that may depend

on r but not time. They may be determined by

1. Inserting this metric in the Einstein field equations for

Tµν = 0 (vacuum Einstein equations).

2. Solving the resulting equations to determine the unknown

functions A(r) and B(r).
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Substitute the metric form in the vacuum Einstein equation,

Rµν = 0, and carry out the following steps (Problem):

1. With the assumed form of the metric,

gµν =










−B(r) 0 0 0

0 A(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ










.

compute the non-vanishing connection coefficients Γλ
µν .

Γσ
λ µ = 1

2gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

2. Use the Γλ
µν to construct the Ricci tensor Rµν .

Rµν = Γλ
µν ,λ −Γλ

µλ ,ν +Γλ
µνΓσ

λσ −Γσ
µλ Γλ

νσ ,

(Only need Rµν , not full Gµν .)

3. Solve the resulting set of equations for A(r) and B(r).

The final solution is remarkably simple:

B(r) = 1− 2M

r
A(r) = B(r)−1,

(G= c= 1 units), where M is the single parameter.
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The Schwarzschild line element is then

ds2 = −
(

1− 2M

r

)

dt2+

(

1− 2M

r

)−1

dr2

+ r2dθ 2+ r2 sin2 θdϕ2,

where dτ2 = −ds2. The corresponding Schwarzschild metric

tensor is

gµν =













−
(

1− 2M

r

)

0 0 0

0

(

1− 2M

r

)−1

0 0

0 0 r2 0

0 0 0 r2 sin2 θ













.

which is diagonal but obviously not constant.
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By comparing

g00 =−
(

1− 2GM

rc2

)

︸ ︷︷ ︸

Weak gravity (earlier)

←→ g00 =−
(

1− 2GM

rc2

)

︸ ︷︷ ︸

Schwarzschild (G & c restored)

• we see that M (the single free parameter of the solution,

which arises mathematically as an integration constant)

• may be identified with the total mass, consisting of

– rest mass,

– contributions from energy densities and pressure,

– energy from spacetime curvature,

that is the source of the gravitational curvature.

From the structure of the metric

ds2 =−B(r)dt2+A(r)dr2+ r2dθ 2+ r2 sin2 θdϕ2,

• θ and ϕ have similar interpretations as for flat space.

• The coordinate radius r generally cannot be interpreted as

a physical radius because A(r) 6= 1.

• The coordinate time t generally cannot be interpreted as a

physical clock time because B(r) 6= 1.

The important quantity defined by

rS ≡ 2M = 2GM/c2

is called the Schwarzschild radius.
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r/Mgµν

r 
=

 2
M

g11

g11

g00
+

−

Figure 9.1: The components g00 and g11 in the Schwarzschild metric.

The line element (metric)

ds2 =−
(

1− 2M

r

)

︸ ︷︷ ︸
g00

dt2 +

(

1− 2M

r

)−1

︸ ︷︷ ︸
g11

dr2

+r2dθ 2+ r2 sin2 θdϕ2

appears to contain two singularities

1. A singularity at r = 0 arising from the g00 term (an essen-

tial singularity).

2. A singularity at

r = rS = 2M

arising from the g11 term (a coordinate singularity).
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Coordinate Singularity: A place where a chosen set of coordi-

nates does not describe the geometry properly.

Example: At the North Pole

• the azimuthal angle ϕ takes a continuum of

values 0–2π , so

• all those values correspond to a single point.

But this has no physical significance.

Example: Consider the 2D line element

ds2 = dr2+ r2dϕ2

and introduce the transformation r = a2/ρ , giving

ds2 =
a4

ρ4

(

dρ2+ρ2dϕ2
)

.

This is singular at ρ = 0, but

• Nothing is actually pathological at that point,

• so this is a coordinate problem:

– The transformation has mapped all

points at infinity into ρ = 0, and

– the geometry is not uniquely represented

by the (ρ ,ϕ) coordinates at ρ = 0.
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Coordinate singularities are

• not essential and

• can be removed by a different choice of coordinate system.

Conversely, physical singularities cannot be removed by a co-

ordinate transformation.
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9.2 Measuring Distance and Time

What is the physical meaning of the coordinates (t,r,θ ,ϕ)?

• We may assign a practical definition to r by

1. Enclosing the origin of our Schwarzschild spacetime

in a series of concentric spheres,

2. Measuring for each sphere a surface area (conceptu-

ally by laying measuring rods end to end),

3. Assigning a radial coordinate r to that sphere using

Area = 4πr2.

• Then we can use distances and trigonometry to define the

angular coordinate variables θ and ϕ .

• Finally we can define coordinate time t in terms of clocks

attached to the concentric spheres.

For Newtonian theory with its implicit assumption

that events occur on a passive background of

• euclidean space and

• constantly flowing time,

that’s the whole story.
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But in curved Schwarzschild spacetime

• The coordinates (t,r,θ ,ϕ) provide a global reference

frame for an observer making measurements at an infinite

distance from the gravitational source.

• However, physical quantities measured by arbitary ob-

servers are not specified directly by these coordinates but

rather

Physical quantitites must be computed from the

spacetime metric.
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Proper and Coordinate Distances

Consider distance measured in the radial direction. Set

dt = dθ = dϕ = 0

in the line element to obtain an interval of radial distance:

ds2 =−
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2+ r2dθ 2 + r2 sin2 θdϕ2

︸ ︷︷ ︸

set t,θ ,ϕ to constants → dt=dθ=dϕ=0

−→ ds =
dr

√

1− 2GM

rc2

,

• In this expression we term

1. ds the proper distance and

2. dr the coordinate distance.

The physical radial interval measured by a local

observer is the proper distance ds, not dr.

• GM/rc2 measures the strength of gravity, so the proper

distance and coordinate distance are equivalent only if

gravity is weak, either because

1. The source M is small, or

2. We are large coordinate distance r from the source.
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Asymptotically

flat space 

(dr ~ ds)

Asymptotically

flat space 

(dr ~ ds)

ds

dr

C1

C2

C3
C4

(1-2M/r )-1/2

Curved space

(dr < ds )

Flat space

(dr = ds)

Figure 9.2: Relationship between radial coordinate distance dr and proper

distance ds in Schwarzschild spacetime.

The relationship between coordinate distance interval dr and

proper distance interval ds is illustrated further in Fig. 9.2.

• Circles C1 and C3 represent euclidean spheres of radius r.

• The circles C2 and C4 represent spheres having an in-

finitesimally larger radius r+dr in euclidean space.

• In euclidean space the distance between the spheres is dr.

• But in the curved space the measured distance between

the spheres is ds, which is larger than dr, by virtue of

ds =
dr

√

1− 2GM

rc2

,

• Notice however that at large distances from the source

of the gravitational field the Schwarzschild spacetime be-

comes flat and then dr ∼ ds.
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Proper and Coordinate Times

Likewise, to measure a time interval for a stationary clock at r

• set dr = dθ = dϕ = 0 in the line element and

• use ds2 =−dτ2c2

to obtain

ds2 =−
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2+ r2dθ 2 + r2 sin2 θdϕ2

︸ ︷︷ ︸

set r,θ ,ϕ to constants → dr=dθ=dϕ=0

−→ dτ =

√

1− 2GM

rc2
dt.

• In this expression

– dτ is termed the proper time and

– dt is termed the coordinate time.

The physical time interval measured by a local ob-

server is given by the proper time dτ , not by the

coordinate time dt.

• dt and dτ coincide only if the gravitational field is weak.
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Thus we see that for the gravitational field outside a spherical

mass distribution

• The coordinates r and t correspond directly to physical

distance and time in Newtonian gravity.

• In general relativity

– The physical (proper) distances and times must be

computed from the metric.

– They generaly are not given directly by the coordi-

nates.

• Only in regions of spacetime where gravity is very weak

do we recover the Newtonian interpretation.

This is as it should be: The goal of relativity is to

make the laws of physics independent of the coor-

dinate system in which they are formulated.
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The coordinates in a physical theory are like street numbers.

• They provide a labeling that locates points in a space, but

knowing the street numbers is not sufficient to determine

distances.

• We can’t answer the question of whether the distance be-

tween 36th Street and 37th street is the same as the dis-

tance between 40th Street and 41st Street until we know

how the streets are spaced.

• We must compute distances from a metric that gives a

distance-measuring prescription.

– Streets that are always equally spaced correspond to

a “flat” space.

– Streets with irregular spacing correspond to a

position-dependent metric and thus to a “curved”

space.

For the flat space the difference in street number

corresponds directly (up to a scale) to a physical

distance, but in the more general (curved) case it

does not.
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9.2.1 Embedding Diagrams

It is sometimes useful to form a mental image of the structure

for a curved space by embedding the space or a subset of its

dimensions in 3-D euclidean space.

Such mental images are called embedding dia-

grams.
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We can embed only 2 dimensions of Schwarzschild spacetime

in 3D euclidean space.

• Choose θ = π
2 and t = 0, to give a 2-D metric

dℓ2 =

(

1− 2M

r

)−1

dr2+ r2dϕ2.

• The metric of the 3-D embedding space is conveniently

represented in cylindrical coordinates as

dℓ2 = dz2+dr2+ r2dϕ2

• This can be written on z = z(r) as

dℓ2 =

(
dz

dr

)2

dr2+dr2+ r2dϕ2 =

[

1+

(
dz

dr

)2
]

dr2+ r2dϕ2

• Comparing

dℓ2 =

[

1+

(
dz

dr

)2
]

dr2+ r2dϕ2

with

dℓ2 =

(

1− 2M

r

)−1

dr2+ r2dϕ2

and solving for z(r) implies that

z(r) = 2
√

2M(r−2M),

which is an embedding surface z(r) with the same geom-

etry as the Schwarzschild metric in the (r−ϕ) plane.
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Figure 9.3: An embedding diagram for the Schwarzschild (r−ϕ) plane.

Figure 9.3 shows a plot of the embedding function for the

Schwarzschild metric

z(r) = 2
√

2M(r−2M).

• Figure 9.3 is not what a Schwarzschild spacetime “looks

like” physically, but

• it is a useful visualization of the Schwarzschild geometry.

Thus such embedding diagrams are a standard

representation of the Schwarzschild metric in

popular-level discussion.
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Figure 9.4: Gravitational redshift in the Schwarzschild metric.

9.2.2 The Gravitational Redshift

Let’s now return to the gravitational redshift, which we treated

earlier with a weak-field approximation.

Consider emission of light from R1 that is detected

by a stationary observer at r >> R1 (Fig. 9.4).

For an observer with 4-velocity u, the energy measured for a

photon with 4-momentum p is

E = h̄ω =−p·u,

Observers are stationary in space but not time so

ui(r) = 0 u0 6= 0
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Thus the 4-velocity normalization gives

u·u = gµν(x)
dxµ

dτ

dxν

dτ
= g00(x)u

0(r)u0(r) =−1
︸ ︷︷ ︸

Solve for u0(r)

and we obtain

u0(r) =

√

−1

g00
=

(

1− 2M

r

)−1/2

.

Symmetry: The Schwarzschild metric is indepen-

dent of time, implying a Killing vector

Kµ = (t,r,θ ,ϕ) = (1,0,0,0)

associated with time-displacement isometry.

Thus, for a stationary observer at a distance r,

uµ(r) =

((

1− 2M

r

)−1/2

, 0, 0, 0

)

=

(

1− 2M

r

)−1/2

Kµ ,

and the energy of the photon measured at r by the observer is

h̄ω(r) =−p·u =−
(

1− 2M

r

)−1/2

(K ·p)r.
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But K is a Killing vector, so

• K ·p is conserved along the geodesic and thus

• K ·p is independent of r.

Therefore, it follows that

h̄ω0≡ h̄ω(r = R1) =−
(

1− 2M

R1

)−1/2

(K ·p)

h̄ω∞ ≡ h̄ω(r→ ∞) =−(K ·p).

Taking the ratio h̄ω∞/h̄ω0 gives a gravitational redshift

ω∞ = ω0

(

1− 2M

R1

)1/2

.

No weak-field assumption was made so this re-

sult should be generally valid for situations cor-

responding to the Schwarzschild metric.

For the special case of weak fields,

• 2M/R1 is small,

• the square root can be expanded, and

• the G and c factors restored to give

ω∞ ≃ ω0

(

1− GM

R1c2

)

(valid for weak fields).

This is the result found earlier from the equivalence principle.
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By viewing ω as defining clock ticks, the redshift may also be

interpreted as a gravitational time dilation: clocks run slower

in stronger gravitational fields.
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9.2.3 Particle Orbits in the Schwarzschild Metric

Symmetries of the Schwarzschild metric:

1. Time independence→ Killing vector Kt = (1,0,0,0)

2. No dependence on ϕ → Killing vector Kϕ = (0,0,0,1)

3. Additional Killing vectors associated with full rotational

symmetry (won’t need in following).

Conserved quantities associated with these Killing vectors:

ε ≡−Kt ·u =−gµνK
µ
t uν = g00u0 =

(

1− 2M

r

)
dt

dτ

ℓ≡ Kϕ ·u = gµνK
µ
ϕ uν = g33u3 = r2 sin2 θ

dϕ

dτ
.

Physical interpretation:

• At low velocities ℓ ∼ (orbital angular momentum / unit

rest mass)

• Since E = p0 = mu0 = mdt/dτ ,

Lim
r→∞

ε = Lim
r→∞

(

1− 2M

r

)
dt

dτ
=

dt

dτ
= u0 =

E

m

and ε ∼ energy / (unit rest mass) at large distance.

Also we have the usual velocity normalization constraint for

timelike particles,

u·u = gµνuµuν =−1.
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Conservation of angular momentum confines the particle mo-

tion to a plane, which we conveniently take to be

• the equatorial plane with θ = π
2 ,

• implying that u2 ≡ uθ = 0 and dθ = 0.

Then writing the velocity constraint for timelike particles,

gµνuµuν =−1.

out explicitly using the metric implied by the Schwarzschild

line element,

ds2 =−
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2

+r2dθ 2
︸ ︷︷ ︸

=0

+ r2 sin2 θ
︸ ︷︷ ︸

=1

dϕ2,

gives that

−
(

1− 2M

r

)

(u0)2 +

(

1− 2M

r

)−1

(u1)2 + r2(u3)2 =−1,

which we may rewrite using

uµ =

(
dx0

dτ
,
dx1

dτ
,
dx2

dτ
,
dx3

dτ

)

,

ε =

(

1− 2M

r

)
dt

dτ
ℓ= r2 sin2 θ

dϕ

dτ
,

in the form

ε2−1

2
=

1

2

(
dr

dτ

)2

+
1

2

[(

1− 2M

r

)(
ℓ2

r2
+1

)

−1

]

.
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We can put this in the form

E =
1

2

(
dr

dτ

)2

+Veff(r),

where we define a fictitious “energy”

E ≡ ε2−1

2

and an effective potential

Veff(r) =
1

2

[(

1− 2M

r

)(
ℓ2

r2
+1

)

−1

]

=−M

r
+

ℓ2

2r2
︸ ︷︷ ︸

Newtonian

− Mℓ2

r3
︸︷︷︸

correction

.

This is analogous to the energy integral of Newtonian mechan-

ics with

• an effective potential Veff and

• a proper time interval dτ .

The effective potential Veff(r) is of Newtonian form except that

• The GR potential has an additional term proportional to

r−3 that is not present in the Newtonian potential.

• The Schwarzschild coordinate r and the Newtonian coor-

dinate r don’t have the same physical interpretations.
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Figure 9.5: (a) Effective potentials for timelike particles in the

Schwarzschild metric, with curves labeled by values of ℓ/M. The

Schwarzschild curves with ℓ/M >
√

12 ≃ 3.46 have one maximum and

one minimum. The innermost stable circular orbit corresponding to ℓ/M =√
12 ≃ 3.46 is indicated by a heavier curve. For ℓ/M = 4.5 both the

Schwarzschild potential (solid) and the corresponding Newtonian potential

(dotted) are displayed. (b) Behavior of the solutions in (a) at large distances.

Figure 9.5 compares the Schwarzschild effective potential with

an effective Newtonian potential.

• The Schwarzschild potential generally has one maximum

and one minimum if ℓ/M >
√

12.

• Note the very different behavior of Schwarzschild and

Newtonian mechanics at the origin because of the correc-

tion term in

Veff(r) =−
M

r
+

ℓ2

2r2
︸ ︷︷ ︸

Newtonian

− Mℓ2

r3
︸︷︷︸

correction

Figure 9.6 on the following page summarizes possible orbits in

the Schwarzschild spacetime.
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Figure 9.6: Orbits in a Schwarzschild spacetime. Effective potential on left

and corresponding classes of orbits on right.
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9.2.4 Stable Circular Orbits

Accretion onto compact objects is a major energy source for

various astrophysical phenomena.

• Accretion typically occurs through an accretion disk, and

• tidal forces on the particles in an accretion disk tend to

circularize orbits.

Therefore, the stable and marginally-stable circu-

lar orbits for a spacetime are of particular interest

in astrophysics.
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Figure 9.7: Circular orbits in a Schwarzschild spacetime. Effective potential

on left and corresponding classes of orbits on right.

A circular orbit occurs in the Schwarzschild metric when E is

equal to a minimum or maximum of the effective potential, as

illustrated in arrows in Fig. 9.7.

• The radial coordinates of these orbits satisfy

r =
ℓ2

2M
± 1

2

√

ℓ4

M2
−12ℓ2.

• This has two solutions if if ℓ2/M2 > 12, with

– the plus sign corresponding to a minimum and

– the minus sign to a maximum of the potential.

• The requirement that E =Veff at a minimum implies that

ε2 =

(

1− 2M

r

)(

1+
ℓ2

r2

)

.
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The angular velocity Ω of a particle as seen by a distant ob-

server in a θ = π
2 Schwarzschild orbit is given by

Ω =
dϕ

dt
=

1

r2

(

1− 2M

r

)(
ℓ

ε

)

,

which implies that

ℓ

ε
=
√

Mr

(

1− 2M

r

)−1

,

which further implies that

Ω =

√

M

r3
.

Since the period is given by P = 2π/Ω, this is

• equivalent formally to Kepler’s 3rd law, but

• it is expressed in terms of Schwarzschild co-

ordinates r and t rather than in terms of

proper distances and times.
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It will be useful for later applications to write out explicit com-

ponents of the velocity 4-vector for a circular Schwarzschild

orbit in the equatorial plane.

• The components are

u = (ut,0,0,Ωut),

• where the relation

Ω =
dϕ

dτ

dτ

dt
=

1

ut

dϕ

dτ

was used.

The timelike component ut = dt/dτ may be evaluated explicitly

using the 4-velocity normalization

gµνuµuν =−1,

which gives

ut =

(

1− 3M

r

)−1/2

.
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Circular

orbits

Unstable equilibrium

Stable equilibrium

Stable

Unstable

Veff
0

Stable circular orbits

• do not exist at arbitrarily small radial coordinates in

the Schwarzschild spacetime, as illustrated in the figure

above.

• The minimum radius for a stable orbit occurs for ℓ2/M2 =
12.

• The corresponding radius for the innermost stable circular

orbit (ISCO) in the Schwarzschild spacetime is then

RISCO = 6M.

The innermost stable circular orbit is important in

determining how much gravitational energy can be

extracted from accretion onto compact objects.
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r+

r−

δφ

Figure 9.8: Precession of orbits in a Schwarzschild metric (highly-

exaggerated). The radial coordinate of the inner turning point r− and of

the outer turning point r+ are represented by dashed circles. Dots on the

inner circle indicate perihelion for each orbit and dots on the outer circle

indicate the corresponding aphelion. The quantity δϕ indicates the shift in

angle of the perihelion for one orbital period.

9.3 Precession of Orbits

An orbit closes (on itself) if the angle ϕ

• sweeps out exactly 2π in the passage between two succes-

sive inner or two successive outer radial turning points.

• In Newtonian gravity the central potential is 1/r, implying

closed elliptical orbits (leading to Kepler’s laws).

• In the Schwarzschild metric the effective potential devi-

ates from 1/r and orbits precess:

The angle ϕ changes by more than 2π between

successive radial turning points.

Precession is illustrated in Fig. 9.8.
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To investigate this precession quantitatively we require an ex-

pression for dϕ/dr. From the energy equation

E =
1

2

(
dr

dτ

)2

+Veff(r) −→ dr

dτ
=±

√

2(E−Veff(r)),

and from the conservation equation for ℓ,

ℓ= r2 sin2 θ
dϕ

dτ
−→ dϕ

dτ
=

ℓ

r2 sin2 θ
.

Combining, recalling that we chose an orbital plane θ = π
2 ,

dϕ

dr
=

dϕ/dτ

dr/dτ
=± ℓ

r2
√

2(E−Veff(r))

=± ℓ

r2

[

2E−
(

1− 2M

r

)(

1+
ℓ2

r2

)

+1

]−1/2

=± ℓ

r2

[

ε2−
(

1− 2M

r

)(

1+
ℓ2

r2

)]−1/2

,

where we have used E = 1
2(ε

2−1).
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The change in ϕ per orbit, ∆ϕ , can be obtained by integrating

over one orbit,

∆ϕ =
∫ r+

r−

dϕ

dr
dr+

∫ r−

r+

dϕ

dr
dr = 2

∫ r+

r−

dϕ

dr
dr

= 2ℓ
∫ r+

r−

dr

r2

[

ε2−
(

1− 2M

r

)(

1+
ℓ2

r2

)]−1/2

= 2ℓ
∫ r+

r−

dr

r2







c2(ε2−1)+
2GM

r
− ℓ2

r2
︸ ︷︷ ︸

Newtonian

+
2GMℓ2

c2r3
︸ ︷︷ ︸

correction







−1/2

where in the last step G and c have been reinserted through

M→ GM

c2
ℓ→ ℓ

c
,

Evaluation of the integral requires some care be-

cause the integrand tends to ∞ at the integration

limits: From an earlier expressions

dr

dτ
=±

[

ε2−
(

1− 2M

r

)(

1+
l2

r2

)]1/2

,

which is the denominator of our integrand. But the

limits are turning points of the radial motion and

dr/dτ = 0 at r+ or r−.
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In the Solar System and most other applications the values of

∆ϕ are very small.

• Thus it is sufficient to keep only terms of order 1/c2 be-

yond Newtonian approximation.

• Expanding the integrand and evaluating the integral with

due care yields

Precession angle = δϕ ≡ ∆ϕ−2π

≃ 6π

(
GM

cℓ

)2

rad/orbit.

This may be expressed in more familiar orbital parameters:

• In Newtonian mechanics L = mr2ω , where L is the angu-

lar momentum and ω the angular frequency.

• For Kepler orbits

ℓ2 =

(
L

m

)2

=

(

r2 dϕ

dτ

)2

≃
(

r2 dϕ

dt

)2

= GMa(1− e2),

where e is the eccentricity and a is the semimajor axis.

This permits us to write

δϕ =
6πGM

ac2(1− e2)

= 1.861×10−7

(
M

M⊙

)(
AU

a

)
1

1− e2
rad/orbit,
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The form of

δϕ =
6πGM

ac2(1− e2)

shows explicitly that relativistic precession is enhanced by

• large M for the central mass,

• tight orbits (small values of a),

• large eccentricities e.

The precession observed for most objects is small.

• Precession of Mercury’s orbit in the Sun’s gravitational

field because of general relativistic effects is 43 arcsec-

onds per century.

• The orbit of the Binary Pulsar precesses by about 4.2 de-

grees per year.

The precise agreement of both of these observa-

tions with the predictions of general relativity is a

strong test of the theory.
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9.3.1 Escape Velocity in the Schwarzschild Metric

Consider a stationary observer at a Schwarzschild radial coor-

dinate R who launches a projectile radially with a velocity v

such that the projectile reaches infinity with zero velocity.

• This defines the escape velocity in the Schwarzschild met-

ric.

• The projectile follows a radial geodesic since there are no

forces acting on it

• The energy per unit rest mass is ε and it is conserved (time

invariance of metric).

• At infinity ε = 1, since then the particle is at rest and the

entire energy is rest mass energy.

• Thus ε = 1 at all times since it is conserved.

If uobs is the 4-velocity of the stationary observer, the energy

measured by the observer is

E =−p·uobs =−mu·uobs

=−mgµνuµuν
obs

=−mg00u0u0
obs,

where p = mu, with p the 4-momentum and m the rest mass,

and the last step follows because the observer is stationary (in

space but not in time).
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But we have that

g00 =−
(
1− 2M

r

)

︸ ︷︷ ︸

From metric

u0
obs =

(
1− 2M

R

)−1/2

︸ ︷︷ ︸

Stationary observer

u0 =
(
1− 2M

r

)−1

︸ ︷︷ ︸

ε = (1− 2M
r
)u0 = 1

Therefore,

E =−mg00u0u0
obs

= m
(
1− 2M

r

)(
1− 2M

r

)−1 (
1− 2M

r

)−1/2

= m
(
1− 2M

R

)−1/2
.

But in the observer’s rest frame

E = mγ = m(1− v2)−1/2,

so comparison yields 2M/R = v2 and thus

vesc =

√

2M

R
=

√

2GM

R
.

Notice that

• This, coincidentally, is the same result as for

Newtonian theory.

• At the Schwarzschild radius R= rS = 2M, the

escape velocity is equal to c.

This is the first hint of an event horizon in the

Schwarzschild spacetime.
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9.4 Radial Fall of a Test Particle

It will be instructive for later discussion to consider a radial

plunge orbit that starts from infinity with

• zero kinetic energy (ε = 1) and

• zero angular momentum (ℓ= 0).

First, let’s find an expression for the proper time as a function

of the coordinate r.

• From earlier expressions

E =
ε2−1

2
=

1

2

(
dr

dτ

)2

−M

r
+

ℓ2

2r2
−Mℓ2

r3
,

• which implies for ℓ= 0 and ε = 1,

dr

dτ
=±

(
2M

r

)1/2

.

• Choosing the negative sign (infalling orbit) and integrat-

ing with initial condition τ(r = 0) = 0 gives (Problem)

τ

2M
=−2

3

r3/2

(2M)3/2

for the proper time τ to reach the origin as a function of

the initial Schwarzschild coordinate r.
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That was the proper time τ . To find an expression for the coor-

dinate time t as a function of r,

• we note that ε = 1 and is conserved. Then from

ε = 1 =

(

1− 2M

r

)
dt

dτ

dr

dτ
=±

(
2M

r

)1/2

we have that

dt

dr
=

dt/dτ

dr/dτ
=−

(

1− 2M

r

)−1(
2M

r

)−1/2

.

• This may be integrated to give (Problem)

t = t0−2M

(

−2

3

( r

2M

)3/2

+2
( r

2M

)1/2
+ ln

∣
∣
∣
∣
∣

(r/2M)1/2−1

(r/2M)1/2+1

∣
∣
∣
∣
∣

)

.
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Figure 9.9: Comparison of proper time and Schwarzschild coordinate time

for a particle falling radially in the Schwarzschild geometry.

• The proper time τ to fall to the origin is finite.

• For the same trajectory an infinite amount of coordinate

time t elapses to reach the Schwarzschild radius.

• The smooth trajectory of the proper time through rS sug-

gests that the apparent singularity of the metric there is not

real.

Later we shall introduce alternative coordinates

that explicitly remove the singularity at r = 2M

(but not at r = 0).



360 CHAPTER 9. THE SCHWARZSCHILD SPACETIME

9.5 Orbits for Light Rays

Calculation of light ray orbits in the Schwarzschild metric

largely parallels that of particle orbits,

• except that

u·u = gµν
dxµ

dλ

dxν

dλ
= 0,

where λ is an affine parameter.

• For motion in the equatorial plane (θ = π
2 ), this becomes

−
(

1− 2M

r

)(
dt

dλ

)2

+

(

1− 2M

r

)−1(
dr

dλ

)2

+r2

(
dϕ

dλ

)2

= 0.

• By analogy with the arguments for particle motion

ε ≡−Kt ·u =

(

1− 2M

r

)
dt

dλ
,

ℓ= Kϕ ·u = r2 sin2 θ
dϕ

dλ
,

are conserved along the orbits of light rays.

With a proper choice of normalization for λ ,

• ε may be interpreted as the photon energy

• ℓ is the photon angular momentum at infinity.
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Figure 9.10: Effective potential for photons and light ray orbits in a

Schwarzschild metric. Dotted lines on the left side give 1/b2 for each orbit.

By following steps analogous to the derivation for particle or-

bits the equation of motion is

1

b2
=

1

ℓ2

(
dr

dλ

)2

+Veff(r)

Veff(r)≡
1

r2

(

1− 2M

r

)

b2 ≡ ℓ2

ε2
.

The effective potential for photons and some classes of orbits

in the Schwarzschild geometry are illustrated in Fig. 9.10.
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∆φ
φ

δφ
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r1

b

Figure 9.11: Deflection of light by an angle δϕ in a Schwarzschild metric.

9.6 Deflection of Light in a Gravitational Field

Proceeding in a manner similar to that for the calculation of the

precession angle for orbits of massive objects, we may calculate

the deflection dϕ/dr for a light ray in the Schwarzschild metric.

δϕ =
4GM

c2b
= 8.477×10−6

(
M

M⊙

)(
R⊙
b

)

radians.

For a photon grazing the Sun’s surface,

• M = 1M⊙ and

• b = 1R⊙,

which gives δϕ ≃ 1.75 arcseconds.

Observation of this deflection during a total solar

eclipse catapulted Einstein to worldwide fame al-

most overnight in the early 1920s.
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9.7 Shapiro Time Delay of Light

Light passing near a gravitating body follows a curved path and

the time for light to travel between two points depends on this

curvature.

• The deviation in travel time between that in the curved

spacetime and the travel time if there were no curvature is

termed the Shapiro time delay.

• This does not mean that the speed of light varies.

• The local speed of light is always c,

• but the observed elapsed time for light to go between two

points in spacetime depends on the metric.

Thus, measurement of this time delay is a test of general rela-

tivity.
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To determine the time delay of light over a given path it is nec-

essary to evaluate the integral of dt/dr.

• Proceeding in a similar manner as the earlier discussion of

light deflection, we may use

ε =

(

1− 2M

r

)
dt

dλ

1

b2
=

1

ℓ2

(
dr

dλ

)2

+Veff(r)

to write

dt

dr
=

dt/dλ

dr/dλ
=± ε

(

1− 2M

r

)−1[

ℓ2

(
1

b2
−Veff

)]−1/2

=± 1

b

(

1− 2M

r

)−1(
1

b2
−Veff(r)

)−1/2

.

• This may be integrated to give the light travel time.

In a typical Shapiro-delay experiment,

• radar waves are bounced off a planet and

• the time to go and return is measured for paths that pass

very close to the surface of the Sun, or

• the delay in transmitting signals from space probes to

Earth is measured as the signals pass near the Sun.

The results of such experiments are consistent with

the equation above, thereby providing further con-

fidence in the validity of general relativity.
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9.8 Gyroscopes in Curved Spacetime

Consider the behavior of gyroscopes in free fall.

• These will follow a timelike geodesic, with a 4-velocity

u(τ) governed by the geodesic equation

duλ

dτ
+Γλ

µνuµuν = 0.

• In addition the gyroscope will have a spacelike spin 4-

vector sµ = (0,sss) in this frame.

• In the freely-falling local inertial frame the 4-velocity

components of the gyroscope are u = (1,0,0,0), so

s ·u = 0,

which is a tensor equation and thus true in all frames.

• In flat spacetime or a local inertial frame dsµ/dτ = 0.

• In curved spacetime the appropriate covariant generaliza-

tion gives an equation analogous to the geodesic equation,

dsµ

dτ
+Γ

µ
αβ sαuβ = 0.

– This equation describes how the components of the

gyroscopic spin sµ change along a geodesic and

– preserves the scalar product s ·u on the geodesic.

As in classical mechanics the magnitude of the

spin is constant but the direction can precess.
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Let us now use the equation

dsµ

dτ
+Γ

µ
αβ

sαuβ = 0.

to investigate two predictions of general relativity that lead to

precession of the spin vector for gyroscopes in gravitational

fields,

• geodetic precession and

• dragging of inertial frames.
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9.9 Geodetic Precession

Consider a gyroscope in a circular orbit around a non-rotating

gravitating sphere of mass M.

• A comoving observer in orbital free fall will see the gyro-

scope precess, even if the source of the field is not rotating.

• This is called geodetic precession.

Assume that

• Spacetime is described by the Schwarzschild metric,

• The radius for the orbit is R, and

• The spin points initially in the direction of a distant star.

For an observer at rest in the gyroscope’s frame

• The spin has only spatial components.

• By symmetry it must remain in the same plane.

• Choosing θ = π
2

for this plane in Schwarzschild coordi-

nates (t,r,θ ,ϕ), any precession occurs in the ϕ direction.

For the 4-velocity (u0,u1,u2,u3) ≡ (ut ,ur,uθ ,uϕ) the compo-

nent in the ϕ direction is

uϕ =
dϕ

dτ
=

dϕ

dt

dt

dτ
= Ωut Ω≡ dϕ

dt
=

√

M

R3
ut ≡ dt

dτ
,

where Ω is the classical orbital angular velocity.
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Time evolution for spin components (st,sr,sθ ,sϕ) is given by

dsµ

dτ
+Γ

µ
αβ sαuβ = 0.

evaluated in the Schwarzschild basis.

• Choose sθ = 0. It will remain zero because of symmetry.

• Because s ·u = 0 along the geodesic, (Problem)

st =
R2Ω

1−2M/R
sϕ .

• The remaining spin components sr and sϕ require solving

dsr

dτ
+Γr

αβ sαuβ= 0,

dsϕ

dτ
+Γ

ϕ
αβ

sαuβ= 0.

• The solutions are (Problem)

sϕ(t) =−s0

√

1− 2M

R

(
Ω

ωR

)

sin(ωt)

sr(t) = s0

√

1− 2M

R
cos(ωt),

where s0 = (s · s)1/2 is the invariant spin magnitude and

ω ≡
(

1− 3M

R

)1/2

Ω.
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Figure 9.12: Geodetic world line for gyroscope in orbit around a spherical

mass.

Imagine a gyroscope on a satellite in a circular Earth orbit.

• Assume that the spin of the gyroscope starts off at t = 0

pointing in the radial direction.

• The world lines for the gyroscope and Earth are illustrated

in Fig. 9.12.
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T
im

e

Space

World line of

satellite

World tube of

planet or star

t = 0

t = P = 2π/Ω

• After one complete orbit with a period t = P = 2π/Ω,

sr(t = P) = s0(1−2M/R)1/2 cos(ωP)

= s0(1−2M/R)1/2 cos
(

2π
ω

Ω

)

.

• In the absence of geodetic spin precession (so that ω =Ω),

the angle ϕ would change by 2π for one orbit.

• Thus the additional spin precession angle for each orbit is

∆ϕ = 2π−2π
ω

Ω
= 2π

(

1− ω

Ω

)

= 2π

[

1−
(

1− 3M

R

)1/2
]

,

in the direction of the orbital motion, where

ω ≡
(

1− 3M

R

)1/2

Ω.

was used in the last step.
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For objects in the Solar System M/R = GM/Rc2 is small, so

• The square root can be expanded to give

∆ϕ = 2π








1−
(

1− 3M

R

)1/2

︸ ︷︷ ︸

expand







≃ 3πM

R
=

3πGM

c2R
rad orbit−1,

for the geodetic precession per orbit for gyroscopes on a

satellite in Earth orbit.

• The radial direction is perpendicular to the direction of

orbital motion.

• Hence, this expression also gives the precession measured

by an observer comoving with the gyroscope in orbit.

The precession is small, but cumulative for successive orbits.
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39 mas/yr
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Figure 9.13: Geodetic precession and frame dragging for a gyroscope on

Gravity Probe B. Precession angles are exaggerated. IM Pegasi was chosen

as the directional reference because it was approximately in the desired di-

rection for the gyroscopic spin axis and its proper motion on the celestial

sphere was known precisely.

Gravity Probe B (GP-B) tested geodetic precession for

• gyroscopes aboard a satellite in an almost circular orbit

• that averaged 642 km above the surface of the Earth.

Figure 9.13 illustrates measurement of geodetic precession.

• The expected geodetic precession per orbit is 1.22 ×
10−3 arcsec orbit−1.

• This corresponds to a predicted geodetic precession rate

of ∆ϕ/∆t = 6.6 arcsec yr−1.

• The geodetic precession rate measured by GP-B was

within 0.07% of this value.
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9.10 Gyroscopes in Rotating Spacetimes

The Schwarzschild solution gives a spacetime valid outside any

spherical, static, non-rotating body.

• But astronomical bodies are typically spinning.

• Thus it is important physically to ask about solutions of

the Einstein equations for rotating spacetimes.

• Some objects are spinning slowly, which suggests that

their exterior metric might be approximated by an expan-

sion about the Schwarzschild spherical spacetime.

• On the other hand, in later chapters black holes will be

encountered that are spinning with an angular momen-

tum comparable to the maximum allowed by the laws of

physics.

• These cannot in any sense be understood in terms of per-

turbations of the Schwarzschild metric.

• In the remainder of this chapter the simpler topic of very

slowly rotating spherical spacetimes will be taken up;

• in later chapters the more complex issue of strongly-

deformed metrics implying potentially large angular mo-

mentum will be addressed.
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9.10.1 Slow Rotation in the Schwarzschild Metric

As an example of a slowly-rotating astronomical body, consider

the Sun.

• It rotates differentially with a period of about a month,

somewhat faster at the equator than at the poles.

• The spacetime outside the Sun is described by the

Schwarzschild solution provided that

1. it is a vacuum,

2. gravity from all other bodies can be neglected,

3. the Sun is static with no spin, and

4. the Sun is spherical.

• To a very good approximation these conditions are satis-

fied, so the Schwarzschild metric is almost (but not quite)

valid outside the Sun.

Let us now parse the “not quite” part of the preceding state-

ment.
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Take the exterior of the Sun to be a vacuum and ignore all other

masses.

• Thus deviation from the Schwarzschild metric outside the

Sun is caused only by its

1. angular momentum and by its

2. deviation from spherical symmetry.

• Deviations from spherical symmetry are very small and

caused classically by centripetal effects of its rotation.

• If the Schwarzschild metric is expanded in powers of the

angular momentum J,

– Centripetal forces vary as ω2 and so come in only at

the level of the J2 term in the expansion.

– Thus to 1st order in J the rotating Sun is spherical.

• However, recall that general relativity has many formal

similarities with electromagnetism and that electromag-

netic forces can arise from motion of charge.

• These are magnetic effects.

• In general relativity mass acts as “gravitational charge”.

• This suggests that gravitational “forces” (curvature of

spacetime) may arise from motion of mass (“mass cur-

rents”), in addition to arising from the mass itself.

This is the case, and forces arising from mass currents are

called gravitomagnetic effects in general relativity.
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Assuming a slowly-rotating spherical field, expansion about the

Schwarzschild metric to first order in J gives a metric

ds2=−
[

1− 2M

r
+O

(
1

r2

)]

dt2−
[

4J sin2 θ

r
+O

(
1

r2

)]

dϕ dt

+

[

1+
2M

r
+O

(
1

r2

)](

dr2+ r2(dθ 2+ sin2 θdϕ2)
)

.

Upon restoring factors of G and c, this may be written as

ds2 = ds2
0−

4GJ

c3r2
sin2 θ(rdϕ)(cdt)+O

(

J2
)

,

where

• ds2
0 is the contribution from the unperturbed

Schwarzschild metric and

• O
(
J2
)

indicates that terms of order J2 and higher have

been discarded.

For Newtonian theory J ∼Mrv, where v is the linear velocity.

Therefore, for the coefficient of the term proportional to J,

GJ

c3r2
∼ GMrv

c3r2
=

v

c
× GM

c2r
,

which shows that

The effect of mass motion on curvature is of or-

der v/c relative to the primary effect caused by the

mass itself, which is proportional to GM/c2r.
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Figure 9.14: A gyroscope in free fall on the rotation axis of a spherical

planet in slow rotation. The initial 4-spin s of the gyroscope is perpendicular

to the 4-velocity u, and the angular momentum of the planet is J.

9.10.2 Dragging of Inertial Frames

Consider the following thought experiment:

• Imagine a spherical body in slow rotation, with a metric

ds2 = ds2
0−

4GJ

c3r2
sin2 θ(rdϕ)(cdt)+O

(

J2
)

,

valid approximately in the spacetime surrounding it.

• Now imagine dropping a gyroscope from above the North

Pole with an initial spin perpendicular to the rotation axis.

Figure 9.14 illustrates.
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Spherical coordinates are singular on the z axis, so it is conve-

nient to work in cartesian coordinates (see figure above).

• In cartesian coordinates the Schwarzschild metric is

ds2 = ds2
0 (cartesian)− 4GJ

c3r2
(cdt)

(
xdy− ydx

r

)

,

where ds2
0 (cartesian) is the unperturbed metric.

• Only terms up to order 1/c3 need be retained and terms

involving the mass M will contribute at order 1/c5.

• Thus for small J the unperturbed Schwarzschild metric

can be replaced by its M→ 0 limit, which is just the flat

Minkowski metric.

• Thus, it is sufficient to work with the approximate metric

ds2 =−(cdt)2 +dx2+dy2+dz2

︸ ︷︷ ︸

Minkowski metric

− 4GJ

c3r2
(cdt)

(
xdy− ydx

r

)

︸ ︷︷ ︸

1st−order gravitomagnetic

.
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Taking the spin to lie in the x–y plane, initially

uµ = (ut,0,0,uz) sµ = (0,sx,sy,0),
so clearly

• s ·u = 0, and by symmetry arguments

• the spin will remain in the x–y plane.

The spin of the freely-falling gyroscope will be governed by

dsµ

dτ
+Γ

µ
αβ sαuβ = 0.

To leading order in 1/c the only contributions to the second

term will involve

Γ1
02 ≡ Γx

ty =
2GJ

c2z3
Γ2

01 ≡ Γ
y
tx =−

2GJ

c2z3

where r = z, since the gyroscope lies on the z axis. Then

dsµ

dτ
+Γ

µ
αβ sαuβ = 0

yields the equations

dsx

dτ
=−Γx

yts
yut =−2GJ

c2z3
syut dsy

dτ
=−Γ

y
xts

xut =
2GJ

c2z3
sxut.



380 CHAPTER 9. THE SCHWARZSCHILD SPACETIME

Utilizing ut = dt/dτ , the equations

dsx

dτ
=−Γx

yts
yut =−2GJ

c2z3
syut dsy

dτ
=−Γ

y
xts

xut =
2GJ

c2z3
sxut.

may be written

dsx

dt
=−2GJ

c2z3
sy dsy

dt
=

2GJ

c2z3
sx,

and the angular rate of precession in the x–y plane is

ΩLT =
2GJ

c2z3
.
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The result

ΩLT =
2GJ

c2z3
.

was obtained in a Lorentz frame for which

• the source of the spherical field is at rest and the gyroscope

is falling.

• However, it is valid also in the frame of the gyroscope

because

– Lorentz boosts along the z axis do not affect the trans-

verse spin components sx and sy, and

– there is no time dilation to leading order in c.

This gyroscopic precession effect is called the

Lense–Thirring effect or frame dragging.

Frame dragging should be distinguished from geodetic preces-

sion, which is

• much larger and

• occurs even if the gravitational field source is not rotating.

Gravity Probe B measured frame dragging for

Earth’s slowly-rotating field and found a value

within 5% of the GR prediction.
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Frame-dragging 

39 mas/yr

Distant

guide star

(IM Pegasi) Geodetic precession

- 6606 mas/yr

642 km

polar orbit

Earth

Effect GP-B measurement General relativity

Geodetic precession −6601.8±18.3 mas yr−1 6606.1 mas yr−1

Frame dragging −37.2±7.2 mas yr−1 −39.2 mas yr−1

The table above compares the predictions of general relativity

with measurements from Gravity Probe B for geodetic preces-

sion and frame dragging in a polar Earth orbit.

Thus GP-B found

• geodetic precession within 0.07% and

• frame dragging within 5%

of GR predictions.
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Frame dragging has been illustrated here specifically for a

slowly-rotating Schwarzschild metric.

• However, dragging of inertial frames is expected for any

metric having a field source that depends on angular mo-

mentum.

• It is a very small effect for Earth’s gravitational field.

• However, in later chapters extreme frame-dragging effects

will be discussed that can occur in

– much stronger,

– much more rapidly-rotating

gravitational fields.

These may be of large astrophysical importance

because frame dragging of spacetime around rotat-

ing black holes may help power some of the most

energetic events observed in the Universe.
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Chapter 10

Neutron Stars and Pulsars

Neutron stars are relevant to our discussion of general relativity

on two levels.

• They are of considerable intrinsic interest because their

quantitative description requires solution of the Einstein

equations in the presence of matter.

• In addition, they also explain the existence of pulsars and

these in turn provide the most stringent observational tests

of general relativity.

385
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10.1 A Qualitative Picture of Neutron Stars

Objects of white dwarf density are described reasonably well

by Newtonian gravity.

• For white dwarfs, general relativity corrections appear

typically at the ∼ 10−4 level.

• For neutron stars the densities are much higher;

• Newtonian gravity works qualitatively for neutron stars,

but a correct quantitative description requires GR.

• However, many of their basic properties can be estimated

using Newtonian concepts and simple reasoning.

• For example, the assumption that in a neutron star gravity

packs the neutrons down to their hard-core radius of ∼
10−13 cm yields immediately that

– the most massive neutron stars contain about 3×1057

baryons (mostly neutrons)

– within a radius of about 7 km,

– with a corresponding mass of about 2.3M⊙.

• This implies an average density greater than 1015 g cm−3,

which is several times nuclear matter density, and

• a (gravitational) binding energy of order 100 MeV per nu-

cleon, which is an order of magnitude larger than the bind-

ing energy of nucleons in nuclear matter.
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• The total gravitational binding energy of a neutron star is

within an order of magnitude of the rest mass energy, and

• the escape velocity is about 50% of the speed of light.

• The binding energy and the escape velocity both signal

that GR effects are likely to be significant.

General relativity is important for the overall properties of neu-

tron stars.

• However, over a microscopic scale characteristic of nu-

clear interactions the metric is essentially constant.

• This implies that the microphysics (nuclear and elemen-

tary particle interactions) of the neutron star can be de-

scribed by special-relativistic quantum field theory.

Thus it is possible to decouple

• gravity, which governs the overall structure,

from

• quantum mechanics, which governs the mi-

croscopic properties.

in the study of neutron stars.
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10.2 The Oppenheimer–Volkov Equations

Neutron stars have ρ ∼ 1014−1015 g cm−3.

• This produces gravitational fields that are of moderate

strength by GR standards (enormous by Earth standards).

• Escape velocity at the surface is around 1
3
c− 1

2
c.

• Thus GR is necessary for a correct description.

• Unlike vacuum solutions, we must now deal with mass

distributions and a finite stress–energy tensor.

• We shall, however, simplify by assuming a static, spheri-

cally symmetric configuration for the matter.

• With these assumptions we may assume that

– the solution outside the neutron star corresponds to

the Schwarzschild solution, so the interior solution

– must match Schwarzschild at the surface.

We consider the general solution of the Einstein

equations for the gravitational field produced by

• a static, spherical mass distribution that

• matches the exterior (vacuum) solution at the

surface of the spherical mass distribution.
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• Assume the matter inside the star is a perfect fluid, with

T
µ
ν = (ε +P)uµuν +Pδ

µ
ν .

• We assume spherical symmetry, with a line element

ds2 =−eσ(r)dt2+ eλ (r)dr2+ r2dθ 2+ r2 sin2 θdϕ2,

implying non-vanishing metric components

g00(r) =−eσ(r) g11(r) = eλ (r)

g22(r) = r2 g33(r,θ) = r2 sin2 θ .

• Assume equilibrium, so

– σ(r) and λ (r) depend on r but not t, and

– the 4-velocity has no space components:

uµ = (e−σ/2,0,0,0) = (g
−1/2

00 ,0,0,0).

• Inserting these 4-velocity components, the stress–energy

tensor takes the diagonal form

T
µ
ν = (ε +P)uµuν +Pδ

µ
ν =








−ε 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P








where ε = ρ in c = 1 units.
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• For the vacuum Einstein equation we need only the Ricci

tensor to construct the Einstein tensor.

• However, in the general non-vacuum case we need both

the Ricci tensor Rµν and the Ricci scalar R.

• It is convenient to express the Einstein equation as

Gν
µ ≡ Rν

µ − 1
2δ ν

µ R = 8πT ν
µ .

T ν
µ is diagonal, so only diagonal components of Gν

µ .

• Because of the Bianchi identity and the Einstein equations

G
µ

ν = 8πT
µ
ν

the stress–energy tensor obeys

T
µ
ν ;µ = 0.

• Thus we can choose to solve the equation T
µ
ν ;µ = 0 in

place of solving one of the Einstein equations.

We shall employ that strategy here, using two

Einstein equations and the constraint equation

T
µ
ν ;µ = 0 to obtain a solution.



10.2. THE OPPENHEIMER–VOLKOV EQUATIONS 391

The constraint equation has been solved in a Problem, where

you were asked to show that

T
µ
ν ;µ = 0 −→ P′+ 1

2(P+ρ)σ ′ = 0.

(primes denoting partial derivatives with respect to r) for a line

element and stress–energy tensor

ds2 =−eσ(r)dt2+ eλ (r)dr2+ r2dθ 2+ r2 sin2 θdϕ2,

T
µ
ν =








−ε 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P








We require two additional equations; the simplest choices are

the Einstein equations

G0
0 = 8πT 0

0 G1
1 = 8πT 1

1

• The Einstein tensors G00 and G11 were derived for this

metric in a Problem.

• Using contraction with the metric tensor to raise an index

we obtain from those results

G0
0 = g00G00 =−e−σ G00 = e−λ

(
1

r2
− λ ′

r

)

− 1

r2

G1
1 = g11G11 = e−λ G11 = e−λ

(
1

r2
+

σ ′

r

)

− 1

r2
.



392 CHAPTER 10. NEUTRON STARS AND PULSARS

Collecting the preceding equations, we find that we must solve

the set of equations

−e−λ

(
1

r2
− λ ′

r

)

+
1

r2
= 8πε(r)

e−λ

(
1

r2
− σ ′

r

)

− 1

r2
= 8πP(r)

P′+ 1
2(P+ρ)σ ′= 0.

To proceed we note that the first equation above may be rewrit-

ten as

G0
0 =

1

r2

d

dr

[

r
(

1− e−λ
)]

=
2

r2

dm

dr
= 8πε,

where we have defined a new parameter

2m(r)≡ r(1− e−λ ).

At this point m(r) is only a reparameterization of the metric

coefficient eλ since, upon multiplying by eλ ,

eλ =
r

r−2m(r)
=

(

1− 2m(r)

r

)−1

,

but m(r) will be interpreted below as the total mass–energy

enclosed within the radius r.
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From the first Einstein equation

G0
0 =

2

r2

dm

dr
= 8πε → dm = 4πr2εdr,

and thus

m(r) = 4π

∫ r

0
ε(r)r2 dr,

with an integration constant m(0) = 0 chosen on physical

grounds. Now consider the second Einstein equation

e−λ

(
1

r2
− σ ′

r

)

− 1

r2
= 8πP(r)

Solving it for σ ′ = dσ/dr gives

dσ

dr
= eλ

(

8πrP(r)+
1

r

)

− 1

r
,

and substitution of

eλ =
r

r−2m(r)

leads to
dσ

dr
=

8πr3P(r)+2m(r)

r(r−2m(r))
.

Therefore the preceding equations define the met-

ric coefficients eσ and eλ in terms of the parameter

m(r) and the pressure P(r).
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Finally, we may combine the two equations

P′+ 1
2(P+ρ)σ ′ = 0

dσ

dr
=

8πr3P(r)+2m(r)

r(r−2m(r))

to give

dP

dr
=−(P(r)+ ε(r))(4πr3P(r)+m(r))

r(r−2m(r))
.

Collecting our results, we have obtained the Oppenheimer–

Volkov equations for the structure of a static, spherical, gravi-

tating perfect fluid

dP

dr
=

(P(r)+ ε(r))
(
m(r)+4πr3P(r)

)

r2

(

1− 2m(r)

r

) ,

m(r) = 4π
∫ r

0
ε(r)r2 dr

where m(r) is the total mass contained within a radius r
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Oppenheimer–Volkov equations:

dP

dr
=

(P(r)+ ε(r))
(
m(r)+4πr3P(r)

)

r2

(

1− 2m(r)

r

) ,

m(r) = 4π
∫ r

0
ε(r)r2 dr

• Solution of these equations requires specification of an

equation of state that relates the density to the pressure.

• They may then be integrated from the origin outward

– with initial conditions m(r = 0) = 0 and

– an arbitrary choice for the central density ε(r = 0)

until the pressure P(r) becomes zero.

• This defines the surface of the star r = R, with the mass of

the star given by m(R).

• For a given equation of state each choice of ε(0) will give

a unique R and m(R) when the equations are integrated.

• This defines a family of stars characterized by

– a specific equation of state and

– the value of a single parameter (the central density, or

a quantity related to it like central pressure).
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These equations represent the general relativistic (covariant)

description of hydrostatic equilibrium for a spherical, gravitat-

ing perfect fluid.

• The condition of hydrostatic equilibrium was built into the

solution through the assumption

uµ = (e−σ/2,0,0,0) = (g
−1/2

00 ,0,0,0).

• This implies that the fluid is static since the 4-velocity has

no non-zero space components.

• They reduce to the Newtonian description of hydrostatic

equilibrium in the limit of weak gravitational fields

However, the Oppenheimer–Volkov equations im-

ply significant deviations from the Newtonian de-

scription in strong gravitational fields.

• To see this clearly, a little algebra allows us to rewrite them

in the form (Problem)

4πr2dP(r) =
−m(r)dm(r)

r2

×
(

1+
P(r)

ε(r)

)(

1+
4πr3P(r)

m(r)

)(

1− 2m(r)

r

)−1

dm(r) = 4πr2ε(r)dr.

These equations may be interpreted in the following way:
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4πr2dP(r)
︸ ︷︷ ︸

Force acting on shell

=
−m(r)dm(r)

r2
︸ ︷︷ ︸

Newtonian

×







1+
P(r)

ε(r)
︸︷︷︸

GR













1+
4πr3P(r)

m(r)
︸ ︷︷ ︸

GR













1− 2m(r)

r︸ ︷︷ ︸

GR







−1

dM(r) = 4πr2ε(r)dr
︸ ︷︷ ︸

Mass–energy of shell

.

• The second equation gives the mass–energy of a shell ly-

ing between radii r and r+dr.

• The left side of the first equation is the net force acting

outward on this shell.

• The first factor on the right side of the first equation is the

attractive Newtonian gravity acting on the shell because

of the mass interior to it.

• The last three factors on the right side of the first

equation—the factors on the second line—represent GR

effects causing deviation from Newtonian gravitation.

• Since all three factors on the second line of the first equa-

tion exceed unity as the star becomes relativistic, in GR

gravity is consistently stronger than in Newtonian gravity.

Note: Gravity is enhanced by coupling to pressure

in the GR description, unlike Newtonian gravity.
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10.3 Interpretation of the Mass Parameter

The parameter m(r) entering the Oppenheimer–Volkov equa-

tions was interpreted provisionally as the total mass–energy en-

closed within a radius r. Let’s now justify this interpretation.

• Outside a star of radius R, the mass function m(r) becomes

equal to m(R), which is

• the mass that would be detected through Kepler’s laws for

the orbital motion of a well-separated binary system.

• In the Newtonian limit it is clear from

m(r) = 4π
∫ r

0
ε(r)r2 dr,

that m(r) is the mass contained within the radius r.

• For relativistic stars m(r) may be consistently split into

– contributions from a rest mass m0(r),

– an internal energy U(r), and

– a gravitational energy Ω(r):

m(r) = m0(r)+U(r)+Ω(r).

• Formally we can split the energy density ε into a contri-

bution from the rest mass and one from internal energy,

ε = µ0n+(ε−µ0n),

where the first term is the total rest mass of n particles of

mass µ0, and the second term is the internal energy.
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• The proper volume for a spherical shell of thickness dr is

dV = 4πr2
√

detg11 dr = 4πr2
√

eλ dr

= 4πr2(1−2m/r)−1/2dr.

Thus the total rest mass inside the radius r is

m0(r) =

∫ r

0
µ0ndV = 4π

∫ r

0
r2(1−2m/r)−1/2µ0ndr,

the total internal energy inside r is

U(r) =

∫ r

0
(ε−µ0n)dV

= 4π
∫ r

0
r2(1−2m/r)−1/2(ε−µ0n)dr,

and the total mass–energy inside r is

m(r) = 4π
∫ r

0
ε(r)r2 dr.

• Thus, the difference

Ω(r) = m(r)−m0(r)−U(r)

=−4π
∫ r

0
r2ε
(

1− (1−2m/r)−1/2
)

dr

must be the total gravitational energy inside r.

This gives us some confidence that m(r) is indeed

the total mass–energy inside the coordinate r.
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10.3.1 Gravitational Mass and Baryonic Mass

The integral

m(r) = 4π
∫ r

0
ε(r)r2 dr

is of the same form as that for Newtonian gravity if the mass

distribution is given by ρ(r) = ε(r)/c2.

• However, in general relativity ε(r) is not an arbitrary dis-

tribution but rather corresponds to a solution P of

dP

dr
=

(P(r)+ ε(r))
(
m(r)+4πr3P(r)

)

r2

(

1− 2m(r)

r

) ,

with an equation of state ε = ε(P). Despite the form of

m(r) = 4π

∫ r

0
ε(r)r2 dr,

• m(r) is the sum of the mass and the gravitational energy,

• and the mass of the star has no well-defined meaning in

isolation from the gravitational energy.

• The mass–energy m is termed the gravitational mass.

• The total mass of the nucleons if they were dispersed to

infinity is termed the baryonic mass of the star.

• The gravitational mass and the baryonic mass are not the

same (they differ by the gravitational binding energy).

Gravitational mass ∼ 20% smaller than baryonic mass.
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10.4 Pulsars and Tests of General Relativity

Pulsars are rapidly-spinning neutron stars that sweep beamed

radiation over the Earth periodically, giving the illusion of pul-

sation.

• This apparent pulsation occurs with atomic-clock preci-

sion.

• Thus, pulsars offer possibilities for precise timing mea-

surements, particularly when they are found as a compo-

nent of a binary star system.

• The structure and evolution of pulsars is of considerable

intrinsic interest.

• However, they also are of great practical importance for

general relativity because of their superb timing charac-

teristics.

• These provide some of the most precise tests available for

the theory.

In the remainder of this chapter examples will be

given of the stringent tests of general relativity af-

forded by pulsars in close binary systems.
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10.4.1 The Binary Pulsar

The Binary Pulsar PSR 1913+16 (also known as the Hulse–

Taylor pulsar) was discovered using the Arecibo 305 meter ra-

dio antenna.

• It is about 5 kpc away, near the boundary of the constella-

tions Aquila and Sagitta.

• This pulsar rotates 17 times a second, giving a pulsation

period of 59 milliseconds.

• It is in a binary system with another neutron star (not a

pulsar), with a 7.75 hour period.

• The precise repetition frequency of the pulsar means that

it is basically a very high quality clock

– orbiting in a binary system that

– feels very strong, time-varying gravitational effects.

−→ Precision tests of general relativity
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Figure 10.1: Pulse rate and inferred radial velocity as a function of time for

the Binary Pulsar.

10.4.2 Periodic Variations

The repetition period for a pulsar is associated with the spin of

the pulsar and is atomic-clock-like in its precision. Thus

• Variations in that period as observed from Earth must be

associated with orbital motion in the binary.

• These variations can be used to give very precise informa-

tion about the orbit.

• When the pulsar is moving toward us, the repetition rate

of the pulses as observed from Earth will be higher than

when the pulsar is moving away (Doppler effect).

• This can be used to measure the radial velocity (Fig. 10.1).
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The pulse arrival times vary as the pulsar moves through its

orbit

• It takes three seconds longer for the pulses to arrive from

the far side of the orbit than from the near side.

• From this, the Binary Pulsar orbit can be inferred to be

about a million kilometers (three light seconds) further

away from Earth when on the far side of its orbit than

when on the near side.
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Figure 10.2: Binary Pulsar orbits.

10.4.3 Orbital Characteristics

The orbits determined for the binary are shown in Fig. 10.2.

• Each neutron star has a mass of about 1.4M⊙.

• The orbits are very eccentric (e∼ 0.6.).

• The minimum separation (periastron) is about 1.1R⊙.

• The maximum separation (apastron) is about 4.8R⊙

• The orbital plane is inclined by about 45 degrees.
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Figure 10.3: Precession of the periastron.

• By Kepler’s laws, the radial velocity of the pulsar varies

substantially as it moves around its elliptical orbit.

• These orbits are not quite closed ellipses because of pre-

cession effects associated with general relativity.

– This causes the location of the periastron to shift a

small amount for each revolution (Fig. 10.3).

– The points P1, P2, and P3 are periastrons on three

successive orbits (with the amount of precession

greatly exaggerated for clarity
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10.5 Precision Tests of General Relativity

The discovery and study of the Binary Pulsar was of such fun-

damental importance that Taylor and Hulse were awarded the

1993 Nobel Prize in Physics for their work

• This was the only Nobel ever given for relativity before

the 2017 prize for discovery of gravitational waves.

• Chief among the reasons for this importance is that the Bi-

nary Pulsar provided the most stringent tests of GR avail-

able before

– the discovery of the Double Pulsar and

– the direct observation of gravitational waves.
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Precession of Orbits

Because spacetime is warped by the gravitational field in the

vicinity of the pulsar, the orbit will precess with time.

• This is the same effect as the precession of the perihelion

of Mercury, but it is much larger for the present case.

• The Binary Pulsar’s periastron advances by 4.2 degrees

per year, in accord with the predictions of GR.

• In a single day the orbit of the Binary Pulsar advances by

as much as the orbit of Mercury advances in a century!

Time Dilation

• When near periastron, gravity is stronger and its velocity

is higher, so time should run slower.

• Conversely, near apastron the field is weaker and the ve-

locity lower, so time should run faster.

• It does both, in the amount predicted by GR.
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Figure 10.4: Shrinkage of the orbit of the Binary Pulsar because of gravita-

tional wave emission.

10.5.1 Emission of Gravitational Waves

The revolving pair of masses is predicted by general relativ-

ity to radiate gravitational waves, causing the orbit to shrink

(Fig. 10.4).

• The time of periastron can be measured very precisely and

is found to be shifting.

• This shift corresponds to a decrease in the orbital period

by 76 millionths of a second per year.

• The corresponding decrease in the size of the orbit by

about 3.3 millimeters per revolution.
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The quantitative decrease in periastron time is illustrated by the

data points in the above figure.

• Because the orbital period is short, the shift in periastron

arrival time has accumulated to more than 30 seconds (ear-

lier) since discovery.

• This decay of the size of the orbit is in agreement with the

amount of energy that general relativity predicts should

be leaving the system in the form of gravitational waves

(dashed line in figure)

• Precision measurements on the Binary Pulsar gave strong

indirect evidence for the correctness of this key prediction

of general relavity even before gravitational waves were

detected directly.
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10.5.2 Origin and Fate of the Binary Pulsar

Formation of a neutron star binary is not easy. One of two

things must happen

• A binary must form with two stars massive enough to be-

come supernovae and produce neutron stars, and the neu-

tron stars thus formed must remain bound to each other

through the two supernova explosions.

• The neutron star binary must result from gravitational cap-

ture of one neutron star by another.

These are improbable events, but not impossible, and the exis-

tence of the Binary Pulsar (and several similar systems) demon-

strates empirically that mechanisms exist for it to happen.
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Once a neutron star binary is formed its orbital motion radi-

ates energy as gravitational waves, the orbits must shrink, and

eventually the two neutron stars must merge.

• Because of the gravitational wave radiation and the cor-

responding shrinkage of the Binary Pulsar orbit (3.3 mil-

limeters per revolution), merger is predicted in about 300

million years.

• The sum of the masses of the two neutron stars is likely

above the critical mass to form a black hole. Therefore,the

probable fate of the Binary Pulsar is merger and collapse

to a rotating (Kerr) black hole.

• As two neutron stars in a binary approach each other they

will revolve faster (Kepler’s third law).

• This will cause them to emit gravitational radiation more

rapidly, which will in turn cause the orbit to shrink even

faster.

• Thus, near merger of two neutron stars will proceed

rapidly in a positive-feedback runaway and will emit very

strong gravitational waves that may be detectable with

current-generation gravitational wave detectors.

These considerations are valid for any binary, not

just the Binary Pulsar, but the gravitational wave

effects are much more pronounced for binaries in-

volving highly compact objects.
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Figure 10.5: Orbital configuration of the Double Pulsar.

10.5.3 The Double Pulsar

In 2003 a binary neutron star system (the Double Pulsar) was

discovered in which both neutron stars were observed as pul-

sars in a very tight, partially eclipsing orbit (Fig. 10.5).

• The two neutron stars have masses of 1.3381±0.0007M⊙
(component A), and 1.2489±0.0007M⊙ (component B).

• They have spin periods of 22.7 ms and 2.77 s.

• The orbit is slightly eccentric (e = 0.088).

• The orbit has a mean radius of about 1.25R⊙.

• Thus the orbital period is only 147 minutes, with a mean

orbital velocity of about 106 km hr−1.

• The fast orbital period and the exquisite timing from the

pulsar clocks has allowed the Double Pulsar to give the

most precise tests of general relativity to date.
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Figure 10.6: (a) (Highly-exaggerated) distortion of spacetime by the

pulsar–white dwarf binary PSR J0348+0432. The large, compact mass

of the neutron star distorts spacetime much more than the smaller, less-

compact mass of the white dwarf. (b) Gravitational wave emission from

PSR_J0348+0432. (c) Binary system PSR J0348+0432. Orbits to scale but

object sizes are schematic.

10.5.4 The Pulsar–White Dwarf Binary PSR J0348+0432

The binary system PSR J0348+0432

• is about 2.1 kpc away and

• contains a 39 ms pulsar of mass 2.01M⊙ and a white

dwarf of mass 0.172M⊙, with orbital period 2.46 hours.

• An artist’s impression of the distorted spacetime produced

by PSR J0348+0432 is shown in Fig. 10.6(a),

• Emission of gravitational waves illustrated in Fig. 10.6(b).

• The geometry of the orbit is illustrated in Fig. 10.6(c).
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The very compact orbit illustrated above (comparable in width

to the diameter of the Sun)

• suggests that there should be a rapid loss of orbital energy

to gravitational waves.

• Precise radio timing indicates that the orbital period is de-

creasing by 8.6 µsec year−1, in accord with the prediction

of general relativity

This implies a time until merger of ∼600 million years.
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The computed rate of decrease in orbital period for PSR

J0348+0432 because of gravitational wave emission is

ṖGR =−2.58×10−13 s s−1

and the measured rate of decrease in the orbital period is

Ṗ = −8.6 µs yr−1

(
1 s

106 µs

)(
1 yr

3.1557×107 s

)

= −2.73×10−13 s s−1.

Therefore, the ratio of measured to predicted rate of decrease is

Ṗ

ṖGR

= 1.05±0.18.

The orbital period of PSR J0348+0432 is de-

creasing at a rate accounted for by the rate of

gravitational-wave emission required by GR.
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The pulsar PSR J0348+0432

• contains one of the most massive neutron stars known

(M ∼ 2M⊙), with a gravitational binding energy that is

• 60% larger than that of neutron stars in any other binary

where gravitational-wave damping has been measured.

• Thus, PSR J0348+0432 tests general relativity under

stronger gravity than for other binary pulsar tests.

Strong-field effects in general relativity

• depend nonlinearly on the gravitational bind-

ing energy.

• Thus larger binding energy entails a substan-

tially more stringent test of general relativity.
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Figure 10.7: Orbits of PSR J0337+1715. (a) Orbits of the outer white dwarf

(WD) and the center of mass (CM) for the inner white dwarf and neutron star

pair. (b) As for left side but scaled up by a factor of 30 to show the orbits

for the inner white dwarf and neutron star (NS). Arrows indicate orbital

velocities for the center of mass of the inner binary and the individual white

dwarfs and neutron star. All orbits lie almost in the same plane, are nearly

circular, and have a tilt angle i∼ 39◦ relative to the line of sight.

10.5.5 The Pulsar–WD–WD Triplet PSR J0337+1715

The triple star system PSR J0337+1715, which contains a mil-

lisecond pulsar and two white dwarfs, is illustrated in Fig. 10.7.

• Pulsar timing allows a precise determination of masses

and orbital parameters.

• The neutron star is found to have a mass of 1.4378M⊙,

• the inner white dwarf has a mass of 0.1975M⊙, and

• the outer white dwarf has a mass of 0.4101M⊙.
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According to the strong equivalence principle,

• objects with different gravitational binding energies

should follow the same orbits in a gravitational field.

• This can be tested by tracking the Earth–Moon system as

it falls gravitationally toward the Sun in its orbit.

In PSR J0337+1715 a similar test is possible as the outer white

dwarf strongly accelerates the inner binary.

• Gravitational binding energies for the neutron star and

white dwarf in the inner binary differ from each other by

4–5 orders of magnitude, and

• the neutron star binding energy is roughly 109 times larger

than that of planets or moons in our Solar System.

Hence violations of the strong equivalence princi-

ple should be greatly amplified in J0337+1715.
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Part II

Black Holes
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Chapter 11

Spherical Black Holes

One of the most spectacular consequences of general relativity

is the prediction that gravitational fields can become so strong

that they can effectively trap even light.

• Space becomes so curved that there are no paths for light

to follow from an interior to exterior region.

• Such objects are called black holes, and there is extremely

strong circumstantial evidence that they exist.

• In this chapter we apply the Einstein theory of gravity to

the idea of black holes using the Schwarzschild solution.

• In the next chapter we shall take a first step in consider-

ing how gravitational physics is altered if the principles

of quantum mechanics come into play (Hawking black

holes),

• In the chapter after that we shall consider how the

Schwarzschild solution is modified if a black hole is as-

sumed to possess angular momentum (Kerr black holes.)

423
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11.1 Schwarzschild Black Holes

We shall now show that

• there is an event horizon in the Schwarzschild spacetime

at rS = 2M,

• which implies that there is a black hole inside the event

horizon,

where the escape velocity exceeds c.
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11.1.1 Event Horizons

Imagine an attempt to escape a gravitational field generated by

some spherical object of mass M.

• The condition for escape to a radius r is that the kinetic

energy exceed the gravitational potential energy:

1
2
mv2 ≥ GMm

r
.

• But the maximal physical velocity for any object is v = c;

substituting c for v and solving for r,

r =
2GMm

mc2
=

2GM

c2
= rS,

where we’ve used rS = 2M with c and G restored.

Therefore, rS is the radius at which the escape ve-

locity equals the velocity of light.

This is just a suggestive result from Newtonian physics

• supplemented by concepts from special relativity and

• dubious assumptions about light in Newtonian gravity.

But a more rigorous analysis comes to the same conclusion:

The gravitational curvature is so strong inside rS

that even light cannot escape.
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Thus, the Schwarzschild radius rS

• may also be termed the event horizon of the

Schwarzschild solution and, since light is

• fundamentally trapped inside this radius,

the region interior to rS is termed a black hole.

Before proceeding we clear up a potential source of confusion:

• It has been argued that the Schwarzschild solution is ap-

proximately valid outside the Sun or Earth, and that

• rs = 2M defines an event horizon for a black hole.

• So why aren’t the Sun and Earth black holes with corre-

sponding event horizons?

The answer: The Schwarzschild solution is a vac-

uum solution valid only outside the mass distribu-

tion producing the gravitational field.

In the case of the Sun and Earth it may be verified easily that

• the Schwarzschild radius lies deep inside both objects,

• where the Schwarzschild solution is not valid.

Thus (you will be happy to know!), the Earth and Sun are not

black holes because they are not nearly compact enough.
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An event horizon and the associated black-hole properties of

the Schwarzschild solution

• manifest themselves physically only if the mass M respon-

sible for the Schwarzschild gravitational field

• is contained entirely within the Schwarzschild radius,

• which implies extremely compact objects of much higher

density than planets or normal stars.

Thus it is important to distinguish

• the Schwarzschild spacetime, which is approximately

valid outside any static spherical mass, and a

• Schwarzschild black hole, which forms in a Schwarzschild

spacetime only if the mass M responsible for the gravita-

tional field is contained entirely within its Schwarzschild

radius.
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The preceding qualitative discussion can be placed on firmer

ground by considering a spacecraft approaching an event hori-

zon in free fall (engines off).

• For simplicity, we assume the trajectory to be radial.

• and consider two points of view:

1. From a point at constant large distance from the black

hole (professors sipping martinis).

2. From a point inside the spacecraft (the students).

• We shall use the Schwarzschild solution (metric) for anal-

ysis.
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11.1.2 Approaching the Event Horizon: Outside View

We consider only radial motion. Setting dθ = dϕ = 0 in the

line element

ds2 =−dτ2 =−
(

1− 2M

r

)

dt2 +

(

1− 2M

r

)−1

dr2

=−
(

1− rS

r

)

dt2+
(

1− rS

r

)−1

dr2.

• As the spacecraft approaches the event horizon its velocity

as viewed from the outside in a fixed frame is v = dr/dt.

• Light signals from spacecraft travel on the light cone

(ds2 = 0) and thus from the line element

v =
dr

dt
=
(

1− rS

r

)

.

• As viewed from a distance outside rS, the spacecraft ap-

pears to slow as it approaches rS and eventually stops as

r→ rS.

The distant observers (professors sipping martinis)

will never see the spacecraft cross rS: its image

will remain frozen at r = rS for all eternity.
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But let’s examine what this means more carefully. Rewrite

dr

dt
=
(

1− rS

r

)

−→ dt =
dr

1− rS/r
.

• As r→ rS, time between successive wave crests for light

coming from the spacecraft tends to infinity and therefore

λ → ∞ ν → 0 E → 0.

• The external observer sees the spacecraft slow rapidly as

it nears rS, but the spacecraft image is seen to strongly

redshift at the same time.

• This behavior is just that of the Schwarzschild coordinate

time seen earlier for a test particle in radial free fall:

r/M

Proper 

time τ

Schwarzschild

coordinate time t

-Time/M

rS = 2M

• Therefore, the actual external observation is that the

spacecraft rapidly slows and redshifts until the

• image fades from view before the spacecraft reaches rS.
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11.1.3 Approaching the Event Horizon: Spacecraft View

Things are very different as viewed by the (quite doomed) stu-

dents from the interior of the spacecraft.

• The occupants will use their own clocks (measuring

proper time) to gauge the passage of time.

• Starting from a radial position r0 outside the event hori-

zon, the spacecraft will reach the origin in a proper time

τ =−2

3

r
3/2

0

(2M)1/2
,

as indicated by the Schwarzschild proper time in the fol-

lowing plot:

r/M

Proper 

time τ

Schwarzschild

coordinate time t

-Time/M

rS = 2M

• The spacecraft occupants will generally notice no space-

time singularity at the horizon.
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r/M

Proper 

time τ

Schwarzschild

coordinate time t

-Time/M

rS = 2M

• Any tidal forces at the horizon may be very large but will

remain finite (Riemann curvature is finite at rS).

• The spacecraft crosses rS and reaches the (real) singular-

ity at r = 0 in a finite amount of time,

• where it would encounter infinite tidal forces (Riemann

curvature has components that become infinite at r = 0).

• The trip from rS to the singularity is very fast (Problem):

1. ∼ 10−4 seconds for stellar-mass black holes.

2. ∼ 10 minutes for a billion solar mass black hole.

For 109 M⊙ black holes the tidal forces at the hori-

zon are small and quite survivable, but will grow

quickly to infinity as the singularity is approached.
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11.2 Lightcone Description of a Trip to a Black Hole

Consider a lightcone description of a trip into a Schwarzschild

black hole.

• Assuming radial light rays,

dθ = dϕ = 0
︸ ︷︷ ︸

radial

ds2 = 0
︸ ︷︷ ︸

light rays

the line element reduces to

ds2 =−
(

1− 2M

r

)

dt2+

(

1− 2M

r

)−1

dr2 = 0.

• Thus the equation for the lightcone at a local coordinate

r can be read directly from the metric

dt

dr
=±

(

1− 2M

r

)−1

.

··· The plus sign corresponds to outgoing photons (r in-

creasing with time for r > 2M)

··· The minus sign to ingoing photons (r decreasing with

time for r > 2M)

• For large r

dt

dr
=±

(

1− 2M

r

)−1

.

becomes equal to ±1, as for flat spacetime.

• However as r→ rS the forward lightcone opening angle

tends to zero as dt/dr→ ∞.
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Figure 11.1: Lightcone structure of Schwarzschild spacetime.

Integrating

dt

dr
=±

(

1− 2M

r

)−1

.

gives

t =







−r−2M ln |r/2M−1|+ constant (Ingoing)

r+2M ln |r/2M−1|+ constant (Outgoing)

• Null geodesics defined by this are plotted in Fig. 11.1.

• Tangents at the intersections of the dashed and solid lines

define local lightcones corresponding to dt/dr, which are

sketched at some spacetime points.
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Figure 11.2: Light cone description of a trip into a black hole.

• The worldline of a spacecraft is illustrated in Fig. 11.2,

starting well exterior to the black hole. Gravity is weak

there and the light cone has the usual appearance.

• As illustrated by the dotted line from A, a light signal

emitted from the spacecraft can intersect the worldline of

an observer at constant distance robs in a finite time tA > t0.

• As the spacecraft falls toward the black hole on its world-

line the forward light cone narrows, since

dt

dr
=±

(

1− 2M

r

)−1

.
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• Now, at B a light signal can intersect the external observer

worldline only at a distant point in the future (arrow on

light cone B).

• As the spacecraft approaches rS,

– the opening angle of the forward light cone tends to

zero and

– a signal emitted from the spacecraft tends toward in-

finite time to reach the external observer’s worldline

at robs (arrow on light cone C).

– The external observer sees infinite redshift.
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−

Figure 11.3: Spacelike and timelike regions for g00 and g11.

Now consider light cones interior to the event horizon.

• From the radial and time parts of the Schwarzschild metric

illustrated in Fig. 11.3, we observe that dr and dt reverse

their character at the horizon (r = 2M).

1. This is because the metric coefficients g00 and g11

switch signs at that point.

2. Outside the event horizon the t direction, ∂/∂ t, is

timelike (g00 < 0) and the r direction, ∂/∂ r, is space-

like (g11 > 0).

3. Inside the event horizon, ∂/∂ t is spacelike (g00 > 0)

and ∂/∂ r is timelike (g11 < 0).

• Thus inside the event horizon the lightcones get rotated by
π
2

relative to outside (space↔ time coordinates).
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• The worldline of the spacecraft descends inside rS because

the coordinate time decreases (it is now behaving like r)

and the decrease in r represents the passage of time, but

the proper time is continuously increasing in this region.

• Outside the horizon r is spacelike and sufficient rocket

power can reverse the infall and make r increase.

• Inside the horizon r is timelike and no application of

rocket power can reverse the direction of time.

• The radial coordinate of the spacecraft must decrease in-

side the horizon, for the same reason that time flows into

the future in normal experience (whatever that reason is!).
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• Inside the horizon there are no paths in the forward light-

cone of the spacecraft that can reach the external observer

at r0 (the right vertical axis)—see lightcones D and E.

All timelike and null paths are bounded by the

horizon and must encounter the r = 0 singularity.

• Here is the real reason that nothing can escape. Dynamics

(building a better rocket) are irrelevant: once inside rS

– the geometry of spacetime permits no forward light

cones that intersect exterior regions, and

– no forward light cones that don’t contain the origin.
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Thus, there is no escape from the classical Schwarzschild black

hole once inside the event horizon because

1. There are literally no paths in spacetime that go from the

interior to the exterior.

2. All timelike or null paths within the horizon lead to the

singularity at r = 0.

But notice the adjective “classical” . . . More later.
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11.3 Eddington–Finkelstein Coordinates

The preceding discussion is illuminating but the interpretation

of the results is complicated by the behavior near the coordi-

nate singularity at r = 2M.

• In this section and the next we discuss two alternative co-

ordinate systems that remove the coordinate singularity at

the horizon.

– Eddington–Finkelstein coordinates

– Kruskal–Szekeres coordinates

• These coordinate systems have advantages for interpreting

the interior behavior of the Schwarzschild geometry.

• However, the standard coordinates remain useful for de-

scribing the exterior behavior because of their simple

asymptotic behavior.
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In the Eddington–Finkelstein coordinate system a new variable

v is introduced through

t = v
︸︷︷︸
new

−r−2M ln

∣
∣
∣

r

2M
−1

∣
∣
∣ ,

where the variables

• r, t, and M have their usual meanings in the Schwarzschild

metric, and

• θ and ϕ are unchanged by the transformation.

For either r > 2M or r < 2M, insertion into the standard

Schwarzschild line element gives the equivalent line element

ds2 =−
(

1− 2M

r

)

dv2+2dvdr+ r2dθ 2 + r2 sin2 θdϕ2.

This is still Schwarzschild geometry, but now ex-

pressed in new coordinates.

• The Schwarzschild metric expressed in these new coordi-

nates is manifestly non-singular at r = 2M

• The singularity at r = 0 remains; it is physical.

The singularity at rS is a coordinate singularity

that can be removed by choosing appropriate new

coordinates.
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Figure 11.4: (a) Eddington–Finkelstein coordinates for the Schwarzschild

black hole with r on the horizontal axis and v− r on the vertical axis. Only

two coordinates are plotted, so each point corresponds to a 2-sphere of an-

gular coordinates. (b) Light cones in Eddington–Finkelstein coordinates.

Consider the behavior of radial light rays in these coordinates.

• Set dθ = dϕ = 0 (radial motion)

• Set ds2 = 0 (light rays).

Then the Eddington–Finkelstein line element leads to

−
(

1− 2M

r

)

dv2+2dvdr = 0.
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This equation

−
(

1− 2M

r

)

dv2+2dvdr = 0.

has two general solutions and one special solution [see Fig. (a)

above]:

• General Solution 1: dv = 0, so v = constant. → Ingoing

light rays on trajectories of constant v (short-dashed line

in Fig. 11.4(a)) .



11.3. EDDINGTON–FINKELSTEIN COORDINATES 445

S
in

g
u

la
ri
ty

 (
r 

=
 0

)

Horizon

rr = 2M

1

2

3
4

v - 2(r + 2M ln|r/2M - 1|) = constant

v
 -

 r
S

in
g

u
la

ri
ty

OutgoingIngoing

dv = 0 (Ingoing)

d
v
d

t 
=

 0

r0 0r = 2M

v - r

(a) (b)

• General Solution 2: If dv 6= 0, then divide by dv2 to give

−
(

1− 2M

r

)

dv2 +2dvdr = 0 → dv

dr
= 2

(

1− 2M

r

)−1

,

which yields upon integration

v−2
(

r+2M ln

∣
∣
∣

r

2M
−1

∣
∣
∣

)

= constant.

This solution changes behavior at r = 2M:

1. Outgoing for r > 2M.

2. Ingoing for r < 2M (r decreases as v increases).

Long-dashed curves in Fig. (a) above illustrate ingoing

and outgoing worldlines corresponding to this solution.
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• Special Solution: In the special case that r = 2M, the dif-

ferential equation reduces to

−
(

1− 2M

r

)

dv2+2dvdr = 0 → dvdr = 0,

which corresponds to light trapped at the Schwarzschild

radius. The vertical solid line at r = 2M in Fig. (a) above

represents this solution.
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For every spacetime point in Fig. (a) there are two solutions:

• For the points labeled 1 and 2 these correspond to

– one ingoing solution and

– one outgoing solution.

• For point 3

– one solution is ingoing and

– one corresponds to light trapped at r = rS.

• For point 4 both solutions are ingoing.
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The two solutions passing through a point determine the light

cone structure at that point [Fig. (b) above].

• The light cones at various points are bounded by the two

solutions, so they tilt “inward” as r decreases.

• The radial light ray that defines the left side of the light

cone is ingoing (general solution 1).

• If r 6= 2M, the radial light ray defining the right side of the

light cone corresponds to general solution 2.

1. These propagate outward if r > 2M.

2. For r < 2M they propagate inward.
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• For r < 2M the light cone is tilted sufficiently that no light

ray can escape the singularity at r = 0.

• At r = 2M, one light ray moves inward; one is trapped at

r = 2M.

The horizon may be viewed as a null surface gen-

erated by the radial light rays that can neither es-

cape to infinity nor fall in to the singularity.
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11.4 Kruskal–Szekeres Coordinates

There is another set of coordinates exhibiting no singularity at

r = 2M: Kruskal–Szekeres coordinates.

• Introduce variables (v,u,θ ,ϕ), where θ and ϕ have their

usual meaning and new variables u and v are defined by

u =
( r

2M
−1
)1/2

er/4M cosh
( t

4M

)

(r > 2M)

=
(

1− r

2M

)1/2

er/4M sinh
( t

4M

)

(r < 2M)

v =
( r

2M
−1
)1/2

er/4M sinh
( t

4M

)

(r > 2M)

=
(

1− r

2M

)1/2
er/4M cosh

( t

4M

)

(r < 2M)

• The corresponding line element is

ds2 =
32M3

r
e−r/2M(−dv2 +du2)+ r2dθ 2+ r2 sin2 θdϕ2,

where r = r(u,v) is defined through

( r

2M
−1
)

er/2M = u2− v2.

• This metric is manifestly non-singular at r = 2M, but sin-

gular at r = 0.

This is still Schwarzschild spacetime, but now ex-

pressed in a new set of coordinates.
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Figure 11.5: (a) Schwarzschild spacetime in Kruskal–Szekeres coordinates.

Only the two coordinates u and v are displayed, so each point is really a

2-sphere corresponding to the variables θ and ϕ . Spacetime singularities

are indicated by jagged curves. The hatched regions above and below the

r = 0 singularities are not a part of the spacetime. Curves of constant r are

hyperbolas and the dashed straight lines are lines of constant t. (b) Worldline

of a particle falling into a Schwarzschild black hole in Kruskal–Szekeres

coordinates.

Kruskal diagram: lines of constant r and t plotted on a u and v

grid. Figure 11.5 illustrates.
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• From the form of
( r

2M
−1
)

er/2M = u2− v2.

lines of constant r are hyperbolae of constant u2− v2.

• From the definitions of u and v

v = u tanh
( t

4M

)

(r > 2M)

=
u

tanh(t/4M)
(r < 2M).

Thus, lines of constant t are straight lines with slope

· tanh(t/4M) for r > 2M

· 1/ tanh(t/4M) for r < 2M.
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• For radial light rays in Kruskal–Szekeres coordinates

(dθ = dϕ = ds2 = 0), and the line element

ds2 =
32M3

r
e−r/2M(−dv2 +du2)+ r2dθ 2+ r2 sin2 θdϕ2

yields dv =±du:

Lightcones in the Kruskal–Szekeres coordi-

nates always open at 45-degree angles, like in

Minkowski space.
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• Over the full range of coordinates (v,u,θ ,ϕ),

– the metric component g00 = gvv remains negative and

– g11 = guu, g22 = gθθ , and g33 = gϕϕ remain positive.

• Therefore, in Kruskal–Szekeres coordinates

– the v direction is always timelike and

– the u direction is always spacelike,

in contrast to the normal Schwarzschild coordinates where

r and t switch their character at the horizon.
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Lines corresponding to r = 2M separate spacetime into four

quadrants, labeled I, II, III, and IV. See the figure above.

• In quadrant I, r > 2M so this is the Schwarzschild space-

time outside the horizon.

• In quadrant II, r < 2M so

– this is the black hole interior to the horizon and

– worldlines there must encounter the r = 0 singularity

in their future since the singularity is spacelike.

• Thus regions I and II are of direct physical interest.

Regions III and IV are of interest mathematically but it is un-

clear if they have physical implications.
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Region IV is equivalent to region II but with time inverted and

the singularity in the past.

• This is called a white hole, which is the opposite of a black

hole:

– Matter spews into the Universe from a singularity

rather than disappearing into a singularity, and

– The horizon forbids entry rather than exit.

• There is no astrophysical evidence for white holes.

Region III is an exterior region (outside the horizon) as for

region I, but it corresponds to a different asymptotically flat

spacetime than region I.
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Move along the horizontal axis (t = 0) in Fig. (a), beginning in

region I at u =+∞ and continuing to u =−∞ in region III.

• The coordinate r is marked by timelike hyperbolas cutting

the axis, so r decreases to a minimum r = 2M at the origin

and then increases again after passing through the origin.

• In terms of an embedding diagram, a geometry similar to

is obtained, with a narrow throat connecting two different

asymptotically flat spacetimes.

This is called an Einstein–Rosen bridge (or a wormhole).
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The Einstein–Rosen bridge

• is interesting mathematically but

• is likely not relevant for physics of the Schwarzschild met-

ric, for reasons discussed more extensively in the book

chapter.

• Nevertheless, the possibility of forming wormholes under

more exotic circumstances has received substantial atten-

tion.

Our presentation will henceforth concentrate on

the physically interesting regions I and II of the

Schwarzschild spacetime.
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How are the different coordinate systems we have used to pa-

rameterize the Schwarzschild metric related mathematically?

• A manifold is geodesically complete if every geodesic be-

ginning from an arbitrary point can be extended to infinite

values of the affine parameter in both directions.

• A manifold is said to be maximal if every geodesic

– can be extended infinitely in both directions, or

– terminates in an intrinsic singularity.

• Hence a geodesically complete manifold is also maximal,

but the converse need not be true.

• Minkowski space is geodesically complete and maximal.

• The Schwarzschild spacetime parameterized with

Schwarzschild coordinates or with Eddington–Finkelstein

coordinates is not maximal.

• The Kruskal parameterization is the unique maximal ex-

tension of Schwarzschild spacetime.

• However, The Kruskal extension is

– not geodesically complete because

– it contains intrinsic singularities.

See also the later discussion of trapped surfaces in

black hole spacetimes.



460 CHAPTER 11. SPHERICAL BLACK HOLES

(a) Schwarzschild

    coordinates

(b) Kruskal-Szekeres

    coordinates

2

1

0

-1

-2

50

45

40

35

v

ur /M

t /M

0 2 4 0 1 2 3

Figure 11.6: A trip to the center of a black hole in standard Schwarzschild

coordinates and in Kruskal–Szekeres coordinates.

The identification of r = 2M as an event horizon of the

Schwarzschild spacetime is particularly clear in Kruskal–

Szekeres coordinates [Fig. 11.6(b)].

• All lightcones and the horizon make 45-degree angles

with the vertical.

• Thus, for any point within the horizon, its

– forward worldline must contain the r = 0 singularity

– and cannot contain the r = 2M horizon.
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Figure 11.7: Collapse to a Schwarzschild black hole.

Fig. 11.7 illustrates a spherical mass collapsing to a black hole

in Kruskal–Szekeres and Eddington–Finkelstein coordinates.

• A distant observer at fixed r observes light signals sent

periodically from the surface of the collapsing star.

• Light pulses, propagating on the dashed lines, arrive at

increasingly longer intervals for the outside observer.

• At the horizon, light signals take an infinite length of time

to reach the external observer.

• Once the surface is inside the horizon, no signals can reach

the outside observer as the star collapses to a singularity.

• Note: the Schwarzschild solution is valid outside the star.

Inside GR applies but the solution is not Schwarzschild.
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11.5 Black Hole Theorems and Conjectures

In this section we summarize (in a non-rigorous way) a set of

theorems and conjectures concerning black holes. Some we

have already used in various contexts.

• Singularity theorems: Loosely, any gravitational collapse

that proceeds far enough results in a spacetime singularity.

• Cosmic censorship conjecture: All spacetime singularities

are hidden by event horizons (no naked singularities).

• (Classical) area increase theorem: In all classical pro-

cesses involving horizons, the area of the horizons can

never decrease.

• Second law of black hole thermodynamics: Where quan-

tum mechanics is important the classical area increase the-

orem is replaced by

1. The entropy of a black hole is proportional to the sur-

face area of its horizon.

2. The total entropy of the Universe can never decrease

an any process.
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• The no-hair theorem/conjecture: If gravitational collapse

to a black hole is nearly spherical,

– All non-spherical parts of the mass distribution

(quadrupole moments, . . . ) except angular momen-

tum are radiated away as gravitational waves.

– Horizons eventually become stationary.

– A stationary black hole is characterized by:

* the mass M,

* the angular momentum J, and

* the charge Q.

– M, J, and Q are all determined by fields outside the

horizon, not by integrals over the interior.

“No Hair Theorem”: black holes destroy all de-

tail (the hair) about the matter that formed them,

leaving only global mass, angular momentum, and

charge as observable external characteristics.

The most general solution characterized by M, J, and Q is

termed a Kerr–Newman black hole. However,

• The astrophysical processes that could form a black hole

would likely neutralize any excess charge.

• Thus astrophysical black holes are Kerr black holes (char-

acterized by M and J (the Schwarzschild solution being a

special case of the Kerr solution for vanishing J).
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• Birkhoff’s theorem:

– The Schwarzschild solution is the only spherically

symmetric solution of the vacuum Einstein equations.

– The assumptions that we made of

* no time dependence and

* spherical symmetry

in deriving the Schwarzschild solution are in fact not

independent.

– Even if the source is changing with time, the

Schwarzschild metric remains the only spherically

symmetric solution of the vacuum Einstein equations.

• These theorems and conjectures place the

mathematics of black holes on reasonably

firm ground.

• To place the physics of black holes on firm

ground, these ideas must be tested by obser-

vation, which we take up in later chapters.



Chapter 12

Quantum Black Holes

Classically, the fundamental structure of curved spacetime en-

sures that nothing can escape from within the Schwarzschild

event horizon.

• That is an emphatically deterministic statement.

• But what about quantum mechanics, which is fundamen-

tally indeterminate?

The uncertainty principle and quantum fluctuations of the vac-

uum play a central role in quantum mechanics.

• As we now explain, because of quantum mechanics it is

possible for a black hole to emit mass.

• Therefore, as Stephen Hawking discovered, from a quan-

tum point of view black holes are not really black!

465
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12.1 Geodesics and Quantum Uncertainty

• Our discussion to this point has been classical in that it

assumes that free particles follow geodesics appropriate

for the spacetime.

• But the uncertainty principle implies that

1. Microscopic particles cannot be completely localized

on classical trajectories because they are subject to

an uncertainty of the form

∆pi ∆xi ≥ h̄

– where ∆pi is the uncertainty in momentum and

– ∆xi is the uncertainty in position.

2. Neither can energy conservation be imposed except

with an uncertainty

∆E ∆t ≥ h̄,

– where ∆E is an energy uncertainty and

– ∆t is the corresponding time period during which

this energy uncertainty exists.

This implies an inherent quantum fuzziness in

the 4-momenta associated with our description of

spacetime at the quantum level.
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For the Killing vector

K ≡ Kt = (1,0,0,0)

in the Schwarzschild metric,

K ·K = gµνKµKν = g00K0K0 =−
(

1− 2M

r

)

,

from which we conclude that

K is







Timelike outside the horizon, since then K ·K < 0,

Spacelike inside the horizon, since then K ·K > 0.

As we now make plausible, this property of the

Killing vector K

• permits a virtual quantum fluctuation of the

vacuum to be converted into real particles and

• these are detectable at infinity as emission of

mass from the black hole.
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Figure 12.1: Hawking radiation in Kruskal–Szekeres coordinates.

12.2 Hawking Radiation

Assume a particle–antiparticle pair created by vacuum fluctu-

ation near the horizon of a black hole, such that the particle and

antiparticle end up on opposite sides of the horizon (Fig. 12.1).

• If the particle–antiparticle pair is created in a small enough

region of spacetime, there is nothing special implied by

this region lying at the event horizon:

• the local spacetime is indistinguishable from Minkowski

space because of the equivalence principle.

• Therefore, the normal principles of (special) relativistic

quantum field theory will be applicable to the pair creation

process in a local inertial frame at the horizon.
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• The conserved quantity analogous to total energy is the

scalar product of K = (1,0,0,0) with the 4-momentum p.

• Therefore, if a particle–antiparticle pair is produced near

the horizon with 4-momenta p and p̄, respectively,

K ·p+K · p̄ = 0,

must be satisfied (to preserve vacuum quantum numbers).

• For the particle outside the horizon, −K ·p > 0 (it is pro-

portional to an energy that is measureable externally).

• If the antiparticle were also outside the horizon, it too

must have −K · p̄ > 0, in which case

1. The condition K ·p+K · p̄ = 0, cannot be satisfied and

2. The particle–antiparticle pair can have only a fleeting

existence of duration ∆t ∼ h̄/∆E (Heisenberg).

• So far, no surprises; just Quantum Mechanics 101 . . .
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HOWEVER . . .

If instead (as in the figure) the antiparticle is inside the horizon,

• The Killing vector K is spacelike (K ·K > 0)

• The scalar product −K · p̄ is not an energy. In fact,

• the product −K · p̄ can be a 3-momentum component.

• Therefore −K · p̄ can be positive or negative (!!).

Thus, there is magic afoot:

• If −K · p̄ is negative K ·p+K · p̄ = 0 can be satisfied.

• Then the virtual particle created outside the horizon can

propagate to infinity as a real, detectable particle, while

• the antiparticle remains trapped inside the event horizon.

• The black hole emits its mass as a stream of particles (!).
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Therefore, quantum effects imply that a black hole

• can emit its mass as a flux of particles and antiparticles

created through vacuum fluctuations.

• The emitted particles are termed Hawking radiation.

• Therefore, black holes are not really black!

The loss of mass by Hawking radiation for a black hole is called

black hole evaporation.

It should be noted that the actual theory underly-

ing these ideas is more subtle than the cartoon pre-

sented here. However, the cartoon makes the basic

idea plausible.
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12.3 Mass Emission Rates and Black Hole Temperature

Methods for obtaining results from the Hawking theory are be-

yond our scope, but the results can be stated simply:

• The distribution of energies emitted by the black hole is

– equivalent to that of a blackbody with a

– temperature proportional to the surface gravity of the

black hole.

• (The surface gravity is a renormalized acceleration that

would be experienced by an observer hear the horizon.)

• Specifically, the black hole temperature is

T =
κ

2π
=

h̄

8πkBM
=

h̄c3

8πkBGM

= 6.2×10−8

(
M⊙
M

)

K.

where κ = (4M)−1 is the surface gravity of a

Schwarzschild black hole.
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Notice that the black hole temperature formula

T =
h̄c3

8πkBGM

combines in a single equation fundamental constants associated

with

• special relativity (c)

• gravity (G)

• quantum mechanics (h̄) and

• statistical mechanics (kB).

Furthermore, since T ∝ h̄,

• Hawking radiation is a quantum effect

• that vanishes in the classical limit h̄→ 0.
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As shown in a Problem,

• the radiated power is given by

P =
h̄c6

15360πG2M2
,

• from which the rate of mass emission is

dM

dt
=−λ

h̄

M2
,

where λ is a dimensionless constant.

• Integrating dM/dt =−λ h̄/M2 for a black hole assumed

to emit all of its mass by Hawking radiation in a time tH,

we obtain

M(t) = (3λ h̄(tH− t))1/3 .

for its mass as a function of time.
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Figure 12.2: Evaporation of a Hawking black hole.

From the results

T =
h̄

8πkBM

dM

dt
=−λ

h̄

M2
M(t) = (3λ h̄(tH− t))1/3

the mass and temperature behave as in Fig. 12.2. Therefore,

• The black hole evaporates at an accelerating rate as

• temperature and the emission rate tend to infinity.

• We may expect a final burst of very high energy radiation.

Note that for the black hole (as for normal stars)

• temperature increases as

• energy (mass) is emitted!

The black hole has a negative heat capacity.
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12.4 Miniature Black Holes

How long does it take a Hawking black hole to evaporate?

• From the mass emission formula

M(t) = (3λ h̄(tH− t))1/3 ,

• we may estimate a lifetime for complete evaporation as

tH ≃
M3

3λ h̄
=

5120πG2

h̄c4
M3

≃ 6.6×1074

(
M

M⊙

)3

s,

where a blackbody approximation of

λ = (15,360π)−1

has been used.
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Take 15 M⊙ as a representative mass for a black hole formed

from massive star collapse.

• The temperature is then

T =
h̄c3

8πkBGM
= 6.2×10−8

(
M⊙
M

)

K = 4.1×10−9 K,

• the radiated power is

P =
h̄c6

15360πG2M2

= 9.0×10−29

(
M⊙
M

)2

W = 4×10−31 W,

• and the time to evaporate by emitting Hawking radiation

is given by

tH ≃
5120πG2

h̄c4
M3

≃ 6.6×1074

(
M

M⊙

)3

s = 2.2×1078 s.

• This is ∼ 1060 times larger than the age of the Universe!

Hawking radiation may be ignored for stellar black holes.

The temperature of stellar black holes is so low

that the surrounding cosmic microwave back-

ground is much hotter, so stellar black holes ab-

sorb rather than emit radiation.
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• However, black holes of initial mass ∼ 1014 g would have

lifetimes comparable to the age of the Universe.

• Their demise might be detectable through a characteristic

burst of high-energy radiation.

• The Schwarzschild radius for a 1014 g black hole is

rS ∼ 1.5×10−14 cm,

which is about 1
5

the size of a proton.

• To form such a black hole we must compress 1014 grams

(a large mountain) into the size of a proton!

• The early big bang could have produced such densities.

• Therefore, a population of miniature black holes

– could have formed in the big bang and

– could be decaying in the present Universe

with a detectable signature.

No evidence has been found for miniature black

holes and their associated Hawking radiation.

• For a 1014 g black hole, P∼ 1010 W initially.

• This would grow much larger in the final

burst of gamma-rays, but the burst would

have to be nearby to be seen.
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12.5 Black Hole Thermodynamics

The preceding results suggest that

• the gravitational physics of black holes and

• classical thermodynamics

are closely related. Remarkably, this has turned out to be cor-

rect.

• It had been noted prior to Hawking’s discovery by Ja-

cob Bekenstein that there were similarities between black

holes and blackbody radiators.

• However, the difficulty with describing a black hole in

thermodyanamical terms was that

– a classical black hole permits no equilibrium with the

surroundings because

– it absorbs but cannot emit radiation.

Hawking radiation supplies the necessary equilib-

rium that ultimately allows thermodynamics and a

temperature to be ascribed to a black hole.
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Hawking Area Theorem: Hawking has proven a theorem that

The total horizon area A cannot decrease in any

physical process involving black hole horizons,

dA

dt
≥ 0.

• For a Schwarzschild black hole, the horizon area is

A = 16πM2 → dA

dM
= 32πM,

which can be written (h = Planck, kB = Boltzmann).

dM =
h

8πkBM
d

(
kBA

4h

)

• But dE = dM is the change in total energy and the tem-

perature of the black hole is T = h̄/8πkBM.

• Therefore, we may write the preceding as

dE = TdS
︸ ︷︷ ︸

1st Law

dS≥ 0
︸ ︷︷ ︸

2nd Law

S ≡ kB

4h
A

︸ ︷︷ ︸

entropy

which are just the 1st and 2nd laws of thermodynamics,

provided that

S ∝ (surface area of black hole)

is interpreted as entropy!
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Evaporation of a black hole through Hawking radiation mani-

festly appears to violate the Hawking area theorem.

• However, the area theorem is based on energy assump-

tions that are thought to be correct at the classical level

but may break down in quantum processes.

• The correct quantum interpretation of Hawking radiation

and the area theorem is that

1. The entropy of the evaporating, isolated black hole

decreases with time (because it is proportional to the

area of the horizon).

2. The total entropy of the Universe increases because

of the entropy associated with the Hawking radiation

itself.

3. That is, the area theorem is replaced by the

Generalized 2nd Law: The total entropy of the

black hole plus exterior Universe may never de-

crease in any physical process.
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12.6 The Four Laws of Black Hole Dynamics

We may formulate four laws of black hole dynamics that are

analogous to the four laws of classical thermodynamics:

• Zeroth Law: The surface gravity κ of a stationary black

hole is constant over its event horizon.

This is analogous to the zeroth law of thermody-

namics: temperature T is constant for a system in

thermal equilibrium.

• First Law: Energy is conserved because of a relation

δM =
1

8π
κδA+ΩδJ+ΦδQ,

– where M is the mass,

– κ is the surface gravity,

– A is the horizon area,

– Ω is the angular velocity,

– J is the angular momentum, and

– Φ is the electrostatic potential

for the black hole.

This is analogous to the first law of thermodynam-

ics: energy is conserved.
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• Second Law: The area theorem or its quantum general-

ization
dA

dt
≥ 0 dS≥ 0 S ≡ kB

4h
A

This is the analog of the second law of thermody-

namics: total entropy cannot decrease.

• Third Law: The surface gravity κ of a black hole cannot

be reduced to zero by a finite series of operations.

Analogous to the Nernst form of the third law of

thermodynamics: temperature cannot be reduced

to zero in a finite series of operations.
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Thus the four laws of black hole dynamics are analogous to

the four laws of thermodynamics if an identification is made

between

• Temperature T and some multiple of the surface gravity

κ .

• Entropy S and some multiple of the event horizon area A.

The four laws of black hole dynamics are more

well-grounded theoretical conjecture than estab-

lished law at this point.
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12.7 Gravity and Quantum Mechanics: the Planck Scale

The preceding results for Hawking radiation are derived assum-

ing

• that the spacetime in which the quantum calculations are

done is

– a fixed background that is

– not influenced by the propagation of the Hawking ra-

diation.

• This approximation is expected to be valid as long as

E << M, where E is the average energy of the Hawking

radiation and M is the mass of the black hole.

• It breaks down on the Planck scale, defined by

Planck mass : MP ≡
(

h̄c

G

)1/2

= 2.18×10−5 g,

Planck length : ℓP ≡
(

h̄G

c3

)1/2

=
h̄c

EP
= 1.62×10−33 cm,

Planck time : tP ≡
(

h̄G

c5

)1/2

=
ℓP

c
= 5.39×10−44 s,

Planck energy : EP ≡MPc2 = 1.22×1019 GeV,

Planck temperature : TP ≡
EP

kB
= 1.44×1032 K.
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• For a black hole of Planck mass,

– the effects of gravity become important even on a

quantum (h̄) scale,

– requiring a theory of quantum gravity.

• We don’t yet have an adequate theory of quantum gravity.

• Note that one approaches the Planck scale near the end-

point of Hawking black hole evaporation.

Therefore, we do not actually know yet what hap-

pens at the conclusion of Hawking evaporation for

a black hole.
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12.8 Black Holes and Information

Entropy is related to information content:

• It is equal to the logarithm of the number of microscopic

configurations that leave the macroscopic description of

an object unchanged.

• Black hole evaporation by the Hawking mechanism leads

to apparent paradoxes associated with this relationship.

• This may be illustrated by noting that

– Hawking radiation is produced randomly by vacuum

fluctuations, so

– in the simplest picture it contains no information.

• Thus, the information content of the matter from which

the black hole formed

– appears to be lost to the Universe if

– the black hole then decays completely away by Hawk-

ing radiation.

This is a complex issue that is not fully resolved.

• Some contend that perhaps this means that the Universe

does not conserve information.

• Others have conjectured that a (future) quantum gravity

treatment of black hole evaporation may resolve the issue.
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12.8.1 The Holographic Principle

The entropy relation

S≡ kB

4h
A,

implies that

• The entropy of a black hole is proportional to the surface

area of its horizon.

• But the information content of the black hole is associated

with its entropy and

• The information content of a region of space is usually

thought of as being proportional to the volume of that re-

gion, not to the area of a bounding surface.

• This has led to a proposed solution of the black hole in-

formation paradox called the holographic principle.

• The holographic principle asserts that the description of a

volume of space can be thought of as being encoded on a

2-dimensional boundary of that region.

For a black hole, this implies that

Surface fluctuations of the event horizon must in

some way contain a complete description of all the

objects that have ever fallen into the black hole.
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12.8.2 The Holographic Universe

Even more speculatively, the holographic principle has been

extended to a cosmological statement that

Perhaps the entire universe should be thought of as

a two-dimensional information structure painted

on the cosmological horizon.

Extension of the holographic principle to a cosmological state-

ment may be motivated by noting that

• A universe with a cosmological horizon resembles in

some ways the interior of a black hole.

• In this view the entire Universe is a kind of gigantic holo-

gram and

• Our perception that it has three (rather than two) spatial

dimensions is an illusion rooted in an effective description

of the actual Universe that is valid only at low energies.

The AdS/CFT correspondence (more generally

gauge/gravity duality) described in later chapters

is a specific implementation of such ideas.
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Chapter 13

Rotating Black Holes

The Schwarzschild solution appropriate outside a spherical,

non-spinning mass distribution, was discovered in 1916.

• It was not until 1963 that a solution corresponding to spin-

ning black holes was discovered.

• This solution leads to the possible existence of a family of

– rotating,

– deformed

metrics called Kerr black holes.

491
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Angular momentum is complicated:

• In Newtonian gravity rotation

– produces centrifugal effects but

– does not influence the gravitational field directly.

• But angular momentum implies rotational energy, so in

general relativity

– rotation of a gravitational field is itself

– a source for the field.

• In addition, strongly-rotating solutions imply deviation

from spherical symmetry, which complicates the mathe-

matics immensely.

• For very small angular momentum the spacetime may be

approximated by a perturbation of the Schwarzschild met-

ric but

• This is no longer a valid solution for large angular mo-

mentum.

Hence the long delay in finding a solution corre-

sponding to black holes with significant angular

momentum.
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13.1 The Kerr Solution

The Schwarzschild solution corresponds to the simplest black

hole, characterized by a single parameter, the mass M.

• Other solutions to the field equations of general relativity

permit black holes with more degrees of freedom.

The most general black hole can possess

1. Mass,

2. Charge, and

3. Angular momentum

as distinguishing quantities.

• Of particular interest are those solutions where we

– relax the restriction to spherical symmetry and thus

– permit the black hole to be characterized by angular

momentum in addition to mass

These are Kerr black holes.

• Rotating black holes are important in astrophysics be-

cause they power phenomena like quasars and other active

galaxies, X-ray binaries, and gamma-ray bursts.

• Unlike for Schwarzschild black holes, it is possible to de-

vise mechanisms that permit energy and angular momen-

tum to be extracted from a (classical) rotating black hole
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13.1.1 The Kerr Metric

The Kerr metric corresponds to the line element

ds2 =−
(

1− 2Mr

ρ2

)

dt2− 4Mrasin2 θ

ρ2
dϕdt +

ρ2

∆
dr2+ρ2dθ 2

+

(

r2+a2+
2Mra2 sin2 θ

ρ2

)

sin2 θdϕ2

with the definitions

a≡ J/M ρ2 ≡ r2+a2 cos2 θ ∆≡ r2−2Mr+a2.

• The coordinates (t,r,θ ,ϕ) are called Boyer–Lindquist co-

ordinates.

• The parameter a, termed the Kerr parameter, has units of

length in geometrized units.

• The parameter J will be interpreted as angular momentum

and

• the parameter M will be interpreted as the mass for the

black hole.
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The Kerr solution

ds2 =−
(

1− 2Mr

ρ2

)

dt2− 4Mrasin2 θ

ρ2
dϕdt +

ρ2

∆
dr2+ρ2dθ 2

+

(

r2+a2+
2Mra2 sin2 θ

ρ2

)

sin2 θdϕ2

a≡ J/M ρ2 ≡ r2+a2 cos2 θ ∆≡ r2−2Mr+a2.

has the following properties.

• Vacuum solution: the Kerr metric is a vacuum solution of

the Einstein equations, valid in the absence of matter.

• Reduction to Schwarzschild metric: If the black hole is

not rotating (a = J/M = 0), the Kerr line element reduces

to the Schwarzschild line element.

• Asymptotically flat: The Kerr metric becomes asymptoti-

cally flat for r >> M and r >> a.

• Symmetries: The Kerr metric is independent of t and ϕ ,

implying the existence of Killing vectors

Kt = (1,0,0,0) (stationary metric)

Kϕ = (0,0,0,1) (axially symmetric metric).

The Kerr metric has only axial (not spherical) symmetry.

• The metric has off-diagonal terms

g03 = g30 =−
2Mrasin2 θ

ρ2
(inertial frame dragging).
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For the Kerr metric

ds2 =−
(

1− 2Mr

ρ2

)

dt2− 4Mrasin2 θ

ρ2
dϕdt +

ρ2

∆
dr2+ρ2dθ 2

+

(

r2+a2+
2Mra2 sin2 θ

ρ2

)

sin2 θdϕ2

a≡ J/M ρ2 ≡ r2+a2 cos2 θ ∆≡ r2−2Mr+a2.

• Surfaces of constant Boyer–Lindquist coordinates r and t

do not have the metric of a 2-sphere.

• Singularity and horizon structure: ∆→ 0 at

r± = M±
√

M2−a2

and ds→ ∞, assuming a≤M.

1. This is a coordinate singularity.

2. As a→ 0 we find that r+→ 2M, which coincides with

the Schwarzschild coordinate singularity.

3. Thus r+ corresponds to the horizon that makes the

Kerr solution a black hole.

On the other hand, the limit ρ → 0 corresponds to

– a physical singularity with associated

– components of infinite spacetime curvature,

similar to the case for the Schwarzschild solution.



13.1. THE KERR SOLUTION 497

13.1.2 Extremal Kerr Black Holes

• The horizon radius

r± = M±
√

M2−a2

exists only for a≤M.

• Thus, there is a maximum angular momentum Jmax for a

Kerr black hole since a = J/M and amax = M,

Jmax = amaxM = M2.

• Black holes for which J = M2 are termed extreme Kerr

black holes.

• Near-extreme black holes may develop in many astro-

physical situations:

1. Angular momentum transfer through accretion disks

in either

– binary star systems or

– around supermassive black holes in galaxy cores

tends to spin up the central object.

2. Massive stars collapsing to black holes may have sig-

nificant initial angular momentum
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13.1.3 Cosmic Censorship

That the horizon

• exists for a Kerr black hole

• only under restricted conditions

raises the question of whether a singularity could exist in the

absence of a horizon (“naked singularity”).

Cosmic Censorship Hypothesis: Nature conspires

to “censor” spacetime singularities in that all such

singularities come with event horizons that render

them invisible to the outside universe.

• No known violations (observationally or theoretically).

• It cannot at this point be derived from any more funda-

mental concept and must be viewed as only an hypothesis.

All realistic theoretical attempts to add angular

momentum to a Kerr black hole beyond the ex-

tremal limit have failed.
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13.1.4 The Kerr Horizon

The area of the horizon for a black hole is of considerable im-

portance because of the Hawking area theorem:

The horizon area of a classical black hole can

never decrease in any physical process.

• The Kerr horizon corresponds to a constant value of r =
r+.

• Since the metric is stationary, the horizon is also a surface

of constant t.

• Setting dr = dt = 0 in the Kerr line element gives the line

element for the 2-dimensional horizon,

dσ2 = ρ2
+dθ 2 +

(
2Mr+

ρ+

)2

sin2 θdϕ2,

where ρ2
+ is defined by

ρ2 ≡ r2
++a2 cos2 θ .

• This is not the line interval of a 2-sphere.

The Kerr horizon has constant Boyer–Lindquist

coordinate r = r+ but it is not spherical.
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The metric tensor for the Kerr horizon is

g =






ρ2
+ 0

0

(
2Mr+

ρ+

)2

sin2 θ






The area of the Kerr horizon is then

AK =
∫ 2π

0
dϕ
∫ π

0

√

detg dθ

= 2Mr+

∫ 2π

0
dϕ
∫ π

0
sinθ dθ

= 8πMr+ = 8πM
(

M+
√

M2−a2
)

.

The horizon area for a Schwarzschild black hole

• is obtained by setting a= 0 in this expression,

• corresponding to vanishing angular momen-

tum,

• in which case r+ = 2M and

AS = 16πM2,

as expected for a spherical horizon of radius 2M.
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13.2 Orbits in the Kerr Metric

We may take a similar approach as in the Schwarzschild metric

to determine the orbits of particles and photons.

• In the Kerr metric are not confined to a plane (only axial,

not full spherical symmetry).

• Nevertheless, we shall consider only motion in the equa-

torial plane (θ = π
2 ) to illustrate concepts.

The Kerr line element with that restriction is then

ds2 =−
(

1− 2M

r

)

dt2− 4Ma

r
dϕdt

+
r2

∆
dr2+

(

r2+a2+
2Ma2

r

)

dϕ2.

There are two Killing vectors,

Kt = (1,0,0,0) Kϕ = (0,0,0,1),

and two associated conserved quantitities

ε =−Kt ·u ℓ= Kϕ ·u,

At large distances from the gravitational source

• ε is the conserved energy per unit rest mass.

• ℓ may be interpreted as the angular momentum component

per unit mass along the symmetry axis.
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The norm of the 4-velocity provides the usual con-

straint

u·u =−1.

for timelike (massive) particles.

From the Kerr metric

−ε = g00u0+g03u3 ℓ= g30u0+g33u3,

and solving for u0 = dt/dτ and uϕ = dϕ/dτ gives

dt

dτ
=

1

∆

[(

r2+a2+
2Ma2

r

)

ε− 2Ma

r
ℓ

]

dϕ

dτ
=

1

∆

[(

1− 2M

r

)

ℓ+
2Ma

r
ε

]

.

By similar steps as for the Schwarzschild metric, this leads to

the equations of motion for timelike particles

ε2−1

2
=

1

2

(
dr

dτ

)2

+Veff(r,ε, ℓ)

Veff(r,ε, ℓ)≡−
M

r
+
ℓ2−a2(ε2−1)

2r2
−M(ℓ−aε)2

r3
.
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A similar approach can be used to determine the motion of pho-

tons in the Kerr metric.

• The primary difference is that the massless photons are

now required to satisfy

u ·u = 0.

• Let’s skip the details and just quote the result; for lightlike

particles,

1

ℓ2

(
dr

dλ

)2

=
1

b2
−V (r,b,σ),

V (r,b,σ) ≡ 1

r2

[

1− a2

b2
− 2M

r

(

1− σa

b

)2
]

,

• where λ is an affine parameter,

• b≡ |ℓ/ε| is the impact parameter, and

• σ = signℓ indicates whether the photon moves

– with the rotational motion of the black hole (σ =+1)

– or against it (σ =−1).
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13.3 Frame Dragging

A striking feature of the Kerr solution is frame dragging:

loosely, the black hole drags spacetime with it as it rotates.

• This arises ultimately because the Kerr metric contains

off-diagonal components g03 = g30.

• One consequence is that a particle dropped radially ac-

quires non-radial components of motion as it falls freely.

Let’s investigate by calculating dϕ/dr for a particle

• that is dropped from rest (ε = 1), with

• zero angular momentum (ℓ= 0) onto a Kerr black hole.

For 4-momenta in the Kerr metric

pϕ ≡ p3 = g3µ pµ = g33 p3+g30p0 p0 = mu0 = mdt/dτ

pt ≡ p0 = g0µ pµ = g00 p0+g03p3 p3 = mu3 = mdϕ/dτ

and combining these relations gives an expression for dϕ/dt,

dϕ

dt
=

p3

p0
=

g33 p3+g30p0

g00 p0+g03p3
.
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We have obtained

dϕ

dt
=

p3

p0
=

g33 p3+g30p0

g00 p0+g03p3
.

But from the Killing vector Kϕ and the metric

ℓ≡ Kϕ ·u = g30u0+g33u3,

we have that for an ℓ= 0 particle

p3 = mu3 = g30 p0+g33p3 = 0

and thus

ω(r,θ)≡ dϕ

dt
=

g30

g00
=

gϕt

gtt
.

• The quantity ω(r,θ) measures the amount of frame drag-

ging.

• It may be viewed as the angular velocity of a zero angular

momentum particle.

The particle is dragged in angle ϕ as it falls radi-

ally inward, even though no forces act on it.
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Frame dragging has been exhibited here for a Kerr metric but

• It is expected to occur for any metric having terms de-

pending on angular momentum.

• It produces a detectable gyroscopic precession termed the

Lense–Thirring effect that we discussed in Ch. 9.

NASA’s Gravity Probe B had 4 gyroscopes aboard

a satellite in an orbit almost directly over the poles.

• It measured gyroscopic precession,

• giving direct evidence of frame dragging by

the rotating gravitational field of the Earth.

• The measured amount of frame dragging was

the amount predicted by general relativity.
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The Kerr line element

• defines the covariant components of the Kerr metric gµν .

• To evaluate ω(r,θ) we need the contravariant components

gµν .

These may be obtained as the matrix inverse of gµν . The metric

is diagonal in r and θ so

grr = g−1
rr =

∆

ρ2
gθθ = g−1

θθ =
1

ρ2
,

and we need only evaluate

g−1 =

(

gtt gtϕ

gϕt gϕϕ

)−1

to obtain the other non-zero entries for gµν . Letting

D = detg = gttgϕϕ − (gtϕ)
2,

the matrix inverse is

g−1 =
1

D

(

gϕϕ −gtϕ

−gϕt gtt

)

.

Inserting explicit expressions for the gµν and carrying out some

algebra yields

ω(r,θ) =
gϕt

gtt
=

2Mra

(r2+a2)2−a2∆sin2 θ
.



508 CHAPTER 13. ROTATING BLACK HOLES

Notice that the angular velocity that measures the amount of

frame dragging

ω(r,θ) =
gϕt

gtt
=

2Mra

(r2+a2)2−a2∆sin2 θ
.

• has the same sign as the Kerr parameter a = J/M and

• falls off as r−3 for large r.

This indicates that frame dragging is most pronounced at small

r in the Kerr spacetime.

We will now demonstrate that a region just outside

the horizon has quite remarkable properties as a

consequence.
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13.3.1 The Ergosphere

With capable enough propulsion,

• an observer could remain stationary at any point outside

the event horizon of a Schwarzschild black hole.

• However, no amount of propulsion can enable an observer

to remain stationary inside a Schwarzschild horizon (this

would imply causality violation).

We now demonstrate that, for a rotating black hole,

even outside the horizon it may be impossible for

an observer to remain stationary.
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The 4-velocity for a stationary observer is

u
µ
obs = (u0

obs,0,0,0) =

(
dt

dτ
,0,0,0

)

.

Writing out uobs·uobs =−1 gives

uobs·uobs = g00(u
0
obs)

2 =−1.

But for the Kerr metric

g00 = −
(

1− 2Mr

ρ2

)

= −
(

1− 2Mr

r2+a2 cos2 θ

)

=−
(

r2+a2 cos2 θ −2Mr

r2+a2 cos2 θ

)

vanishes if

r2−2Mr+a2 cos2 θ = 0.

Generally then, solving the above quadratic for r

• g00 = 0 on the surface defined by

re(θ) = M+
√

M2−a2 cos2 θ ,

• g00 > 0 inside this surface.

• g00 < 0 outside this surface.

Therefore, since (u0
obs)

2 must be positive,

uobs·uobs = g00(u
0
obs)

2 =−1

cannot be satisfied for r ≤ re(θ).
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Figure 13.1: The ergosphere (light gray regions) of a Kerr black hole with

a/M = 0.998 in Boyer–Lindquist coordinates. The geometry is not correctly

illustrated. For example, the horizon has a constant coordinate r = r+ but

its geometry is not spherical.

Comparing

r± = M±
√

M2−a2 re(θ) = M+
√

M2−a2 cos2 θ ,

we see that

• If a 6= 0 the surface re(θ) generally lies outside the hori-

zon r+, except at the poles, where the two surfaces are

coincident (Figure 13.1).

• If a = 0, the Kerr black hole reduces to a Schwarzschild

black hole, where r+ and re(θ) define the same surface.

The region lying between re(θ) and the horizon

r+ is termed the ergosphere, for reasons that will

become more apparent shortly.
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a = 0.98 M a = 0.80 M a = 0.50 M a = 0

Figure 13.2: Ergospheres of a Kerr black hole for different values of a/M at

constant mass M. The region inside the horizon (the black hole) is indicated

by dark gray and the ergosphere is indicated in lighter gray. The dashed

circle defines the equivalent Schwarzschild radius r = 2M. As a→ 0 the

outer boundary of the ergosphere and the Kerr horizon approach the event

horizon of a Schwarzschild black hole of the same mass.

The relationship of the ergosphere and the event horizon for

Kerr black holes having different values of a is illustrated in

Fig. 13.2.
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From preceding considerations, there can be no stationary ob-

servers within the ergosphere.

Further insight comes from considering motion of

photons within the ergosphere.

• Assume photons within the ergosphere moving tangent to

a circle at constant r in the equatorial plane θ = π
2

, so

dr = dθ = 0.

• Since they are photons, ds2 = 0 and from the Kerr line

element with dr = dθ = 0,

g00dt2 +2g03dtdϕ +g33dϕ2 = 0.

• Divide by dt2 to give a quadratic equation in dϕ/dt

g00+2g03
dϕ

dt
+g33

(
dϕ

dt

)2

= 0

Thus

dϕ

dt
=
−2g03±

√

4g2
03−4g33g00

2g33

=−g03

g33
±

√
(

g03

g33

)2

− g00

g33
,

where

··· + is for motion opposite black hole rotation

··· − is for motion with black hole rotation.
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• Now g00 vanishes at the boundary of the ergosphere and it

is positive inside the boundary.

• Setting g00 = 0 in

dϕ

dt
=−g03

g33
±

√
(

g03

g33

)2

− g00

g33
,

gives two solutions,

dϕ

dt
= 0

︸ ︷︷ ︸

opposite rotation

dϕ

dt
=−2g03

g33
︸ ︷︷ ︸

with rotation

,

The photon sent backwards against the rotation at

the surface of the ergosphere is stationary in ϕ!

• Obviously a particle, which must have a velocity less than

a photon, must rotate with the black hole irrespective of

the amount of angular momentum that it has.

• Inside the ergosphere g00 > 0, so all photons and particles

must rotate with the black hole.

The frame dragging for r < re(θ) is so severe that

v > c would be required for an observer to remain

at rest with respect to infinity.
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• In the limit a = J/M→ 0, where the angular momentum

of the Kerr black hole vanishes,

re(θ) = M+
√

M2−a2 cos2 θ −→ 2M

and becomes coincident with the Schwarzschild horizon.

• Rotation has extended the region r < 2M of the spherical

black hole where no stationary observers can exist to a

– larger region r < re(θ) surrounding the rotating black

hole where

– no observer can remain at rest because of frame drag-

ging effects.

This ergospheric region lies outside the horizon,

implying that a particle could enter it and still es-

cape from the black hole.
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13.4 Extracting Rotational Energy from Black Holes

We have seen that

• Quantum vacuum fluctuations allow mass to be extracted

from a Schwarzschild black hole as Hawking radiation.

• But it is impossible to extract mass from a classical

Schwarzschild black hole (it all lies within the event hori-

zon).

However, the existence of

• separate surfaces defining the ergosphere and the horizon

for a Kerr black hole

• implies the possibility of extracting rotational energy

from a classical black hole.

The simplest way to demonstrate the feasibility of

extracting rotational energy from a black hole is

through a Penrose process.
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Figure 13.3: A Penrose process.

A Penrose process is illustrated schematically in Fig. 13.3.

• A particle falls into the ergosphere of a Kerr black hole

and decays into two particles.

– Particle 1 falls through the horizon;

– Particle 2 exits the ergosphere and escapes to infinity.

• The decay within the ergosphere is a local process. By

equivalence principle arguments, it may be analyzed in a

freely falling frame by the usual rules of scattering theory.

• Therefore, energy and momentum are conserved in the de-

cay, implying that in terms of 4-momenta p

p0 = p2+ p1

(Note: subscripts label particles, not components).
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• If particle 2 has rest mass m2, its energy is

E2 =−p2·Kt = m2ε Kt = (1,0,0,0)

where ε =−Kt ·u =−Kt ·(p/m) has been used.

• Taking the scalar product of p0 = p2+ p1 with Kt

p0 ·Kt = (p2+ p1) ·Kt

yields the requirement,

E2 = E0−E1,

since E =−Kt ·p.

• If particle 1 were to reach ∞ instead of crossing the event

horizon, E1 would necessarily be positive so

1. E2 < E0, and

2. Less energy would be emitted than put in.
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However . . .

• For the Killing vector Kt = (1,0,0,0),

Kt ·Kt = gµνK
µ
t Kν

t

= g00K0
t K0

t = g00 =−
(

1− 2Mr

ρ2

)

,

and g00 vanishes on re(θ) and is positive inside it.

• Therefore, within the ergosphere Kt is a spacelike vector:

Kt ·Kt = g00 > 0 (within the ergosphere).

• By arguments similar to those for Hawking radiation,

1. −E1 is not an energy within the ergosphere but is a

component of spatial momentum, which can have ei-

ther a positive or negative value (!).

2. For decays where the trajectories are arranged such

that E1 < 0, we obtain from E2 =E0−E1 that E2 > E0

and net energy is extracted in the Penrose process.
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The energy extracted in the Penrose process comes at the ex-

pense of the rotational energy of the Kerr black hole.

• For trajectories with E1 < 0,

– the captured particle adds a negative angular momen-

tum,

– thus reducing the angular momentum and total energy

of the black hole,

and this just balances the angular momentum and total en-

ergy carried away by the escaping particle.

• A series of Penrose events could extract all the angular

momentum of a Kerr black hole, leaving a Schwarzschild

black hole.

• No further energy can then be extracted from the resulting

spherical black hole (except by quantum Hawking pro-

cesses).
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The Penrose mechanism establishes proof of principle in a sim-

ple model that

The rotational energy of a Kerr black hole is exter-

nally accessible in classical processes.

• Practically, Penrose processes

– are not likely to be important in astrophysics because

– the required conditions are not easily realized.

• Instead, the primary sources of emitted energy from black

hole systems likely are

1. Complex electromagnetic coupling of rotating black

holes to external accretion disks and jets.

2. Gravitational energy released by accretion onto the

black hole.

There is very strong observational evidence for

such processes in a variety of astrophysical envi-

ronments.
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Chapter 14

Observational Evidence for Black

Holes

By definition an isolated black hole should be a difficult object

to observe.

• However, if black holes exist they should often be

– accreting surrounding matter and

– interacting gravitationally with their environment,

– and this is potentially observable.

Thus, although the direct observation of a black

hole is difficult, we have very strong reasons to be-

lieve that black holes exist and are being observed

indirectly.

523
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14.1 Gravitational Collapse and Observations

Three major discoveries pushed gravitational collapse and gen-

eral relativity to the forefront of observational astronomy:

• The realization in 1963 that quasars were enormous en-

ergy sources lying at great distance.

• The discovery of pulsars in 1967.

• Discoveries beginning in the 1970s of X-ray binaries con-

taining massive unseen companions.

Attention soon focused on the possibility that gravitationally-

collapsed objects:

• black holes for quasars,

• neutron stars for pulsars, and

• black holes or neutron stars for high-mass X-ray binaries

could explain these new discoveries.

Quasars in particular pushed the envelope because

of the proposal that they might be powered by

• rotating,

• extremely massive

black holes.
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14.2 Singularity Theorems and Black Holes

But do black holes really exist? After all, both

• Einstein (the most famous physicist of his day) and

• Eddington (the most famous astronomer of his day)

felt strongly that such solutions of the field equations existed

mathematically but would never be realized in nature.
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Let’s play devil’s advocate for a moment.

• The Einstein equations can be solved to yield

Schwarzschild or Kerr black holes primarily because they

are vacuum solutions with a high degree of symmetry.

• Take the Kerr solution as representative (since

Schwarzschild is a special case of Kerr).

• Because of its high symmetry the Kerr solution is remark-

ably simple, being described by only two parameters:

– Mass

– Angular momentum.

• This led to worries that the gravitational collapse produc-

ing a Kerr black hole was an anomaly created by unreal-

istically high symmetry.

• Hence the theoretical black holes of general relativity

might not exist in the wild because

– real gravitational collapse would likely not proceed

with such high symmetries, and

– more realistic asymmetric solutions might somehow

avoid the formation of singularities.

Help in this regard emerged from highly-

mathematical work that began in the 1960s and

is associated with the names of Roger Penrose,

Stephen Hawking, Brandon Carter, and others.
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14.2.1 Global Methods in General Relativity

The classical formulation of general relativity is in terms of

local differential equations.

• To build up a global picture of a spacetime one tradition-

ally

– performs local computations around each event in

spacetime and then

– patches these solutions together to give the global

structure.

• This local formulation of general relativity was almost the

only approach until the 1960s,

• Then it began to be realized that general relativity was also

subject to powerful global laws that were often remark-

ably simple and elegant.

These techniques permit the global properties of

a spacetime to be investigated directly, rather than

by building up from local properties.
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Figure 14.1: (a) Light emission by a 2-sphere S0 in Schwarzschild space-

time. (b) Schwarzschild spacetime in Eddington–Finkelstein coordinates.

There are two solutions at each point. Outside the horizon at r = 2M one

solution is ingoing and one is outgoing; inside r = 2M both solutions are

ingoing. Cases I and II correspond to S0 located outside and inside the hori-

zon, respectively. For a trapped surface all emitted light moves inward.

14.2.2 Singularities and Trapped Surfaces

In 1965, Roger Penrose introduced global topological tech-

niques into the study of spacetimes.

• The details are far too technical for the present discussion

but a brief qualitative overview will prove useful.

• A key idea was that of a trapped surface, which is a

– closed, spacelike 2-surface from which

– any light emitted always moves inward.

The basic idea is illustrated by Fig. 14.1.
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Suppose a 2-sphere S0, corresponding to a point in the above

figure of a Schwarzschild spacetime, emits light.

• Photons will propagate away from S0 in 2-spheres whose

envelopes will form the 2-spheres S1 and S2.

• In case I the surface S0 is outside the horizon at r = 2M

and the areas of the 2-spheres are ordered S2 > S0 > S1.

• However, S0 is inside the horizon for case II and

– the orientation of lightcones implies that both emitted

wavefronts will implode and in general

– both S2 and S1 will have areas less than S0.

• In this latter case S0 is termed a closed trapped surface,

since all light emitted from it (even “outgoing” light) trav-

els inward toward the singularity.

The outermost trapped surface for a spacetime is

termed the apparent horizon.
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The preceding illustration is based on the highly-symmetric

Schwarzschild solution.

• However, Penrose showed that under very general con-

ditions (like positivity of energy, so that light is always

focused by gravity),

Once a trapped surface forms a singularity must

form inside it.

• Spacetimes admitting trapped surfaces exhibit geodesic

incompleteness.

• This means that some worldlines for particles or light can

be extended only for a finite proper time (finite affine pa-

rameter for light) for an observer on the geodesic.

• Penrose interpreted this to be the end of time (no future)

at a singularity where physical law breaks down.

• This derivation invokes minimal assumptions.

• Hence it indicates that singularities (with attendant hori-

zons if cosmic censorship is valid)

– are generic features of any collapse where gravity is

sufficiently strong,

– not just for ones with special initial conditions.
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14.2.3 Apparent Horizons and True Horizons

If it exists, the outermost trapped surface defines an apparent

horizon for a spacetime.

• How are apparent and true event horizons for a black hole

related?

• The apparent horizon is a local concept because it depends

on tests made locally.

• However, the black hole event horizons discussed earlier

are defined globally, since they

– depend on constructing null geodesics and

– determining whether they reach infinity or not.

Thus determining the true event horizon requires

knowing the complete history of the spacetime.

• For the simple case of stationary Schwarzschild spacetime

the apparent and true horizons are located at the same ra-

dial coordinate, r = 2M, so we can speak of just “the hori-

zon”,

• In more complex situations this might not be true.

• The next slide gives an example.
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An example where the apparent and event horizons need not

coincide is a black hole accreting a spherical shell of matter.

• Imagine a light ray emitted radially from just outside the

horizon before the shell accretes.

• When emitted the light is not trapped, but after the shell

accretes

– the gravitational field acting on the light is increased

and

– may trap the light,

even though it was not trapped when emitted.

• In this case the apparent horizon is inside the true horizon.

• Roughly, we may think that

– the apparent horizon defines the light-trapping radius

for the black hole now, while

– the true horizon is that radius in the future.
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When computing the dynamical evolution of a spacetime from

initial data in numerical relativity,

• the full global history of the spacetime is not available as

the solution is advanced.

• In such a context the local definition of an apparent hori-

zon is useful because

• it permits determining the presence of a black hole at any

time during the numerical simulation.

• This is so because

If it is true that

• cosmic censorship is valid and

• the null energy condition is satisfied,

an apparent horizon signals the existence of a true

horizon that

• either coincides with or

• lies outside

the apparent horizon.
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The overall picture that emerged from such considerations was

that

• Asymmetries do not prevent gravitational collapse to a

singularity because

• uncharged collapsing matter radiates away its irregulari-

ties as gravitational waves,

• leaving finally

– a Kerr black hole with

– a singularity clothed by an event horizon.

Thus it was suggested that the final equilibrium

configuration of any fully-collapsed, uncharged

object is a Kerr black hole (or its J → 0 limit, a

Schwarzschild black hole).

• These ideas made it much more plausible that gravita-

tional collapse could form black holes under real-world

conditions.

• This in turn spurred increased interest in observational

evidence for the existence of black holes that will be the

subject of this chapter and the next.
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14.2.4 Generalized Singularity Theorems

Singularity theorems typically assume

1. a global structure for spacetime,

2. a restriction on allowed energies, and

3. gravity strong enough to trap a region of spacetime in the

sense described above.

By making different choices for these assumptions, different

singularity theorems may be obtained.

• Such generalizations were used to show that classically,

the expanding Universe must have a singularity in its past.

• This will be relevant to later discussion of the big bang.

• They also were used by Hawking to prove the area theo-

rem for black hole horizons.

• This, along with Hawking’s introduction of quantum me-

chanics into black hole physics, was crucial to the devel-

opment of black hole thermodynamics.
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Having given some theoretical basis for why black

holes might form for realistic gravitational col-

lapse, let’s now turn to some of the observational

evidence suggesting their existence.
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14.3 Observing Black Holes

We have very strong reasons to believe that black holes exist

and are being observed indirectly because of

1. Unseen massive companions in binary star systems that

are

• Strong sources of X-rays and

• Probably too massive to be anything other than black

holes.

2. The centers of many galaxies where

• Masses inferred by

– direct measurement of individual star orbits in the

center of the Milky Way or

– virial theorem methods

are far too large to be accounted for by any simple

hypothesis other than a supermassive black hole.

• In many cases there is direct evidence of an enormous

energy source in the center of the galaxy.

3. Observation of gravitational waves with properties indi-

cating that they originated in the merger of black holes.

We shall begin by summarizing some of the rea-

sons why properties of some binary star systems

give us strong confidence that black holes exist.
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Figure 14.2: (a) Tilt angle i of a binary orbit. (b) Observed radial velocity

curve for the black hole binary candidate A 0620–00. The period corre-

sponds to P = 0.323 days and the semiamplitude to K = 433± 3 km s−1.

The orbital phase corresponds to the fraction of one complete orbit.

14.4 Black Hole Masses in X-ray Binaries

Many close binaries have eccentricity e∼ 0. To simply, assume

circular orbits. From Kepler’s laws,

• the mass function f (M) for the binary may be related to

the radial velocity curve (Fig. 14.2b) through

f (M) =
(M sin i)3

(M+Mc)2

︸ ︷︷ ︸

function of masses

=
PK3

2πG
︸︷︷︸

measureable

• K is the semiamplitude and P the period of the curve,

• i is the tilt angle of the orbit (Fig. 14.2a)

• Mc is the mass of the visible star.

• M is the mass of the compact, unseen companion.
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Because the angle i is usually not known directly, the measured

mass function

• Places a lower limit on the mass of the unseen component

of the binary.

• The mass of the companion can often be estimated reliably

from systematic spectral features.

Let’s see how this works in practice.
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14.4.1 Masses from Mass Functions

• Assume that from Doppler-shift measurements of the vis-

ible component of a spectroscopic binary,

F = F(P,K) =
PK3

2πG
(observed)

is known from the velocity curve [Fig. (b) above].

• Then from the mass function formula,

M3 sin3 i

(M+Mc)2
= F

and the compact-object mass M is defined by solution of

M3+aM2+bM+ c = 0

a =− F

sin3 i
b =−2FMc

sin3 i
c =−FM2

c

sin3 i
.
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The equation

M3+aM2+bM+ c = 0

a =− F

sin3 i
b =−2FMc

sin3 i
c =−FM2

c

sin3 i
.

has three roots but the solution of interest for this problem is

given by the real root

M(F,Mc, i) =
(

R+
√

Q3 +R2
)1/3

+
(

R−
√

Q3+R2
)1/3

− a

3

R≡ 1

54
(9ab−27c−2a3) Q≡ 1

9
(3b−a2).

If F is measured,

• M is a function of two unknowns

– the mass of the visible companion Mc and

– the tilt angle i for the orbit.

If these can be measured or estimated in some way,

the above equation provides the mass M of the un-

seen component, or at least a constraint on it.
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Figure 14.3: Mass plots for A0620–00 with a measured F = 3.19M⊙.

(a) Mass M of the unseen component versus the tilt angle i for different

values of the companion mass Mc. (b) Mass M of the unseen component

versus Mc for different values of i.

14.4.2 An Example: A0620–00

The soft X-ray transient A0620–00

• is a binary in which a class K main sequence star is trans-

ferring mass to an accretion disk around an unseen com-

pact object.

• A velocity curve was shown earlier.

• The orbital period is P = 7.75± 0.0001 hr and the semi-

amplitude of the velocity curve is K = 457±8 km s−1.

• From this the observed value of the mass function for

A0620–00 is F = 3.19M⊙.

In Fig. 14.3 the solution M(F,Mc, i) from the cubic equation is

plotted as a function of i and Mc for F = 3.19 M⊙.
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These figures illustrate clearly

• the degeneracy of the unknown mass M in the parameters

i and Mc, and

• that the measured value of the mass function F = 3.19M⊙
is the minimum possible mass for the unseen component.
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Figure 14.4: Mass plots for A0620–00 with a measured F = 3.19M⊙ and

constraints on Mc and i. (a) Mass M of the compact object vs. tilt angle i

for various companion masses Mc. From systematics, the companion is of

spectral class K5, with Mc ∼ 0.7 M⊙. A region on the right is excluded by

absence of X-ray eclipses. (b) Mass M vs. Mc for different values of i. Most

likely spectral class K5 indicated by the dashed vertical line, the uncertainty

range K7–K2 is indicated by the shaded region, and the minimum implied

mass Mmin for the compact object is indicated by the horizontal dashed line.

This already is a powerful constraint but a more precise state-

ment about M is possible if further information can be obtained

about Mc and i. Neither is measured directly but

• The distance to the system is known to be ∼ 770 pc and

• no eclipses of the X-ray source are observed, which by

geometry excludes values of i for a range too near π
2 .

• The companion is a main sequence star with spectral class

lying in the range K7–K2; from stellar systematics this re-

quires the mass to lie in the range 0.5M⊙ < Mc < 0.8M⊙.

In Fig. 14.4 plots are repeated with these constraints displayed.



14.4. BLACK HOLE MASSES IN X-RAY BINARIES 545

 0

2

4

 6

 8

10

 12

 14

 0

2

4

 6

 8

10

 12

 14

 40  50  60  70  80  90

i (deg)

M
 (

  
  

 )
M

 0  0.2  0.4  0.6 0.8  1.0 1.2

MMc (     )

80o

50o

40o
(a) (b)

M2 M1 M0 K7 K5 K2 K0 G8

0.25 M (M2)

0.7 M (K5)

0.9 M (G8)

No X-ray

eclipses

K7-K2

Mmin> ~4M

• In a more extensive analysis employing additional obser-

vational information and systematics, it was concluded

that

4.16±0.01 M⊙ ≤M ≤ 5.15±0.015 M⊙.

• Since it is expected that no neutron star can have a mass

larger than 2−3 M⊙,

We deduce that the unseen companion must be a

black hole.
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Table 14.1: Some black hole candidates in galactic X-ray binaries

X-ray source Period (days) f (M) Mc(M⊙) M(M⊙)
Cygnus X-1 5.6 0.24 24–42 11–21

V404 Cygni 6.5 6.26 ∼0.6 10–15

GS 2000+25 0.35 4.97 ∼0.7 6–14

H 1705–250 0.52 4.86 0.3–0.6 6.4–6.9

GRO J1655–40 2.4 3.24 2.34 7.02

A 0620–00 0.32 3.18 0.2–0.7 5–10

GS 1124–T68 0.43 3.10 0.5–0.8 4.2–6.5

GRO J0422+32 0.21 1.21 ∼0.3 6–14

4U 1543–47 1.12 0.22 ∼2.5 2.7–7.5

Table 14.1 illustrates some candidate binary star systems where

a mass function analysis suggests

• an unseen companion too massive to be a white dwarf or

neutron star.

• We assume these to be black holes.
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14.4.3 Another Example: Cygnus X-1

The first-discovered and most-storied stellar black hole candi-

date is Cygnus X-1.

1. In the early 1970s an X-ray source was discovered in

Cygnus and designated Cygnus X-1.

2. In 1972, a radio source was found in the same area and

identified optically with the blue supergiant HDE226868.

3. Correlations in the

• radio activity of HDE226868 and

• X-ray activity of Cygnus X-1

implied that the two were probably components of the

same binary system.

4. Doppler measurements of radial velocity for HDE226868

and other data confirmed that Cyg X-1 was a member of a

binary with a period of 5.6 days.

5. Analysis showed that the X-ray source was fluctuating in

intensity on timescales as short as 1/1000 of a second.

• Signals controlling the fluctuation are limited to v≤ c,

• so the source must be very compact, probably no

more than hundreds of kilometers in diameter.

These observations indicate that Cyg X-1 is a very

compact object (neutron star, or black hole).
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5. The mass of the blue supergiant HDE226868 was esti-

mated from known properties of such stars (it is a spec-

trum and luminosity class O9.7Iab star).

• This, coupled with a mass function analysis, can be

used to estimate the mass of the unseen, compact

companion.

• These estimates are uncertain because the geometry

(tilt of the binary orbit) can only partially be inferred

from data.

• Such estimates place a lower limit of about 10M⊙
on the unseen companion and more likely indicate a

mass near 15M⊙.

6. Since we know of no conditions that would permit a neu-

tron star to exist above about 2− 3M⊙ (or a white dwarf

above about 1.4M⊙), we conclude that the unseen com-

panion must be a black hole.

Although this chain of reasoning is indirect, it

builds a very strong case that Cygnus X-1 contains

a black hole.
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14.5 Supermassive Black Holes in the Cores of Galaxies

Many observations of star motion near the centers of galaxies

indicate the presence of large, unseen mass concentrations. The

most direct is for our own galaxy.
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Figure 14.5: Orbit of S0-2 around the radio source Sgr A∗ through 2002.

Filled circle indicates the position uncertainty for Sgr A∗ as determined

from the elliptical orbit assuming a point mass located at the focus to be

responsible for the orbital motion. The star completed this orbit in 2008 and

the parameters displayed in the box are those obtained from the completed

orbit. Periapsis is the general term for closest approach of an orbiting body

to the center of mass about which it is orbiting.

14.5.1 The Black Hole at the Center of the Milky Way

The star S0-2 (also called S2) orbits in the vicinity of the strong

radio source SGR A∗, near the center of the Milky Way.

• The motion of S0-2 has been measured systematically.

• The orbit of S2 (the projected ellipse with SGR A∗ at a

focus) is shown in Fig. 14.5.
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• Closest approach is about 17 lighthours from SGR A∗.

• The mass inside the orbit is estimated to be 4.3×106M⊙.

• This mass is concentrated in a region no larger than the

Solar System that contains little luminous mass.

• The simplest explanation is that the radio source SGR A∗

coincides with a ∼ 4 million solar mass black hole.

• SO-2 comes within 17 lighthours of the black hole

– This distance is still well outside the tidal distortion

radius for the star (which is about 16 lightminutes).

– It is about 1500 times larger than the event horizon.

– At closest approach the separation is not much larger

than the radius of the Solar System.
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• Constraints from orbits of other stars near Sgr A* place

an upper limit of 45 AU on the size of the 4.3× 106M⊙
source of the gravitational field.

• Long-baseline radio interferometry constrains the region

to a size comparable to the event horizon of a 4.3×106M⊙
black hole.
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The gravity experienced by a star like S0-2 is approximately

• 100 times stronger than the largest gravitational fields

found in the Solar System or in binary pulsars.

• Characteristic field strength GM/Rc2 vs. source mass M

for some tests of GR are summarized in the figure above.

• Stars near Sgr A∗ can test GR in much stronger gravity

than in any context other than black hole mergers.

• General effects that can be measured are associated with

curvature (orbital precession) and gravitational redshifts.

Tests of more exotic aspects of GR such as the no

hair theorem have also been suggested.
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14.5.2 The Water Masers of NGC 4258

The galaxy NGC 4258

• is an Sb spiral but its nucleus is moderately active and

• it is also classified as a Seyfert 2 Active Galactic Nucleus

(AGN).

It is one of the nearest AGNs.

• A set of masers (microwave analog of lasers) has been

observed in the central region of the galaxy.

• The maser emission in NGC 4258 is due to clouds of

heated water vapor, so these are termed water masers.

• Because

– masers produce sharp spectral lines (allowing precise

Doppler shifts), and

– microwaves are not strongly attenuated by the gas

and dust near the nucleus of the galaxy,

• observation of the water masers has permitted the motion

of gas near the center to be mapped very precisely using

the Very Long Baseline Array (VLBA).
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Figure 14.6: Water masers in NGC 4258 and evidence for a black hole.

Water maser emission from the central region of NGC 4258 is

illustrated in Fig. 14.6.

• The masers are mapped with a precision of better than 1

milliarcsecond and their radial velocities indicate

• bulk motion of gas at velocities near 1000 km s−1.

– masers approaching us are labeled blueshifted,

– masers receding from us are labeled redshifted, and

– those with no net radial velocity are labeled unshifted.

From this we may infer the general rotation of the

disk, as indicated by the arrow labeled “Kepler”.
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• The masers are embedded in a thin, warped, dusty, molec-

ular gas disk revolving around the core.

• The Keplerian motion of the masers implies that the

masers are in orbit around a large mass completely con-

tained within all their orbits.

• The mass required is approximately 3.9×107 M⊙.

• Measured mass and size of region enclosed by maser or-

bits implies minimum density of 108M⊙ per cubic ly.

– 10,000 times more dense than any known star cluster.

– The only plausible explanation is a supermassive

black hole.
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• The nucleus of the galaxy produces radio jets that appear

to come from the dynamical center of the rotating disk and

are approximately perpendicular to it (see fig).

• The location of the black hole engine is determined within

the uncertainty of the black circle shown in the figure.

– This black circle denotes the uncertainty in location

of the black hole, not its size.

– The black circle is about 0.05 ly in diameter, but a

supermassive black hole would have an event horizon

hundreds of times smaller than this.

These results make NGC 4258 one of the strongest

cases known for a supermassive black hole engine

at the core of an active galactic nucleus.
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14.5.3 Virial Methods and Central Masses

For distant galaxies we have insufficient telescopic resolution

to track individual stars.

• However, we may still learn something about the mass

contained within particular regions by observing the av-

erage velocities of stars in that region.

• On conceptual grounds, we may expect that

– the larger the gravitational field that stars feel,

– the faster they will move.

• This intuitive idea may be quantified by using the virial

theorem to show that

• the mass M responsible for the gravitational field in which

stars move in some spherical region of radius R is given

by

M ≃ 5Rσ2
r

G
,

where the radial velocity dispersion

σ2
r = 〈v2

r 〉 ≡
1

3N

N

∑
i=1

v2
i

can be determined by

• averaging over the squares of radial velocity fields deter-

mined from Doppler-shift measurements.
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Figure 14.7: Evidence for a central black hole in the galaxy M87.

14.5.4 Evidence for a Supermassive Black Hole in M87

The left portion of Fig. 14.7 is a Hubble Space Telescope image

showing the center of the giant elliptical radio galaxy M87.

• The diagonal line emanating from the nucleus in the left

image is a jet of high-speed electrons—a synchrotron

jet—approximately 6500 light years (2 kpc) long.

• This is what would be expected for matter swirling around

the supermassive black hole, with part of it falling forever

into the black hole and part of it being ejected in a high-

speed jet.

• The right side of Fig. 14.7 illustrates Doppler shift mea-

surements made on the central region of M87 that suggest

rapid motion of the matter near the center.
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• The measurement studied how the light near the center is

shifted by the Doppler effect.

• The gas on one side of the disk is moving away from Earth

at a speed of about 550 kilometers per second (redshift).

• The gas on the other side of the disk is approaching the

Earth at the same speed (blueshift).

• These high velocities suggest a gravitational field pro-

duced by a huge mass concentration at the center of M87.

• From the virial theorem and velocity dispersions,

– approximately 3 billion solar masses are concentrated

in a region at the galactic core

– that is only about the size of the Solar System.

• This mass is far larger than could be accounted for by the

visible matter there.

• The simplest interpretation is that a 3 billion solar mass

black hole lurks in the core of M87.
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14.6 Intermediate-Mass Black Holes

Some evidence exists for black holes of mass intermediate be-

tween

• stellar black holes (∼ 10−100M⊙) and

• galactic black holes (∼ 106−109 M⊙).

A pulsar has been discovered orbiting an unseen mass concen-

tration in the globular cluster 47 Tucanae.

• The precise timing of the pulsar indicates that the magni-

tude of the unseen mass concentration is

M = 2200+1500
−800 M⊙.

• This may be the first solid evidence for an intermediate-

mass black hole.

There is no electromagnetic signal from this ob-

ject, so if it is a black hole it must not be accreting.
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Figure 14.8: Chandra Deep Field–South. Each point lies at a redshift z≥ 3.5
and is a strong X-ray source marking a supermassive black hole, or a galaxy

containing multiple X-ray binaries with accreting black holes.

14.7 Black Holes in the Early Universe

A comprehensive survey of black holes at large redshift is dis-

played in Fig. 14.8.

• This is a composite image of Chandra X-ray Observatory

data having an angular extent somewhat less than the di-

ameter of the full Moon;

• it is the deepest X-ray image ever obtained.
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The black holes are of course invisible in this image but

• X-rays produced by gas being accelerated as it accretes

mark the position of black holes.

• The central part of this image is thought to contain about

5000 black holes.

This implies ∼ 109 black holes potentially visible

in X-rays out to this redshift.
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The study combined

• long-exposure Chandra X-ray data with

• very deep field optical images from the Hubble Space

Telescope for the same region of the sky.

X-ray emission was studied from more than 2000 galaxies at

redshifts 3.5 < z < 6.5.

• About 70% of the X-ray objects are thought to be super-

massive black holes with M ∼ 105−1010M⊙.

• The remainder are thought to be stellar-size black holes in

X-ray binaries hosted by unresolved galaxies.



14.7. BLACK HOLES IN THE EARLY UNIVERSE 565

This deep X-ray survey reached two conclusions of potential

importance for the role of supermassive black holes in the evo-

lution of the Universe.

1. The preferred seeds for the growth of supermassive black

holes were black holes of mass 104 M⊙ to 105 M⊙.

2. The growth of supermassive black holes in the first several

billion years occurred in sporadic episodes.

These conclusions are significant if they can be corroborated.

• The first favors the “heavy seeds” model of supermassive

black hole formation where

– intermediate-mass black holes form by direct col-

lapse of gas clouds,

– or possibly by rapid merger of massive first-

generation stars,

• The second suggests that the rapid growth of supermassive

black holes in the early Universe may have been greatly

assisted by galaxy collisions and mergers, during which

– central black holes grew at high rates, with

– much slower growth during intervening periods.

However, this is but one set of data and the mech-

anism by which supermassive black holes form re-

mains an open question.
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14.8 Show Me an Event Horizon!

Compelling evidence exists for objects exhibiting many of the

features expected for a black hole.

• Certainly these objects would be difficult to explain by any

other hypothesis.

• But the essential observational characteristic of a black

hole is its event horizon, which should have properties un-

like anything else encountered in the Universe.

• Therefore, rigorous proof that black holes exist will re-

quire “imaging” an event horizon.

• This is challenging: black holes emit no light directly and

are very small, and no nearby black holes are known.

• The best prospects are for the approximately 4 million so-

lar mass black hole Sgr A∗ at the center of the galaxy.

• The task is to resolve an object

– obscured by dust that is

– less than 20 times the solar diameter

– at a distance of 8 kpc.

Very Long Baseline Interferometry (VLBI) with ra-

dio telescopes spread across the globe can pene-

trate the dust and achieve such resolution, so imag-

ing the Sgr A∗ event horizon may be possible soon.
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(a)

(b)

Figure 14.9: Computer simulation of how the two black holes might have

appeared to a nearby observer just prior to merger in the gravitational wave

event GW150914, which will be described in later chapters. (a) Background

stars without the black holes. (b) Image including black holes.

What would we expect to see that would identify an object un-

equivocally as the event horizon of a black hole?

• From analysis of the gravitational wave GW150914

(merger of 29 M⊙ and 36 M⊙ black holes)

• a computer simulation of the merger has been constructed.

A frame from the simulation is shown in Fig. 14.9.
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(a)

(b)

• All stars are in the distant background and are unaffected

by the black holes,

• but gravitational lensing severely distorts the path of their

light and hence apparent positions in (b).

• The dark, well-defined shapes are the shadows of the event

horizons blocking all light from behind.

• Flattened dark features and the marked displacement of

the apparent background star images are caused by gravi-

tational lensing arising from the strong curvature.



14.8. SHOW ME AN EVENT HORIZON! 569

(a)

(b)

• The ring around the black holes is an Einstein ring (gravi-

tational lensing of light from stars behind the black holes).

• For the above simulation the black holes are

– assumed to be isolated, with any surrounding material

– already having been accreted by the black holes,

so all other objects are distant stars in the background.

• Hence the image is dominated by

– shadowing by horizons of light from background,

– and by extremely strong gravitational lensing effects.
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(a)

(b)

• The environment near Sgr A* is not likely to be as pristine:

– The black hole is probably accreting matter and

– emitting radiation from accretion.

• We might expect the dominant feature to be

– complete, sharply-defined shadowing by the horizon,

– strongly distorted by gravitational lensing.

However, it is unknown how the local environment

of Sgr A* will alter this picture.
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14.9 Summary: A Strong But Circumstantial Case

The evidence cited in this chapter is not yet iron-clad proof of

the existence of black holes.

• The defining characteristic of a black hole is an event hori-

zon.

• No known black hole candidates have had their event hori-

zons imaged,

• Though angular resolution sufficient to resolve the event

horizon of the Milky Way’s central black hole may be im-

minent.

Nevertheless, extensive data on

• X-ray binary systems with massive companions.

• The motions of stars and other objects in the central re-

gions of galaxies.

• Even more direct evidence from analysis of gravitational

waves generated by black hole mergers that will be dis-

cussed in later chapters.

• The enormous power sources to be discussed in the next

chapter, which are hard to explain without black holes

provide extremely strong circumstantial evidence for the exis-

tence of black holes.
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Chapter 15

Black Holes as Central Engines

Black holes imply a fundamental modification of our under-

standing of space and time.

• But at a more mundane level they also are of great practi-

cal importance in astronomy because

• they can be extremely efficient sources of energy.

As we shall now discuss, rotating black holes are

believed to be the engine powering a whole set of

phenomena associated with

• quasars,

• active galaxies,

• gamma-ray bursts, . . .

573
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15.1 Black Holes as Energy Sources

Black holes have event horizons that cut their interiors off from

the outside world, so they might seem unlikely power sources.

1. However, the discussion of Penrose processes demon-

strates conceptually that it is possible to extract energy

from rotating classical black holes.

2. Penrose processes themselves are not likely to lead to

large extraction of energy from black holes in astrophysi-

cal environments.

However, two classes of phenomena can lead to

• large energy release for black holes

• in regions outside the event horizon,

where released energy is accessible to external processes:

1. Accretion onto Schwarzschild or Kerr black holes can

convert large amounts of gravitational energy into other

usable forms of energy before the matter falls through the

event horizon.

2. Rotating black holes may be accompanied by strong ex-

ternal magnetic fields that can

• tap the rotational power of the black hole to

• accelerate charged particles in relativistic jets along

the axes of rotation, outside the event horizon.
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A consideration of plausible formation mechanisms for black

holes suggests that

• they are likely to form with some angular momentum, and

that

• they are likely to have no net charge.

• Thus practically we may focus our attention on Kerr black

holes.

• The Schwarzschild solution may then be viewed as

– the limit of the Kerr solution for

– for the special case of vanishing angular momentum.

Let us now turn to an overview of extracting en-

ergy from rotating black holes, either by accretion,

or by coupling of rotation to external fields.
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15.2 Accretion and Energy Release for Black Holes

Accretion of matter can be a large source of power because it

is an efficient mechanism for gravitational energy conversion.

• This is especially true for accretion onto a compact object:

– white dwarfs,

– neutron stars, or

– black holes.

• Accreting particles typically form an accretion disk orbit-

ing the object (angular momentum conservation).

• Collisions of the particles in the accretion disk

– heat it and

– cause it to radiate energy away,

allowing particles to spiral inward and accrete.

• For white dwarfs or neutron stars, the inspiraling material

accumulates on the surface.

• For black holes there is no surface but the event horizon

clearly sets a boundary for energy extraction.

• Calculations indicate that large amounts of gravitational

energy can be extracted from in-spiraling matter before it

falls through a black hole horizon, either through

1. Emission of radiation, or through

2. Production of relativistic jets.
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Table 15.1: Newtonian gravitational energy for hydrogen accretion

Accretion onto Max energy released (erg g−1) Ratio to fusion

Black hole 1.5×1020 25

Neutron star 1.3×1020 20

White dwarf 1.3×1017 0.02

Normal star 1.9×1015 10−4

15.3 Maximum Energy Release in Spherical Accretion

The most spectacular consequence of accretion is that it is an

efficient mechanism for extracting gravitational energy.

• The energy released by accretion is approximately

∆Eacc = G
Mm

R
,

where M is the mass of the object, R is its radius, and m is

the mass accreted.

• In Table 15.1 the energy released per gram of hydrogen ac-

creted onto the surface of various objects is summarized.

• From Table 15.1, we see that accretion onto very compact

objects is a much more efficient source of energy than is

hydrogen fusion.

• But accretion onto normal stars or even white dwarfs is

much less efficient than converting the equivalent amount

of mass to energy by fusion.
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Assume for the moment that

• all kinetic energy generated by conversion of gravitational

energy in accretion is radiated from the system.

• Then the accretion luminosity is

Lacc =
GMṀ

R
≃ 1.3×1021

(
M/M⊙
R/km

)(
Ṁ

g s−1

)

erg s−1,

if a steady accretion rate Ṁ is assumed.

We shall address the issue of efficiency for realistic

accretion shortly)
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Table 15.2: Some Eddington-limited accretion rates

Compact object Radius (km) Max accretion rate (g s−1)

White dwarf ∼ 104 1021

Neutron star ∼ 10 1018

15.3.1 Limits on Accretion Rates

The Eddington luminosity is

Ledd =
4πGMmpc

σ
,

with σ ithe effective cross section for photon scattering.

• For fully ionized hydrogen, we may approximate σ by the

Thomson cross section to give

Ledd ≃ 1.3×1038

(
M

M⊙

)

erg s−1.

• If Ledd is exceeded (luminosity is super-Eddington), ac-

cretion will be blocked by the radiation pressure.

• This implies that there is a maximum accretion rate.

• Equating Lacc and Ledd gives for this maximum rate

Ṁmax ≃ 1017

(
R

km

)

g s−1

Eddington-limited accretion rates calculated from

this formula are given in Table 15.2.
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15.3.2 Accretion Efficiencies

• For gravitational energy released by accretion to be ex-

tracted,

– it must be radiated or

– matter must be ejected at high kinetic energy (for ex-

ample, in AGN jets).

• Generally, only a fraction of the potential energy available

from accretion can be extracted to do external work.

• This issue is particularly critical when black holes are the

central accreting object, since

– they have no accretion “surface” and

– the horizon makes energy extraction problematic.

• Let’s modify our previous equation for accretion power by

introducing an efficiency factor η through

Lacc =
GMṀ

R
= ηṀc2 η ≡ GM

Rc2
.

• Specializing to black holes, it is logical to take some mul-

tiple of the Schwarzschild radius

rs =
2GM

c2
= 2.95

(
M

M⊙

)

km,

to define the “accretion radius”.
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• Then for a spherical black hole

Lbh
acc = ηṀc2 η =

rs

2R
,

and rs/2R measures the efficiency for converting rest mass

to energy by the accreting black hole power source.

• For spherical black holes, a typical choice for R is the ra-

dius RISCO = 3rs of the innermost stable circular orbit in

the Schwarzschild spacetime.

• For hydrogen fusion, the mass to energy conversion effi-

ciency is η ∼ 0.007.

• For compact spherical objects like Schwarzschild black

holes or neutron stars, reasonable estimates suggest η ∼
0.1.

• Shortly we shall see that for rotating Kerr black holes ef-

ficiencies of η ∼ 0.3 might be possible.
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15.3.3 Innermost Stable Circular Orbit and Binding Energy

A fundamental property of the Kerr metric is

• the binding energy of the innermost stable circular orbit,

• because this is related to the energy that can be extracted

from accretion on a rotating black hole.

If the radius of the innermost stable orbit is denoted by R,

• for circular orbits we have that dr/dτ = 0 and

• from earlier equations of motion in the Kerr metric

ε2−1

2
=

1

2

(
dr

dτ

)2

+Veff(r,ε, ℓ) → ε2−1

2
=Veff(R,ε, ℓ).

• To remain circular the radial acceleration must vanish,

∂Veff

∂r

∣
∣
∣
∣
r=R

= 0,

• and to be a stable orbit the potential must be a minimum

∂ 2Veff

∂ r2

∣
∣
∣
∣
r=R

≥ 0,

with equality holding for the last stable orbit.

This set of equations may be solved to determine

the innermost stable orbit and its binding energy.
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For extremal black holes (a = M), we find that

• Co-rotating orbits (revolving in the same sense as the ro-

tation of the hole) are more stable than the corresponding

counter-rotating orbits.

• For co-rotating orbits,

ε =
1√
3

ℓ=
2M√

3
R = M.

• The quantity ε is the energy per unit rest mass measured

at infinity, so

• the binding energy per unit rest mass, B/M, is given by

B

M
= 1− ε.

• These equations imply that the fraction f of the rest mass

that could theoretically be extracted as energy is

f = 1− ε = 1− 1√
3
≃ 0.42.

for a transition

– from a distant unbound orbit

– to the innermost circular bound orbit of a Kerr black

hole.
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Therefore, in principle 42% of the rest mass of accreted mate-

rial could be extracted as usable energy by accretion onto an

extreme Kerr black hole.

• One expects less efficiency for realistic scenarios.

• But we might expect as much as 20–30% efficiencies in

realistic accretion scenarios.

• This should be compared with the maximum theoretical

efficiency for conversion of rest mass into energy of

– 6% for accretion on a spherical black hole and

– 0.7% efficiency for hydrogen fusion to helium.

Accretion onto rotating black holes is a very effi-

cient mechanism for conversion of mass to energy.
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As we shall see shortly, it is the high mass-to-energy conversion

efficiency available from accretion onto compact objects that

• provides the most convincing argument that active galac-

tic nuclei (AGN) and quasars must be powered by accre-

tion onto rotating supermassive (M∼ 109M⊙) black holes.

• For example, observed luminosities and temporal lumi-

nosity variation indicate that a quasar could be powered

by

– accretion of as little as several solar masses per year

– onto an object of mass ∼ 109M⊙, and that

– this mass must occupy a volume the size of the Solar

System or smaller.

It is now broadly agreed that rotating, supermas-

sive black holes are the only plausible energy

source for quasars and active galactic nuclei.
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15.4 Jets and Magnetic Fields

A magnetic field cannot be anchored to the black hole itself

because the event horizon pinches off magnetic field lines.

• However, the accretion disk lies outside the event horizon

and it could have a strong magnetic field.

• Accretion of matter by the rotating black hole can lead to

ejection at v∼ c along the poles of the black hole rotation

for the matter that does not cross the event horizon.

• The rotating magnetic field of the accreting disk can be

carried away with the ejected matter, leading to bipolar

jets perpendicular to the accretion plane.

• These jets contain

– charged particles moving at near light velocity and

– twisting and spiraling magnetic fields.

• The magnetic fields probably are essential to focusing and

confining the relativistic jets into the narrow cones that are

observed, but the details are not well understood.

• If the jets are not at right angles to our line-of-sight, we

refer to the one pointed more toward us as the jet and the

other as the counterjet.

• Because of relativistic beaming effects when relativistic

jets are oriented near the line of sight, the counterjet may

be faint and difficult to see relative to the jet.
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15.5 Relativistic Jets and Apparent Superluminal Velocities

As an example of relativistic beaming, consider the following

figure where a distant source at B moves with v∼ c toward B′.

BA

B'

θ∆ϕ

~ d

d v (t  - t  )12

t  1

t  2

• At time t1 the source at B emits a light signal that is de-

tected at time t ′1 by an observer at A.

• When the source reaches B′ at time t2, it emits another

light signal that is detected by observer A at time t ′2.

• From Lorentz invariance the apparent transverse velocity

βT = vT/c is related to the actual velocity β = v/c by

βT ≡
vT

c
=

β sinθ

1−β cosθ
.

Thus for actual velocity β < 1, the apparent transverse velocity

can exceed c by any amount because the maximum value

β max
T = β/(1−β 2)

is unbounded as β → 1.
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The illusion of an apparent velocity exceeding that of light be-

cause of

βT ≡
vT

c
=

β sinθ

1−β cosθ
.

is observed frequently for jets in radio astronomy where it is

called superluminal motion. The figure below
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• shows a radio jet in the blazar 3C 279 (redshift z = 0.534)

exhibiting apparent superluminal motion,

• with an inferred transverse velocity v∼ 7c.
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Figure 15.1: Thermal and nonthermal emission

15.5.1 Nonthermal Emission

The Planck law describes thermal emission, characterized by

emission of radiation from a hot gas in approximate thermal

equilibrium; the resulting spectrum is a blackbody spectrum.

• The characteristic Planck law curves for thermal emission

peak at some wavelength, and fall off rapidly at longer and

shorter wavelengths (curve “Blackbody” in Fig. 15.1).

• The position of the peak moves to shorter wavelength as

the temperature of the gas is increased (the Wien law).

• Light from most stars, and light from normal galaxies, is

dominantly thermal in character.

Sometimes we observe emission of nonthermal radiation, with

a spectrum that increases in intensity at very long wavelengths.
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The most common form of nonthermal emission in astronomy

is synchrotron radiation.

• Created when high-velocity electrons (or other charged

particles) in strong magnetic fields follow

• a spiral path around the field lines, radiating highly-

beamed and partially-polarized light (figure above left).

• The figure above right contrasts

– a thermal spectrum characteristic of 6000 K and

– a nonthermal spectrum.

• The wavelength of the synchrotron radiation is related to

how fast the charged particle spirals in the magnetic field.

• Thus, as the particle emits radiation, it slows and emits

longer wavelength radiation.

• This explains the broad distribution in wavelength of syn-

chrotron radiation as compared with thermal radiation.
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Nonthermal emission is less common than thermal emission.

• However, the presence of a nonthermal component in a

spectrum typically signals

– violent processes and

– large accelerations of charged particles.

• High-frequency synchrotron radiation also implies the

presence of very strong magnetic fields, since

– the frequency increases with tighter electron spirals,

– which are characteristic of strong fields.

• The resulting synchrotron radiation has a nonthermal

spectrum and is partially polarized.

• It is strongly focused in the forward direction by relativis-

tic beaming.

• Fluctuations of the jet in time will also be compressed into

shorter apparent periods by relativistic effects.

• For an observer in the general direction of a jet, these ef-

fects will exaggerate both the apparent intensity and the

time variation of the nonthermal emission.

• The nonthermal continuum emission originates largely in

the synchrotron radiation produced in the jets.

• The thermal continuum is typically produced in the accre-

tion disk and the surrounding matter that it heats.
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15.6 Quasars

In the 1950s astronomers began to catalog systematically ob-

jects in the sky that emitted radio waves.

• As these radio sources were cataloged, an effort was made

to correlate the objects emitting radio waves with sources

visible in optical telescopes.

• The resolution of the single-dish radio telescopes in use at

the time was much poorer than that of large optical tele-

scopes,

• so there often were many possible optical sources that

might potentially be correlated with the fairly uncertain

position of a radio source.

• Nevertheless, some progress was made in these identifica-

tions.
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15.6.1 “Radio Stars” and a Spectrum in Disguise

Most radio sources were found to be correlated with certain

galaxies.

• However, a few optical sources identified with the radio

sources appeared to be points with no obvious spatial ex-

tension, as expected for stars.

• These were often called “radio stars”, but they had very

strange characteristics for stars.

• In 1963, the first two of these radio stars were associated

with the radio sources 3C48 and 3C273, respectively.

• Although these objects had the appearance of stars in op-

tical telescopes, they had spectra unlike any stars that had

ever been observed.

1. There is a very strong continuum across a broad range

of wavelengths that is non-thermal in character.

2. Sitting on top of this continuum are emission lines,

but they are very broad, and their wavelengths do not

correspond to the lines for any known spectra.
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Later in 1963, Dutch astronomer Maarten Schmidt found while

studying the spectrum of 3C273 that the strange emission lines

were really very familiar spectral lines in disguise.

• They were lines of the Balmer series of hydrogen (and a

line in ionized magnesium), but redshifted by a very large

amount.

• The redshift of 3C273 corresponds to a recessional veloc-

ity about 15 percent of the speed of light, if interpreted as

a Doppler shift (later we shall see that such cosmologi-

cal redshifts should not be interpreted as Doppler shifts,

though).

• Once this was realized for 3C273, it quickly became ap-

parent that the spectrum of 3C48 could be interpreted in

the same way, but with a redshift that was even larger.

• The reason that it took some time to arrive at this interpre-

tation of the spectra for these objects is that

1. They were thought initially to be relatively nearby

stars because they seemed to be pointlike.

2. Thus no one had any reason to believe they should be

strongly redshifted.

These objects were named quasistellar radio

sources, which was soon contracted to quasars.
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15.6.2 Quasar Characteristics

Quasars are now known to have the following characteristics.

• They appeared to be star-like in the initial images, but

• more careful study shows fuzziness and faint jets associ-

ated with some quasars.

• Because quasars emit strongly in the ultraviolet, they are

distinctly blue at optical wavelengths.

• Many of the first quasars discovered were also radio

sources, but most quasars are not strong radio emitters.

• They exhibit a non-thermal continuum spectrum

– that is stronger than most other sources at all wave-

lengths,

– that varies substantially in time, and

– exhibits the basic characteristics of synchrotron radi-

ation (nonthermal and polarized).

• They usually exhibit broad emission lines.

• If this broadening is attributed to random motion of

sources, velocities ∼ 10,000 km/s are indicated by the

widths of the emission lines.

• Many quasars exhibit large redshifts, implying by

– the Hubble law that they are at great distances

– and that the light that we see was emitted when the

Universe was much younger than it is now.
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Figure 15.2: Observed quasar densities as a function of the fractional age

of the Universe. We see that quasars were much more abundant earlier in

the history of the Universe than they are today. The decrease of quasar

abundances at the very earliest times (redshifts larger than about 3) may

represent partially the finite amount of time for quasars to begin forming

after the formation of the Universe and partially observational bias, since it

is more difficult to detect objects at the largest distances and therefore the

earliest times.

• Quasar counts as a function of redshift indicate that they

were more abundant earlier in the history of the Universe

than they are today, as illustrated in Fig. 15.2.
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From their

• huge energy output,

• large redshifts, and

• jets and other structure

it is clear that quasars are not stars.

Now in favorable cases we have images showing

the host galaxy of the quasar: Quasars are highly

energetic phenomena that occur in certain galax-

ies.
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Figure 15.3: (a) The quasar 3C273, which has a redshift of 0.158. The sharp

radial lines are optical spike artifacts common in quasar images because of

their star-like brightness. (b) Radio contours superposed on the optical jet.

Optical and radio images of the quasar 3C273 are illustrated in

Fig. 15.3.

• The left image of 3C273 shows the quasar and a jet.

• The right image, which has been rotated and enlarged rel-

ative to the left image, superposes on this optical image

contours of radio frequency intensity.

• Despite its distance, 3C273 has an apparent visual magni-

tude of +12.9, so it must be incredibly luminous.

When summed over all wavelengths, an average

quasar like 3C273 is typically some 1000 times

more luminous than a bright normal galaxy.
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15.6.3 An Implied Enormous and Compact Energy Source

Quasars are extremely luminous at all wavelengths, which im-

plies an enormous energy source.

• Many also exhibit variability in this luminosity on

timescales as little as months, weeks, or even hours.

• As will be discussed next, this variability implies that they

have a very compact energy source.
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15.6.4 Causality and Maximum Size of an Energy Source

If an energy source of a certain size is to exhibit a well-defined

period in its luminosity,

• Some signal must travel through the object to tell it to vary.

• The signal can travel no faster than light velocity.

• Thus the maximum size D of an object varying with some

characteristic time P is the distance that light could have

traveled during that time, D∼ cP.

• The figure below illustrates.

P

D ~c P

Energy

source

Time

In
te

n
s
it
y

• For example, if a source is observed to vary its light output

substantially over a period of a week, then

• the spatial extent of the energy-producing region can be

no larger than a "light week", which is 1.82×1011 km.
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The distances covered by light for various fixed times are sum-

marized in the following table.

Time km AU Parsecs

Year 9.46×1012 63,240 3.07×10−1

Month 7.88×1011 5270 2.58×10−2

Week 1.82×1011 1216 5.90×10−3

Day 2.59×1010 173 8.41×10−4

Hour 1.08×109 7.21 3.50×10−5

Minute 1.80×107 0.120 5.84×10−7

Second 3.00×105 0.002 9.73×10−9

Millisecond 3.00×102 0.000002 9.73×10−12

These arguments place only an upper limit on source sizes.

• Signals causing the variation may travel at less than light

speed and

• the size may be less than the upper limit imposed by these

arguments.

• But this is a very powerful argument because

– it depends only on a general principle (finite speed of

light) and

– not on the internal details of the source.

Example: If the source varies over a period of an

hour, from the table we see that the maximum size

of the emitting region is ∼ 7 AU.
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When it was first realized that

• quasars possess extremely powerful energy sources and

that

• this energy is produced in a region no larger than the Solar

System,

serious issues were raised about whether known physical pro-

cesses could account for these energy characteristics.

• Since the discovery of quasars we have achieved a much

deeper understanding of black holes and a likely mecha-

nism to produce energy on this scale in such a compact

region has emerged.

• There is relatively uniform agreement that

– rotating black holes

– containing of order 109 M⊙,

– which would have radii smaller than the Solar System

are the most plausible candidates for quasar energy pro-

duction.

However, before turning to a more detailed discus-

sion of this idea, let’s examine another class of ob-

servational phenomena that appears to have much

in common with quasars.
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15.7 Active Galactic Nuclei

A collection of billions of ordinary stars is expected to produce

a spectrum that is approximately blackbody, because the spec-

trum of the individual stars is blackbody.

• Such a spectrum is dominated by a continuum that often

peaks at visible wavelengths.

• For example, the Milky Way emits radio waves, but its

radio luminosity is about a million times smaller than its

visible luminosity.

• In addition, the spectral lines observed for normal galax-

ies (as for its stars) are mostly absorption lines, with few

emission lines.

Thus, spectra for normal galaxies, as for the stars

that they contain, are

• typically a continuum peaking at visible-light

wavelengths representing thermal emission,

with

• absorption lines superposed on the contin-

uum and few emission lines.
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However, some galaxies differ from this norm:

• They exhibit nonthermal emission from the RF to X-ray

region of the spectrum and/or

• jets and unusual structure associated with the visual ap-

pearance of the galaxy.

• We refer to these as active galaxies.

• Since the source of the activity is normally concentrated

in the nucleus of the galaxy, they are also called active

galactic nuclei or AGN.

Generally, active galaxies exhibit some combination of the fol-

lowing characteristics:

• Unusual appearance, particularly of the nucleus.

• Jets emanating from the nucleus.

• High luminosities relative to normal galaxies, but gener-

ally smaller than for quasars.

• Excess radiation at RF, IR, UV, and X-ray wavelengths.

• Nonthermal continuum emission,

– often polarized,

– perhaps with broad and/or narrow emission lines.

• Often rapid variability from a compact energy source in

the galactic nucleus.
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Some galaxies with active nuclei are relatively nearby but

• They are more likely to be found at larger distances,

• implying that they were more common earlier in the Uni-

verse’s history.

• Many of these characteristics are also exhibited by

quasars, and

• we shall see that quasars may be closely related to the

nuclei of active galaxies.

• In fact, we shall conclude below that quasars essentially

are a particularly luminous form of active galactic nucleus.

There are several general classes of AGN that we

now summarize.
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15.7.1 Radio Galaxies

Radio galaxies are AGN associated with a large nonthermal

emission of radio waves.

• Strong radio sources are often named by the constellation

followed by a letter designating order of discovery.

• Example: The relatively nearby radio galaxy M87 is asso-

ciated with the powerful radio source Virgo A.

• Powerful radio galaxies are elliptical and often exhibit jet

structure from a compact nucleus.

• Weaker radio sources are found associated with smaller

jets in some spiral galaxies.

• There are two broad classes of radio galaxies.

1. Core-halo radio galaxies exhibit radio emission from

a region near the nucleus of the galaxy that is compa-

rable in size to the optically visible galaxy.

2. Lobed radio galaxies display great lobes of radio

emission that can extend millions of lightyears be-

yond the optical part of the galaxy.

• A radio galaxy can be a spectacular sight at RF wave-

lengths, but even powerful radio galaxies may appear to

be rather normal elliptical galaxies at optical wavelengths.

• Often abnormalities at optical wavelengths become obvi-

ous only if the very core of the galaxy is resolved.
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Figure 15.4: The radio galaxy NGC4261. On the left the false-color radio-

wave map is superposed on the ground-based optical image of the galaxy.

The image on the right is a high-resolution Hubble Space Telescope image

of the core of the galaxy, showing a dusty accretion disk thought to surround

a central black-hole engine that is driving the jets producing the radio lobes.

The black hole engine lies inside the bright dot at the center of the disk.

The left side of Fig. 15.4 shows huge radio lobes superposed

on the optical image of the elliptical galaxy NGC4261.

• The optical image of NGC4261 on the left side suggests a

rather normal looking elliptical galaxy.

• However, the high-resolution image shown on the right in-

dicates something very unusual at the center of the galaxy.

• The suggestion is that

– there is a supermassive black hole at the center and

– this is the energy source powering the radio jets.
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Figure 15.5: (a) The Seyfert 2 galaxy NGC 7742, which lies about 22 Mpc

away in the constellation Pegasus. The nucleus is very compact and bright

at optical wavelengths, which is characteristic of Seyfert spirals. (b) X-ray

variability of the Seyfert 1 galaxy IRAS 13224-3809.

15.7.2 Seyfert Galaxies

Seyfert galaxies are spirals with very bright and compact nu-

clei. An example is displayed in Fig. 15.5.

• They are the most commonly observed AGN and

– exhibit a strong nonthermal continuum from IR

through X-ray regions of the spectrum,

– with emission lines of highly-ionized atoms that are

sometimes variable.

• Emission lines suggest a low-density gas source, while

high ionization implies a hot source.

• Some Seyferts have modest jets and RF emission.
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Seyfert galaxies can be classified roughly into two subgroups:

• Seyfert 1 galaxies have both broad and narrow emission

lines and are very luminous at UV and X-ray wavelengths.

1. Broad emission lines are associated with allowed

atomic transitions.

2. Their width comes from Doppler broadening in

clouds with velocities as high as ∼ 10,000 km/s.

3. Narrow lines are associated with forbidden transi-

tions and source velocities less than ∼ 1000 km/s.

4. These differences suggest that broad and narrow

lines originate in different regions of a Seyfert 1.

• Seyfert 2 galaxies have relatively narrow emission lines

suggesting source velocities less that ∼ 1000 km/s.

1. They are weak in X-ray and UV; very strong in IR.

2. Generally, their continuum emission is weaker than

for Seyfert 1 galaxies.

3. In a Seyfert 2, forbidden and allowed lines are narrow.

4. This suggests that

– both originate in the same region with

– relatively low source velocities.
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Figure 15.6: X-ray variability of the Seyfert 1 galaxy IRAS 13224-3809.

Seyfert galaxies can exhibit 50% changes in optical brightness

over weeks and even larger changes over months.

• As illustrated in Fig. 15.6, the brightness variation at X-

ray wavelengths can be even greater.

• By previous arguments for brightness variation in quasars,

– the fluctuation on a timescale of approximately a day

exhibited in Fig. 15.6

– implies a very compact energy source for the X-rays.

We conclude that the X-ray energy source is no

larger than light days in diameter (the Solar Sys-

tem is about half a light day in diameter).
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15.7.3 BL Lac Objects

BL Lacertae objects (BL Lac objects or just BL Lacs, for short)

• Exhibit no, or only weak, emission lines,

• but have a strong nonthermal continuum stretching from

RF through X-ray frequencies.

• They are generally radio-loud, and exhibit strong polar-

ization of their emitted light

• (Polarization is typically several percent, as compared

with 1 percent or less for most other AGN.)

• BL Lacs are members of a more general class of AGN

called blazars.

• Blazars are relatively uncommon among AGN.

• For example, there are about

– 100 times more quasars and

– 10 times more Seyfert galaxies

known than blazars.

• However, they are extremely powerful, typically being

– 10,000 times more luminous than the Milky Way and

– 1000 times more luminous than a Seyfert galaxy.
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By masking the bright core that is responsible for producing

the intense and rather featureless continuum,

• it is possible to acquire a spectrum of the “fuzz” seen

faintly around many BL Lacs.

• This spectrum, and the variation of the light intensity of

the fuzz with distance from the core, indicate that

• the fuzz is the outer part of a giant elliptical galaxy in

most of the cases that have been analyzed.

• This suggests that most BL Lacs are active cores of giant

elliptical galaxies.

• From the redshifts of faint spectral lines it is found that

– blazars often correspond to more distant objects than

Seyfert galaxies or radio galaxies, but

– they are closer to us on average than quasars.

• Blazars can exhibit dramatic variability in their light out-

put (and a corresponding variability in their polarization).

– They are observed to vary significantly on timescales

as short as days.

– This implies a power source the size of the Solar Sys-

tem or smaller.
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Figure 15.7: Some representative spectra for normal galaxies, active galax-

ies, and quasars. The spectrum of the galaxy is approximately thermal but

the spectra of the active galaxies and quasars are highly nonthermal. Be-

cause electrons must radiate energy continuously as they spiral in magnetic

fields, the energy driving the huge sustained synchrotron emission from

these nonthermal sources must be replenished constantly. Strong, polarized,

nonthermal emission is an indirect sign not only of strong magnetic fields,

but also of a very large energy source for the quasars and active galaxies.

15.8 The Unified Model of AGN and Quasars

Some representative spectra of normal galaxies, quasars, and

active galaxies are shown in Fig. 15.7.

• These spectra imply that active galaxies and quasars are

very different from normal galaxies.

• On the other hand, the similarity of the spectra for quasars

and Seyfert galaxies implies that there might be a relation-

ship between quasars and active galaxies.
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• That relationship is suggested by the

– huge nonthermal emission from AGN and quasars,

– which implies a strong and very compact energy

source.

• The only plausible candidate for the engine driving these

phenomena is a rotating, supermassive black hole of mass

millions to billions of solar masses at their center.

In the past several decades a large amount of ob-

servational data and theoretical understanding sup-

porting this point of view has emerged.
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The present belief is that (despite observational differences)

• AGN such as Seyfert galaxies, blazars, and radio galaxies

are quite closely related, and that

• Quasars are just a particularly energetic form of AGN.

• All are now thought to be

– active galaxies with

– bright nuclei powered by supermassive Kerr black

holes.

In the unified model that we now discuss, the ob-

servational differences among quasars and various

AGN mostly reduces to a matter of

1. How rapidly matter is accreting onto the

black hole (feeding the monster).

2. Whether the central engine is masked from

our view (hiding the monster).

3. How far away the AGN or quasar is from us

(proximity to the monster).
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We are thus led to an hypothesis:

Perhaps all large galaxies have supermassive

black holes at their centers.

• The question of whether the galaxy exhibits an active nu-

cleus is then primarily one of "feeding the monster" at the

center.

• In a quasar, the black hole is accreting matter at a higher

rate, leading to very high luminosity.

• In a normal galaxy like the Milky Way, the black hole is

rather quiet because it is presently accreting little matter.

• Seyfert and other active galaxies are somewhere in be-

tween: the black hole is active because it is accreting mat-

ter, but at a rate lower than that for a quasar.
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15.8.1 The AGN Central-Engine Model

We now discuss a unified AGN model where all active galaxies

and quasars are powered by central supermassive black holes.

1. In this unified model, the differences among AGN arise

primarily from

• differences in orientation angle and

• differences in local environment

for the central engine.

2. The first determines whether the view of the central engine

is blocked by dust;

3. the second determines the rate at which fuel flows to the

central engine.
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Figure 15.8: Illustration of the AGN black-hole central engine paradigm.

Fig. 15.8 illustrates the standard central engine paradigm.

• The black hole occupies a tiny region in the center (its size

is greatly exaggerated in this figure).

• It is surrounded by

– a dense torus of matter revolving around the hole and

– a flattened accretion disk inside of that where the mat-

ter whirls even faster.

• Part of the matter is sucked into the black hole and

• part is flung out in high-velocity jets along the polar axes

of the rotating black.
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Figure 15.9: Schematic view of the central engine for an active galactic

nucleus or quasar. Beamed synchrotron radiation is emitted by the electrons

in the jet and UV photons are emitted by the hot accretion disk.

Figure 15.9 illustrates schematically what the central engine of

an AGN or quasar would look like if we could turn the radia-

tion off and clear away the gas and dust.

• The central engine consists of a supermassive Kerr black

hole surrounded by a thin accretion disk.

• The accretion disk is very hot because of collisions in the

rapidly swirling gas that it contains.

• Because it is hot, it radiates strongly in the UV.
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Radiation from the accretion disk is mostly thermal.

• Typical estimates of the temperature for the accretion disk

of a 109M⊙ black hole are about 10,000 K;

• This corresponds to a peak wavelength of 3000 Angstroms

(Wien law), which lies in the UV.

• Accretion disk temperature depends inversely on the black

hole mass, so smaller ones have hotter accretion disks.

Stellar black holes have accretion disks that are

even hotter than the ones considered here, radiat-

ing more in the X-ray region of the spectrum.
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Photons from the accretion disk are responsible for much of the

continuum observed from AGN,

• either directly, or

• by heating surrounding matter,

which then re-radiates at longer wavelengths.
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Photons emitted by the accretion disk

• ionize atoms in the nearby clouds of gas where

• velocities are very high, producing the broad-line emis-

sion spectrum of the AGN (BLR).

They also

• ionize clouds further away from the central engine where

velocities are lower,

• producing the narrow-line emission spectrum (NLR).

Whether both broad and narrow emission lines are

visible depends on location of the observer relative

to the accretion disk and torus.
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Figure 15.10: AGN ionization cones. Shaded regions see directly the UV

radiated by the accretion disk. Other regions cannot see the accretion disk

directly because it is blocked by the torus. Clouds in the broad-line region

are labeled BLR and clouds in the narrow-line region are labeled NLR.

If the preceding picture is correct, there should be evidence in

AGN for anisotropic ionization:

• Ideally, there should be cone-shaped regions of ionization

• corresponding to the directions from the hot accretion disk

that are not blocked off by the dust torus.

• These ionization cones are illustrated in Fig. 15.10.

• All of the region shaded in gray can "see" the hot central

accretion disk and the ionizing radiation that it is emitting.

Observations suggest such anisotropic ionization

zones near AGN central engines.
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Let’s now summarize the basic unified model. We hypothesize

that AGN and quasars are powered by rotating, supermassive

black holes having all or most of the following features:

• Accretion disks.

• Possibly a dusty torus surrounding the accretion disk.

• High-velocity clouds near the black hole that produce

broad emission lines.

• Slow, lower-density clouds further from the black hole that

produce narrower emission lines.

• Possible relativistic jet outflow perpendicular to the plane

of the accretion disk.
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Figure 15.11: A unified model of active galactic nuclei based on geometry.

All cases are powered by supermassive Kerr black holes and observational

differences are determined primarily by viewing angles relative to the plane

of the black hole accretion disk and the jets. Quasars are then hypothesized

to be similar to AGN, but more powerful because the black hole is accreting

at a higher rate.

• The cartoon in Fig. 15.11 illustrates this unified AGN

model. If the orientation of the system relative to the ob-

server is as displayed in the top row of Fig. 15.11,

1. We see a Seyfert 2 if the AGN is in a spiral galaxy.

2. We see a lobed radio source if the AGN is in an ellip-

tical galaxy with strong jets.
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• On the other hand, if the orientation of the AGN central

engine is as in the bottom row of the above figure,

1. We see a Seyfert 1 if the host is a spiral galaxy.

2. We see a blazar (BL Lac) if the host is elliptical with

a strong jet.

3. We see perhaps a core-halo radio galaxy if the host is

an elliptical system with a weak jet.
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We then conjecture that

• quasars are just particularly energetic forms of AGN and

• are described by the same unified model.

The primary difference is that

• quasars are very luminous because

• their black holes are being fed matter at a higher rate than

for moderately luminous AGN.

We surmise then that the reason quasars are more abundant at

larger redshift is because

• large redshift corresponds to earlier in the Universe’s his-

tory, when

• matter was more dense and

• collisions more frequent between galaxies.

Therefore, quasars may be just "better fed" AGN

from a time when more fuel was available to

power the black hole engines.
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As a corollary, we may conjecture that

• many nearby normal galaxies once sported brilliant

quasars in their cores,

• but have since used up the available fuel.

• Their massive black holes lie dormant, ready to blaze back

to life should tidal interactions with another galaxy divert

matter into the black hole.

This may be true of our own galaxy, which has a

∼ 4×106 M⊙ black hole at its center, but presently

exhibits only weak nonthermal emission.
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Figure 15.12: One of the nearest active galactic nuclei, Centaurus A (in

NGC 5128).

15.8.2 Example: Feeding a Nearby Monster

Fig. 15.12, displays a nearby AGN: the giant elliptical galaxy

NGC 5128, which harbors the radio source Centaurus A.

• Centaurus A is only about 107 ly away. Its radio lobes

span 10◦ in our sky (20 times the Moon’s diameter)

• It has a faint optical jet and strong radio jet, and violent

central activity causing the jets and huge radio lobes.

• IR observations suggest that behind the dark dust lanes

lies a gas disk 130 ly in diameter, surrounding the

• ∼ 109 M⊙ black hole powering Centaurus A.
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The firestorm of starbirth in the above figure was caused by

• a collision between a smaller spiral galaxy and a giant

elliptical galaxy within the last billion years.

• Dark diagonal dust lanes may be the remains of the spiral

galaxy, encircling the core of the giant elliptical.

• The logical conclusion is that the black hole at the center

of Centaurus A has been triggered into pronounced activ-

ity by the collision of its parent galaxy with another.

• This collision has led to strong radio emission caused by

relativistic jets powered by enhanced accretion.

• It has also produced enhanced star formation because of

the compression of gas and dust in the collision.
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Figure 15.13: X-ray jet from center of Centaurus A superposed on an optical

image of the galaxy. In this Chandra X-ray Observatory map the highest X-

ray intensity is indicated by white.

This black hole central-engine interpretation is supported fur-

ther by Fig. 15.13.

1. This image shows an X-ray map obtained by the Chan-

dra X-ray Observatory superposed on an optical image of

Centaurus A.

2. The Chandra data reveal a bright central region (white ball

near the center) that likely surrounds the black hole.

3. It also indicates a strong jet oriented to the upper left

25,000 ly in length that is probably being ejected on the

polar axis of the central black hole.

4. There also is a fainter jet oriented in the opposite direction,

making it harder to see.
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Blazars sometimes emit extremely high-energy photons.

• For example, 1012 eV gamma-rays have been detected

coming from Markarian 421, a BL Lac at a redshift of

z = 0.031.

• Such gamma-rays cannot be produced by AGN thermal

processes, but

• the unified model of AGN and quasars provides a possible

explanation.

• The next slide illustrates a mechanism called inverse

Compton scattering through which lower-energy photons

can be boosted to extremely high energy in an AGN.



15.8. THE UNIFIED MODEL OF AGN AND QUASARS 633

Scattered

electron

Electron
Relativistic

electron

Scattered
electron

Higher-energy

photon

Higher-energy

photon

Lower-energy
photon

Lower-energy
photon(a) Compton

scattering (b) Inverse Compton
scattering

15.8.3 Producing Very High Energy Photons

Some AGN emit extremely high-energy photons that are

thought to involve a process called inverse Compton scattering,

illustrated in the figure above.

• In Compton scattering a high-energy photon strikes an

electron, giving up energy.

• Inverse Compton scattering is the reverse: a high-energy

electron strikes a photon, imparting energy.
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An AGN could produce a high-energy photon by the inverse

Compton process illustrated in the figure above.

• UV from the disk can photoionize clouds in the broad line

region (BLR), which then emit at optical wavelengths.

• If these photons enter the jet they can be inverse Compton

scattered to much higher energies.

• The frequency boost factor is given by

ν

ν0
=

1

1− v2/c2

where v is the jet velocity.

• Thus in a highly relativistic jet boost factors of 106 can be

obtained.
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The inverse Compton process illustrated above can convert

• optical photons into intermediate-energy gamma-rays and

• X-rays into 1012 eV gamma-rays.

Thus, the 1012 eV gamma-rays observed coming

from Markarian 421 could be produced if

• X-rays produced by irradiation from the ac-

cretion disk

• enter a highly-relativistic jet and

• are inverse Compton scattered.
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15.9 Gamma-Ray Bursts

Discovered serendipitously by military satellites,

• gamma-ray bursts (GRB) were initially one of the great

mysteries in modern astronomy.

• On average, about one burst a day is observable some-

where in the sky.

• However, until the 1990s we had little idea about

– where they originated or even

– how far away they were.

New observations have begun to clear away the

mystery and we now have a much better under-

standing of these remarkably energetic events.
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Figure 15.14: (a) Galactic coordinate system. The angle b is the galactic

latitude and the angle λ is the galactic longitude. These may be related to

right ascension and declination by standard spherical trigonometry. (b) The

sky at gamma-ray wavelengths in galactic coordinates. White denotes the

most intense and black the least intense sources. The diffuse horizontal

feature at the galactic equator is from gamma-ray sources in the plane of the

galaxy. Bright spots right of center in the galactic plane are galactic pulsars.

Brighter spots above and below the plane of the galaxy are distant quasars.

15.9.1 The Gamma-Ray Sky

Our sky glows in gamma-rays.

• Since gamma-rays are high-energy photons, they are not

easy to produce and tend to indicate unusual phenomena.

• Thus they are of considerable astrophysical interest.

• They are absorbed by the atmosphere so a systematic

study requires an orbiting observatory.

Fig. 15.14(b) shows the continuous glow of the gamma-ray sky,

measured by the orbiting Compton Gamma-Ray Observatory.
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Figure 15.15: Spectrum of a gamma-ray burst. As is characteristic, the

spectrum is nonthermal.

Superposed on the steady flux are sudden bursts.

• These gamma-ray bursts can be

– as short as tens of milliseconds and

– as long as several minutes.

• The spectrum is

– nonthermal and

– dominated by photons in the hundreds of keV to sev-

eral MeV range,

as illustrated in Fig. 15.15.
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Figure 15.16: Location on the sky of 2704 gamma-ray bursts plotted in

galactic coordinates with the grayscale indicating the fluence (energy re-

ceived per unit area) of each burst. The data were recorded by the Burst

and Transient Source Experiment (BATSE) of the Compton Gamma-Ray

Observatory (CGRO). Highly isotropic distribution of events over a broad

range of fluences argues strongly that they occur at cosmological distances.

Figure 15.16 shows the sky position of

• 2704 gamma-ray bursts observed by the

• Burst and Transient Source Experiment (BATSE) of the

• orbiting Compton Gamma-Ray Observatory (CGRO).

This plot indicates that the distribution of bursts is

isotropic on the sky.
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• If bursts were of local origin, such as in the disk of the

galaxy,

• they should be concentrated along the galactic equator in

this figure, not randomly scattered over the sky.

• This tells us that either

– the gamma-ray bursts come from events at great dis-

tances (cosmological distances), or

– perhaps they come from events in the more spherical

halo of our galaxy.

Spectral Doppler shifts confirm that gamma-ray

bursts are cosmological in origin.
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• Their cosmological distances make GRB quite remark-

able; to even be seen at such large distances they must

correspond to events in which

– energy comparable to a supernova is liberated

– in a short burst in the form of gamma-rays.

• Furthermore, the mechanism producing the gamma-rays

– must allow them to escape with little interaction with

surrounding matter because

– even a small interaction with baryons would down-

scatter gamma-rays to light of longer wavelength,

– thermalizing the spectrum (contrary to observation).
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Figure 15.17: Hardness (propensity to contain higher-energy photons) of the

spectrum versus duration of the burst, illustrating the separation of the GRB

population into long, soft bursts and short, hard bursts. The parameter HR

measures the hardness of the spectrum and T90 is defined to be the time from

burst trigger for 90% of the energy to be collected. Bursts with T90 shorter

than 2 seconds are classified as short-period and those with T90 greater than 2

seconds are classified as long-period bursts. This plot indicates that shorter

bursts generally have a harder spectrum.

15.9.2 Two Classes of Gamma-Ray Bursts

There are two classes of gamma-ray bursts (Fig. 15.17):

1. Short-period bursts

• last less than two seconds and

• have harder (higher-energy) spectra.

2. Long-period bursts

• have softer (lower-energy) spectra and

• last from several seconds to several hundred seconds.
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Figure 15.18: Time profile of a typical gamma-ray burst. This is an example

of a long-period GRB.

The time profile of a long-period burst is shown in Fig. 15.18.
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The existence of two classes of gamma-ray bursts indicated that

there were at least two mechanisms.

• To determine these mechanisms, it was necessary first to

understand where they originated.

• For example, were they associated with known galaxies?

• Initial progress was slow because BATSE observations

could localize the position of a burst only within several

degrees on the sky.

Therefore, it was very difficult to know exactly

where to point telescopes to find evidence asso-

ciated with the gamma-ray burst at other wave-

lengths.
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Figure 15.19: (a) First localization of an X-ray afterglow for a GRB, ob-

tained by the satellite BeppoSAX. (b) Optical association of short-period

GRB 050509B with a large elliptical galaxy at a redshift of z = 0.225 by

SWIFT. The larger circle is the error circle for the Burst Alert Telescope

(BAT). The smaller circle is the error circle for the X-Ray Telescope (XRT),

which slewed to point at the event when alerted by the BAT. The XRT error

circle is shown enlarged in the inset at the upper left, suggesting that the

GRB occurred in the outer regions of a large elliptical galaxy (dark blob

partially overlapped by the XRT error circle).

15.9.3 Localization of Gamma-Ray Bursts

A major breakthrough came when it became possible to corre-

late some GRB with visible, RF, IR, UV, and X-ray sources.

• BeppoSAX could pinpoint the position of X-rays follow-

ing GRB with 2 arc-minute resolution in a matter of hours.

• This allowed other instruments to look quickly at the site.

Figure 15.19(a) shows an X-ray transient observed by Bep-

poSAX at the location of a gamma-ray burst.
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• A localization for a short-period burst by the SWIFT

satellite is illustrated in the figure above right.

• These transients or afterglows are thought to be associated

with

• a rapidly fading fireball produced by the primary gamma-

ray burst.

Correlation of GRB with sources at other wavelengths

• have allowed distances to be estimated to GRB because

• spectral lines and their associated redshifts have been ob-

served in the transients after the burst.

These observations show conclusively that GRB

occur at cosmological distances.
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Figure 15.20: Relativistic fireball model for transient afterglows following

gamma-ray bursts. In this model the internal shocks in the relativistic jet

produced by clumps of ejected material with different velocities overtaking

each other produce the gamma-rays and the external shocks resulting from

the jet impacting the interstellar medium produce the afterglows.

There is broad agreement that the transient afterglows follow-

ing gamma-ray bursts

• are described by the fireball model of Fig. 15.20.

• In this model some generic central engine deposits a large

amount of energy in a small volume of space,

• which produces an expanding relativistic fireball.

The fireball is then responsible for the observed afterglow.
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15.9.4 Necessity of Ultrarelativistic Jets

Gamma-ray bursts must involve ultrarelativistic jets because

observed prompt emission is nonthermal.

• If the jet were nonrelativistic the ejecta would be optically

thick to pair production.

• This would thermalize the energy (in contradiction to the

observed nonthermal spectrum for GRB).

• The requirement that gamma-ray bursts be produced by

ultrarelativistic jets can be understood in terms of

• the opacity of the medium with respect to formation of

electron–positron pairs by γγ→ e+e−.

Let us now elaborate on this crucial point.
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15.9.5 Optical Depth for a Nonrelativistic Burst

We first assume that the burst involves nonrelativistic veloci-

ties.

• The initial spectrum is nonthermal.

• The number of counts N(E) as a function of gamma-

ray energy can be approximated for particular ranges as

a power law,

N(E)dE ∝ E−αdE,

where the spectral index α ∼ 2 for typical cases.

• Because the observed spectrum is nonthermal

– the medium must be optically thin (low opacity),

since

– scattering in an optically-thick (that is, highly-

opaque) medium would quickly thermalize the pho-

tons.

Let’s consider the optical depth for pair production

associated with a typical gamma-ray burst to see

whether this condition can be fulfilled.
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For the reaction γγ → e+e− to occur,

• Energy conservation requires the two photons with ener-

gies E1 and E2, respectively, to satisfy

(EiE2)
1/2 ≥ mec2,

where me is the mass of an electron.

• If f is the fraction of photon pairs fulfilling this condition,

the optical depth with respect to γγ → e+e− is then

τ0 =
f σTFD2

R2mec2
≃ f σTFD2

δ t2mec4
,

– σT = 6.652× 10−25 cm2 is the Thomson scattering

cross section for electrons,

– F is the observed fluence for the burst,

– D is the distance to the source, and

– R is its size, which can be related to the observed pe-

riod δ t for time structure in the burst by R = cδ t.

• Optical depth estimated using this formula are enormous

(τ ∼ 1014).

• This is completely inconsistent with the τ <∼ 1 required by

the nonthermal GRB spectrum.

Nonrelativistic jets clearly won’t do; what about

relativistic jets?
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15.9.6 Optical Depth for an Ultrarelativistic Burst

The above considerations will be altered in two essential ways

if the burst is instead ultrarelativistic with a Lorentz factor γ≫
1, so that special-relativistic kinematics apply:

1. The blueshift of the emitted radiation will modify the frac-

tion f of photon pairs that have sufficient energy to make

electron–positron pairs.

2. The size R of the emitting region will be altered by rela-

tivistic effects.

Specifically,

• The observed photons of frequency ν and energy E = hν
have been blueshifted from their energy in the rest frame

of the GRB by a factor γ .

• Thus the source energy E0 was lower than the observed

energy E by a factor of γ−1 and E0 ∼ hν/γ .

• This means that fewer photon pairs have sufficient energy

to initiate γγ → e+e− than was inferred assuming nonrel-

ativistic kinematics.

• From the spectrum

N(E)dE ∝ E−αdE,

this means that f should be multiplied by a factor of γ−2α .
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• Furthermore, relativistic effects increase the size of the

emitting region by a factor of γ2 over that inferred from

the time period δ t,

• so R should be multiplied by a factor of γ2.

• Incorporating these corrections, the ultrarelativistic mod-

ification is

τ ≃ τ0

γ4+2α
,

where τ0 is the result with no ultrarelativistic correction.

• Thus, even if τ0 is very large an optically thin medium

results if γ is large enough.

Typical estimates are that an optically thin medium

requires γ ∼ 100 or larger.
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Observational confirmation that gamma-ray bursts are associ-

ated with the large values of γ comes from the observed loca-

tion of breaks in the afterglow lightcurves.

• These breaks are thought to indicate the time when

the initially-relativistic afterglow begins to slow rapidly

through interactions with the interstellar medium.

• This in turn can be related to the opening angle of the jet

that produced the afterglow.

• Such analyses typically find

– jet opening angles in the range ∆θ = 10−20◦, which

suggests

– Lorentz factors γ ∼ 100 or larger for many gamma-

ray bursts.

Thus afterglow lightcurve breaks indicate directly

that gamma-ray bursts are produced by ultrarela-

tivistic jets.
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15.9.7 Implications of Ultrarelativistic Beaming

The GRB beaming mechanism implies that a fixed observer

sees only a fraction of all gamma-ray bursts.

• The ultrarelativistic nature of the jets means that the

gamma-rays are highly beamed in direction.

• Afterglows are not strongly beamed after slowing, so

• they could be detected even for a GRB not on-axis (not

aimed toward Earth).

Ultrarelativistic beaming for gamma-ray bursts solves a poten-

tial energy-conservation problem.

• If the energy from detected bursts were assumed to be

emitted isotropically,

• total energies exceeding 1054 erg would be inferred for

some gamma-ray bursts. This is comparable to

• the rest mass energy of the Sun, which would be difficult

to explain by any mechanism that conserves energy.

• However, if GRBs are emitted as collimated jets, then

• total energy release would be much smaller than inferred

by viewing it on-axis and assuming it to be isotropic,

This places GRBs more in the total-energy range

of well-studied events like supernova explosions.
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15.9.8 Association of GRB with Galaxies

The localization provided by afterglows has permitted a num-

ber of long-period and short-period GRB to be associated with

distant galaxies.

1. Long-period (soft) gamma-ray bursts

• appear to be strongly correlated with star-forming re-

gions.

• (They have a strong correlation with blue light in host

galaxies.)

2. Short-period (hard) gamma-ray bursts

• are generally fainter and sampled at smaller redshift

than long-period bursts.

• They are not correlated with star-forming regions.

3. There is some evidence that long-period bursts are prefer-

entially found in star-forming regions having low metal-

licity.

These observations provide further evidence that

long-period and short-period bursts are initiated

by different mechanisms.
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Figure 15.21: (a) Comparison of time evolution for spectral bumps in the

rest-frame optical spectrum of SN2003dh (GRB 030329) in black compared

with a reference supernova SN1998bw in gray. The initially rather fea-

tureless spectrum of the GRB 030329 afterglow develops bumps similar

to those of the supernova SN1998bw over time, suggesting that as the af-

terglow produced by deposition of the GRB energy fades, an underlying

spectrum characteristic of a supernova explosion is revealed. Hence GRB

030329 is also denoted by a supernova label, SN2003dh. (b) A Wolf–Rayet

star (black arrow) surrounded by shells of gas that it has emitted. These

massive, rapidly-spinning stars may be progenitors of Type Ib and Type Ic

core collapse supernovae, and hence of long-period gamma-ray bursts.

15.9.9 Association of Long-Period GRB with Supernovae

There is a relationship between long-period gamma-ray bursts

and core collapse supernovae, as suggested by Fig. 15.21.
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There is a connection between long-period GRB and particular

types of core-collapse supernovae called Types Ib and Ic.

• The Ib and Ic mechanisms are thought to involve core

collapse in a rapidly-rotating, massive (15–30 M⊙) Wolf–

Rayet star [Fig. (b) above].

• These stars exhibit large mass loss and can shed their H

and even He envelopes before their cores collapse.

– It is thought that in a Type Ib supernova the H shell

has been removed before collapse of the core, and

– in a Type Ic supernova both the H and He shells have

been removed before the stellar core collapses.

• These stars are so massive that they can collapse directly

to a rotating (Kerr) black hole, instead of a neutron star.
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The Kerr black hole formed from core collapse of a Wolf–Rayet

star is thought to power a long-period gamma-ray burst in con-

junction with a Type Ib or Ic supernova.

• On the other hand, there is little observational evidence

that short-period bursts are associated with

– star-forming regions, or

– with supernovae.

• As we will see, the favored mechanism for short-period

bursts involves the

– formation of an accreting Kerr black hole by

– merger of two neutron stars (or a neutron star and a

black hole).

We now turn to a more detailed discussion of the

mechanism for both short-period and long-period

gamma-ray bursts.
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15.9.10 Characteristics of Gamma-Ray Bursts

As preparation for discussing the mechanisms powering

gamma-ray bursts, let’s summarize their basic characteristics.

1. Isotropic sky distribution suggests a cosmological origin.

• This has been confirmed by direct redshift measure-

ments on emission lines in GRB afterglows.

• Known redshifts for gamma-ray bursts range up to

z = 8.2, with an average z∼ 1 (as of 2016).

2. The spectrum is non-thermal, typically peaking around

200 keV and extending perhaps as high as GeV.

3. Duration of individual bursts spans 5 orders of magnitude:

• from about 0.01 seconds up to

• several hundred seconds.

4. There is a variety of time structure, from rather smooth to

millisecond fluctuations (implying a compact source).

5. Bursts are ultrarelativistically beamed.

6. Transient afterglows are observed that are described phe-

nomenologically by the fireball model introducted earlier.

7. There appear to be two classes of bursts:

• long-period gamma-ray bursts, and

• short-period gamma-ray bursts,

triggered by different events.
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15.9.11 Mechanisms for the Central Engine

GRB central engines are not well understood, but an acceptable

model must embody at least the following features:

1. All models require highly-relativistic jets to account for

observed properties of gamma-ray bursts.

• Lorentz γ factors of at least 200, perhaps as large as

1000.

• Jets focused with opening angles ∼ 0.1 rad and

• power as large as ∼ 1052 erg

• Long-period bursts must deliver∼ 1052 erg to a much

larger angular range (∼ 1 rad) if the burst is accompa-

nied by a supernova, and

• the central engine must be capable of operating for 10

seconds or more in long-period bursts.

2. Large energies and potentially long timescales imply

compact-object accretion to meter gravitational energy.

3. Thus, acceptable models must produce accretion disks.

Almost the only possible explanation is

• gravitational collapse to a Kerr black hole

• with formation of a large accretion disk.

At least two mechanisms can lead to this.
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We now discuss in more detail the two general classes of mod-

els thought to account for GRBs.

1. Short-Period Bursts: The merger of two neutron stars (or

a neutron star and a black hole), with

• jet outflow perpendicular to the merger plane

• producing a burst of gamma-rays as

• the two objects collapse to a Kerr black hole.

2. Long-Period Bursts: A hypernova, where

• a spinning massive star collapses to a Kerr black hole

and

• jet outflow from the region surrounding this collapsed

object produces a burst of gamma-rays.

The unifying theme is the collapse of stellar-size

amounts of spinning mass to a black hole central

engine that powers the burst.
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In both the hypernova and the merger of neutron stars,

• the outcome is a

– Kerr black hole having

– large angular momentum and

– strong magnetic fields,

surrounded by an accretion disk of matter that hasn’t yet

fallen into the black hole.

• This scenario likely leads to highly-focused relativistic jet

outflow on the polar axes of the Kerr black hole.

• These jets are powered by some combination of

– rapid accretion from the disk,

– neutrino–antineutrino annihilation,

– strong coupling to magnetic fields.

Thus, the GRB black hole engine has many simi-

larities with AGN–quasar engines, but on a stellar

rather than galactic-core scale.
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15.9.12 The Collapsar Model and Long-Period Bursts

An overview of the collapsar model is shown in Fig. 15.22 (next

page).
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Figure 15.22: Collapsar model for long-period GRB and Type Ib or Ic supernova.



15.9. GAMMA-RAY BURSTS 665

Simulations of relativistic jets breaking out of a Wolf–Rayet

star in a collapsar model and a Wolf–Rayet star 20 seconds after

core collapse are shown in Fig. 15.23 and Fig. 15.24 on the

following page.
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Figure 15.23: Simulations of relativistic jets breaking out of Wolf–Rayet

stars. Breakout of the γ ∼ 200 jet is 8 seconds after launch from the center

of a 15 M⊙ Wolf–Rayet star.

Time = 3.80030 s

0.00

-0.83

-1.70

-2.50

-3.30

-4.20

-5.00

0 2000 4000 6000

km

km

6000

4000

2000

0

Log nucleon X

(b)(a)

Figure 15.24: (a) A rapidly-rotating 14 M⊙ Wolf–Rayet star, 20 seconds af-

ter core collapse. The polar axis is vertical, the density scale is logarithmic,

and the 4.4 M⊙ Kerr black hole has been accreting at ∼ 0.1M⊙ s−1 for 15

seconds at this point. (b) Simulation of the nucleon wind blowing off the

accretion disk in a collapsar model. The gray-scale contours represent the

log of the nucleon mass fraction X and arrows indicate the general flow.
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In the figure above right a strong nucleon wind blowing off the

collapsar accretion disk is shown. This wind

• produces the supernova and

• synthesizes the 56Ni that powers the lightcurve of the su-

pernova by radioactive decay.

The GRB and the supernova are powered in different ways in

the collapsar model:

1. The GRB is powered by a relativistic jet deriving its en-

ergy from neutrino–antineutrino annihilation or rotating

magnetic fields.

2. The accompanying supernova is powered by the disk wind

illustrated in this figure.
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Figure 15.25: Simulation of the merger of two neutron stars. The elapsed

time is about 3 ms and the approximate Schwarzschild radius for the com-

bined system is indicated. The rapid motion of several solar masses of mate-

rial with large quadrupole distortion and sufficient density to be compressed

near the Schwarzschild radius indicates that this merger should be a strong

source of gravitational waves (Source: S. Rosswog simulation).

15.9.13 Merging Neutron Stars and Short-Period Bursts

The collapser model is not valid for short-period bursts because

• they are not observed in star-forming regions.

• Instead, short-period gamma-ray bursts involve binary

neutron stars merging to form a Kerr black hole.

A simulation of a neutron star merger is shown in Fig. 15.25.
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An illustration of how the magnetic fields of the neutron stars

can be magnified in the merger is illustrated in Fig. 15.26 (fol-

lowing page).
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Figure 15.26: (Top) A simulation of merging neutron stars with the mag-

netic field strength indicated by the grayscale. (Bottom) Amplification of

magnetic fields in merging neutron stars for the simulation shown in the top

figure. Arrows indicate the direction of the magnetic field. In the simula-

tion the shear produced at the merger boundary is capable of substantially

amplifying the already significant magnetic fields that are present (Stefan

Rosswog).
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Figure 15.27: Illustration of relativistic jet powered by neutrino–

antineutrino annihilation in a neutron-star merger.

• One possible mechanism for powering the jets in

GRB produced by neutron star mergers is neutrino–

antineutrino annihilation above and below the plane of

the merger disk, as illustrated in Fig. 15.27.

• Another is accretion onto the rotating black hole from the

surrounding disk in the merger.

• Another is to tap the power of the very strong mag-

netic fields that are expected, for example as illustrated

in Fig. 15.28 on the following page.
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Figure 15.28: Illustration of relativistic jet powered by frame dragging of

magnetic fields by a Kerr black hole.

In the model illustrated in Fig. 15.28,

• the frame-dragging effects associated with the Kerr black

hole

• wind the flux lines associated with the magnetic field

around the black hole and

• spiral them off the poles of the rotation axis,

thus powering relativistic jets.
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Figure 15.29: Neutron star merger simulation with strong magnetic fields.

Grayscale indicates the log of the density; curves are magnetic field lines.

Simulation of a neutron-star merger to form a Kerr black hole

with strong magnetic fields is illustrated in Fig. 15.29.

• The first panel shows the state shortly after initial contact.

• The second displays a merged neutron star configuration.

• In the bottom panels a Kerr black hole has formed with a

disk around it, and

• the magnetic field is wound up to ∼ 1015 gauss, with the

field lines directed in the polar direction.
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15.9.14 Gamma-Ray Bursts and Gravitational Waves

Finally we note that

• neutron star mergers should

– produce gravitational waves of sufficient strength to

be

– observable in earth-based gravitational wave detec-

tors.

• This possibility will be discussed further in later chapters.

• This also raises the intriguing possibility of multimessen-

ger astronomy where, for example,

• a gamma-ray burst might be observed in coincidence with

gravitational waves from a binary neutron star merger.

Such an observation would presumably have a

large impact on

• the understanding of neutron-star structure,

• the mechanism for gamma-ray bursts, and

• the nature of gravitational wave sources.
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As we shall discuss more extensively later,

• in 2017 a

– short-period gamma-ray burst and

– afterglows at various wavelengths

– were observed in coincidence with gravitational

waves

from a binary neutron star merger.

• This represents the first multimessenger gravitational-

wave event observed in astronomy, and

• provides the first strong evidence for the conjectured neu-

tron star merger mechanism for short-period gamma-ray

bursts.

In addition it

• provides the first direct evidence that many of the heavier

elements are synthesized in neutron star mergers,

• places an extremely strong constraint on any deviation of

the speed of gravity from the speed of light,

• suggests a new way to determine the Hubble constant for

expansion of the Universe, and

• begins to place new constraints on the deformability of

neutron-star matter and the neutron star equation of state.
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Part III

Cosmology
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Chapter 16

The Hubble Expansion

The observational characteristics of the Universe coupled with

theoretical interpretation to be discussed further in subsequent

chapters, allow us to formulate a standard picture of the nature

of our Universe.

16.1 The Standard Picture

The standard picture rests on but a few ideas, but they have

profound significance for the nature of the Universe.

679
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16.1.1 Mass Distribution on Large Scales

Observations indicate that the Universe is

• homogeneous (no preferred place) and

• isotropic (no preferred direction),

when considered on sufficiently large scales.

• When averaged over distances of order 50 Mpc, the fluc-

tuation in mass distribution is of order unity, δM/M ≃ 1

• When averaged over a distance of 4000 Mpc (comparable

to the present horizon), δM/M ≤ 10−4

Thus, averaged over a large enough volume, no

part of the Universe looks any different from any

other part.

• The idea that the Universe is homogeneous and isotropic

on large scales is called the cosmological principle.

The cosmological principle, as implemented in

general relativity, is the fundamental theoretical

underpinning of modern cosmology.
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The cosmological principle should not be confused with the

perfect cosmological principle, which was the underlying idea

of the steady state theory of the Universe.

• In the perfect cosmological principle, the Universe is not

only homogeneous in space but also homogeneous in time.

• Thus it looks the same not only from any place, but from

any time.

This idea once had a large influence on cosmology

but is no longer considered viable because it is in-

consistent with modern observations that show a

Universe evolving in time.
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16.1.2 The Universe Is Expanding

Observations indicate that the Universe is expanding;

• the interpretation of general relativity is that this is be-

cause space itself is expanding.

• The distance ℓ between conserved particles is changing

according to the Hubble law

v≡ dℓ

dt
= H0ℓ,

deduced from redshift of light from distant galaxies.

• H0 is the Hubble parameter (or Hubble “constant”, but it

changes with time; the subscript zero indicates that this is

the value at the present time).

• The Hubble parameter can be determined by fitting the

above equation to the redshifts of galaxies at known dis-

tances.

• The uncertainty in H0 is sometimes absorbed into a di-

mensionless parameter h by quoting

H0 = 100h km s−1 Mpc−1 = 3.24×10−18h s−1,

where h is of order 1.

• When we need a definite value, we will often assume

H0 = 72 km s−1 Mpc−1,

so h = 0.72. Note: Units of H0 are actually (time)−1.
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• We may define a Hubble length LH through

LH =
c

H0
≃ 4000 Mpc.

• Thus, for a galaxy lying a Hubble length away from us,

v =
dℓ

dt
= H0

c

H0
= c,

• This implies that the recessional velocity of a galaxy fur-

ther away than LH

– exceeds the speed of light,

– if the observed redshifts are interpreted as Doppler

shifts,

– as it often is in popular-level discussions.

• Not to worry: We shall find that in general relativity

– the redshift of the receding galaxies is not a Doppler

shift caused by velocities in spacetime,

– but is a consequence of the expansion of space itself,

which stretches the wavelength of all light.

The light speed limit of special relativity applies to

velocities in spacetime, not to spacetime itself.
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It is important to understand that local objects are not partaking

of the general Hubble expansion.

• The Hubble expansion is not caused by a force.

• It occurs in pure form only when forces between objects

are negligible.

• Deviations from the Hubble expansion caused by forces

between objects are called peculiar motion by as-

tronomers.

• Smaller objects, such as our bodies, are held together by

chemical (electrical) forces. They do not Hubble expand.

• Larger objects like planets, solar systems, and galaxies are

also held together by forces, in this case gravitational in

origin. They generally do not Hubble expand with the

Universe either.

It is only on

• much larger scales (beyond superclusters of

galaxies) that

• gravitational forces among local objects are

sufficiently weak to cause

negligible perturbation on the overall Hubble ex-

pansion.
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16.1.3 The Expansion is Governed by General Relativity

It is possible to understand much of the expanding Universe

using Newtonian physics and insights borrowed from relativity.

• However, in the final analysis there are serious technical

and philosophical difficulties that arise and that

• require replacement of Newtonian gravitation with the

Einstein’s general theory of relativity for their resolution.

• Central to these issues is the nature of space and time com-

pared with that in classical Newtonian gravitation.

– In relativity, space and time are not separate but enter

as a unified spacetime continuum.

– Even more fundamentally, space and time in relativity

are not a passive background where events happen.

– Relativistic space and time are not “things” but are

abstractions expressing a relationship between events.

Thus, in this view, space and time do not have

a separate existence apart from events involving

matter and energy.

• On fundamental grounds, the gravitational curvature ra-

dius of the Universe could be comparable to the radius

of the visible Universe, implying the necessity of general

relativity for the description of cosmology.
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16.1.4 There Is a Big Bang in Our Past

Evidence suggests that the Universe expanded from an initial

condition of very high density and temperature.

• This hot, dense initial state is called the big bang.

• The popular (mis)conception that the big bang was a gi-

gantic explosion is in error because it conveys the idea

– that it happened in space and time, and that expansion

– is due to forces generated by this explosion.

The general relativistic view of the big bang is that

it did not happen in spacetime but rather that space

and time were created in the big bang.

• “What happened before the big bang?” or “what is the

Universe expanding into?” are meaningless because these

questions presuppose the existence of a spacetime back-

ground upon which events happen.

• The big bang should be viewed not as an explosion but as

an initial condition for the Universe.

Loosely we may view the big bang as an “ex-

plosion” because of the hot, dense initial state.

But then this “explosion” happens at all points in

space: there is no “center” for the big bang.
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General relativity implies that the initial state was a spacetime

singularity.

• Whether general relativity is correct on this issue

– will have to await a full theory of quantum gravita-

tion, since

– general relativity cannot be applied too close to the

initial singularity (on scales below the Planck scale)

– without incorporating the principles of quantum me-

chanics.

• However, for most (but not all!) issues in cosmology the

question of whether there was an initial spacetime singu-

larity is not relevant.

• For those issues, all that is important is that

– once the Universe expanded beyond the Planck scale

– it was very hot and very dense.

This hot and dense initial state is what we shall

mean in simplest form when we refer to the big

bang.



688 CHAPTER 16. THE HUBBLE EXPANSION

16.1.5 Particle Content Influences Evolution of the Universe

The Universe contains a variety of particles and their associated

fields that influence strongly its evolution.

• The “ordinary” matter composed of things that we find

around us is generally termed baryonic matter.

Baryons are the strongly interacting particles of

half-integer spin such as protons and neutrons.

• Baryonic matter is the most obvious matter to us.

• However data indicate that only a small fraction of the

total mass in the Universe is baryonic.

• The bulk of the mass in the Universe appears to be in the

form of dark matter, which is easily detected only through

its gravitational influence.

• We don’t know what dark matter is.

• A popular idea ascribes it to undiscovered elementary par-

ticles, but no evidence supports this so far.

• There is also growing evidence that the Universe is

strongly influenced by dark energy, which

– permeates even empty space and

– effectively causes gravity to become repulsive.

• We do not know the origin of dark energy.
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A fundamental distinction for particles and associated fields is

whether they are massless or massive.

• Lorentz-invariant quantum field theories require that

– massless particles must move with v = c and that

– particles with finite mass must move with v < c.

• Therefore, massless particles like photons, gravitons, and

gluons, and nearly massless particles like neutrinos, are

highly relativistic.

• Roughly, particles with rest mass m are non-relativistic at

those temperatures T where kT << mc2

– Electrons have mc2 = 511 keV and they are non-

relativistic at temperatures below about 6×109 K.

– Protons have a rest mass of 931 MeV and they remain

non-relativistic up to temperatures of about 1013 K.

– Conversely massless photons, gluons, gravitons, and

nearly-massless neutrinos are always relativistic.

• In cosmology, it is common to refer to massless or nearly

massless particles as radiation.

• Conversely, massive particles have v<< c (unless temper-

atures are extremely high) and are non-relativistic.

• Non-relativistic particles are termed matter (or dust).

• Non-relativistic matter has low velocity and exerts little

pressure compared with relativistic matter.
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16.1.6 There Is a Cosmic Microwave Background

Radiation was important in the evolution of the Universe.

The most important feature beyond Hubble expan-

sion is that the Universe is filled with a smooth and

isotropic microwave photon background.

• Any theoretical attempt to understand the standard picture

must as a minimal starting point accomodate the

– Hubble expansion of the Universe and the

– cosmic microwave background (CMB) radiation.

• Conversely, precise measurement of tiny fluctuations in

the CMB is turning cosmology into a quantitative science.

• The CMB currently peaks in the microwave region of the

spectrum but its wavelength

– has been steadily redshifting since the big bang and

– it was originally much higher energy radiation.

• For example, when electrons combined with protons to

make neutral hydrogen 400,000 years after the big bang,

the spectrum of the current CMB peaked in the near-IR.

The CMB contains > 90% of the current photon

energy density (less than 10% is in starlight).
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Figure 16.1: Expansion of the Universe for three values of the Hubble con-

stant ( km s−1 Mpc−1). Hubble times estimating the age of the Universe are

indicated below the lower axis. Redshift is indicated on the right axis.

16.2 The Hubble Law

Hubble Law: v≡ dℓ

dt
= H0ℓ H0 ≃ 72 km s−1 Mpc−1,

The Hubble expansion is most consistently interpreted in terms

of an expansion of space itself.

• Introduce a scale factor a(t) that describes how distances

scale because of the expansion of the Universe (Fig. 16.1).

• The slopes of the lines define the Hubble constant H0.
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We shall interpret the Hubble parameter as being

• characteristic of a space (thus constant for the Universe at

a given time)

• but having possible time dependence

as the Universe evolves.

• The subscript zero on H0 denotes that this is the value of

the Hubble constant today,

• in anticipation that the coefficient governing the rate of

expansion changes with time.

• One often refers to the

– Hubble parameter H = H(t), meaning an H that

varies with time, and to the

– Hubble constant H0 to mean the value of H(t) today.
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Hubble’s original value was

H0 = 550 km s−1 Mpc−1.

This is approximately an order of magnitude larger than the

presently accepted value of

H0 ∼ 70 km s−1 Mpc−1.

The large revision (which implies a corresponding shift in the

perceived distance scale of the Universe) was because

• Hubble’s original sample was a poorly-determined one

based on relatively nearby galaxies.

• There was confusion over the extra-galactic distance scale

at the time because of issues like

– misinterpreting types of variable stars and

– failing to account for the effect of dust on light prop-

agation.
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Table 16.1: Some peculiar velocities in the Virgo Cluster

Galaxy Redshift (z) vr (km s−1)

IC 3258 −0.001454 −436

M86 (NGC 4406) −0.000901 −270

NGC 4419 −0.000854 −256

M90 (NGC 4569) −0.000720 −216

M98 (NGC 4192) −0.000467 −140

NGC 4318 +0.004086 +1226

NGC 4388 +0.008426 +2528

IC 3453 +0.008526 +2558

NGC 4607 +0.007412 +2224

NGC 4168 +0.007689 +2307

M99 (NGC 4254) +0.008036 +2411

NGC 4354 +0.007700 +2310

Source: SIMBAD

16.2.1 Redshifts

If a spectral line normally at wavelength λemit is shifted to a

wavelength λobs when we observe it, the redshift z is

z≡ λobs−λemit

λemit

.

• A negative value of z corresponds to a blueshift.

• A positive value of z corresponds to a redshift.

• The Hubble law gives rise only to redshifts.

• Thus, any blueshifts correspond to peculiar motion of ob-

jects with respect to the general Hubble flow (Table 16.1).

• “Peculiar” = “property specific to an object”.
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The few galaxies observed to have blueshifts are nearby,

• in the Local Group or the Virgo Cluster,

• where peculiar motion is large enough to partially coun-

teract the overall Hubble expansion.

The Andromeda Galaxy (M31), which is part of our Local

Group of galaxies,

• is moving toward us with a velocity of about 300 km s−1

and

• will probably collide with the Milky Way in several billion

years.

The most extreme blueshifts (negative radial ve-

locities) found in the Virgo Cluster are the largest

blueshifts known with respect to our galaxy.
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16.2.2 Expansion Interpretation of Redshifts

The redshifts associated with the Hubble law may be approxi-

mately viewed as Doppler shifts for small redshifts.

• This interpretation is problematic for large redshifts.

• The Hubble redshifts (large and small)

– are most consistently interpreted in terms of the ex-

pansion of space,

– which may be parameterized by the cosmic scale fac-

tor a(t).

• If all peculiar motion is ignored

– the time dependence of the expansion is lodged en-

tirely in the time dependence of a(t), and

– all distances simply scale with this factor.

• A simple analogy on a 2-dimensional surface will be ex-

ploited in later discussion:

Distances between dots placed on the surface of a

balloon all scale with the radius of the balloon as

it expands.

• In the general case a(t) may be interpreted as setting a

scale for all cosmological distances.
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We shall show later that light traveling between galaxies at cos-

mological separation follows the null curve defined by

c2dt2 = a2(t)dr2

• The scale factor a(t) sets the overall scale for distances in

the Universe at time t and

• r is the coordinate distance. Thus,

cdt

a(t)
= dr.

Consider a wavecrest of light with wavelength λ ′ that is

• emitted at time t ′ from one galaxy and

• detected with wavelength λ0 at time t0 in another galaxy.

Integrating both sides of the above equation gives

c

∫ t0

t ′

dt

a(t)
=
∫ r

0
dr = r.

• The next wavecrest is emitted at t = t ′+λ ′/c and is

• detected in the second galaxy at time t = t0 +λ0/c.

For the 2nd wave crest, integrating as above (neglect the

interval between wavecrests compared with the expansion

timescale)

c

∫ t0+λ0/c

t ′+λ ′/c

dt

a(t)
=

∫ r

0
dr = r.
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From the preceding equations we have

c

∫ t0

t ′

dt

a(t)
= r c

∫ t0+λ0/c

t ′+λ ′/c

dt

a(t)
= r.

Thus we may equate the left sides to obtain

∫ t0

t ′

dt

a(t)
=
∫ t0+λ0/c

t ′+λ ′/c

dt

a(t)
,

which may be rewritten as

∫ t ′+λ ′/c

t ′

dt

a(t)
+
∫ t0

t ′+λ ′/c

dt

a(t)
=
∫ t0

t ′+λ ′/c

dt

a(t)
+
∫ t0+λ0/c

t0

dt

a(t)

and upon cancelling the terms in red,

∫ t ′+λ ′/c

t ′

dt

a(t)
=
∫ t0+λ0/c

t0

dt

a(t)
.

• The interval between wave crests is negligible compared

with the expansion timescale, so

• we may bring 1/a(t) outside the integral to obtain

1

a(t ′)

∫ t ′+λ ′/c

t ′
dt =

1

a(t0)

∫ t0+λ0/c

t0

dt −→ λ ′/c

a(t ′)
=

λ0/c

a(t0)
,

and thus that

λ ′

λ0
=

a(t ′)
a(t0)

.
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The result that we have just obtained,

λ ′

λ0
=

a(t ′)
a(t0)

,

demonstrates explicitly that

• The stretching of wavelengths (redshift) is caused by the

expansion of the Universe

• (specifically by the change in a(t) while the photon is

propagating).

• The cosmological redshift is not a Doppler shift (no ve-

locities appear in the above formula).

From the definition for the redshift z and the preceding result,

1+ z = 1+
λ0−λ ′

λ ′
=

λ0

λ ′
=

a(t0)

a(t ′)

from which

z =
a(t0)

a(t ′)
−1.

It is conventional to

• normalize the scale parameter so that its value in the

present Universe is unity, a(t0)≡ 1,

• in which case

z =
1

a(t ′)
−1,

where a(t ′) is the scale factor of the Universe when the light

was emitted.
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Thus the redshift z that enters the Hubble law

• Depends only on the ratio of the scale parameters at the

time of emission and time of detection for the light,

1+ z =
a(t0)

a(t ′)
.

• It is independent of the details of how the scale parameter

changed between the two times.

• Redshift is then determined completely by

– the scale parameter of the expanding Universe at the

time the light was emitted,

– relative to the scale parameter today.

• The ratio of the scale parameter at two different times de-

pends on the cosmological model assumed.

• Thus, measuring redshifts tests cosmological models.

EXAMPLE: If from the spectrum of a quasar

z≡ ∆λ

λ
= 5,

the scale factor of the Universe at the time that

light was emitted from the quasar is given by

a(t ′)
a(t0)

=
1

z+1
=

1

6
.
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The preceding discussion indicates that we may use

• the scale factor a(t) or

• the redshift z

interchangeably as time variables for a universe in which the

scale parameter changes monotonically (compare the right and

left axes of the above figure).
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The Hubble parameter has units of inverse time:

[H0] = [km s−1 Mpc−1] = time−1.

Thus, 1/H0 defines a time called the Hubble time τH,

τH ≡
1

H0
= 9.8h−1×109 y.

• If the Hubble law is obeyed with constant H0, the intercept

with the time axis gives the time when the scale factor was

zero.

• Hence, the value of τH = 1/H0 is sometimes quoted as an

estimate of the age of the Universe.
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• The Hubble time is not the age of the Universe because

• the Hubble parameter can remain constant only in a Uni-

verse devoid of matter, fields, and energy.

• The realistic Universe contains all of these and

• expansion is accelerated by gravitational interactions.

In later cosmological models we shall see that the

age of the Universe may be substantially longer or

shorter than τH, depending on details of the matter,

fields, and energy contained in the Universe.
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A

B1

B2

B

A1
A2

(a) As seen from galaxy A, galaxy B appears to 

recede from B1 to B2 over the time interval shown.

(b) As seen from galaxy B, galaxy A appears to 

recede from A1 to A2 over the time interval shown.

The figures above show the same uniform two-dimensional

Hubble expansion, as seen from two different vantage points.

(a) As observed from galaxy A.

(b) As observed from galaxy B.

The patterns in (a) and (b) look very different, but

• this is exactly the same expansion

• seen from two different perspectives.

A and B will find the same Hubble constant, and

each thinks they are the center of the expansion.
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The figures above illustrate extracting the Hubble law from the

simulated 2D expansion.
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The Hubble plot is constructed by

• choosing representative galaxies and

• plotting the apparent recessional velocity versus the dis-

tance from the observer,

• with the Hubble constant extracted from the slope of a

linear fit to the data.

Within a simulated observational uncertainty,

• Observer A and Observer B

• extract the same Hubble parameter,

by measuring recessional velocities and distances

relative to each observer’s position.
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In this model

• distances are measured in pixels on the computer screen,

• time is measured in units of the elapsed time for expan-

sion, and

• velocities are estimated in units of pixels per unit time by

• counting the number of pixels the galaxy moves in the ex-

pansion time.

Thus, the unit for H0 in this simulation of

pixels × time−1 ×decapixel−1

(where 1 decapixel = 10 pixels) mimics the standard unit of

km s−1 Mpc−1

used for the actual Hubble constant.
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Figure 16.2: Hubble parameter extracted from observations Three possible

slopes (Hubble parameter) are indicated in the upper part of the figure.

16.2.3 Measuring the Actual Hubble Constant

The Hubble constant may be determined observationally by

• measuring the redshift for spectral lines and

• comparing that with the distance to objects,

at large enough distances so peculiar motion is negligible. Fig.

16.2 illustrates for various observations, with an adopted value

H0 = 72±8 km s−1 Mpc−1,

corresponding to h = 0.72.
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The top part of the above figure shows velocity vs. distance for

• five different secondary distance indicators, calibrated by

Cepheid variable observations out to ∼ 20 Mpc.

• The lower part of the diagram shows the inferred value of

H0 as a function of distance, with

• H0 = 72 km s−1 Mpc−1 indicated by the horizontal line.

• The large scatter of points below∼ 100 Mpc is because of

peculiar velocities due to local gravitational attraction.

• Type Ia supernovae provide data at the largest distances.

Later, use of Type Ia supernovae to probe expan-

sion at even higher redshifts will be discussed.
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Modern determinations find that

H0 ∼ 67−73 km s−1 Mpc−1,

with generally

• “distance ladder” approaches as just illustrated tending

to give values nearer the higher end of this range and

• cosmic microwave background data to be discussed later

tending to give values closer to the lower end.

Gravitational waves can determine H0 (see later),

but present data give ±10% errors and can’t yet

add meaningful constraints to the value of H0.
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16.3 Limitations of the Standard World Picture

The standard picture has been remarkably successful in describ-

ing many features of our Universe. However, two aspects of

this picture suggest that it is (at best) incomplete:

1. In order to get the big bang to produce the present uni-

verse, certain assumptions about initial conditions must

be taken as given. While not necessarily wrong, some of

these assumptions seem unnatural by various standards.

2. As the expansion is extrapolated backwards, eventually

we would reach a state of sufficient temperature and den-

sity that a fully quantum theory of gravitation would be

required.

• This is the Planck era, and the corresponding scales

of distance, energy, and time are called the Planck

scale.

• Since we do not yet have a consistent theory of quan-

tum gravity, the presently understood laws of physics

may be expected to break down on the Planck scale.

• Thus the standard picture says nothing about the Uni-

verse at those very early times.

In later chapters we shall address these issues,

to consider whether modifications of the standard

picture can alleviate some of these problems.
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Chapter 17

Energy and Matter in the Universe

The history and fate of the Universe ultimately turn on how

much matter, energy, and pressure it contains:

1. These components of the stress–energy tensor all couple

to gravity.

2. This coupling determines how self-gravitation of the Uni-

verse influences the Hubble expansion.

In this chapter we begin to address quantitatively

the issue of the matter and energy contained in the

Universe and how that determines its history.

713
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The Universe is mostly empty space.

• This might suggest that Newtonian gravity (valid in the

weak gravity limit) is adequate for describing its large-

scale structure.

• But whether general relativity effects are important may

be estimated in terms of

– the ratio of an actual radius for a massive object

– compared with its radius of gravitational curvature.

• If we apply such a criterion to the entire Universe, rea-

sonable estimates for the mass–energy of the Universe in-

dicate that

– the actual radius of the known Universe and

– the corresponding gravitational curvature radius

are likely to be comparable.

• Thus, a description of the large-scale structure of the Uni-

verse (cosmology) must be built on a covariant gravita-

tional theory, rather than on Newtonian gravity.

Even so, we can understand a substantial amount

concerning the expanding Universe simply by us-

ing Newtonian concepts.
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Figure 17.1: Newtonian model of the expanding Universe.

17.1 Expansion and Newtonian Gravity

The gravitational potential acting on the galaxy in Fig. 17.1 is

U =
−GMm

r
,

where m is the mass of the galaxy and

Total mass of sphere = M = 4
3πr3ρ ,

which is constant since

• ρ decreases with time and

• r increases with time,

but the product ρr3 is constant. Thus

U =−4
3
πGr2ρm.
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Earth r

Density = ρ

Homogeneous 

mass distribution

Distant

galaxy

If the motion of the galaxy is caused entirely by the Hubble

expansion,

• its radial velocity relative to the Earth is v = H0r.

• This implies a kinetic energy

T = 1
2mv2 = 1

2mH2
0 r2,

where m is the inertial mass of the galaxy, assumed equiv-

alent to its gravitational mass.

• The total energy of the galaxy is then

E = T +U = 1
2mH2

0 r2− 4
3πGr2ρm

= 1
2mr2

(

H2
0 − 8

3πGρ
)

,

in this Newtonian approximation.
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17.2 The Critical Density

If the expansion is to halt, we must have E = 0 and thus

E = 1
2mr2

(

H2
0 − 8

3πGρ
)

−→ H2
0 = 8

3πGρ .

Solving for ρ , the critical density just halting the expansion is

ρc =
3H2

0

8πG
≃ 1.88×10−29h2 g cm−3.

The corresponding critical energy density is

εc = ρcc2 = 1.05×10−2h2 MeV cm−3

= 1.69×10−8h2 erg cm−3.

The critical density ρc corresponds to an average

of only six hydrogen atoms per cubic meter, or

about 140 M⊙ per cubic kiloparsec.

We may distinguish three qualitative regimes for the actual

density ρ (in this simple Newtonian picture):

1. If ρ > ρc the Universe is closed and the expansion will

stop in a finite time.

2. If ρ < ρc the Universe is open and the expansion will never

halt.

3. If ρ = ρc the Universe is flat (or euclidean) and the expan-

sion will halt, but only asymptotically as t→ ∞.
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Thus, in this simple Newtonian picture

• the ultimate fate of the Universe

• is determined by its present matter density.

We shall see that this conclusion is modified—

profoundly—by the presence of dark energy in the

actual Universe.
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It will prove convenient to introduce the dimensionless total

density parameter evaluated at the present time

Ω≡ ρ

ρc
=

ε

εc
=

8πGρ

3H2
0

.

where ρ is the current total density that couples to gravity.

• Thus the closure condition implies that Ω = 1.

• Note for future reference that many authors use a subscript

“0” on Ω and ρ (and other cosmological parameters) to

indicate explicitly that they are evaluated at the present

time.

• Where possible we suppress these zero subscripts to avoid

notational clutter.

Unless otherwise noted, you should always under-

stand cosmological parameters like Ω to be eval-

uated at the present time, even if we suppress the

subscript zero.
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17.3 Cosmic Scale Factor

The Hubble expansion makes it convenient to

• introduce a cosmic scale factor a(t) that sets the global

distance scale of the Universe.

• If peculiar motion is ignored, the expansion is governed

entirely by a(t) and all distances scale with this factor.

• Example: If

– the present time is t0 and

– the present scale factor is a0,

– a wavelength of light λ emitted at time t < t0

– is scaled to λ0 at t = t0 by the universal expansion:

λ0

a0
=

λ

a(t)
.

• Likewise, if r0 and ρ0 are the present values of r and ρ ,

r(t)

r0
=

a(t)

a0

ρ(t)

ρ0
=

(
a0

a(t)

)3

,

and so on.
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The universal scaling of distances with a(t) permits us to ex-

press all dynamical equations in terms of the scale factor.

Example:

• The gravitational force acting on a galaxy in Newtonian

approximation is

FG =−∂U

∂r
=−G

Mm

r2
=−4

3
πGρrm,

and the corresponding gravitational acceleration is

r̈ =
FG

m
=−GM

r2
=−4

3
πGρr.

• Then from
r(t)

r0
=

a(t)

a0
,

we have for the acceleration of the scale factor,

r̈ =
r0

a0
ä =−4

3
πGρ0

a3
0

a3

r0

a0
a → ä =−4

3
πGρ0a3

0

(
1

a2

)

.

Dropping the subscript on ρ0 and utilizing

Ω≡ 8πGρ

3H2
0

,

the acceleration of the scale factor also may be expressed in

terms of the density parameter Ω,

ä =−H2
0 a3

0Ω

2a2
.
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From the result

ä =−H2
0 a3

0Ω

2a2
.

we may show that (Problem)

ȧ2 = a2
0H2

0 f (Ω,t),

where we define

f (Ω,t) = 1+Ω
a0

a(t)
−Ω,

which must obey the condition

f (Ω,t)≥ 0,

since ȧ2 can never be negative. NOTE: Ω ≡ Ω0 in these equa-

tions.

We may use this condition to enumerate different

possible histories for the Universe.
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17.4 Possible Expansion Histories

Consider as an example dust-filled universes, which contain

• only pressureless, non-relativistic matter and

• negligible radiation and negligible vacuum energy.

There are three qualitatively different scenarios,

depending on the value of Ω≡Ω0.
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Possible expansion histories:

1. Ω < 1 (undercritical): In this case, as a(t)→ ∞,

f (Ω,t) = 1+Ω
a0

a(t)
−Ω −→ 1−Ω > 0,

so ȧ never vanishes, implying an open, ever-expanding

universe.

2. Ω = 1 (critical): For this case, as a(t)→ ∞,

f (Ω,t)−→ 0,

but it only reaches 0 at t = ∞. Hence,

• the universe is ever-expanding (constraint: it is ex-

panding now)

• but the rate of expansion approaches zero asymptoti-

cally as t→ ∞.

3. Ω > 1 (overcritical): Now as t increases

f (Ω,t)−→ 0,

but in a finite time tmax.

• Beyond this time f (Ω,t)≥ 0 must still be satisfied.

• Thus, if Ω > 1 the expansion turns into a contraction

at time tmax,

and the universe begins to shrink.
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Figure 17.2: Behavior of the scale factor a(t) as a function of time for a

dust-filled universe.

By integrating the scale factor equation

ȧ2 = a2
0H2

0 f (Ω,t),

for a dust model (see Problems) we obtain for these three sce-

narios:

• For a flat dust universe with Ω = 1,

a(t) =

(
3t

2tH

)2/3

.

This behavior is sketched as the Ω = 1 curve in Fig. 17.2.
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• For a closed dust universe with Ω > 1,

a(ψ) =
1

2

Ω

Ω−1
(1− cosψ)

t(ψ) =
1

2H0

Ω

(Ω−1)3/2
(ψ− sinψ).

where ψ ≥ 0 parameterizes the solution. The first maxi-

mum for a(ψ) occurs for ψ = π ,

amax

a0
=

Ω

2(Ω−1)
(1− cosπ) =

Ω

Ω−1
,

and the time at which this occurs is

tmax = t(π) =
πΩ

2H0(Ω−1)3/2
.

This case is sketched as Ω > 1 in the figure above.
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• For an open dust universe with Ω < 1,

a(ψ) =
Ω

2(1−Ω)
(coshψ−1)

t(ψ) =
1

2H0

Ω

(1−Ω)3/2
(sinhψ−ψ).

where ψ is a parameter. This behavior is sketched as the

Ω < 1 curve in the figure above.
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17.5 Lookback Times

Telescopes are time machines:

• Lookback time: tL how far back in time we are looking

when we view an object having a redshift z,

tL = t(0)− t(z),

where t(z = 0) is the present age of the Universe and t(z)

is the age when light observed today with redshift z was

emitted.

• Example: in a flat dust-filled universe (Problem)

t(z)

τH
=

2

3
(1+ z)−3/2 t(0)

τH
=

2

3

and the lookback time is

tL

τH
=

2

3
− 2

3
(1+ z)−3/2

=
2

3

(

1− 1

(1+ z)3/2

)

,

where τH = 1/H0 is the Hubble time.

• Thus light from an object that we observe with a redshift

z∼ 6 was emitted when

1. The Universe was only ∼ 5% of its present age.

2. The cosmic scale factor a(t) was 1 + z = 7 times

smaller than it is today.
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Figure 17.3: (a) Geometrical interpretation of the lookback time tL for z = 5

in a dust universe with three different values of the density parameter Ω.

(b) Lookback time as a function of redshift for different assumed density

parameters in a dust model. The dashed line gives the result for Hubble’s

law.

Lookback time as a function of redshift is interpreted graphi-

cally for a dust model in Fig. 17.3(a), and is plotted for various

values of the density parameter Ω in Fig. 17.3(b).

• For small redshift, tL ≃ zτH, as would be expected from

the Hubble law.

• But for larger redshifts tL differs substantially from this

approximation.
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17.6 The Inadequacy of Dust Models

The preceding discussion has applied Newtonian gravity to a

universe containing only pressureless matter (dust).

• Until the last decade of the 20th century, a covariant ver-

sion of such theories was the favored cosmology.

• For example, one common model was the Einstein–de Sit-

ter universe, a covariant version of the Ω = 1 solution

– with exactly a closure density of dust and

– zero curvature

that will be described later.

• But observations of that time indicated that there was

– not nearly enough visible matter for closure,

– suggesting an open-Universe cosmology with Ω < 1.

We now know that the actual Universe contains additional com-

ponents that influence its evolution in a highly-nontrivial way.

• As a result a Newtonian dust cosmology is a poor approx-

imation to the actual history of the Universe.

• To understand the new cosmology, we first take inventory

of these additional components.

Our starting point will be evidence that most mat-

ter is not the visible matter of stars and galaxies.
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17.7 Evidence for Dark Matter

There is strong observational evidence for large amounts of

dark matter in the Universe

• that reveals its presence gravitationally, but

• is not seen by any other probe.

Let’s review some of this evidence.
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Figure 17.4: Schematic velocity curves for spiral galaxies.

17.7.1 Rotation Curves for Spiral Galaxies

In spiral galaxies, if we balance the centrifugal and gravita-

tional forces at a radius R, the tangential velocity v should obey

v =

√

GM

R
,

where M is the enclosed mass.

• Well outside the matter distribution, we expect v≃ R−1/2.

• Velocities can be measured using the Doppler effect, both

– for visible light from the luminous matter, and for

– the 21 cm hydrogen line for non-luminous hydrogen.

• For many spirals we find not v ≃ R−1/2 but almost con-

stant velocity well outside the bulk of the luminous matter.

This is illustrated schematically in Fig. 17.4.
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Figure 17.5: Rotation curve for the galaxy M33 out to a distance of about

15 kpc (50,000 ly) from the center. Points inside about 15,000 ly are from

visible starlight; points beyond that are from radio frequency (RF) observa-

tions.

An example of a measured rotational curve is shown in

Fig. 17.5 for the galaxy M33.

This rotation curve indicates

• the presence of substantial gravitating matter

• distributed in a halo that extends beyond the

visible matter.
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17.7.2 The Mass of Galaxy Clusters

From the virial theorem,

• the mass within a region can be estimated from

• the velocity dispersion of objects bound gravitationally in

that region.

• In particular, we may estimate the mass contained within

large clusters of galaxies by studying the motion of galax-

ies within the cluster.

Such estimates indicate that clusters of galaxies

contain much more mass than their luminosity

would suggest.
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Example: The Coma Cluster contains thousands of galaxies.

• The measured velocity dispersion in a region lying within

about 3 Mpc of the center is

σr ≃ 900 km s−1.

• Inserting this into the virial relation

σ2
r ≃

GM

5R
.

leads to the conclusion that the Coma Cluster has a mass

of

M ∼ 2.8×1015M⊙.

• On the other hand, the visual luminosity of the Coma Clus-

ter is

L = 5×1012L⊙,

where L⊙ is the luminosity of the Sun.

• Thus, the ratio of mass to light for the Coma Cluster is

Mass

Light
≡ M

L
=

2.8×1015M⊙
5×1012L⊙

≃ 565
M⊙
L⊙

.

This suggests the presence of large amounts of un-

seen mass within this cluster of galaxies.
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The preceding example is representative and in rich clusters

(those containing thousands of galaxies)

• the measured velocity dispersions typically lie in the range

σr = 800–1000 km s−1 and

• the mass to luminosity ratio in solar units is typically

found to be several hundred.

• This should be compared with a value of order one found

in the Solar neighborhood.

We conclude that clusters of galaxies contain dark

matter halos above and beyond the halos of the in-

dividual galaxies comprising the cluster.
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17.7.3 Hot Gas in Clusters of Galaxies

Observations by X-ray satellites indicate that

• clusters of galaxies often are immersed in a hot gas filling

the space between the galaxies.

• The X-ray intensity is a measure of the strength of the

gravitational field because to produce X-rays requires

large velocities of the gas particles.

These observations allow the total amount of gravitating matter

in the cluster to be estimated.

• It is found that there must be much more matter than just

the luminous matter to account for the hot gas observed

systematically in the clusters.

• Otherwise, the gravitational field would be too weak to

trap the gas for extended periods.

Example: X-ray observations of the Coma Cluster by ROSAT

• indicated a gas temperature of about 108 K, which is

• much too hot to be bound by the gravity produced by visi-

ble matter of the cluster.

Thus, the hot and luminous X-ray gas bound in

many galaxy clusters signals a large contribution

of dark matter to the cluster gravitational field.
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1"

1"
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Figure 17.6: Gravitational lensing of quasars: (a) The Cloverleaf Quasar.

The four images are of a single quasar lensed by foreground galaxies too

faint to see in this image. (b) The Einstein Cross. The four outer images are

all of a single quasar lensed by a foreground galaxy near the center of the

image. Identical spectra confirm that these are images of a single object.

17.7.4 Gravitational Lensing

The path of light is curved in a gravitational field.

• This can cause gravitational lensing, where intervening

mass acts as a “lens” to alter the image of distant objects.

• Spectacular examples of lensing are shown in Fig. 17.6.

• In these images, a single distant object appears as four

objects because of lensing by a foreground galaxy.

The amount of lensing depends on the total mass

causing the lensing, whether visible or not.
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Figure 17.7: The Einstein Cross and its lensing galaxy. Intensity has been

displayed on a logarithmic scale so that the very bright quasar images and

the extremely faint bar and arms of the lensing galaxy can be seen at the

same time (see annotated image on the right).

The lensing interpretation of the Einstein Cross from the previ-

ous figure is bolstered by Fig. 17.7.

• The left image shows in faint outline the foreground lens-

ing galaxy and the four quasar images.

• The lensing galaxy is a relatively nearby barred spiral.

Both the spiral arms and the central bar of the fore-

ground galaxy can be seen faintly (see the annota-

tion in the right panel).
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Figure 17.8: Light from a supernova in a galaxy at z = 1.49 split into four

images by gravitational lensing from a cluster of galaxies at z = 0.54. The

positions of the four supernova images are indicated by arrows in the inset

box. Most of the galaxies in the image are members of the lensing cluster.

Another example of a cross, in this case for lensing of a super-

nova in a distant galaxy, is displayed in Fig. 17.8.

• The supernova host galaxy is a spiral at redshift z = 1.49.

• It is being lensed by a massive elliptical galaxy in a cluster

of galaxies at z = 0.54.

• The gravitational potential of the entire cluster also pro-

duces multiple images of the supernova host galaxy.

Different magnifications and staggered arrival times of the im-

ages carry information about the supernova and the lens.
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Figure 17.9: Lensed Type Ia supernova. The supernova and lensing galaxy

are almost collinear, giving four images of the supernova and a partial Ein-

stein ring from lensing of the supernova host galaxy (lower right panel).

A lensed image of a Type Ia supernova is shown in Fig. 17.9.

• Normally, the true brightness of a lensed object is un-

known.

• However, because of the standardizable candle properties

of Type Ia supernovae, the actual brightness of the lensed

object and its variation with time are well determined.

The apparent brightness of the supernova has been

amplified by a factor of 50 in this lens.
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Furthermore, by using the known variation of the luminosity

with time (the standardized lightcurve of the supernova),

• the delay times for light in each of the four images can be

measured precisely.

• The difference in arrival times for light in the four lensed

images is inversely proportional to the Hubble parameter.

• Conversely, if a cosmological model is assumed the time

delays measure directly the gravitational potential sensed

by the four images.

• This permits reconstruction of the lens mass distribution.
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Summarizing, the strength of a gravitational lens depends on

the total mass contained within it, whether that mass is visible

or not.

• Gravitational lenses can serve as excellent indicators of

how much unseen matter is present in the lens,

• and even of the distribution of mass within the lens.

• Systematic analysis of gravitational lensing leads to con-

clusions similar to those suggested above by the rotation

curves for spiral galaxies and the properties of galaxy

clusters:

More than 90% of the mass contributing to the

strength of large gravitational lenses is dark.
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Figure 17.10: Evidence for dark matter in the Bullet Cluster. The left image

shows galaxies in the cluster and total mass contours inferred from grav-

itational lensing. The right image shows X-ray luminosity superposed on

mass contours. The simplest explanation for displacement of X-ray lumi-

nosity from mass concentrations is that the majority of the mass is dark

matter now found at the two mass centers.

17.7.5 Example: The Bullet Cluster

Fig. 17.10 shows evidence for dark matter in galaxy clusters.

• The double cluster of galaxies 1E0657-558 (Bullet Clus-

ter) has been studied using gravitational lensing and de-

tection of X-rays.

• The double cluster represents two galaxy clusters that col-

lided about 100 million years ago.

• The star distributions would have largely passed through

each other, but the

• gas would have interacted strongly through ram pressure,

• while dark matter would have not interacted at all.
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After the collision, as shown above,

• The compressed gas,

– radiating X-rays (bright spots), is

– displaced from the mass centers of the two clusters

(indicated by contours).

• The collision has

– separated the dark matter (at the two local maxima of

the mass contours)

– from the regular matter (concentrated at the sources

of X-ray luminosity).

A number of other examples similar to the Bullet

Cluster of apparent separation of normal and dark

matter by collisions are now known.
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Dragonfly 44

10 kpc10 kpc
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Figure 17.11: Dragonfly 44, a galaxy that may be almost all dark matter. Al-

though it has a very low surface brightness, it contains of order 100 globular

clusters and has a mass comparable to that of the Milky Way galaxy.

17.7.6 Dark Matter in Ultra-Diffuse Galaxies

A population of ultra-diffuse galaxies (UDG) has been studied

in the Coma Cluster.

• These are very faint but appear to have large masses.

• The UDG Dragonfly 44 is shown in Fig. 17.11.

• From velocity dispersion, the mass is similar to the Milky

Way, and ∼ 100 globular clusters were identified.

From the large mass but faint light, it was esti-

mated that Dragonfly 44 is 98% dark matter.
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17.8 Baryonic and Non-Baryonic Matter

Baryonic matter is “ordinary” stuff made of protons and neu-

trons. Non-baryonic matter consists of particles that do not

undergo the strong interactions.

Neutrinos are one example of non-baryonic matter.

There seems to be a lot of dark matter in the Universe.

• How much of it is baryonic, (“ordinary stuff”) and how

much is more exotic (non-baryonic matter)?

• We can answer that question by considering how many

photons and baryons there are in the Universe.

• Define the ratio η of baryon number density nB to photon

number density nγ ,

η ≡ nB

nγ
≃ Ωbρc/mB

410 cm−3
≃ 2.76×10−8Ωbh2,

– where Ωb ≡ nB/ρc is the baryon density parameter,

– ρc is the closure density,

– mB is the average mass of a baryon, and

– the photon density has been approximated by the cos-

mic microwave background density, nγ = 410 cm−3.
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The abundances of light isotopes produced by nucleosynthesis

in the big bang such as

• 4He,

• 3He,

• 2H,

• 7Li

are very sensitive to the quantity

η ≡ nB

nγ
≃ Ωbρc/mB

410 cm−3
≃ 2.76×10−8Ωbh2,

• The measured values of these isotopic abundances indi-

cate that

η ∼ 6×10−10.

• Therefore, from this observed value of η

Ωb ≃ (3.6×107h−2)η ≃ 0.04,

indicating that baryonic matter contributes less than 5% of

closure density.

• Hence, strong nucleosynthesis constraints indicate that

Most the the matter producing the gravity of the

Universe cannot be baryonic.
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Extending the trend started by Copernicus:

• We are not the center of the Universe, and

• We aren’t even made up of the dominant matter of the

Universe.

Not only are we not the center of the Universe, we

aren’t even made of the right stuff!

If the Universe is full of dark matter invisible to non-

gravitational probes, what could it be?
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17.9 Baryonic Candidates for Dark Matter

We address first possible baryonic candidates for the dark mat-

ter. The simple possibilities can be dismissed quickly.

• If the dark matter were a cold baryonic gas

– it would not radiate, but a cold gas would be heated

by hot gas and radiation,

– and therefore would eventually become visible.

• Likewise, cold dust would be heated and re-radiate light,

so it too would become visible.

• Black holes could hide large amounts of matter but

– they would be more likely near the centers of galaxies

where densities are higher,

– not out in halos where dark matter is most required.

• The most promising candidates for dark baryonic matter

are the Massive Compact Halo Objects (MACHOS):

– Jupiter-like objects, or

– more massive brown dwarfs with too little mass to

form stars.

• If such objects were abundant in the halos of the galaxies,

they would be difficult to see because of low luminosities.
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A typical MACHO experiment looks for

• gravitational lensing when the MACHO moves in front of

a star being imaged in the Large Magellanic Cloud.

• The expected signature is brightening over days or weeks

for a star not normally a variable star.

Searches indicate the presence of MACHOS in the halo of our

galaxy, but too few to account for most dark matter.

• In addition to the absence of direct evidence for sufficient

baryonic dark matter,

All baryonic dark-matter solutions violate the nu-

cleosynthesis constraint discussed above.

• There is good observational evidence favoring a total den-

sity Ω = 1 and baryonic density Ωb ∼ 0.04.

Thus, the

• dominant matter in the Universe is probably

not baryonic and

• the baryonic matter that we are composed of

is but a minor pollutant in the Universe.
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17.10 Candidates for Non-Baryonic Dark Matter

There are two broad classes of candidates for non-baryonic

dark matter:

• Cold Dark Matter (CDM),

– which consists of particles that decoupled very early,

– or particles that were never in thermal equilibrium.

• Hot Dark Matter (HDM), which consists of

– low-mass particles that still had

– relativistic velocities at the time of matter–radiation

decoupling.

Each of these corresponds to either conjectured or

known elementary particles.
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17.10.1 Cold Dark Matter

Cold dark matter had v ≪ c when galaxy formation started.

Candidates may be divided into

• Weakly Interacting Massive Particles (WIMPS), and

• Superlight particles with superweak interactions that were

never in equilibrium.

WIMPS would decouple from the plasma earlier than normal

leptons. Some proposed candidates include

• several particles expected for supersymmetric theories,

• and a neutrino with mass greater than 45 MeV.

If dark matter is superlight particles never in equilibrium

• they would have been decoupled from the beginning.

• A prime candidate is the axion,

• which is a conjectured boson required in some elementary

particle physics theories.

There is no experimental evidence for

• supersymmetric particles,

• massive neutrinos,

• or axions

at the present time.
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17.10.2 Hot Dark Matter

Hot dark matter is relativistic when galaxy formation begins.

• It could correspond to as-yet undiscovered particles but

neutrinos are obvious candidates.

• The present number density of neutrinos may be estimated

– by assuming that most neutrinos are in a uniform

background of neutrinos analogous to the

– cosmic microwave background to be discussed later.

• The number density of neutrinos in this background

should be related to the number density of the photons

in the microwave background by a factor of 3
11 .

• Thus, the number density for each of the three neutrino

families is

nν ≃ 3
11 nγ ≃ 112 neutrinos cm−3.

• Current data indicate that neutrinos have a tiny mass.

Thus the contribution to closure density of all neu-

trinos in the Universe can be no more than several

percent.



17.11. DARK ENERGY 755

17.11 Dark Energy

Dark matter may appear exotic by normal standards, since

• we don’t know what it is and therefore

• we do not know why it fails to couple strongly

through any force other than gravity.

• However, we shall see later that the evolution of the

present Universe is being dominated by something even

more exotic: dark energy.

• Dark energy (also called vacuum energy) behaves funda-

mentally differently from either

– normal matter and energy,

– or dark matter.

Dark energy causes gravity to effectively become

repulsive.

• To understand and to deal adequately with this remarkable

notion will require a covariant formulation of gravity.

Therefore, we defer substantial discussion of the

evidence for and role played by dark energy until

the following chapters.
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17.12 Radiation

Astronomers classify massless and nearly massless particles

such as photons, gluons, gravitons, and neutrinos as radiation.

• The radiation in the Universe influences its evolution

• The energy density of radiation in the present Universe is

very small.

• However, it dominated the energy density of the very early

Universe.

• Only a small amount of radiation density in the present

Universe is found in starlight.

• The bulk (more than 90%) is in the cosmic microwave

background (CMB) radiation, which will be discussed in

later chapters.
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17.13 Density Parameters

We have already introduced the total density parameter evalu-

ated at the present time

Ω≡ ρ

ρc
=

8πGρ

3H2
0

.

where ρ is the current total density coupled to gravity.

• Thus, closure implies that Ω = 1 (critical density).

• The subscript “0” is often used on Ω and ρ to indicate

explicitly that they are evaluated at the present time.

• We will often suppress that subscript to avoid notational

clutter in later equations.

Unless otherwise noted, you should always under-

stand cosmological parameters to be evaluated at

the present time, even if there is no subscript zero.

• Anticipating later treatment of the expansion using gen-

eral relativity, we expect that

• the density parameter gets contributions from three major

sources in the current Universe:

1. Matter, including dark matter (with density ρm)

2. Radiation (with density ρr)

3. Vacuum or dark energy (with density ρΛ).



758 CHAPTER 17. ENERGY AND MATTER IN THE UNIVERSE

These densities may be used to define corresponding partial

density parameters Ωi through

ρr(a) = ρcΩr ρm(a) = ρcΩm ρΛ(a) = ρcΩΛ,

and we will see later that the total density changes with a(t) as

ρ(a) = ρc

(
Ωr

a4
+

Ωm

a3
+ΩΛ

)

(a(t0)≡ 1),

• we have assumed the standard convention of normalizing

the current value of the scale parameter a(t0) to unity.

• We shall make no explicit distinction between mass den-

sity ρ and the corresponding energy density ε = ρc2, since

they are numerically the same in c = 1 units.

• Note that the different densities scale differently with a(t),

and thus differently with time.

For baryonic matter alone, we have already seen that

Ωb ≃ 0.04. (baryonic matter).

where Ωb is a part of Ωm.

This is well below the critical density (Ω = 1) but

• the effect of non-baryonic dark matter and

• the effect of dark energy

must be added to give the true value of Ω.
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Table 17.1: Density parameters

Source Value (Ωi = ρi/ρc)

Total matter Ωm = 0.3

Baryonic matter ΩB = 0.04

Total radiation Ωr ≤ 8×10−5

Total vacuum ΩΛ = 0.7

Curvature Ωc ≤ 0.01

Some estimates of the current density parameters for the radi-

ation, matter, baryonic portion of the matter, and the vacuum

energy are given in Table 17.1 (the curvature density entry will

be explained later).
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17.14 The Deceleration Parameter

The density of the Universe is clearly related to the rate at

which the Hubble expansion is changing with time.

• If we expand the cosmic scale factor to second order in

time,

a(t)≃ a0+ ȧ0(t− t0)+
1
2 ä0(t− t0)

2

where ȧ0 ≡ (da/dt)t=t0, and so on,

• introduce the deceleration parameter at the present time

q0 ≡ q(t0) through

q0 ≡−a0
ä0

ȧ2
0

,

• and utilize

ȧ0

a0
= H0,

• we obtain

a(t) = a0



1+H0(t− t0)
︸ ︷︷ ︸

Hubble

− 1
2H2

0 q0(t− t0)
2

︸ ︷︷ ︸

correction

+ . . .



 .



17.14. THE DECELERATION PARAMETER 761

By expanding a−1 to second order in a binomial series the red-

shift z may be expressed in terms of

a(t) = a0

(

1+H0(t− t0)− 1
2H2

0 q0(t− t0)
2+ . . .

)

.

in the form

z =
1

a
−1 = H0(t0− t)+H2

0 (1+
1
2q0)(t0− t)2+ . . .

This is a quadratic in H0(t0− t), which may be solved to give

H0(t0− t) = z− (1+ 1
2q0)z

2.

Integrating
cdt

a(t)
= dr.

by using the expansion

a(t) = a0

(

1+H0(t− t0)− 1
2H2

0 q0(t− t0)
2+ . . .

)

.

to first order, the current proper distance for an object with

redshift z is found to be (Problem)

d(t0)≃ c(t0− t)+ 1
2
cH0(t0− t)2+ . . .

Inserting

H0(t0− t) = z− (1+ 1
2q0)z

2.

in this expression and neglecting higher-order terms gives

d(t0) =
cz

H0

(

1− 1+q0

2
z

)

.

for the proper distance in terms of z and q0.
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Figure 17.12: Deviations from the Hubble law to second order. The scale

factor is shown on the left axis and the corresponding redshift on the right

axis. Time is measured from today. Different curves correspond to different

assumed values of the density parameters Ωi. Each curve has the same linear

term but a different quadratic (acceleration) term.

In the equation for the proper distance,

d(t0) =
cz

H0

(

1− 1+q0

2
z

)

.

the leading term is the Hubble law linear in z and the second

term gives a correction one order higher in z.

Measurements at large enough z test correction

terms to the linear Hubble law (see Fig. 17.12).



17.14. THE DECELERATION PARAMETER 763

17.14.1 Deceleration and Density Parameters

The deceleration parameter q0 is related to the density param-

eters Ωi through

q0 =
Ωm

2
+Ωr−ΩΛ.

In a dust-only universe Ωr = ΩΛ = 0 and

q0 =
Ωm

2
(dust only).

For a flat universe with radiation, matter, and vacuum energy,

Ω = Ωr +Ωm+ΩΛ = 1 (flat universe),

which requires that

q0 =
3
2Ωm+2Ωr−1 (flat universe).

Since Ωm and Ωr are non-negative,

q0 =
Ωm

2
+Ωr−ΩΛ.

implies that a negative q0 (acceleration of the expansion) is

possible only if there is a non-zero vacuum energy density.

For the measured density parameters, the deceler-

ation parameter for the present Universe is nega-

tive,

q0 ≃
Ωm

2
−ΩΛ ≃−0.55,

and the expansion is currently accelerating.
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Some quadratic deviations from the Hubble law for different

combinations of density parameters are illustrated in the figure

above.
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Figure 17.13: Different choices of matter, radiation, and vacuum energy

densities giving the same deceleration parameter. Curves all agree near the

present time to second order, but have very different long-time behaviors.

17.14.2 Deceleration and Cosmology

Figure 17.13 illustrates that H0 and q0 determine the behavior

of the Universe only near the present time.

• The curves have the same H0 and q0 = 0, but different

mixtures of matter, radiation, and vacuum energy.

• Within the gray box the curves are essentially indistin-

guishable but for z≥ 1 they are very different.

• For example, the curves predict ages of the Universe (in-

tercepts with lower axis) differing by a factor of ∼ 2.
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Until recently the primary quest in cosmology was to determine

with precision

• the Hubble constant H0 and

• the deceleration parameter q0.

Acquisition of precise cosmology data through

• The study of high-redshift Type Ia supernovae and

• Detailed analysis of fluctuations in the cosmic microwave

background radiation

has changed that:

Cosmological data now constrain a broader range

of parameters than just H0 and q0, as we discuss in

later chapters.
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17.15 Problems with Newtonian Cosmology

We have made some headway in understanding cosmology us-

ing Newtonian gravitational concepts. However, a Newtonian

approach leads to problems and inconsistencies. For example,

1. At large distance the expansion implies recessional veloc-

ities v > c. How are we to interpret this?

2. Newtonian gravity acts instantaneously but signals obey

v≤ c, so there should be a delay in the action of gravity.

3. In the Newtonian picture we had

• a uniform, finite, isotropic sphere expanding into

nothing, which causes conceptual problems in inter-

preting the expansion.

• Alternatively, if the sphere is of infinite extent, there

are formal difficulties with even defining a potential.

4. The radius of gravitational curvature appears to be com-

parable to the actual “radius” of the known Universe, un-

dermining the validity of Newtonian gravitation.

5. The mass–energy of the Universe receives a large contri-

bution from dark energy. How do we deal with that?

These and other difficulties suggest that we need a

better theory of gravity to describe cosmologies of

expanding universes. We know of such a theory!
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Chapter 18

Friedmann Cosmologies

At the end of the last chapter we motivated the necessity of a

covariant theory of gravity to describe cosmology.

• Let us now consider solutions of the Einstein equations

that may be relevant for describing the large-scale struc-

ture of the Universe and its time evolution.

• To do so, we must first make a choice for the form of the

spacetime metric governing our Universe.

769
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18.1 The Cosmological Principle

Possible forms for the metric of spacetime are strongly con-

strained by the cosmological principle:

The Universe on large scales is homogeneous (no

preferred place) and isotropic (no preferred direc-

tion).

• This implies a proper time such that at any instant the 3D

spatial line element of the Universe,

dℓ2 = gi jdx1dx j (i, j = 1,2,3)

(where gi j is the spatial part of the metric tensor) is the

same in all places and all directions, with

ds2 =−dt2+a(t)2dℓ2

=−dt2+a(t)2gi jdxidx j.

• The scale parameter a(t) describes expansion or contrac-

tion of the spatial metric.

• Cosmological principle → no reason for time to pass at

different rates for different locations in an isotropic and

homogeneous Universe.

• If time depended on coordinates, measurement of time

could distinguish one place from another (contradiction).

• Thus the time term is simply dt, and not a more compli-

cated expression as in the Schwarzschild metric.
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18.1.1 Cosmological Proper Time

A global time has meaning if specific requirements are met.

• A metric embodying the cosmological principle meets

those requirements.

• Then a global time termed the cosmological proper time or

cosmic time can be introduced by a foliation of spacetime

in terms of a sequence of non-intersecting spacelike 3D

surfaces, as illustrated in the figure above.

• We assume that all galaxies lie on such a hypersurface

such that the surface of simultaneity for the Lorentz frame

of each galaxy coincides locally with the hypersurface.

Thus a hypersurface contains the smoothly-meshed

Lorentz frames of all galaxies, with the 4-velocity

of each galaxy orthogonal to the local hypersur-

face.
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This series of hypersurfaces may be labeled by a parameter

that can be viewed as a global cosmic time for all galaxies on

the hypersurface,

• but only if the space is homogeneous and isotropic,

• which implies further that spatial curvature is constant.

Operationally, cosmic time is the time

• measured by any observer who sees the Uni-

verse expanding uniformly around her.

• Such an observer is said to be a

– comoving observer or a

– fundamental observer.

All frames are equally valid but the Universe is

particularly simple when viewed from comoving

frames.
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Thus, we must investigate 3D curved manifolds

• that are both homogeneous and isotropic, and

• parameterized by a cosmic time.

Let’s first consider this question in two dimen-

sions, where visualization is easier, and then gen-

eralize to three spatial dimensions.



774 CHAPTER 18. FRIEDMANN COSMOLOGIES

Open
Flat Closed

Figure 18.1: Isotropic, homogeneous 2-dimensional spaces.

18.2 Homogeneous and Isotropic 2D Spaces

In 2D there are three independent possibilities for homoge-

neous, isotropic spaces:

1. Flat euclidean space.

2. A sphere of constant (positive) curvature.

3. An hyperboloid of constant (negative) curvature.

These three possibilities are illustrated in Fig. 18.1.

Constant negative curvature surfaces can’t be fully

embedded in 3D euclidean space. The saddle-like

open surface only approximates constant negative

curvature near its center.

• In each case the corresponding space has neither a special

point nor a special direction.

• Thus, these are 2D spaces with metrics that are consistent

with the cosmological principle.
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Let’s examine the 2-sphere as a representative example.

• We are used to thinking of 2-spheres in terms of a 2D sur-

face embedded in a 3D space.

• But a metric defines intrinsic properties of a manifold that

should be independent of any additional embedding di-

mensions (recall Gaussian curvature).

• Therefore, it should be possible to express the metric of

the 2-sphere in terms of only two coordinates.

From

x2+ y2+ z2 = S2,

we may deduce that

dz2 =
(xdx+ ydy)2

S2− x2− y2

• Thus, we may write the metric for the 2-sphere in the form

dℓ2 = dx2 +dy2+dz2

= dx2 +dy2+
(xdx+ ydy)2

S2− x2− y2

• This metric describes distances on a 2D surface and de-

pends on only two coordinates (S is a constant).

Distances may be specified entirely by coordinates

intrinsic to the 2D surface, independent of 3rd em-

bedding dimension.
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18.3 Homogeneous and Isotropic 3D Spaces

Let us now generalize the discussion of the preceding section.

• Our spacetime appears to have three rather than two spa-

tial dimensions.

• Thus we consider the embedding of 3D spaces in four Eu-

clidean dimensions.

Mathematically this will be very similar to the 2D case just

considered.
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18.3.1 Constant Positive Curvature

For a 3-sphere the generalization is obvious:

x2+ y2+ z2+w2 = S2,

where w is now a fourth dimension.

• The metric of the 3-sphere is independent of the embed-

ding and expressible in terms of only 3 of the coordinates.

• By analogy with the 2-sphere, we may write

dℓ2 = dx2 +dy2+dz2+
(xdx+ ydy+ zdz)2

1− x2− y2− z2
,

where we’ve specialized to a unit 3-sphere (S= 1) because

the overall spatial scale will be set by a(t).

Introduce spherical polar coordinates (r,θ ,ϕ) through

x = r sinθ cosϕ y = r sinθ sinϕ z = r cosθ .

• The metric of the unit 3-sphere then takes the form

dℓ2 =
dr2

1− r2
+ r2dθ 2+ r2 sin2 θdϕ2

=
dr2

1− r2
+ r2dΩ2

where we have defined

dΩ2 ≡ dθ 2+ sin2 θdϕ2
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The 3-sphere, by analogy with the 2-sphere,

• Corresponds to a homogeneous, isotropic space that is

closed and bounded.

• It has great circles as geodesics.

• It is a space of constant positive curvature.

• An ant dropped onto the surface of an otherwise feature-

less 3-sphere would find that

– No point or direction appears any different from any

other (homogeneous and isotropic).

– The shortest distance between any two points corre-

sponds to a segment of a great circle.

– A sufficiently long journey in a fixed direction would

return one to the starting point.

From these observations the ant concludes that its

universe has no boundary but that its total volume

is finite.
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18.3.2 Constant Negative Curvature

The generalization of the 2-hyperboloid to three dimensions is

given by

x2 + y2+ z2+w2 =−S2.

By a similar argument as above, the metric in this case can be

expressed as

dℓ2 =
dr2

1+ r2
+ r2dΩ2,

• This describes a space that is homogeneous and isotropic,

but now unbounded and infinite.

• It has constant negative curvature, with hyperbolas as

geodesics.

• Our hypothetical ant explorer would find

– No preferred direction or location.

– The shortest distances between any two points would

now be segments of hyperbolas.

– The ant would never return to the starting point by

continuing an infinite distance in a fixed direction.

– The ant would conclude that the volume of the space

is infinite.
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18.3.3 Zero Curvature

Finally, for a Euclidean 3-space the metric may be expressed in

the form

dℓ2 = dr2+ r2dΩ2,

This space

• is homogeneous and isotropic, and

• is of infinite extent, with straight lines as geodesics.

• Obviously, this space corresponds to the limit of no spatial

curvature.

• The volume is infinite, and a straight path in one direction

will never return to the starting point.
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18.4 The Robertson–Walker Metric

Combining preceding results, the most general 3D spatial met-

ric that incorporates isotropy and homogeneity is

dℓ2 =
dr2

1− kr2
+ r2dΩ2,

where the parameter k determines the nature of the curvature:

k =







+1 hypersphere of positive curvature

0 flat Euclidean space

−1 hyperboloid of negative curvature

The parameter k can have other normalizations but

one is free to rescale equations so that it takes only

these values.

Finally, combining

dℓ2 =
dr2

1− kr2
+ r2dΩ2 ds2 =−dt2+a(t)2dℓ2

we arrive at the most general spacetime metric consistent with

homogeneity and isotropy (cosmological principle),

ds2 =−dt2 +a(t)2

(
dr2

1− kr2
+ r2dθ 2+ r2 sin2 θdϕ2

)

,

where k = 0,±1.
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The metric specified by the line element

ds2 =−dt2 +a(t)2

(
dr2

1− kr2
+ r2dθ 2+ r2 sin2 θdϕ2

)

,

is commonly called the Robertson–Walker (RW) metric.

• It is the starting point for any description of our Universe

on scales sufficiently large that the cosmological principle

applies.

• The time variable t appearing in the Robertson–Walker

metric is the time that would be measured by an observer

who sees uniform expansion of the surrounding Universe.

The Robertson–Walker time t is termed the cosmo-

logical proper time or the cosmic time.
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In matrix form the Robertson–Walker line element is

ds2 = gµνdxµdxν

= (dt dr dθ dϕ)











−1 0 0 0

0
a2

1− kr2
0 0

0 0 a2r2 0

0 0 0 a2r2 sin2 θ




















dt

dr

dθ

dϕ










,

with nonvanishing covariant metric tensor components

g00 =−1 g11 =
a2

1− kr2
g22 = a2r2 g33 = a2r2 sin2 θ ,

and corresponding contravariant components

g00 =−1 g11 =
1− kr2

a2
g22 =

1

a2r2
g33 =

1

a2r2 sin2 θ
.

The metric is generally a rank-2 symmetric tensor with

• 10 independent components.

• The symmetries assumed in the RW metric have reduced

this to only two independent parameters:

– the scale factor a(t) and

– the curvature parameter k.

The cosmological principle has greatly simplified

our description of cosmology.



784 CHAPTER 18. FRIEDMANN COSMOLOGIES

The RW metric may be expressed in an alternative form by

• introducing 4D polar angles (Problem)

w = cos χ x = sin χ sinθ cosϕ

y = sin χ sinθ sinϕ z = sin χ cosθ

into the equations for spherical geometry, and

• these variables with the substitutions

w→ iw χ →−iχ S→ iS,

into the equations for hyperbolic geometry,

• and choosing S = 1 in both cases.

Then the RW metric may be written as

ds2 =−dt2+a(t)2







dχ2+ sin2 χ(dθ 2+ sin2 θdϕ2) (k =+1)

dχ2+ χ2(dθ 2+ sin2 θdϕ2) (k = 0)

dχ2+ sinh2 χ(dθ 2+ sin2 θdϕ2) (k =−1)

which is related to

ds2 =−dt2 +a(t)2

(
dr2

1− kr2
+ r2dθ 2+ r2 sin2 θdϕ2

)

,

by the change of variables

r =







sin χ (k =+1)

χ (k = 0)

sinh χ (k =−1)
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Notice that

• The derivation of the Robertson–Walker metric was purely

geometrical,

• subject to the constraints of isotropy and homogeneity.

• No dynamical considerations enter explicitly into its for-

mulation.

• Dynamics will come later,

– from the Einstein field equations,

– with a metric of the RW form

– which must be solved for the time dependence of the

scale factor a(t).
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R(t)

Figure 18.2: Hubble expansion in two spatial dimensions.

18.5 Comoving Coordinates

Homogeneous, isotropic expansion can be exemplified in 2D

by placing dots on a balloon and blowing it up (Fig. 18.2).

• The spherical coordinates (θ ,ϕ) are unchanged but dis-

tance between points changes with the scale factor R(t).

• Example: 2 positions on the surface of the Earth.

– Expand the size of the globe by a factor of 2.

– Distance between 1 and 2 doubles,

but the coordinates of the two cities are unchanged.

• Termed comoving coordinates or a comoving frame.

• Observer attached to a comoving coordinate sees all other

points recede and sees a homogeneous, isotropic universe.

• The receding points maintain their comoving coordinates.

• An observer not comoving does not see isotropy.
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The balloon analogy is useful, but one must guard against mis-

conceptions that it can generate.

• First, the surface that is expanding is 2D.

– The “center” of the balloon is in the third dimension.

– It is not part of the 2D surface, which has no center.

• Second, the Universe is not being expanded by a pressure,

nor is the balloon.

– The expansion of the balloon is generated by a differ-

ence in pressure.

– But in a homogeneous, isotropic universe there can

be no pressure differences on global scales.

– Furthermore, because pressure couples to gravity in

the Einstein equation,

– addition of (positive) pressure to the Universe would

slow, not increase, the expansion rate.

• Finally, if the dots on the balloon represent galaxies, they

too will expand.

• But galaxies don’t partake of the general Hubble expan-

sion because they are gravitationally bound.

A better analogy is to glue solid objects to the sur-

face of the balloon to represent galaxies, so that

they don’t expand when the balloon expands.
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If we now generalize this 2D comoving-dots-on-a-balloon idea

to 4D spacetime,

• The coordinates (r,θ ,ϕ) or (χ ,θ ,ϕ) of the RW metric are

comoving coordinates.

• In the RW metric, as the Universe expands

– the galaxies keep the same comoving coordinates

(r,θ ,ϕ) or (χ ,θ ,ϕ), and

– only the RW scale factor a(t) changes with time.

• Just as in the 2D analogy, the galaxies recede from us but,

– if we are comoving observers the receding galaxies

maintain their comoving coordinates and

– the recession is described entirely by the time depen-

dence of the scale factor a(t).

Peculiar velocities change the comoving coordi-

nates, but these are small on the large scales where

the RW metric is valid.
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18.6 Proper Distances

Let’s consider measurement of distances in the RW metric.

• Measuring distances on a cosmological scale, or even

defining them, is a nontrivial task

• in a spacetime that is expanding and possibly curved.

• As a consequence, we shall discuss several notions of dis-

tance before we are finished.

The first is suggested by the diagram above, where

• we imagine cosmic time to be held fixed and

• use the metric to compute the distance be-

tween galaxies on the spacelike hypersurface

corresponding to that fixed time.
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• We take one galaxy to be at comoving coordinates

(r,θ ,ϕ) = (0,0,0) and the other to be at (r,0,0), at fixed

time t.

• Thus, the portions of the line element depending on time

and the angles θ and ϕ make no contribution and we ob-

tain from

ds2 =−dt2+a(t)2

(
dr2

1− kr2
+ r2dθ 2+ r2 sin2 θdϕ2

)

−→ ds2 = a(t)2

(
dr2

1− kr2

)

the proper distance

ℓ= a(t)
∫ r

0

dr√
1− kr2

.
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Let’s evaluate this for the three curvature parameter values.

1. Flat Euclidean space (k = 0): the integral is trivial and

ℓ= a(t)

∫ r

0

dr√
1− kr2

−→ r =
ℓ

a

Thus, r increases without limit as ℓ increases at fixed a(t).

• This implies a universe with no boundary or curva-

ture, that is of infinite extent.

• Such a universe is said to be flat.

2. Positive curvature (k =+1): Solution gives

ℓ= a

∫ r

0

dr√
1− r2

= asin−1 r −→ r = sin

(
ℓ

a

)

.

In a universe of constant positive spatial curvature, r re-

turns to the origin whenever ℓ= πa and

• this space has no boundary but is of finite volume.

• Such a universe is said to be closed.

3. Negative curvature (k =−1): Solution gives

ℓ= a

∫ r

0

dr√
1+ r2

= asinh−1 r −→ r = sinh

(
ℓ

a

)

.

Therefore, r grows without limit in a universe of constant

negative curvature as ℓ is increased at fixed a(t).

• This space has no boundary and has infinite extent.

• Such a universe is said to be open.
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The proper distance

ℓ= a(t)

∫ r

0

dr√
1− kr2

.

• is the “rulers end–to–end” distance that would be

• measured by a set of observers with rulers distributed be-

tween the two objects at fixed cosmic time.

• This notion of distance is conceptually well-grounded.

• However, it is impractical to implement in an astrophysics

context where instead

• essentially all distance information comes from data car-

ried by signals propagating on null geodesics (light).

Therefore, we shall later have to consider more ex-

tensively

• the meaning of distance and

• how practically to specify and measure it

in observational astronomy.
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18.7 The Hubble Law and the RW Metric

For a galaxy participating in the Hubble flow

• r is a comoving coordinate and so is constant in time.

• Therefore, illustrating for k = 0,

ℓ= a(t)
∫ r

0

dr√
1− kr2

→ ℓ̇= ȧ(t)
∫ r

0
dr =

ȧ(t)

a(t)
ℓ,

where ℓ= a(t)r was used.

• This may be recognized as a generalized form of Hubble’s

law, with

v≡ ℓ̇= Hℓ H =
ȧ(t)

a(t)
.

Similar results follow from the equations for positive and neg-

ative curvature at small r.

• The RW metric, and the cosmological prin-

ciple upon which it rests, imply the Hubble

law.

• Conversely, observation of a Hubble law is an

indicator of homogeneous, isotropic space-

time.

Hubble law ←→ RW metric.
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18.8 Particle and Event Horizons

An important consequence of

• the metric structure of spacetime and

• the finite speed of light

is the possibility that regions of spacetime may be intrinsically

unknowable for a fixed observer,

• either at the present time, or

• perhaps for all time.

Such limitations are termed horizons. We shall distinguish two

related concepts:

• A particle horizon

• An event horizon.

The former is of particular importance in cosmol-

ogy and one often finds there the generic term

“horizon” used to mean “particle horizon”.
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18.8.1 Particle Horizons in the RW Metric

A particle horizon is

• the largest distance from which a light signal could have

reached us at time t

• if it were emitted at time t = 0.

Imagine a spherical light wave emitted by us at the time of the

big bang. (Anything is possible in a thought experiment!)

• Over time it sweeps out over more and more galaxies.

• By symmetry, at the same instant that those galaxies can

see us we can see them.

So this spherical light front divides the galaxies into two

groups:

1. Those inside our particle horizon, for which their light has

had time to reach us since the big bang.

2. Those outside our particle horizon, for which their light

has not yet had time to reach us since the bang.
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In the RW metric, light travels along a geodesic

ds2 = 0.

Choosing θ = ϕ = 0, and inserting ds2 = dθ = dϕ = 0 in

ds2 =−dt2+a(t)2

(
dr2

1− kr2
+ r2dθ 2+ r2 sin2 θdϕ2

)

we have

dt =
adr√

1− kr2
.

Integrating both sides gives

∫ t

0

dt ′

a(t ′)
=
∫ rp

0

dr√
1− kr2

,

where rp is the comoving distance to the particle horizon. The

proper distance to the particle horizon is

ℓh = a(t)

∫ rp

0

dr√
1− kr2

.

Combining the previous two expressions we obtain

ℓh = a(t)

∫ t

0

dt ′

a(t ′)
.

• Whether a particle horizon exists depends on the behavior

of this integral.

• Convergence at the lower limit is not ensured because the

scale factor in the denominator often tends to zero at the

lower limit in RW cosmologies.
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18.8.2 Example of Particle Horizon: Flat, Static Universe

As a simple example of a particle horizon, assume a flat, static

Universe.

• Then the RW metric reduces to the Minkowski metric ex-

pressed in spherical coordinates with a equal to a constant

and

ℓh = a(t)
∫ t0

0

dt ′

a(t ′)
−→ ℓh = a

ct0

a
= ct0.

• This is just the distance light would travel in a time t0 if

the Universe were flat and not expanding.

Later we will see that this result can be modified

substantially by expansion of the Universe.
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18.8.3 Conformal Time and Horizons

• It is sometimes useful to introduce a new time coordinate

η called the conformal time through

dt = a(t)dη.

• The flat Robertson–Walker metric then may be expressed

as

ds2 =−dt2 +a2(dr2+ r2dθ 2+ r2 sin2 θdϕ2)

=−a2dη2+a2(dr2+ r2dθ 2+ r2 sin2 θdϕ2)

= a2(−dη2 +dr2+ r2dθ 2+ r2 sin2 θdϕ2),

• This is the same form as the metric for a uniformly ex-

panding Minkowski space.

• For radial light rays dθ = dϕ = ds = 0, so this becomes

a(t)2(dη2 +dr2) = 0 −→ dη =±dr.

• Thus, in the η–r plane light rays move at 45 degree angles

at all times, which simplifies discussion of horizon and

causality issues.
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The transformation to conformal time is a special case of a con-

formal transformation.

• A conformal transformation is a transformation on the

metric of the form

gµν → f gµν ,

where f is an arbitrary spacetime function called the con-

formal factor.

• Generally, if gµν is a solution of the Einstein equation,

f gµν is not, except for the trivial case where f is a con-

stant.

• Thus, a conformal transformation is not a coordinate

change; it gives a new metric.

Null geodesics are conformally invariant. Thus

conformal transformations

• Give a new metric not equivalent to the orig-

inal metric, but

• the new metric preserves the lightcone struc-

ture of the original metric.

As a result, conformal transformations are often

useful in analyzing the causal structure of a space-

time.
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Figure 18.3: Particle horizons in conformal time.

Fig. 18.3 displays particle horizons plotted in conformal time.

• The current horizon at the present conformal time,

η0 =

∫ t0

0

dt

a(t)
,

is indicated.

• Clearly the horizon was smaller at the earlier time η1, and

will be larger at the future time η2.

The k = 0 Robertson–Walker universe is related to Minkowski

spacetime by a conformal transformation.

• It is called “flat” for this reason, even though its spacetime

is not flat (spacelike slices of its spacetime are flat).

• The RW metric is said to be conformally flat for all k,

meaning that, for all k, transformations exist that permit

the metric to be cast in the Minkowski form.
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The lower limit of zero on the integral for the horizon,

ℓh = a(t)
∫ t

0

dt ′

a(t ′)
,

assumes that we can see all the way back to the big bang.

• Practically, the earliest visible time is later because of the

opacity of the early Universe to various probes.

• The Universe was opaque to photons until about 400,000

years after the big bang.

• Thus photons from earlier times are not directly observ-

able, even if light has had time to reach us.

• The earliest photons that can be seen are from the last

scattering surface illustrated in the figure above.

Neutrinos and gravitational waves could be seen

from earlier times, as will be discussed later.
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18.8.4 Event Horizons

An event horizon is the most distant present event from which

a world line could ever reach our world line.

• The comoving distance re to an event horizon can be de-

fined through the integral

∫ tmax

t0

dt ′

a(t ′)
=
∫ re

0

dr√
1− kr2

.

• Then the proper distance to the event horizon is

ℓe(t) = a(t)
∫ re

0

dr√
1− kr2

= a(t)
∫ tmax

t0

dt ′

a(t ′)
,

which differs from the expression for the particle horizon

ℓh only in the limits of the integral.

• As for particle horizons, whether an event horizon exists

depends on the behavior of the integral on the right side of

ℓe(t) = a(t)
∫ tmax

t0

dt ′

a(t ′)
,

If this integral converges as tmax→ ∞ (which de-

pends on the detailed behavior of a(t) in this limit),

an event horizon exists.
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Some metrics have event horizons and some don’t. The ex-

panding balloon analogy illustrates this qualitatively.

• Suppose inhabitants of galaxies on the surface of the bal-

loon can exchange signals of constant local speed.

• Physical distance between galaxies increases with time, so

exchanged signals must cover a greater distance in going

from one galaxy to the next than in static spacetime.

• If space expands fast enough, the distance to a galaxy

– may increase so rapidly that

– the signal will never reach that galaxy.

• Then a spherical radius may be imagined centered on each

galaxy that divides other galaxies into two groups:

1. Those that have

– already been reached by a signal sent from the

galaxy, or

– will be reached by the signal at some point in the

finite future.

2. Those galaxies that will never be reached by the sig-

nal, even after infinite time has elapsed.

If this radius exists, it defines an event horizon for

the observer, for by symmetry no signals from be-

yond this radius will ever reach the observer.
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If such event horizons exist, they have some similarity to event

horizons associated with black holes.

• One important difference is that cosmological event hori-

zons are defined relative to an observer.

• Each observer in a universe containing event horizons has

her own event horizon.

• The event horizon associated with a Schwarzschild or Kerr

black hole, on the other hand, is associated with a partic-

ular region of spacetime.
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Particle horizons and event horizons are defined by the same

integrals, but with different limits.

• A particle horizon represents the largest distance from

which light could have reached us today, if it had traveled

since the beginning of time.

• An event horizon is the largest distance from which light

emitted today could reach us at any future time.

• Thus particle and event horizons are distinct:

– Cosmological event horizons, as for black hole event

horizons, separate regions of spacetime according to

the causal properties of the spacetime.

– Particle horizons separate spacetime events according

to whether objects in the spacetime can be seen by a

particular observer at a particular time and place.

• Hence the meaning of particle horizons is similar to our

normal meaning of horizons on the Earth.

• Horizons on the Earth also illustrate clearly the depen-

dence on location of the observer.
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Figure 18.4: Schematic representation of particle and event horizons in cos-

mology. The maximum possible time coordinate is tmax.

The relationship between particle and event horizons is illus-

trated in Fig. 18.4. From this we see that an event horizon, if it

exists, may be interpreted as the ultimate particle horizon.
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18.9 The Einstein Equations for the RW Metric

Let’s now solve the Einstein equations that may be relevant for

a description of our Universe. A simple set of such solutions

• Assumes the content of the Universe to be a perfect fluid

characterized by

– an energy density ε and

– a pressure P.

• Assumes this perfect fluid to be distributed

– homogeneously and

– isotropically,

so that the Robertson–Walker metric is valid.

The corresponding solutions of the Einstein equa-

tions are termed Friedmann Cosmologies.
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18.9.1 Metric and Stress–Energy Tensor

The nonvanishing covariant metric tensor components are

g00 =−1 g11 =
a2

1− kr2
g22 = a2r2 g33 = a2r2 sin2 θ ,

and corresponding contravariant components are

g00 =−1 g11 =
1− kr2

a2
g22 =

1

a2r2
g33 =

1

a2r2 sin2 θ
.

For a perfect fluid the most general form of the stress–energy

tensor is

Tµν = (ε +P)uµuν +Pgµν ,

and for a comoving observer the fluid elements are at rest, so

uµ = (1, 0, 0, 0)

Thus from the 4-velocity and the metric, the non-vanishing co-

variant components of the stress–energy tensor are

T00 = ε T11 =
Pa2

1− kr2
T22 = Pr2a2 T33 = Pr2a2 sin2 θ .
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18.9.2 The Connection Coefficients

The required connection coefficients are given by inserting the

metric tensor components

g00 =−1 g11 =
a2

1− kr2
g22 = a2r2 g33 = a2r2 sin2 θ

g00 =−1 g11 =
1− kr2

a2
g22 =

1

a2r2
g33 =

1

a2r2 sin2 θ
into

Γσ
λ µ = 1

2gνσ

(
∂gµν

∂xλ
+

∂gλν

∂xµ
−

∂gµλ

∂xν

)

For example

Γ2
12 =

1
2g02

(
∂g20

∂x1
+

∂g10

∂x2
− ∂g21

∂x0

)

(ν = 0 term)

+1
2g12

(
∂g21

∂x1
+

∂g11

∂x2
− ∂g21

∂x1

)

(ν = 1 term)

+1
2g22

(
∂g22

∂x1
+

∂g12

∂x2
− ∂g21

∂x2

)

(ν = 2 term)

+1
2g32

(
∂g23

∂x1
+

∂g13

∂x2
− ∂g21

∂x3

)

(ν = 3 term)

= 1
2g22

(
∂g22

∂x1
+

∂g12

∂x2
+

∂g21

∂x2

)

= 1
2g22

(
∂g22

∂x1

)

=
1

2

( −1

r2a2

)
∂

∂r

(

−r2a2
)

=
1

r
.
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Table 18.1: Non-vanishing Friedmann connection coefficients

Γ0
11 = aȧ/(1− kr2) Γ0

22 = r2aȧ Γ0
33 = r2 sin2 θaȧ

Γ1
01 = ȧ/a Γ1

11 = kr/(1− kr2) Γ1
22 =−r(1− kr2)

Γ1
33 =−r(1− kr2)sin2 θ Γ2

02 = ȧ/a Γ2
12 = 1/r

Γ2
33 =−sinθ cosθ Γ3

03 = ȧ/a Γ3
13 = 1/r Γ3

23 = cotθ

The coefficients are symmetric in the lower indices: Γµ
αβ = Γµ

βα

The nonvanishing connections coefficients are summarized in

Table 18.1.
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18.9.3 The Ricci Tensor and Ricci Scalar

The Ricci tensor may now be constructed from the connection

coefficients

Rµν = Γλ
µν ,λ −Γλ

µλ ,ν +Γλ
µνΓσ

λσ −Γσ
µλ Γλ

νσ .

Utilizing the connection coefficients from Table 18.1, the non-

vanishing components of the Ricci tensor are

R00 =−
3ä

a
R11 =

aä+2ȧ2+2k

1− kr2

R22 = r2(aä+2ȧ2+2k) R33 = R22 sin2 θ ,

and the Ricci scalar is obtained by contraction with the metric

tensor,

R = gµνRµν =
−6(aä+ ȧ2+ k)

a2
.
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18.9.4 The Friedmann Equations

We now have the necessary ingredients to construct the Einstein

equations

Rµν − 1
2gµνR = 8πGTµν .

From the 00 and 11 components, utilizing the previous results

for Rµν , R, gµν and Tµν ,

H2 ≡
(

ȧ

a

)2

=

(
8πG

3

)

ε− k

a2

2ä

a
+

ȧ2

a2
+

k

a2
=−8πGP,

where H = ȧ/a has been used.

• These are termed the Friedmann equations.

• They represent the solution of the covariant gravitational

equations with the conditions that we have imposed.

(The 22 and 33 components don’t give any new results).



18.9. THE EINSTEIN EQUATIONS FOR THE RW METRIC 813

18.9.5 Static Solutions and the Cosmological Term

Let’s first ask if the Friedmann equations have a static solution

(solution with a constant scale factor).

• Setting ä = ȧ = 0, the Friedmann equations become

3k = 8πGεa2 k =−8πGPa2,

from which we find that

k

a2
=

8πG

3
ε =−8πGP.

• But from this we conclude that

1. For the present energy density ε to be positive, we

must have k =+1 (positive curvature).

2. If ε > 0, the pressure must be negative, P < 0 !

• Thus, we find that the Friedmann universe cannot be

static: it is unstable against either expansion or contrac-

tion.

• When Einstein first realized this, Hubble had not yet dis-

covered the expansion of the Universe and

• the natural assumption was that a correct cosmology

should give a static solution.

Thus, Einstein was led to make what he reportedly

thought was the greatest mistake of his career.
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Einstein modified the field equations by

• adding a term Λgµν to the left side,

Rµν − 1
2
gµνR+Λgµν = 8πGTµν .

where the constant Λ is called the cosmological constant.

• Unlike the other terms on the left side, the Λ term does not

vanish in the limit of vanishing mass and curvature.

• The cosmological term Λgµν

– is a rank-2 tensor since Λ is a scalar, and

– it has vanishing covariant divergence since

∇αgµν = gµν ;α = 0,

Thus it satisfies all the properties that we expect for a term

in the Einstein equations.

In the modified Friedmann equations

• Positive Λ gives a repulsion that counters gravity and

• Negative Λ gives an attraction that adds to gravity.

By proper adjustment of Λ, it is then possible to

obtain a static Friedmann universe (for a time; the

solution was shown later to be unstable).
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When Hubble discovered the expansion of the Universe, Ein-

stein realized the opportunity that had been missed.

• Had he more confidence in his original field equations, he

could have predicted that the Universe had to be either

expanding or contracting.

• Once Hubble demonstrated that the Universe was expand-

ing, Einstein discarded the cosmological term.

• But in modern cosmology there may still be a need for

the cosmological term, although for reasons very different

from Einstein’s original motivation.

• Because the data require Λ to be very small if it exists, it

can play a role only over volumes of space that are cosmo-

logical in dimension; this is why it is commonly termed

the cosmological constant.

• Because it is equivalent to an energy density associated

with the ground state of the Universe, Λ is also often

termed the vacuum energy density.
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Because of the interpretation of Λ as a vacuum energy density,

it is convenient in modern applications to absorb the effect of

the cosmological constant on the left side of

Rµν − 1
2gµνR+Λgµν = 8πGTµν .

into the terms arising from the stress–energy tensor on the right

side.

Therefore, in the following development we shall

• Omit the explicit Λ terms from the left sides

of the Friedmann equations and

• Include the possibility of a finite vacuum en-

ergy by a redefinition of the stress energy ten-

sor Tµν on the right side.
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18.10 Resolution of Difficulties with Newtonian View

Finally, let us comment that the covariant theory of gravity im-

plies conceptual differences relative to Newtonian cosmology.

1. Expanding space in general relativity alleviates inconsis-

tencies associated with apparent recessional velocities that

would exceed the speed of light at large distances.

2. Since the “recessional velocities” are generated by the

expansion of space itself, not by motion within space,

there is no conceptual difficulty with recessional veloci-

ties larger than light velocity.

3. Because of the finite speed of (massless) gravitons implied

by Lorentz invariance, gravity is no longer felt instanta-

neously at a distance. It propagates at the speed of light.

4. In general relativity spacetime is generated by matter (and

energy and pressure), so the idea of a boundary between a

the universe and an empty space “outside” does not arise.

5. We shall see that the cosmological constant term suggests

a way to deal with dark energy.

Therefore, general relativity solves, at least in

principle, several conceptual difficulties with the

Newtonian approach to cosmology, in addition to

providing a more solid quantitative basis.
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Chapter 19

Evolution of the Universe

In the preceding Chapter we demonstrated that the Friedmann

equations correspond to the Einstein equations when the met-

ric takes the Robertson–Walker form. In this chapter we con-

sider solutions of the Friedmann equations and the history of

the Universe that those solutions imply.

819
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19.1 Friedmann Cosmologies

Let us return to an examination of the Friedmann equations and

the cosmology that they imply.

• The Friedmann equations

H2 ≡
(

ȧ

a

)2

=

(
8πG

3

)

ε− k

a2

2ä

a
+

ȧ2

a2
+

k

a2
=−8πGP.

describe the evolution of perfect-fluid universes having

Robertson–Walker metrics,

• when they are supplemented by an appropriate equation

of state.

However, it is convenient to express these equa-

tions in a different form before proceeding.
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19.1.1 The Friedmann Equations

Consider the Friedmann equations

H2 ≡
(

ȧ

a

)2

=

(
8πG

3

)

ε− k

a2

2ä

a
+

ȧ2

a2
+

k

a2
=−8πGP.

where a cosmological term is omitted because we shall include

it by a modification of the density.

• From the first of these equations we may write

ȧ2+ k =
8πG

3
εa2,

and differentiating with respect to time gives

2ȧä =
8πG

3

(

2εaȧ+ ε̇a2
)

.

• Subtracting the Friedmann equations and solving for ä,

2ä =−8πG

3
a(ε +3P),

and using this to eliminate ä from

2ȧä =
8πG

3

(

2εaȧ+ ε̇a2
)

leads to

ε̇ +3(ε +P)
ȧ

a
= 0 ←→ ρ̇

ρ
+3

(

1+
P

ρ

)
ȧ

a
= 0

where ε = ρc2 = ρ in c = 1 units.
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The result

ε̇ +3(ε +P)
ȧ

a
= 0 ←→ ρ̇

ρ
+3

(

1+
P

ρ

)
ȧ

a
= 0

is in fact

• a continuity equation for the conservation of mass–energy

in the cosmic fluid,

• since it can also be derived from the requirement

T
µν

;ν = 0,

as shown in a Problem.

The equation

ε̇ +3(ε +P)
ȧ

a
= 0

or its equivalent form

ρ̇

ρ
+3

(

1+
P

ρ

)
ȧ

a
= 0

is called the fluid equation.
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Thus, we may solve for evolution of the Universe either by

• solving the two original Friedmann equations

(
ȧ

a

)2

=

(
8πG

3

)

ε− k

a2
and

2ä

a
+

ȧ2

a2
+

k

a2
=−8πGP

• or by solving the two equations

(
ȧ

a

)2

=
8πG

3
ε− k

a2

︸ ︷︷ ︸

Friedmann equation

and







ρ̇

ρ
+3

(

1+
P

ρ

)
ȧ

a
= 0

or

ε̇ +3(ε +P)
ȧ

a
= 0

︸ ︷︷ ︸

Fluid or continuity equation

But examination of these equations indicates that (if the integer

k is fixed at one of its three possible values)

• There are 3 unknowns: ρ (or ε), P, and the scale factor a.

• Thus, we require an additional equation.

• This is provided by an equation of state

P = P(ε) = P(ρ),

which relates the thermodynamical variables P and either

ε or ρ .
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Therefore, the behavior of the Friedmann universe can be de-

termined by simultaneous solution of the equations

(
ȧ

a

)2

=
8πG

3
ε− k

a2
and







ρ̇

ρ
+3

(

1+
P

ρ

)
ȧ

a
= 0

or

ε̇ +3(ε +P)
ȧ

a
= 0

supplemented by an equation of state,

P = P(ρ) = P(ε).

To proceed we must examine possible equations of

state for the Universe.
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19.1.2 Equations of State

Cosmology deals with very dilute gases.

• Hence we may expect the equations of state to be linear,

P = wε,

where w is a dimensionless constant.

• The adiabatic sound speed in a dilute gas is given by

c2
s =

dP

dρ
=

dP

dε
c2 = wc2.

Therefore,

– If w is not negative, cs =
√

wc,

– so we must require that w ≤ 1 if the sound speed is

not to exceed the speed of light.

Let us consider several examples of possible equa-

tions of state that satisfy the condition w ≤ 1 and

could be important in the evolution of the Uni-

verse.

Note: If w < 0 then cs is imaginary and distur-

bances don’t propagate as soundwaves but instead

decay exponentially.
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Example: Nonrelativistic, Low-Density Gas

A low-density, nonrelativistic gas obeys the ideal gas law

P =
ρkT

µ
,

where µ is the mean mass of gas molecules.

• For a nonrelativistic gas ε ∼ ρc2 and

P =
ρkT

µ
=

kT

µc2
ε = wε w≡ kT

µc2
≪ 1.

• Generally, nonrelativistic gases have

– large energy densities but

– low pressure.

For example, w≃ 10−12 for air molecules at room temperature.

For non-relativistic gases we shall assume an

equation of state P = 0, implying that w = 0.
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Example: Ultrarelativistic, Low-Density Gas

For a low-density ultrarelativistic gas the equation of state is

the familiar

P≡ wε = 1
3ε.

Therefore massless (photons, gravitons) or nearly massless par-

ticles (e.g., neutrinos)

• have equations of state with w≃ 1
3 , and

• they exert significant pressure in comparison with non-

relativistic gases.
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Example: Dark Energy and the Cosmological Constant

Using the earlier result for acceleration of the scale factor,

ä =−4πG

3
a(ε +3P) → ä =−4πG

3
aε(1+3w)

where P = wε has been used. Therefore,

• If w >−1
3

the acceleration ä is negative and the expansion

decelerates with time.

• If w <−1
3

then ä is positive and the expansion of the Uni-

verse accelerates.

• Any gas with w <−1
3

is termed dark energy.

• We shall also refer to dark energy as vacuum energy,

because one possible source of dark energy is quantum-

mechanical vacuum fluctuations.

As we shall now demonstrate,

1. A cosmological constant Λ in the Einstein

equation corresponds to a component of the

Universe with w =−1.

2. This represents a form of dark energy with

P =−ε .

3. This implies a gas having negative pressure if

the energy density is positive.
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The Einstein equation with cosmological constant can be writ-

ten as

Rµν − 1
2gµνR = 8πGTµν −Λgµν

= 8πG(Tµν − εΛgµν)

by utilizing the definition

εΛ ≡
Λ

8πG
.

Thus, addition of a cosmological constant Λ to

the Friedmann equations is equivalent to adding

a component with energy density εΛ to the fluid of

the Universe.

From the fluid equation applied to this component,

ε̇ +3(ε +P)
ȧ

a
= 0 → ε̇Λ =−3(εΛ +PΛ)

ȧ

a
.

• By hypothesis Λ is constant in time so εΛ is constant too,

requiring that ε̇Λ = 0.

• But from the preceding equation this is possible only if

PΛ =−εΛ.

Therefore, we obtain

P = wε w =−1

for the equation of state corresponding to a non-

zero cosmological constant.
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Although the cosmological constant is an example of dark en-

ergy, it is not the only possibility.

• Any gas having w <−1
3

will cause the Universe to accel-

erate, and hence qualifies as dark energy.

• Equations of state having

– positive energy density but

– negative pressure

are not unknown.

• For example, the tension in a stretched rubber band cor-

responds to a negative pressure since work must be done

to stretch the band.

• What is unusual is to find these properties in a dilute gas,

as is required for any source of dark energy.

Normal gases require work to compress, not to ex-

pand!

• At this stage we have strong evidence for the presence of

dark energy in the Universe, but we have no solid evidence

about its source.



19.2. EVOLUTION AND SCALING OF DENSITY COMPONENTS 831

19.2 Evolution and Scaling of Density Components

The preceding discussion of the equation of state permits a

compact formulation of the Friedmann equations.

• Assuming a set of independent components having density

parameters Ωi, the Friedmann equation

(
ȧ

a

)2

=
8πG

3
ρ− k

a2

may be expressed for a scale parameter a≡ a(t) as

ȧ2

a2
= H2

0 ∑
i

Ωi

(a0

a

)3(1+wi)− k

a2
,

where a0 is the current value of the scale parameter and

the equation of state for each component is given by

Pi = wiεi.

• This implies, by virtue of

ε̇ +3(ε +P)
ȧ

a
= 0,

that the energy density scales as

εi = εi(0)

(
a

a0

)−3(1+wi)

,

where εi(0) is the energy density of component i today,

a = a(t) is the scale factor at time t, and a0 is the scale

factor today.
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We may give a physical interpretation of the scaling of densities

for different components implied by

εi = εi(0)

(
a

a0

)−3(1+wi)

,

• For radiation (ultrarelativistic particles like photons hav-

ing negligible mass), w = 1
3

and energy density scales as

εr ≃
hν

V
=

hc

V λ
≃ a−4,

because the

– volume V scales as a3 and

– the wavelength λ scales as a.

• For nonrelativistic matter w = 0 and density scales as

εm = ρc2 =
mc2

V
≃ a−3.

• The difference in scaling for radiation dominated and

matter dominated universes is ultimately the additional

length-scale factor associated with the redshift of photon

wavelengths caused by the expansion.

• The vacuum energy (w = −1 in the simplest models) is

associated with “empty” spacetime itself.

• The vacuum energy density is not changed as new space is

created in the expansion of the Universe.

• Hence a w = −1 component has a density independent of

the scale factor.
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19.2.1 A Standard Model

If we assume the Universe to be composed of

1. A radiation component with w = 1
3
,

2. A matter component with w = 0,

3. A vacuum (dark energy) component with w =−1,

then the equation

ȧ2

a2
= H2

0 ∑
i

Ωi

(a0

a

)3(1+wi)− k

a2
,

reduces to

ȧ2

a2
= H2

0







Ωr

(a0

a

)4

︸ ︷︷ ︸

radiation

+ Ωm

(a0

a

)3

︸ ︷︷ ︸
matter

+ ΩΛ︸︷︷︸
vacuum

+ Ωk
︸︷︷︸

curvature






,

where we have introduced formally a curvature density param-

eter Ωk through

Ωk ≡
−k

a2H2
0

k = {−1, 0,+1}.

Note though that Ωk can be negative (if k = +1),

unlike the other Ωi, which are never negative.
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If we evaluate

ȧ2

a2
= H2

0

(

Ωr

(a0

a

)4
+Ωm

(a0

a

)3
+ΩΛ +Ωk

)

,

at the present time

a→ a0 ȧ2/a2→ ȧ2
0/a2

0 = H2
0

we see that the density parameters are constrained by

Ωr +Ωm+ΩΛ +Ωk = 1

Recall that the density parameters Ωi are the ratios

of the component densities to the critical density

evaluated at the present time.

Defining a total density parameter Ω through

Ω≡Ωr +Ωm+ΩΛ,

we have that

Ωr +Ωm+ΩΛ+Ωk = 1 → Ω = 1−Ωk.

Thus Ω = 1 for a flat universe (Ωk = 0), irrespec-

tive of the values of the individual components Ωr,

Ωm, and ΩΛ.



19.2. EVOLUTION AND SCALING OF DENSITY COMPONENTS 835

The preceding equations represent a solution for the evolution

of the Universe in terms of four independent parameters:

1. The current value of the Hubble parameter H0

2. The current value of the radiation energy density parame-

ter Ωr

3. The current value of the matter energy density parameter

Ωm

4. The current value of the vacuum energy density parameter

ΩΛ.

The curvature density parameter Ωk is then defined by

Ωk ≡
−k

a2H2
0

,

given a choice of k = {−1, 0,+1}.
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19.3 Flat, Single-Component Universes

The differential equation governing the cosmological evolution

of the Universe,

ȧ2

a2
= H2

0 ∑
i

Ωi

(a0

a

)3(1+wi)− k

a2
,

generally must be solved numerically. However, if

• curvature is neglected and

• the summation is restricted to a single component having

an equation of state parameter wi,

it is possible to find analytical solutions.

• These solutions provide insight into how various compo-

nents contribute to evolution of the Universe.

• However, they are also of considerable practical impor-

tance because evidence indicates that

1. The Universe is very flat and was even flatter at ear-

lier times.

2. At various stages in its evolution the Universe has

been dominated by a single component.

So let’s investigate solutions of the Friedmann

equations for flat universes having a single com-

ponent described by an equation of state P = wρ .



19.3. FLAT, SINGLE-COMPONENT UNIVERSES 837

Restricting the Friedmann equation

ȧ2

a2
= H2

0 ∑
i

Ωi

(a0

a

)3(1+wi)− k

a2
,

to a single component described by a density parameter Ω and

equation of state parameter w (and setting a0 ≡ 1) gives

ȧ2 = H2
0 Ωa−(1+3w)− k.

• If 1+ 3w is positive, the curvature term k becomes rela-

tively more important as the Universe expands.

• The recent Universe has been dominated by a component

having 1+3w negative (dark energy).

• However, the early Universe was dominated by compo-

nents for which 1+3w was positive.

• The curvature term is observed to be small today, so it was

even less important in the early Universe.

• Therefore, as a first approximation we neglect curvature,

giving

ȧ2 = H2
0 Ωa−(1+3w)− k → ȧ2 = H2

0 a−(1+3w),

where Ω = 1 because we assume a flat Universe.

We now consider possible solutions to this equa-

tion for the single component defined by the equa-

tion of state parameter w.
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19.3.1 Vacuum Energy Domination (www===−−−111)

The equation

ȧ2 = H2
0 a−(1+3w),

has a special solution for the case w =−1:

ȧ = H0a → a(t) = eHt.

• Because the exponential curve is self-similar, there is no

preferred point to normalize the solution.

• We have chosen to fix the integration constant by requiring

that a(t) = 1 at t = 0.

• More generally, one could choose a solution expH(t− t0),

with the normalization a(t) = 1 at t = t0.

• We have also replaced H0 by H, because H(t) ≡ ȧ/a =

H0, so for this special solution the Hubble parameter is

constant in time.

• As we have seen, w =−1 corresponds to a pure vacuum-

energy universe (no matter or radiation).

• Such a universe with no curvature is termed a de Sitter

universe.
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At first glance, the de Sitter solution may appear to be academic

since the Universe clearly does contain matter and radiation in

addition to any vacuum energy. However,

• If the Universe continues to expand, all matter and radia-

tion will eventually be sufficiently diluted that effectively

only vacuum energy will remain.

• Therefore, the de Sitter solution may be viewed as a uni-

verse in which the density of matter and radiation is neg-

ligible compared with vacuum energy.

• This is the ultimate fate of any more standard cosmology

that expands forever.

• Furthermore, there is substantial evidence that in its first

instants our Universe underwent an inflationary period in

which the Universe expanded for a short but extremely

important period in a de Sitter phase.
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We may use the de Sitter solution to compute quantities of cos-

mological interest:

• The age of a de Sitter universe is infinite,

Age = ∞,

since only at t→−∞ does the scale factor a(t) go to zero.

• The energy density in de Sitter space is constant,

ε = ε0a−3(1+w) = ε0.

• The redshift for light emitted at time te and detected at the

present time t = 0 is

z =
a(t = 0)

a(te)
−1 = e−Hte−1,

in terms of which the time of emission te is

te =−
ln(1+ z)

H
.

• The lookback time is

tL = t0− te =
ln(1+ z)

H
.
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• The proper distance of a light source at the time of obser-

vation of a light signal is

ℓ(t = 0) =
∫ 0

te

dt

a(t)
=
∫ 0

te

e−Htdt

=
1

H

(
e−Hte−1

)
=

z

H
.

• The proper distance at the time of emission of this same

light is rescaled by a(te)/a(t0) = 1/(1+ z), so

ℓ(te) =

(
1

1+ z

)
z

H
.

• The particle horizon ℓh is the same integral as for proper

distance of a light source at the time of observation, but

with te→−∞ at the lower limit; thus

ℓh = Lim
te→−∞

ℓ(t0) = Lim
te→−∞

( z

H

)

= ∞.

A de Sitter spacetime is infinitely old with no par-

ticle horizon.

1. An observer could in principle see every

point in a de Sitter universe.

2. However, distant objects would be very

strongly redshifted images of their appear-

ance at much earlier times.
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• The large redshift limit for the proper distance at the time

of detection is

Lim
z→∞

ℓ(t = 0) = Lim
z→∞

z

H
= ∞.

• The corresponding large-redshift limit for the proper dis-

tance at the time of light emission te is

Lim
z→∞

ℓ(te) = Lim
z→∞

(
1

1+ z

)
z

H
=

1

H
.

• In a de Sitter universe, objects with high redshift are at

very large proper distance when observed.

• But the light that we see was emitted from these objects

near a proper distance of c/H (Hubble distance).

1. Once the source is at greater than the Hubble distance,

the expansion (of space) carries it away from the ob-

server at greater than light speed.

2. Thus its light can no longer reach the observer.

3. This constitutes an event horizon for the observer.
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Table 19.1: Single-component flat universe (vacuum only)

Property Vacuum only (Ω = ΩΛ = 1)

Age ∞

Scale factor a(t) eHt

Time of emission te(z) − ln(1+ z)

H0

Redshift z(te) e−Hte−1

Proper distance at detection ℓ(t = 0)
z

H

Proper distance at emission ℓ(te)

(
1

1+ z

)
z

H

Lookback time tL
ln(1+ z)

H

Particle horizon distance ℓh ∞

Energy density ε ε0 (constant)

The results just obtained for a

• flat universe that contains

• only vacuum energy

are summarized in Table 19.1.
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Figure 19.1: Scale factor a(t) versus time for a universe obeying the Hubble

law (Ω = 0), and for single-component critical densities of radiation (Ω =
Ωr = 1), matter (Ω = Ωm = 1), and vacuum energy (Ω = ΩΛ = 1). The left

axis gives the ratio of the scale factor to its value today and the right axis

gives the redshift. The corresponding age of the Universe t0 corresponds to

the intercept with the bottom axis and is given in the inset table.

Solution of the Friedmann equations for a pure vacuum energy

(de Sitter) universe are displayed in Fig. 19.1 as the curve la-

beled Ω = ΩΛ = 1.
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19.3.2 Solutions for www 6 6 6===−−−111

In the general case where w 6=−1, the form of

ȧ2 = H2
0 a−(1+3w),

suggests a power law solution of the form

a(t) =

(
t

t0

)n

.

Substitution and comparison of exponents on the two sides in-

dicates that

n =
2

3+3w
,

while comparison of the non-exponent factors indicates that

t0 =
2

3H0(1+w)
.

Thus, the general solution for w 6=−1 is

ȧ2 = H2
0 a−(1+3w) → a(t) =

(
t

t0

)2/(3+3w)

,

with the Hubble constant H0 related to the age of the universe

t0 through

H0 =
2

3t0(1+w)
.
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From

εi = εi(0)

(
a

a0

)−3(1+wi)

a(t) =

(
t

t0

)2/(3+3w)

we obtain for the energy density

ε = ε0

[(
t

t0

)2/(3+3w)
]−3(1+w)

= ε0

(
t

t0

)−2

=
t−2

6π(1+w)2G
,

For light emitted at time te and detected today at time t0, the

redshift is

z =
1

a(te)
−1 =

(
t0

te

)2/(3+3w)

−1,

from which the time of emission is

te = t0(1+ z)−3(1+w)/2.
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The current proper distance is

ℓ(t0) =
∫ t0

te

(
t

t0

)−2/(3+3w)

dt

= t0
3+3w

1+3w

[

1−
(

te

t0

)(1+3w)/(3+3w)
]

,

where w 6=−1
3 . We may use

t0 =
2

3H0(1+w)
z =−1+

(
t0

te

)2/(3+3w)

to express the current proper distance in terms of z and H0,

ℓ(t0) =
2

(1+3w)H0

(

1− (1+ z)−(1+3w)/2
)

.

Proper distance at photon emission ℓ(te) is scaled by a factor

a(te)

a(t0)
=

1

(1+ z)

and thus

ℓ(te) =
1

1+ z
ℓ(t0).

The lookback time is

tL = t0− te = t0

(

1− (1+ z)−3(1+w)/2
)

,

which reduces to the form expected from the Hubble law,

tL ≃ τHz =
z

H0
(small z),

only for small redshift.
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The particle horizon distance is the same integral as for the

proper distance at the current time but with the lower limit te→
0, or equivalently, z→ ∞.

• Thus, if the integral is convergent,

ℓh = Lim
z→∞

ℓ(t0) = Lim
z→∞

[
2

(1+3w)H0

(

1− (1+ z)−(1+3w)/2
)]

=
2

(1+3w)H0
.

• However, this integral is not convergent for all values of

w. Generally,

ℓh =







2

(1+3w)H0
w >−1

3

∞ w≤−1
3

.

From these results, we deduce concerning horizons:

• Flat spacetime with a single fluid component has a particle

horizon only if w >−1
3 .

• In a flat universe with one component having w≤−1
3 ,

– there is no particle horizon and

– an observer can (in principle) see all points in space,

– but more distant points will be highly redshifted.
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• In a flat universe with a single component having an equa-

tion of state with w >−1
3 ,

– the horizon distance is finite and

– an observer sees only a portion of an infinite volume

(the visible universe.).

• Since the horizon distance is proportional to 1/H0 = τH ∼
age of the universe, it grows with time.

The horizon grows with time because signals prop-

agating at light speed have had time to reach the

observer from increasingly distant points as time

goes on.
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19.3.3 Flat Universes with Radiation or Matter

Let’s apply these results to two specific cases:

• a radiation-only flat universe (w = 1
3), and

• a matter-only flat universe (w = 0.

This requires only substitution into equations already derived.

• For example, the current age of the Universe is

Radiation dominated : t0 =
1

2H0
(Ω = 1,w = 1

3
).

Matter dominated : t0 =
2

3H0
(Ω = 1,w = 0).

• For a flat radiation-dominated universe the scale factor is

a(t)≃ constant× t1/2.

and the proper distance to the particle horizon is given by

ℓh =
2

(1+3w)H0
=

1

H0
(radiation; w = 1

3
),

• For a flat universe dominated by non-relativistic matter

a(t)≃ constant× t2/3.

and the proper distance to the particle horizon is

ℓh =
2

(1+3w)H0
=

2

H0
(matter; w = 0)

and so on.
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Table 19.2: Cosmological quantities for single-component flat universes

Property Vacuum only Radiation only Matter only

(Ω = ΩΛ = 1) (Ω = Ωr = 1) (Ω = Ωm = 1)

Age t0 ∞
1

2H0

2

3H0

Scale factor a(t) eHt

(
t

t0

)1/2 (
t

t0

)2/3

Time of − ln(1+ z)

H
t0(1+ z)−2 t0(1+ z)−3/2

emission te(z, t0)

Redshift z(te, t0) e−Hte −1

(
t0

te

)1/2

−1

(
t0

te

)2/3

−1

Proper distance
z

H

1

H0

(
z

1+ z

)
2

H0

[
1− (1+ z)−1/2

]

at detection ℓ(t0)

Proper distance

(
1

1+ z

)
z

H

z

H0(1+ z)2

2

(1+ z)H0

[
1− (1+ z)−1/2

]

at emission ℓ(te)

Lookback time tL

ln(1+ z)

H

1

2H0

[1− (1+ z)−2]
2

3H0

[
1− (1+ z)−3/2

]

Particle horizon ∞
1

H0

2

H0
distance ℓ(th)

Energy density ε(t) ε0 (constant)
3

32πG
t−2

1

6πG
t−2

Table 19.2 summarizes the preceding cosmological quantities

computed for vacuum-only, radiation-only, and matter-only flat

universes.
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The figure above illustrates the scale factor versus time for a

universe obeying the Hubble law (dashed line with Ω = 0) and

for single-component critical densities of

• radiation (Ω = Ωr = 1),

• matter (Ω = Ωm = 1), and

• vacuum energy (Ω = ΩΛ = 1).
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19.4 Full Solution of the Friedmann Equations

In the general case, corresponding to

• arbitrary values of H0, Ωr, Ωm, and ΩΛ, (and therefore

possible non-zero curvature),

• it is convenient to solve the equations numerically.

If we introduce

• a dimensionless measure q(t) of scale and a

• dimensionless measure τ of time through

q≡ a

a0
τ ≡ H0t,

then

ȧ2

a2
= H2

0

(

Ωr

(a0

a

)4
+Ωm

(a0

a

)3
+ΩΛ +Ωk

)

,

may be written as

1

2

(
dq

dτ

)2

+U(q) = E,

where we have defined

U(q)≡−1

2

(
Ωr

q2
+

Ωm

q
+ΩΛq2

)

E ≡ 1

2
(1−Ω) =

1

2
Ωk

and where the redshift z is related to the variable q through

z =
1−q

q
.
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The preceding equations represent a solution for the evolution

of the Universe in terms of four independent parameters:

1. The current value of the Hubble parameter H0

2. The current value of the radiation energy density parame-

ter Ωr

3. The current value of the matter energy density parameter

Ωm

4. The current value of the vacuum energy density parameter

ΩΛ.

These parameters then fix the current curvature

density parameter Ωk through

Ωr +Ωm+ΩΛ+Ωk = 1.
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A general solution for evolution of the Universe may be ob-

tained through the following algorithm:

1. Specify values of the cosmic parameters H0, Ωr, Ωm, and

ΩΛ, which fixes the curvature density parameter Ωk

Ωr +Ωm+ΩΛ︸ ︷︷ ︸

Ω

+Ωk = 1 → Ωk = 1−Ω.

2. Compute the age of the Universe in units of the dimen-

sionless time τ by evaluating numerically the integral

τ0 =

∫ 1

0
(2(E−U(q))−1/2 dq.

3. Integrate numerically the differential equation

1

2

(
dq

dτ

)2

+U(q) = E → dq = (2(E−U(q))1/2dτ,

from the current time (q = 1)

• backward to the beginning and

• forward to arbitrary times,

to determine the time evolution of q(τ).

4. Convert to standard variables t and a(t) using

q≡ a

a0
τ ≡ H0t,

and use the results to compute quantities such as redshifts,

lookback times, and horizons of cosmological interest.
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19.4.1 Examples: Single Component with Curvature

Figures 19.2–19.4 (following) illustrate some numerical calcu-

lations that have been carried out according to this prescription

for single-component Universes, but for which the density pa-

rameter Ω is not necessarily equal to one.

• In general, this implies that these spaces have non-zero

curvature if Ω 6= 1.

• The numerical integrations have been done using a stan-

dard Runge–Kutta algorithm.

• Each of these plots shows the variation of the scale factor

as a function of time, with the current value normalized to

one.

• The time axis has been shifted such that it measures the

number of billions of years relative to today.

• In all cases, a Hubble constant of 72 km s−1 Mpc−1 has

been assumed.

• The age of the Universe corresponds to the intercept of the

scale factor curve with the bottom axis (that is, a(t)→ 0).

• In each case, a corresponding redshift is shown on the

right axis.
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Figure 19.2: Scale factor vs. time for a universe with no vacuum or radiation

energy density, and matter density Ωm with values of 0, 0.2, 0.4, 0.6, 0.8,

and 1. Left axis: ratio of scale factor to its value today; Right axis: redshift.

The corresponding age of the Universe is given in the inset table.

In Fig. 19.2, evolution of the scale factor for a matter-only uni-

verse with densities from 0% to 100% of critical is shown.

• All cases agree in at the current time (“Now”).

• Age of the Universe ranges from 13.5 to 9.0 billion years.

• For monotonic curves redshift, time, or scale factor may

be used as time parameters.

• The case Ωm = 1 corresponds to a closed, flat universe.

All others are open, curved universes.
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Figure 19.3: Scale factor for a universe with no vacuum or matter energy

density and radiation density Ωr with values of 0, 0.2, 0.4, 0.6, 0.8, and 1.

In Fig. 19.3, we show an example similar to that of Fig. 19.2,

except that now the single component is radiation.

• Again Ωr = 1 is a closed, flat universe and the other curves

correspond to open, curved universes.

• The predicted lifetimes vary over an even larger range than

in the matter-only case, from 6.7 billion years for the Ωr =

1 case, up to 13.5 billion years for the Ωr = 0 case.

• Notice that in both Fig. 19.2 and Fig. 19.3, increasing the

density causes the age of the universe to decrease relative

to the Hubble time of 13.5 billion years (intercept of the

Ωr = 0 curve with the bottom axis).
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Figure 19.4: Scale factor versus time for a universe with no radiation or

matter energy density and vacuum energy density Ωv with values of 0, 0.2,

0.4, 0.6, 0.8, and 0.99.

In Fig. 19.4, we show an example similar to Figs. 19.2 and 19.3,

but now for varying amounts of pure vacuum energy.

• Vacuum energy gives opposite curvature than that pro-

duced by matter or radiation, so the lifetimes for a pure

vacuum energy universe are longer than the Hubble time.

• For these examples the lifetime ranges from 13.5 billion

years for Ωv = 0 to 40.8 billion years for Ωv = 0.99.

• For Ωv = 1 the universe has no initial singularity and an

infinite lifetime.
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Figure 19.5: Scale factor versus time for a flat universe with 50% matter,

40% vacuum energy density, and 10% radiation. Energy densities of matter,

radiation, and vacuum energy as a function of time are indicated in the inset.

19.4.2 Examples: Multiple Components

Solutions of the Friedmann equations with more than one com-

ponent reflect a superposition of the behaviors illustrated in ear-

lier figures.

• In Fig. 19.5 we show a representative calculation having

Ωm = 0.5, Ωr = 0.10, and Ωv = 0.40.

• This is a closed universe since Ω = Ωm+Ωr+Ωv = 1.
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By comparing the figure above with Figs. 19.2–19.4, we can

identify parts of the curve dominated by different components.

• Radiation density scales as a(t)−4 and falls off most

rapidly, followed by matter density scaling as a(t)−3.

• The vacuum energy density is unchanged by expansion

and it makes increasingly larger relative contribution.

Therefore, the scale-factor curve is

• initially dominated by radiation density,

• then by matter density, and finally by

• vacuum energy density at large times.
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The relative contribution of each component (total normalized

to one) is clear in the inset to the above figure.

• Radiation dominates until about 8 billion years ago.

• Then matter becomes dominant from about 8 billion years

ago until the present.

• In another 1-2 billion years vacuum energy will overtake

the contribution of matter and increasingly dominate.

• Ultimately this universe will become an

– exponentially expanding,

– spatially flat

de Sitter space, with negligible matter and radiation.
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19.4.3 Parameters for a Realistic Model

The preceding discussion has introduced the relative contribu-

tions of radiation, matter, and vacuum energy to the evolution

of the Universe.

• However, these have been toy models that have explored

ranges of cosmological parameters.

• What about the real Universe?

• Although the evolution of the Universe is certainly more

complicated than the 4-parameter model that we are dis-

cussing,

• we have reason to believe that these four parameters are

the most critical ones in determining the overall behavior

of the Universe.

• Let us assume that to be the case.

Then, we need observational information to fix the current val-

ues of

1. The Hubble constant H0.

2. The radiation density parameter Ωr.

3. The matter density parameter Ωm.

4. The vacuum energy density parameter ΩΛ.
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Hubble Constant: Let’s consider the Hubble constant first.

• Different methods of determining H0 disagree at the 5−
10% level among themselves (which is often outside the

estimated error limits on individual determinations),

• but generally agree that it lies in the range 67 −
73 km s−1 Mpc−1.

• Figure 19.6 (next page) illustrates in its top part one deter-

mination of the Hubble parameter.

• We will assume the Hubble constant to have the value

H0 = 72 km s−1 Mpc−1 for the representative calculations

in this chapter.

In some later calculations we will use somewhat

smaller values of H0. It is unclear at the time

of this writing whether the 67− 73 km s−1 Mpc−1

range for determination of H0 by different methods

indicates a real inconsistency, or an incomplete er-

ror analysis.
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Figure 19.6: (a) Hubble constant determined from low-redshift data.

(b) Differential Hubble diagram showing distance modulus versus that for

an empty universe (Ω = 0) plotted versus redshift. Data points represent the

binning of data from more than 200 high-redshift, Type Ia supernovae. The

dashed curve corresponds to a non-accelerating flat universe; points above

it indicate acceleration of the expansion. The three solid curves correspond

to theoretical models with ΩΛ = 0.7 and Ωm = 0.3 (top curve), ΩΛ = 0.0
and Ωm = 0.3 (middle curve), and ΩΛ = 0.0 and Ωm = 1.0 (bottom curve).
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Radiation Density: We may dispose quickly of the radiation

energy density.

• Various observations indicate that the radiation density is

a factor of more than 10,000 less dense than matter or vac-

uum energy in the current Universe.

• Therefore radiation density can safely be set to zero for

the purposes of cosmological calculations.

This was not always true; as we shall see later, in

the early Universe the radiation dominated, but its

contribution fell off quickly.
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The values of the remaining parameters are best determined by

1. The use of Type Ia supernovae as standard candles to con-

strain the evolution of the scale factor at high redshifts.

2. Quantitative analysis of the fluctuations in the cosmic mi-

crowave background to constrain a variety of cosmologi-

cal parameters.

3. Detailed observations of galaxy clusters to constrain the

amount of matter in the Universe.

4. Quantitative analysis of statistical correlations in the

large-scale distribution of galaxies (baryon acoustic os-

cillations) to constrain various cosmological parameters.

We shall discuss all of these further in this and fol-

lowing chapters.
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19.4.4 Type Ia Supernovae as Standardizable Candles

Type Ia supernovae are valuable in cosmology because they are

standardizable candles.

• A standard candle is a light source that always has the

same intrinsic brightness under some specified conditions.

• A standardizable candle may vary in brightness but can be

normalized to a common brightness by a reliable method.

• Thus, once normalized a standardizable candle becomes

effectively a standard candle.

Standard candles enable distance measurement by comparing

observed brightness with the standard brightness using

F =
L

4πr2

where F is flux, L is luminosity, and r is distance.

• In flat, static space, for a standard candle L is known and

measurement of the flux F yields the distance r.

• A distance determined by measuring flux from a standard

candle is called a luminosity distance.

The above relationship assumes light propagating

in static euclidean space and requires modification

in an expanding, curved space.
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19.4.5 Luminosity Distances in Curved, Expanding Space

One way to proceed in a non-euclidean space is to define the

luminosity distance dL by

F =
L

4πd2
L

−→ d2
L ≡

L

4πF

where F is the observed flux (energy/area/time) and L is the

(assumed known) luminosity (energy/time).

• For a flat, static universe, the luminosity distance dL

equals the proper distance ℓ.

• However, three effects alter this relationship:

– The geometry may be curved.

– Expansion redshifts the energy of photons.

– Expansion lengthens the time between detection of

successive photons.

To investigate, we express the RW metric as,

ds2 =−dt2+a(t)2[dr2+Sk(r)
2 dΩ2]

Sk(r) =







sin r (k =+1)

r (k = 0)

sinh r (k =−1)

and consider light propagation in this metric.



870 CHAPTER 19. EVOLUTION OF THE UNIVERSE

Let photons be emitted from coordinates (r,θ ,ϕ) at time te and

spread over a sphere when detected at r = 0 and time t0.

• This sphere at detection has a proper area (Problem)

Ap(t0) = 4πSk(r)
2.

• Next, Hubble expansion redshifts photon wavelengths by

λ0 =
λe

a(te)
= (1+ z)λe,

so emitted energy Ee and detected energy E0 obey

E(t0) =
E(te)

1+ z
.

• Finally, time between successive photons is increased by

expansion, so the time interval ∆t0 at detection and the

time interval ∆te at emission are related by

∆t0 = (1+ z)∆te.

• Collecting these effects, the observed flux is

F =
L

4πSk(r)2(1+ z)2
,

and comparing with the definition d2
L ≡ L/4πF gives

dL = Sk(r)(1+ z)≃ (1+ z)r = (1+ z)ℓ(t0),

where ℓ(t0) is the current proper distance and the actual

Universe has been assumed flat with Sk(r)∼ r.
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As we have just shown, the luminosity distance dL and the

proper distance ℓ are related by

dL = Sk(r)(1+ z)≃ (1+ z)r = (1+ z)ℓ(t0),

Only for small z does the luminosity distance dL

equal the proper distance ℓ in an expanding, pos-

sibly curved, universe.
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Figure 19.7: Empirical rescaling of Type Ia supernova lightcurves to make

them approximate standard candles. (a) Lightcurves for low-redshift super-

novae (Calan-Tololo survey). The intrinsic scatter is 0.3 magnitudes in peak

luminosity. (b) After a one-parameter correction the dispersion is reduced

to 0.15 magnitudes.

The standardizable candle properties of Type Ia supernovae are

illustrated in Fig. 19.7.
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Figure 19.8: Differential Hubble diagram showing distance modulus vs. that

for an empty universe (Ω = 0) plotted versus redshift. Data points represent

binning of data from more than 200 high-redshift, Type Ia supernovae. The

dashed curve corresponds to a non-accelerating flat universe; points above

it indicate acceleration of the expansion. The three solid curves correspond

to theoretical models with ΩΛ = 0.7 and Ωm = 0.3 (top curve), ΩΛ = 0.0
and Ωm = 0.3 (middle curve), and ΩΛ = 0.0 and Ωm = 1.0 (bottom curve).

The figure above shows data from

• 200 high-z Type Ia supernovae binned into a few points

and compared with theoretical calculations.

• At the highest redshift there is a clear preference for the

solution with nontrivial vacuum energy.

These data imply acceleration of the expansion and the pres-

ence of vacuum energy in the Universe.
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CMB Fluctuations: In the next chapter it will be shown that

• Measurements of anisotropies in the cosmic microwave

background (CMB) provide a precise and independent de-

termination of cosmological parameters.

• These analyses of the CMB probe the relative contribution

of matter and vacuum energy, but in a different way than

for the Type Ia supernova data.

Galaxy Clusters: Traditional observational astronomy,

• augmented by newer techniques like gravitational lensing,

• has constrained the amount of matter (visible and dark)

contained in clusters of galaxies rather tightly.

• Such galaxy observations are relatively insensitive to the

amount of dark energy in the Universe.

Remarkably, these approaches having senitivities

to different parts of the cosmic fluid:

• Type Ia supernovae

• CMB fluctuations

• inventories of galaxy clusters

have reached a concensus for the values of cosmo-

logical parameters called the concordance model.
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Figure 19.9: Cosmological parameter space. High redshift supernova data,

CMB data, and galaxy cluster inventories converge on Ωm ≃ 0.3, ΩΛ = 0.7,

and Ωr ∼ 0, implying a cosmos that is flat but will expand forever.

In Fig. 19.9 supernova, CMB, and galaxy data are summarized

in terms of confidence level contours.

• Notice the different dependence of the supernova data on

the parameters than for the CMB and galaxy clusters data.

• The supernova and CMB data taken together imply that

Ωm≃ 0.3 and ΩΛ≃ 0.7, with negligible contribution from

radiation.
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• In the figure above, data from galaxy cluster surveys are

also displayed. These have little sensitivity to vacuum en-

ergy density but have high sensitivity to matter density.

• Remarkably, data from galaxy clusters also are consistent

with the choice ΩΛ ≃ 0.7 and Ωm ≃ 0.3.

• The diagonal line indicates the flat space prediction of in-

flationary theory (Ωm+ΩΛ = 1), to be discussed later.

• The dashed line separates an eternally expanding Universe

from one that eventually recollapses.

• Gray regions in the corners indicate parameters that would

allow no big bang, or would cause it to occur too recently.
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Baryon Acoustic Oscillations (BAO): Baryon acoustic oscilla-

tions are periodic fluctuations in the density of visible matter

(galaxy clustering on large scales).

• They originated in flucutations present in the early Uni-

verse at the time of hydrogen recombination.

• This will be discussed in more detail in the next chapter.

Baryon acoustic oscillations are introduced here

because BAO measurements are sensitive to cos-

mological density parameters, particularly the

matter density.
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Figure 19.10: (a) Cosmological parameter space comparing data from six

Type Ia supernovae lying between redshifts z = 0.51 and z = 1.12 (SNe),

cosmic microwave background (CMB), and baryon acoustic oscillation

(BAO) data. (b) Corresponding equation of state parameter w from P = wε .

Fig. 19.10(a) illustrates parameter concordance for supernova

data, CMB fluctuations, and baryon acoustic oscillations.

• Best-fit Ωm and ΩΛ are comparable to those found earlier.

• Constraint of the equation of state parameter w from the

same comparison is illustrated in Fig. 19.10(b).

It was concluded from these data that if the Universe is flat,

w =−0.997+0.077
−0.082

for the cosmic equation of state P = wε .
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Summary: We are led by recent cosmological data to adopt as

a benchmark model the parameters

H0 = 67−73 km s−1 Mpc−1 Ωr = 8×10−5 ≃ 0

Ωm ∼ 0.3 Ωv ∼ 0.7.

The reliable determination of such parameters

changed cosmology from a notiously qualitative

discipline to a precision science in little more than

a decade.
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Figure 19.11: Scale factor versus time for a flat universe with 30% matter,

70% vacuum energy density, and negligible radiation. The energy density

of matter and vacuum energy as a function of time are indicated in the inset

by dotted lines. The left axis is marked in terms of the ratio of the scale

factor to its value today and the right axis is marked in terms of redshift. In

this model, which is consistent with current best values of the cosmological

parameters, the expansion is presently dominated by vacuum energy and

hence is accelerating.

19.4.6 Calculations with the Benchmark Parameters

In Fig. 19.11 a solution of the Friedmann equations using the

benchmark parameters assuming H0 = 72 km s−1 Mpc−1 is dis-

played.
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• The Universe was dominated by matter for most of its

history since the very early radiation-dominated era (too

short to see on this scale).

• About 4 billion years ago the vacuum energy gained as-

cendency relative to the non-relativistic matter and

• the Universe is now in an accelerating phase correspond-

ing to steadily increasing dominance of vacuum energy.

• The Universe first decelerated (under the dominant influ-

ence of first radiation and then matter) and then began ac-

celerating as the vacuum energy became dominant.

• This solution indicates that the Universe is flat, but it will

expand forever because of vacuum energy.
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• The calculation displayed above represents a realistic evo-

lution of the actual Universe.

• However, more recent parameters constrained by cosmic

microwave background data indicate

– a somewhat smaller value of the Hubble constant and

– a somewhat greater age for the Universe.

The calculation shown above, repeated for param-

eters determined by CMB analysis (next chapter)

gives a larger age of 13.8 billion years, mostly be-

cause of choosing H0 = 67.8 km s−1 Mpc−1



Chapter 20

The Big Bang

The Universe began life in a very hot, very dense state called

the big bang. In this chapter we

• apply the Friedmann equations to the early Universe in an

attempt to

• understand the most important features of the big bang

model,

which is the cosmologist’s “standard model” for the origin of

the present Universe.

883
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20.1 Radiation and Matter Dominated Universes

Because

• the influence of vacuum energy grows with expansion of

the Universe, and

• vacuum energy is only today beginning to dominate,

• we may safely assume that it was negligible in the early

Universe (once the inflationary epoch was over).

In that case, two extremes for the equation of state give us con-

siderable insight into the early history of the Universe:

1. If the energy density resides primarily in light, relativistic

particles (radiation dominated), the equation of state is

P = 1
3ε (radiation dominated).

2. If on the other hand the energy density resides in massive,

slow-moving particles (matter dominated), the equation of

state is

P≃ 0 (matter dominated).

In either extreme, the evolution of the Universe is

then easily calculated using the Friedmann equa-

tions.
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20.1.1 Evolution of the Scale Factor

The density of radiation and the density of matter scale differ-

ently in an expanding universe.

• If the Universe is radiation dominated, P = 1
3ε and

ε̇ +3(ε +P)
ȧ

a
= 0 → ε̇

ε
+

4ȧ

a
= 0,

which has a solution

ε(t) ≃ 1

a4(t)
(radiation dominated).

• If on the other hand the Universe is matter dominated, we

have P≃ 0 and

ε̇ +3(ε +P)
ȧ

a
= 0 → ε̇

ε
+

3ȧ

a
= 0,

which has a solution

ε(t)≃ 1

a3(t)
(matter dominated).

As shown in the previous chapter, the correspond-

ing scale factors behave as

a(t)≃







t1/2 (radiation dominated)

t2/3 (matter dominated)
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20.1.2 Matter and Radiation Density

In the present Universe the ratio of baryons to photons is

nb

nγ
≃ 10−9.

However,

• the rest mass of a typical baryon is ∼ 109 eV, while most

• photons are in the ∼ 2.7 K CMB, with average energy

Eγ ≃ kT = (2.7 K)

(
1 GeV

1.2×1013 K

)

≃ 2.3×10−4 eV.

Thus the energy density of baryons relative to photons in the

present Universe is

εb

εγ
≃ 103−104

and the present Universe is dominated by matter (and vacuum

energy), with only a small contribution from radiation. But,

ε(t)≃ 1

a4(t)
(radiation).

ε(t)≃ 1

a3(t)
(matter).

Thus, as time is extrapolated backwards a→ 0 and

relativistic matter becomes dominant.
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Figure 20.1: Schematic dependence of matter and radiation energy densities

on the scale factor. The time of equivalence corresponds to a redshift of

zeq ∼ 3400, based on analysis of CMB fluctuations by the Planck satellite.

Fig. 20.1 illustrates. Thus, the early Universe should have been

radiation dominated.
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In this early, radiation-dominated Universe,

ε ≃ a−4 a≃ t1/2 P = 1
3ε,

• so the density and pressure tend to infinity as t→ 0.

• Furthermore, for a radiation dominated Universe,

T ≃ a−1 ≃ t−1/2.

• Thus, as time is extrapolated backwards the temperature

also tends to infinity.
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These considerations suggest that the Universe started from a

very hot, very dense initial state with a(t→ 0)→ 0.

• This initial state is called the big bang.

• If we take t = 0 when a = 0,

– the transition between the earlier radiation dominated

universe and one dominated by matter

– happened approximately 50,000 years after the big

bang,

– corresponding to a redshift z∼ 3400,

– by which time the temperature had dropped to about

9000 K.

• This matter dominance then continued until about 4-5 bil-

lion years ago, when the vacuum energy density began to

overtake the matter density.

In the following sections we shall discuss in more detail the big

bang and the early radiation-dominated era of the Universe.

The name “big bang” was a term coined by op-

ponents of this cosmology who favored the now

discredited steady state theory. The name stuck, as

did the theory.
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20.2 Evolution of the Early Universe

The early Universe

• was very hot and very dense, and

• the major part of the energy density resided in photons and

other massless or nearly massless particles like neutrinos.

We now give a description of the most important

events in the big bang, and the transition from

• a universe dominated by radiation to

• a universe dominated by matter.
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20.3 Thermodynamics of the Big Bang

We have established that in the initial radiation dominated era

of the big bang, curvature was negligible and

H2 ≡
(

ȧ

a

)2

≃ 8πG

3
εr = a−4 a≃ t1/2 H =

ȧ

a
=

1

2t
.

• The average evolution was that of an ideal gas in thermal

equilibrium, with a number density for a particular species

given by

dn =
g

2π2h̄3

p2dp

eE/kT +Θ
,

where

– p is the 3-momentum,

– g is the number of degrees of freedom (helicity states:

2 for each photon, massive quark, and lepton),

– and Θ and the energy E are given by

E =
√

p2c2 +m2c4 Θ =







+1 Fermions

-1 Bosons

0 Maxwell–Boltzmann

where Maxwell–Boltzmann statistics apply only if we

make no distinction between fermions and bosons.
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Let’s assume that the gas is ultrarelativistic (kT >> mc2).

• Then the particle energy is E = pc, and

• the particle number density is obtained by integrating the

previous expression for dn.

n =

∫ ∞

0

dn

dp
dp =

g

2π2h̄3

∫ ∞

0

p2dp

eE/kT +Θ

=
g

2π2h̄3

∫ ∞

0

p2dp

epc/kT +Θ
.

Integrals of this form may be evaluated using

∫ ∞

0

tz−1

et−1
dt = (z−1)!ζ (z),

∫ ∞

0

tz−1

et +1
dt = (1−21−z)(z−1)!ζ (z),

where ζ (z) is the Riemann zeta function, with tabulated values

ζ (2) =
π2

6
= 1.645 ζ (3) = 1.202 ζ (4) =

π4

90
= 1.082.

The results for the number density of species i are

ni = gi
ζ (3)

π2
T 3×







1 Bose–Einstein

3/4 Fermi–Dirac

ζ (3)−1 Maxwell–Boltzmann

where now we introduce h̄ = c = k = 1 units.
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Likewise, the energy density is

ε = ρc2 =

∫ ∞

0
E

dn

dp
dp =

g

2π2h̄3

∫ ∞

0

E p2dp

eE/kT +Θ

=
g

2π2h̄3

∫ ∞

0

E p2dp

epc/kT +Θ
,

which gives for a species i,

εi = gi
π2

30
T 4×







1 Bose–Einstein

7/8 Fermi–Dirac

90/π4 Maxwell–Boltzmann

.

The energy density for all relativistic particles is then the sum,

ε = g∗
π2

30
T 4 g∗ ≡ ∑

bosons

gb+
7
8 ∑

fermions

gf.

If all species are in equilibrium, the entropy density s is

s =
ε +P

T
=

4ε

3T
=

2π2

45
g∗T 3,

where we note from comparing this and

ni = gi
ζ (3)

π2
T 3×







1 Bose–Einstein

3/4 Fermi–Dirac

ζ (3)−1 Maxwell–Boltzmann

that s≃ ∑ni. The entropy per comoving volume is constant,

S≃ sa3 ≃ constant −→ d(sa3)

dt
= 0

(adiabatic expansion), provided that g∗ does not change.
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Figure 20.2: Variation of the effective number of degrees of freedom in the

early Universe as a function of temperature.

In fact, we expect that the effective number of degrees of free-

dom g∗ is not constant. Instead,

• g∗ should be approximately constant for broad ranges of

temperature but

• it will change suddenly at critical temperatures where kT

becomes comparable to the rest mass for a species.

Fig. 20.2 illustrates the expected variation of g∗
with temperature in the early Universe.
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Table 20.1: Particles of the Standard Model

Particle Symbol Spin (h̄) Charge (e) Mass (GeV/c2)†

– Leptons –

Electron e− 1/2 −1 5.11×10−4

Electron neutrino νe
1/2 0 < 2.2×10−9

Muon µ− 1/2 −1 0.1057

Muon neutrino νµ
1/2 0 < 1.7×10−4

Tau τ− 1/2 −1 1.777

Tau neutrino ντ
1/2 0 < 1.6×10−2

– Quarks –

Down d 1/2 −1/3 0.005

Up u 1/2 2/3 0.002

Strange s 1/2 −1/3 0.096

Charm c 1/2 2/3 1.28

Bottom b 1/2 −1/3 4.2

Top t 1/2 2/3 173

– Gauge and Higgs bosons –

Photon γ 1 0 0

Charged weak bosons W± 1 ±1 80.4

Neutral weak boson Z0 1 0 91.2

Gluons G1, G2, . . ., G8 1 0 0

Graviton (?) g 2 0 0

Higgs H 0 0 125.1

†Quark masses are so-called current or Lagrangian masses.

The rest masses of particles from the Standard Model that are

relevant for the early Universe are summarized in Table 20.1.
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From the earlier expressions for the entropy density,

s =
ε +P

T
=

4ε

3T
=

2π2

45
g∗T 3,

S≃ sa3 ≃ constant −→ d(sa3)

dt
= 0,

• we have that sa3 ≃ T 3a3 is constant; hence the tempera-

ture varies as

T ≃ 1

a
≃ t−1/2,

• where we have used the result that in a radiation domi-

nated universe of negligible curvature,

a≃ t1/2.

To be precise, evolution of the ultrarelativistic, hot plasma

characterizing the early big bang is described by

ȧ

a
=− Ṫ

T
= αT 2 t =

1

2αT 2
=

2.4×10−6

g
1/2
∗ T 2

GeV2 s

α =

(
4π3g∗
45M2

P

)1/2

MP ≡
(

h̄c

G

)1/2

= 1.2×1019 GeV,

where MP is the Planck mass.
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20.3.1 Equilibrium in an Expanding Universe

Strictly, equilibrium does not hold in an expanding universe.

• However, a practical equilibrium can exist as the Universe

passes through a series of nearly equilibrated states.

• We may expect both thermal equilibrium and chemical

equilibrium to play a role in the expansion of the Universe.

A system is in thermal equilibrium if its number density is given

by

dn =
g

2π2h̄3

p2dp

eE/kT +Θ
,

E =
√

p2c2 +m2c4 Θ =







+1 Fermions

-1 Bosons

0 Maxwell–Boltzmann

A system is in chemical equilibrium if for a+ b↔ c+ d (say)

the chemical potentials satisfy

µa+µb = µc +µd.

We shall illustrate the discussion primarily by ther-

mal equilibrium, and will consider the equilibrium

to be maintained by two-body reactions (the most

common situation).
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The reaction rate for a two-body reaction may be expressed as

Γ≃ 〈nvσ〉,

• where n is the number density,

• v is the relative speed,

• σ is the reaction cross section, and

• the brackets 〈 〉 indicate a thermal average.

A species will remain in thermal equilibrium in the radiation

dominated Universe as long as

Γ >>
ȧ

a
≡ H ≃ d(t1/2)/dt

t1/2
=

1

2t
.

• At early times, densities, velocities, and cross sections are

large and it is easy to fulfil this condition for most species.

• However, as T and the density drop the number density

and velocity factors will decrease steadily and

• at certain reaction thresholds the reaction rates maintain-

ing equilibrium will become too small for a particular

species, and it can drop out of thermal equilibrium.

Physical reason: if reaction rates are slow com-

pared with the rate of expansion, it is unlikely that

particles can find each other often enough to react

and maintain equilibrium.
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Figure 20.3: Some weak interactions important for equilibrium in the early

Universe. Generic leptons are represented by L and generic quarks by q.

20.3.2 Example: Decoupling of the Weak Interactions

Consider weak interactions in the early Universe.

• The strength of the weak interactions varies as T 2.

• Thus, shortly after the big bang the weak interactions are

not so weak and particles such as neutrinos are kept in

equilibrium by reactions like νν̄ ↔ e+e−.

• Typical Feynman diagrams are shown in Fig. 20.3. From

these, weak interaction cross sections vary as

σw ∝ G2
F GF ≃ 1.17×10−5 GeV−2.

• By dimensional analysis, this implies that the ratio of the

weak reaction rate to the expansion rate is

Γ

H
≃ G2

FT 5

T 2/MP
≃
(

T

1 MeV

)3

.

Weak interactions decoupled from thermal equilib-

rium (Γ/H ∼ 1) at T ∼ 1 MeV, which occurred

about 1 second after the expansion began.
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Figure 20.4: A history of the Universe. The time axis is highly nonlinear

and 1 GeV≃ 1.2×1013 K (after D. Schramm).

20.3.3 A Timeline for the Big Bang

The Friedmann equations allow us to reconstruct the big bang.

• Let’s follow the sequence of events in terms of the time

since the expansion began (see Fig. 20.4).

• The primary cast of initial characters includes:

1. Photons

2. Protons and neutrons

3. Electrons and positrons

4. Neutrinos and antineutrinos
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Now

Because of the equivalence of mass and energy, in a radiation

dominated era

• the particles and their antiparticles are continuously un-

dergoing reactions in which they annihilate each other,

and

• photons can collide and create particle and antiparticle

pairs.

Thus, under these conditions the radiation and the matter are in

thermal equilibrium because they can freely interconvert.
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Now

Time ∼∼∼ 1 microsecond

The temperature is about 1013 K

• Quarks and gluons undergo a confining transition to form

the hadrons.

• The Universe becomes filled with protons and neutrons, in

about equal numbers.

This quark–gluon to hadron phase transition is la-

beled “Confinement” in the figure above.
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Now

Time ∼∼∼ 0.01 seconds

• T ≃ 1011 K .

• The Universe is expanding rapidly and consists of

– a hot undifferentiated soup of matter and radiation in

thermal equilibrium

– with an average particle energy of kT ≃ 8.6 MeV.

• Equilibria:

e−+ e+↔ photons ν + ν̄ ↔ photons

ν̄ + p+→ e++n ν +n→ e−+ p+.
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Now

• A neutron is more massive than a proton by

Q≡ (mn−mp)c
2 = 1.3 MeV.

• Therefore, the equilibrium neutron–proton number den-

sity ratio is

nn

np
∼ exp(−Q/kT ).

• Since kT ≫Q for T = 1011 K, at this temperature nn∼ np.
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Now

Time ∼∼∼ 0.1 seconds

• T ≃ 3×1010 K, corresponding to kT ∼ 2.6 MeV.

• Thus the initial balance between neutrons and protons be-

gins to be tipped in favor of protons, with now

nn

np
∼ 0.6.

• No composite nuclei can form yet because deuterium has

a binding energy of only 2.2 MeV.

• Free neutrons will be converted steadily to protons until

composite nuclei can form.

• Because there are so many photons, this requires kT an

order of magnitude below the deuterium binding energy.
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Now

Time ∼∼∼ 1 second

• T ≃ 1010 K, corresponding to kT ≃ 0.8 MeV.

• The neutrinos drop out of equilibrium and cease to play a

role in the continuing evolution (“Weak freezeout”).

• The temperature is still too high for composite nuclei.

• The neutron to proton ratio is now

nn

np
∼ 0.2,

and continues to fall.
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Now

Time ∼∼∼ 10 seconds

• T ∼ several ×109 K, corresponding to kT ∼ 0.25 MeV.

• This is too low for photons to produce e+e− pairs, so they

fall out of thermal equilibrium and

• the electrons annihilate the positrons to form photons:

e−+ e+→ photons.

• This reheats all particles in thermal equilibrium with the

photons (not neutrinos, which dropped out of equilibrium

at t ∼ 1 s.)

• It is still too hot to form composite nuclei and n/p contin-

ues to decrease as free neutrons decay to protons.



908 CHAPTER 20. THE BIG BANG

10-43 s 1010 y105 y3 min1 s10-6 s10-11 s10-35 s

10-13

1019

1014

102

100

10-3

10-5

10-9T
e
m

p
e
ra

tu
re

 (
G

e
V

)

Time since big bang

Q
u
a
n
tu

m
 G

ra
v
it
y

?

?

GUTs

In
fl
a
ti
o
n

SU(3)
c

x

U(1)
y

SU(2)
w

x

SU(3)
c

x

U(1)
em

Hadrons

Leptons Nuclear

synthesis Photon

epoch
Galaxies

Stars

Life

Quark-Lepton

Soup

Planck time

Guts symmetry breaking

Electroweak symmetry breaking

Confinement

Weak freezeout

Nuclear freezeout

EM freezeout

Now

Time ∼∼∼ 100–1000 seconds

• Finally the temperature drops sufficiently low (about

109 K) that light composite nuclei can hold together.

• The neutron/proton ratio has now fallen to nn/np ∼ 0.15.

• A rapid sequence of nuclear reactions ensues

n+ p+→ 2
1H 2

1H+ p+→ 3
2He+n→ 4

2He

2
1H+n→ 3

1H+ p+→ 4
2He

• and all remaining free neutrons are cooked rapidly into

helium and trace amounts of a few other light elements.

The end of primordial nuclesynthesis is labeled

“Nuclear freezeout” in the figure above.
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Figure 20.5: Big bang nucleosynthesis. (a) Variation of T and ρ assum-

ing η = 6×10−10. (b) Mass fractions assuming mass fractions of 0.15 for

neutrons and 0.85 for protons at the beginning of nucleosynthesis.

Production of the light elements occurs only in the narrow win-

dow (era of nucleosynthesis) illustrated in Fig. 20.5.

• In the era of nucleosynthesis the temperature is

– high enough for nuclear reactions to occur, but

– low enough to suppress photodisintegration of nuclei.
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• Elements beyond 4He aren’t formed because

– there are no stable mass-5 or mass-8 isotopes, and

– the density is too low to make carbon by 3α → 12C.

In the era of nucleosynthesis ρ ∼ 10−5 g cm−3.

• 100 times lower than the density of air.

• 1010 times lower than for 3α in red giants.
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• A free neutron is unstable against β -decay into a proton

with a halflife t1/2 ∼ 10.3 minutes.

• Thus, once nucleosynthesis is complete any neutrons not

bound up into composite nuclei quickly β -decay into pro-

tons.

• This is illustrated by the curve labeled “Free-neutron β -

decay” in the figure above.
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• The net effect of this short epoch of nucleosynthesis was

to leave the Universe a few hundred seconds after its birth

– consisting primarily of 1H and 4He,

– with trace amounts of 2H, 3H, 3He, 7Be, and 7Li.

3H is unstable against β− decays to 3He with a

halflife of 12.3 yrs, so it doesn’t stick round.
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Now

Time ∼∼∼ 30 minutes

• The temperature is now T ∼ 3×108 K.

• the Universe consists primarily of

– protons,

– excess electrons that didn’t annihilate with positrons,

– 4He (∼ 26% abundance by mass), and

– photons and neutrinos.

• Leftover neutrons continue to β -decay to protons and the

neutron abundance has decreased now to ∼ 10−8.

There are no atoms yet because the temperature is

too high for protons and electrons to bind.
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Time ∼∼∼ 50,000 years

• Radiation dominated the early Universe (figure above).

• But the density of radiation (εr ∝ a−4) falls faster than the

density of matter (εm ∝ a−3) as the Universe expands.

• Hence at some point εm began to exceed εm.

• Observations indicate that this occurred at z ∼ 3400, cor-

responding to T ∼ 9,000 K, at t ∼ 50,000 years after the

big bang.

• At this point the Universe began to be matter dominated.

Vacuum energy will become dominant much later,

but it is relatively insignificant at this stage.
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Now

Time ∼∼∼ 400,000 years

• The temperature is now several thousand K, and electrons

and protons begin binding to form hydrogen atoms.

• Until this point, matter and electromagnetic radiation have

been in thermal equilibrium but now they decouple (la-

beled “EM freezeout” above).

• As free electrons are bound up in atoms in this decoupling

transition, the primary cross section for photon scattering

(Thomson scattering) is suppressed.

• The Universe, which had been opaque, becomes transpar-

ent: visible light can now freely travel large distances.
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Time ∼∼∼ 400 million years

Observations like spectra of high-z quasars indicate that at

some time after recombination much of the hydrogen reionized.

• This reionization transition occurred over about 800 mil-

lion years between redshifts z ∼ 20 and z ∼ 6, and coin-

cided with the appearance of the first stars (figure above).

• The period between the recombination transition and the

appearance of the first stars is called the dark ages.

• Likely candidates for the reionizing agent were the first

generation of stars (Pop III), and early AGN and quasars.

• The reionized Universe remained relatively transparent

because expansion diluted the gas sufficiently to suppress

collisions between photons and free electrons.
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20.4 Nucleosynthesis and Cosmology

In big bang nucleosynthesis, 2H can’t form until T falls below

a critical value, and then it is quickly converted into 4He.

• Therefore, present abundances of 4He and 2H (and other

light elements produced by the big bang in trace amounts)

• are a sensitive probe of conditions in the early Universe.

• The oldest stars contain material that is

• the least altered from that produced originally in the big

bang.

• Analysis of their composition indicates abundances in very

good agreement with predictions of the hot big bang.

This is one of the strongest pieces of evidence in

support of the big bang theory.
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20.4.1 Elements Synthesized in the Big Bang

The outcome of big bang nucleosynthesis is conversion of neu-

trons and protons primarily to 4He and free protons, with small

concentrations of isotopes like 2H, 3He, and 7Li.
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• The specific abundance of each isotope is sensitive to con-

ditions in the short era of nucleosynthesis.

• For the simulation above the mass fractions are 0.253 for
4He and 0.745 for 1H, once nucleosynthesis stops.

• The simulation is subject to some parameter uncertainty.

• However, it clearly suggests that the big bang should have

left the Universe with about a quarter helium by mass,

with almost all the rest hydrogen.
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The simulation displayed above indicates that

• the big bang left the Universe with about 25% He by mass,

with almost all the rest hydrogen.

• That is rather close to the current measured mass fractions

for helium and hydrogen.

• This is an important general test, since processes occur-

ring later in stars cannot change these mass fractions by

too much.



20.4. NUCLEOSYNTHESIS AND COSMOLOGY 921

0.23 0.24 0.25 0.26 0 1 2 3 4 5

4He mass fraction 2H/1H

7 8 9 10 11 12 1 2 3 4 5 6 7

3He/1H 7Li/1H

L
ik

e
lih

o
o
d

1.0

0.8

0.6

0.4

0.2

0.0

(x105)

(x106)
(a) (b) (c) (d)

(x1010)

Figure 20.6: Likelihoods normalized to unity for abundances of light ele-

ments. (a) Mass fraction for 4He; (b) Ratio of 2H (deuterium) to 1H abun-

dance; (c) Ratio of 3He to 1H abundance; (d) Ratio of 7Li to 1H abundance.

Dark gray with solid lines are predictions based on big bang nucleosynthe-

sis and CMB analysis. Light gray with dashed lines indicates primordial

abundances from astronomical observations, except for 3He where no re-

liable measurements exist. The agreement between big bang theory (dark

gray) and observations (light gray) is very good except for 7Li, where there

is a factor of three discrepancy.

Fig. 20.6 illustrates a comparison of calculated and observed

abundances for the light elements produced in the big bang.

• Agreement between observation and theory is excellent,

except for 7Li, where there is a factor of three discrepancy.

• The 7Li discrepancy is not understood at present.

• It occurs for the isotope with (by far) the tiniest abun-

dance.

• Thus it is a small effect that might be explained by ob-

servational issues, or by missing physics having a small

impact on overall nucleosynthesis.
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Figure 20.7: (a) Big bang abundances as a function of the baryon to photon

ratio η or baryon density parameter Ωb. (b) Correlation of helium abun-

dance and η from Planck satellite CMB data. The 4He mass fraction pre-

dicted from big bang nucleosynthesis is indicated by the near-horizontal

curve. Both plots suggest η ∼ 6.1×10−10, or equivalently Ωb ∼ 0.04.

Figure 20.7(a) illustrates calculated abundances for big bang

light elements as a function of

• the current baryon to photon ratio η , or equivalently

• the current baryon density parameter Ωb.

• Widths of curves indicate theoretical uncertainties.

• By comparing calculated and observed abundances, we

may (1) test big bang nucleosynthesis and (2) determine

the baryon to photon ratio.
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• The analysis indicates that the mass fraction of 4He is

0.247 [dashed horizontal line in Fig. (a) above].

• Intersection of this curve with the 4He curve implies η ∼
6×10−10.

• As illustrated in Fig. (b) above, independent analysis of

the cosmic microwave background by the Planck satellite

finds a similar value of η .

• From these results it may be concluded that

η ≡ nb

nγ
≃ 6.1×10−10,

implying several billion photons for every baryon.
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• Most of these baryons are neutrons and protons, while

• most of the photons are in the cosmic microwave back-

ground radiation.

• The total number of each kind of particle is not expected

to change much in the absence of interactions.

Thus the current ratio η is approximately the value

of η at the time when matter and radiation decou-

pled.
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20.4.2 Constraints on Baryon Density

Agreement between theory and observation for light-element

abundances also constrains the baryonic mass of the Universe.

• That constraint is the basis for our earlier assertion that

most dark matter cannot be baryonic.

– If enough baryons were present in the Universe to

make the dominant matter baryonic, and

– our understanding of the big bang is anywhere near

correct,

the distribution of light element abundances would have

to differ substantially from that observed.

The implication is that the matter we are made

of (baryonic matter) is but a small impurity com-

pared to the dominant matter of the Universe (non-

baryonic matter).
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20.5 The Cosmic Microwave Background

There are three important observables in the present Universe

that presumably date back to its early history:

• Abundance of the light elements

• The cosmic microwave background (CMB) radiation

• Dark matter

We have just discussed formation of the light ele-

ments. The remainder of this chapter will empha-

size the nature of the CMB and dark matter.



20.5. THE COSMIC MICROWAVE BACKGROUND 927

The cosmic microwave background (CMB) is the faint glow left

over from the big bang itself.

• It was discovered accidentally by Penzias and Wilson in

1964 while testing a new microwave antenna.

• They initially believed the signal that they detected com-

ing from all directions to be electronic noise.

• Once careful experiments had ruled that possibility out,

they were initially unaware of the significance of their dis-

covery.

• Then it was pointed out that the big bang theory predicted

that the Universe should be permeated by radiation left

over from the big bang itself.

• But now the radiation would have been redshifted by the

expansion over some 14 billion years to the microwave

spectrum.

Dark matter appears to represent the major part of the mass in

the Universe, but we don’t yet know what it is.

Both the CMB and the nature of dark matter pro-

vide crucial diagnostics for a fundamental issue in

cosmology, the formation of large-scale structure.
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Figure 20.8: The 2.726 K microwave background spectrum (COBE).

20.6 The Microwave Background Spectrum

Measurements by Penzias and Wilson that are relatively crude

by modern standards established that

• The radiation was coming from all directions in the sky,

and had a blackbody temperature of T ∼ 3 K.

• Later, precise measurements from the Cosmic Background

Explorer (COBE) satellite found an almost perfect black-

body spectrum having average temperature

〈T 〉 ≡ 1

4π

∫

T (θ ,ϕ)sin θdθdϕ = 2.726 K,

with T (θ ,ϕ) the temperature measured at coordinates

(θ ,ϕ) on the sky; Fig. 20.8 illustrates.
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• Data points and the theoretical curve for a 2.726 K spec-

trum are indistinguishable (figure above).

• This is the best blackbody spectrum ever measured.

• The temperature was revised to 2.275± 0.001 by the

Wilkensen Microwave Anisotropy Probe (WMAP).

• By applying basic statistical mechanics to the observed

spectrum, we may deduce a CMB photon density of

Nγ ≃ 410 photons cm−3

Theory predicts also a cosmic neutrino back-

ground remnant of the big bang, but these low-

energy neutrinos are not presently detectable.
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Figure 20.9: (a) Schematic evolution of the cosmic microwave background.

As the Universe expands the spectrum remains blackbody but the photon

frequencies are redshifted and the number density of photons is lowered.

The 2.7 K CMB is the faint, redshifted remnant of the cosmic fireball in

which the Universe was created. Decoupling occurred at z ∼ 1100. The

photon temperature then of about 3000 K is lowered by the redshift factor

to the present value of a little less than 3 K. (b) Last scattering surface for the

CMB. The Universe is opaque to photons at larger redshift (earlier times).

The CMB is the photon remnants of the big bang, redshifted

into the microwave spectrum by expansion [Fig. 20.9(a)].

• The photons detected in the CMB were emitted from the

last scattering surface (LSS) illustrated in Fig. 20.9(b).

• The LSS lies at z∼ 1100.

• This represents the time when the present CMB photons

decoupled from matter (∼ 400,000 yr after the big bang).

• At greater z the Universe was opaque to photons because

then matter and radiation were strongly coupled.
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Figure 20.10: The CMB last scattering surface illustrated in a η−χ space-

time diagram, where χ is a comoving coordinate and η is a conformal time

coordinate. The present time is η0, the time of the big bang is η = 0, and

the time of last scattering is ηLS.

The last scattering surface is illustrated further in Fig. 20.10

using conformal time η .

• The comoving distance to the last scattering surface χLS

is the greatest actual distance from which photons can be

detected.

• It is less than the horizon distance χhorizon.

• The Universe is

– opaque to photons before ηLS and

– transparent afterwards.
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20.7 Anisotropies in the Microwave Background

COBE, WMAP, and Planck satellites (as well as high-altitude

balloons) have measured the angular distribution of the CMB.

• It is isotropic down to a dipole anisotropy ∼ 10−3.

• This corresponds to a Doppler shift associated with mo-

tion of the Earth relative to the microwave background.

• Once the peculiar motion of the Earth with respect to the

CMB is subtracted, the background is isotropic down to

the 10−5 level (tens of µK).

• The temperature fluctuation at a given point on the sky is

defined by

δT

T
(θ ,ϕ)≡ T (θ ,ϕ)−〈T 〉

〈T 〉 〈T 〉 ≡ 1

4π

∫

T (θ ,ϕ)sinθdθdϕ

• COBE measured an anisotropy that corresponds to

√
√
√
√

〈(
δT

T

)2
〉

= 1.1×10−5.

Even more precise CMB anisotropies have been

measured by WMAP and Planck, as illustrated on

the following page.
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COBE

WMAP

Planck

Figure 20.11: COBE, WMAP, and Planck fluctuation maps of the full sky.

COBE WMAP Planck

Figure 20.12: COBE, WMAP, and Planck maps of a 10 degree square. Note

the dramatic difference in resolution.
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The primary interest in cosmology is in statistical correlations

of the CMB temperature fluctuations.

• It is convenient to expand the temperature fluctuations as a

function of angular position (θ ,ϕ) on the sky using spher-

ical harmonics Yℓm(θ ,ϕ),

δT

T
(θ ,ϕ) = ∑

ℓm

aℓmYℓm(θ ,ϕ).

• The 2-point correlation function C(θ) is then defined by,

C(θ)≡
〈

δT

T
(n̂nn1)

δT

T
(n̂nn2)

〉

n̂nn1·n̂nn2=cosθ

,

– where n̂nn1 and n̂nn2 are unit vectors specifying the direc-

tions to two points on the celestial sphere separated

by an angle θ , and

– the angular brackets indicate an average over all pairs

of points separated by θ .
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Figure 20.13: Planck CMB power spectrum. Multipole order ℓ on the bot-

tom axis (with a log scale below 30 and linear above) and a corresponding

angular scale θ on the top axis. They are related by θ ∼ 180◦/ℓ.

• Inflation predicts fluctuations that are maximally random

(gaussian), meaning that multipoles are uncorrelated.

• Assuming gaussian fluctuations and the addition theorem

Pℓ(cosθ) =
4π

2ℓ+1

m=+ℓ

∑
m=−ℓ

Y ∗ℓm(n̂nn1)Yℓm(n̂nn2),

with θ the angle between n̂nn1 and n̂nn2, the correlation func-

tion may be expanded as Legendre polynomials Pℓ(cosθ),

C(θ) =
1

4π

∞

∑
ℓ=0

cℓ(2ℓ+1)Pℓ(cosθ).

A plot of some function of C(θ) vs. multipole order is called a

power spectrum. An example is shown in Fig. 20.13.
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• Physically, the ℓ= 0 component is normally zero and the

• the ℓ= 1 component is motion relative to the CMB.

• Thus, cosmological interest centers on ℓ≥ 2.

• Multipole moments on the bottom axis of the figure above

are related to an angular scale (top axis in the figure).

• Roughly, a multipole moment of order ℓ is sensitive to an

angular region equal to ∼ 180◦/ℓ. Thus,

• Lower multipoles carry information about the

CMB on large angular scales.

• High multipoles probe small angular scales.
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Examples:

• The ℓ= 10 multipole above is sensitive to structure on an

angular scale of

180◦

10
≃ 18◦,

• while the ℓ = 1800 multipole reflects structure on an an-

gular scale of
180◦

1800
≃ 0.1◦,

Thus in CMB temperature fluctuation maps, statistically,

• lower multipoles ←→ larger features

• higher multipoles ←→ smaller features.
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20.8 The Origin of CMB Fluctuations

The CMB represents photons liberated near the decoupling

transition.

• Decoupling occurred about 380,000 years after the big

bang.

– At decoupling the visible Universe was a thousand

times smaller and

– a billion times more dense than it is today.

• The pattern of CMB temperature fluctuations displayed in

the sky maps reflects the perturbation of big bang photons

at decoupling.

• These were caused by the density fluctuations present at

the time of last scattering (when statistically photons were

unlikely to undergo further scattering before reaching us).

• Thus, this pattern contains detailed information about the

state of the Universe near the decoupling transition and it

is important to understand the cause of the fluctuations.

The origin of the CMB fluctuations is different

for the low multipoles and high multipoles in the

power spectrum.
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20.8.1 Angular Size Distance

Cosmological distances are a matter of definition: physical dis-

tances in general relativity are proper distances, but

What we can measure on cosmological scales is

not directly a proper distance.

• One such defined distance was introduced earlier, the lu-

minosity distance dL.

• The luminosity distance is based on the idea of a standard

candle (an astronomical object of known intrinsic lumi-

nosity).

• In studying the CMB we are often concerned with angu-

lar measure and it is useful to introduce another defined

distance, the angular size distance dA.

• Angular size distance is based on the idea of a standard

ruler (an astronomical object of known transverse size).
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The angular size distance is defined to be

dA =
D

∆θ

where ∆θ is the observed angular size and D is the physical

length of the standard ruler.

• In static euclidean space dA is the proper distance but in

GR we must account for curvature and expansion.

• Assume the RW metric with

– an observer at comoving coordinates (t0,r,θ ,ϕ) =
(0,0,0,0), and

– a standard ruler at redshift z stretching from comov-

ing coordinates (te,r,θ ,ϕ) to (te,r,θ +∆θ ,ϕ):

Observer

(te, r, θ+∆θ, φ)

(te, r, θ, φ)

(t0, 0, 0, 0)

∆θ
Standard

ruler

• Light is emitted from the standard ruler at time te and trav-

els to the observer on a geodesic with θ = ϕ = constant,

arriving at time t0.
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Observer

(te, r, θ+∆θ, φ)

(te, r, θ, φ)

(t0, 0, 0, 0)

∆θ
Standard

ruler

• The proper length of the standard ruler at te is known to

be D, and it also can be calculated from the line element.

• Using the RW metric in the form

ds2 =−dt2+a(t)2[dr2+Sk(r)
2 dΩ2]

Sk(r) =







sin r (k =+1)

r (k = 0)

sinh r (k =−1)

with dr = dϕ = dt = 0, and dΩ = ∆θ since ϕ is fixed,

gives for the length of the standard ruler

D = ds = a(te)Sk(r)∆θ .

• Inserting this in the defining equation dA = D/∆θ , the an-

gular size distance is

dA =
D

∆θ
=

a(te)Sk(r)∆θ

∆θ
= a(te)Sk(r) =

Sk(r)

1+ z
.
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Observer

(te, r, θ+∆θ, φ)

(te, r, θ, φ)

(t0, 0, 0, 0)

∆θ
Standard

ruler

• Comparing with the luminosity distance dL defined ear-

lier,

dL = Sk(r)(1+ z)≃ (1+ z)r = (1+ z)ℓ(t0),

we find that

dA =
dL

(1+ z)2
.

• Thus dA and dL are very different at large redshift.

For a flat Universe dA equals the proper distance

at the time the light was emitted (Problem).
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The origin of the CMB fluctuations is different for low and high

multipoles in the above power spectrum.

20.8.2 The Sachs–Wolf Effect

Consider multipole orders in the above spectrum below ℓ∼ 30.

• This corresponds to large angular scales on the sky.

• At decoupling (z∼ 1080) energy densities for dark matter,

radiation, and baryonic matter were in the ratio

εdm : εγ : εb ∼ 5.5 : 1.8 : 1.

• Thus gravity was dominated by the dark matter.
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• Dark matter was not coupled to photons so it could con-

tract under its self-gravity before baryonic matter could.

• Small dark matter overdensities grew prior to decoupling.

• These fluctuations in the dark matter energy density

ε(rrr) = ε0 +δε(rrr)

caused fluctuations in the gravitational potential. In New-

tonian approximation, the Poisson equation implies

∇∇∇2(δϕ) = 4πG

(
δε

c2

)

.

• A CMB photon climbing out of a local potential minimum

at decoupling is redshifted and

• one falling off a local potential maximum is blueshifted.
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• This causes fluctuations in the CMB temperature

∆T

T
=

δϕ

3c2

called the Sachs–Wolfe effect.

• The Sachs–Wolfe effect is the main source of CMB fluc-

tuations for angular scales larger than ∼ 10◦ [multipole

orders below ℓ∼ 20].

• From the above figure, CMB power is nearly constant for

ℓ < 20.

• Thus, Sachs–Wolfe fluctuations are nearly constant over

a broad range of angular scales and thus distance scales.

• This scale invariance of density fluctuations is a central

prediction of the theory of inflation (next chapter).
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CMB fluctuations on small angular scales (large multipole or-

der) have a different origin that is associated with sound waves

in the early Universe.

20.8.3 Sound Waves

• Consider a small region of the young Universe that is

slightly overdense relative to the surrounding region.

• Because it is overdense, it will compress gravitationally.

• What happens next depends on whether the fluid is neutral

or ionized.
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If the fluid is uncharged, little radiation pressure opposes grav-

ity and the region is unstable to collapse.

• Overdense regions become more dense and

• underdense regions become less dense.

• Over cosmological time this leads to the formation of su-

perclusters of galaxies surrounding large voids.

The situation is quite different if the cosmic fluid is ionized, as

it is earlier than the decoupling transition.

• Strong Thomson scattering of photons from free electrons

couples the plasma into an effective baryon–photon fluid.

• This fluid has only about half of the density of the dark

matter at decoupling.

• Hence the baryon–photon fluid moves mostly under the

gravitational influence of the dark matter and not its own

self-gravity.

• Gravitational compression of a region increases density,

temperature, and pressure, producing radiation pressure

that opposes the gravitational contraction.

• This drives an expansion of the region that causes the pres-

sure to drop, eventually leading to another gravitational

contraction, and so on.
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• Thus the baryon–photon plasma develops sound waves

(pressure fluctuations) called acoustic oscillations, for

which

– the driving force is gravity and

– the restoring force is radiation pressure of the pho-

tons.

• These sound waves travel at very high speed in the ionized

fluid.

• Near decoupling T ∼ 3000 K and photons are∼ 109 more

abundant than baryons in the fluid.

• At constant entropy the speed of sound vs is

vs =

(
dP

dρ

)1/2

≃ c√
3
,

since photons dominate and for a photon gas

P = 1
3
ε = 1

3
ρc2.

Thus radiation pressure

• keeps density fluctuations from collapsing

• and creates acoustic oscillations

in the plasma before the decoupling transition.
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As we will now discuss, there is a preferred length scale asso-

ciated with these acoustic oscillations.

• This preferred distance is called the acoustic scale or the

sound horizon.

• It is associated with the distance sound could have trav-

eled between the big bang and decoupling.

• As we shall now see, this length scale is expected to leave

its imprint on both

– the radiation (through CMB fluctuations) and

– on the matter (through baryon acoustic oscillations in

the presently observed distribution of galaxies).
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20.8.4 The Acoustic Scale

The sound horizon scale is set by the proper distance ℓs(tls)

sound could travel from the big bang to the decoupling time tls.

• This may be evaluated from

ℓs(tls) = a(tls)
∫ tls

0

vsdt

a(t)
,

where vs ∼ c/
√

3 is the speed of sound.

• From cosmological data the acoustic scale corresponds to

a proper distance ℓ(tls)∼ 0.144 Mpc on the last scattering

surface (Problem).

• Due to expansion, this implies a proper distance today of

ℓ(t0) = (1+ zls)ℓ(tls)∼ 156 Mpc.

• Hence a preferred proper distance scale

ℓ(tls)∼ 0.144 Mpc
︸ ︷︷ ︸

z∼1080

−→ ℓ(t0)∼ 156 Mpc
︸ ︷︷ ︸

z=0

is established by the sound horizon at last scattering.

• If, at last scattering, the fluid in an oscillation region is

– at maximum compression, its density will be higher

and photons emitted from it will be slightly hotter;

– if it is at maximum expansion, the density will be

lower and the emitted photons slightly cooler,

relative to the average temperature of the CMB.
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20.8.5 Acoustic Signature in the CMB

The acoustic length scale is based on well-known physical

principles (speed of sound in a photon-dominated plasma).

• Therefore it defines a standard ruler.

• Then an observed angular size can be associated with a

physical distance on the last scattering surface (LSS).

• Specifically, fluctuations in the CMB of angular size ∆θ
are related to a physical transverse size D on the LSS by

D = dA∆θ ,

where dA is the angular size distance.

• A numerical solution assuming the parameters taken from

Planck satellite data gives dA = 12.9 Mpc.

• Thus a proper transverse distance D on the LSS is related

to an angle ∆θ observed today on the celestial sphere by

∆θ = 4.45×10−3

(
D

kpc

)

deg.

• The preferred distance scale established by acoustic oscil-

lations at the time of last scattering translates into a pre-

ferred angular scale for the CMB observed today.

• Inserting the acoustic scale of 144 kpc in this equation im-

plies that a preferred angular size of ∆θ ∼ 0.6◦ should be

observable in the temperature fluctuations of the CMB.
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The patterns of hot and cold spots on small angular scales in the

CMB are a snapshot of the sound wave pattern in the cosmic

fluid at the time of decoupling.

• The corresponding CMB power spectrum (figure above)

then contains a wealth of cosmological information.

• The first peak is strongest.

– It occurs at a multipole order associated with the pre-

ferred angular size of 0.6◦.

– This represents acoustic oscillations that were at max-

imum compression at the time of last scattering.

The harmonic series of peaks represents overtones

of the preferred 0.6◦ angular scale.
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• Observed angular sizes depend on curvature.

– Positive curvature shifts the first peak to larger angle;

– negative curvature shifts it to smaller angle.

At this point, data are consistent with zero curvature.

• The amplitude of the first peak is

– increased by lower sound speed vs and

– decreased by higher vs.

• Thus the height of the first peak is

– a diagnostic of the speed of sound at decoupling.

– This is in turn a diagnostic for the baryon density.
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• Equal spacings of the peaks indicates that the initial fluc-

tuations were adiabatic.

– Adiabatic: all species varied together in density.

– Adiabatic fluctuations as initial big bang conditions

are predicted by inflation (next chapter).

• The relative heights of the peaks are sensitive to the dark

matter density and the baryon density.

• The position of peaks measures the acoustic length scale.

– This scale is physical, so it is a standard ruler.

– This allows an independent determination of distance

to the last scattering surface.
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CMB

Galaxies

Figure 20.14: Acoustic oscillations at the decoupling transition leave an

imprint on the CMB at last scattering, and on the large-scale distribution of

galaxies at later times.

20.8.6 Acoustic Signature in Galaxy Distributions

A characteristic length scale was imprinted on the CMB by

acoustic oscillations at decoupling.

• This length scale also should be visible in the baryonic

matter.

• This is illustrated schematically in Fig. 20.14.

• The possibility of such baryon acoustic oscillations (BAO)

was introduced earlier; now be discuss it in more detail.
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CMB

Galaxies

A remnant signature of the BAO should be observable in the

clustering of galaxies today on large scales.

• The acoustic length on the last scattering surface has been

stretched by a factor of 1+ zls to ∼ 150 Mpc today.

• Using the average matter density parameter Ωm ∼ 0.3, a

volume of this size contains more than 1017 M⊙.

• This greatly exceeds the mass of a galaxy supercluster.

• Furthermore, the original BAO signal has been

– diluted by mixing with the dominant dark matter and

– smeared by peculiar local velocities and fluid flows

in the evolution of the Universe.
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Figure 20.15: Baryon acoustic oscillation for approximately 106 galaxies.

(a) Correlation function versus comoving radius. (b) Power spectrum versus

wavenumber. The data have been reconstructed to remove effects of matter

flows and peculiar velocities on intermediate scales and give sharper peaks.

The curves are calculations for a best-fit BAO model. The galaxy power

spectrum (b) is similar in spirit to the CMB power spectrum except that the

3D data are expanded in a Fourier series rather than in spherical harmonics,

and the index k is a wavenumber rather than a multipole moment.

Finding a BAO requires a huge sample of 3D galaxy locations.

• Surveys of angular positions that also determine redshifts

are effectively 3D since redshift is a proxy for distance.

• Evidence for a BAO in a survey of∼ 106 galaxies from the

Sloan Digital Sky Survey (SDSS) is shown in Fig. 20.15.

• Assuming h ∼ 0.7, the peak in Fig. 20.15(a) indicates a

preferred length scale of about 150 Mpc.

• This is roughly the estimated present size of the acoustic

length scale established by how far sound waves could

have traveled before the decoupling transition.
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Open
Flat Closed

Figure 20.16: Schematic influence of spacetime curvature on observed

CMB fluctuations.

20.9 Precision Measurement of Cosmology Parameters

WMAP and Planck observations in particular have yielded pre-

cise constraints on important cosmological parameters.

• This is because the detailed pattern of CMB fluctuations

is extremely sensitive to many cosmological parameters.

• For example, Fig. 20.16 illustrates schematically that lens-

ing effects on the CMB distort it in a way that depends on

the overall curvature of the Universe.
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(a)

(b)

CMB

CMB
+

SNIa

w

Figure 20.17: (a) CMB power spectrum. (b) Curvature density Ωk versus w

for an equation of state P=wε . The diagonal locus indicates CMB analysis;

the more vertical locus combines CMB and Type Ia supernova data.

As a second example,

• Fig. 20.17(a) illustrates a CMB power spectrum and

• Fig. 20.17(b) shows confidence intervals for

– the curvature density Ωk and

– the equation of state parameter w in P = wε

implied by the CMB data.

• The inferred equation of state parameter is w=−1±0.02.

• This is consistent with w =−1 (cosmological constant).

From Fig. 20.17, the total density parameter is

Ω = 1±0.03,

which is consistent with a flat Universe.
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Table 20.2: Cosmological parameters from Planck CMB data

Parameter Symbol Value

Hubble parameter H0 67.8±0.9 km s−1 Mpc−1

Age of the universe t0 13.80±0.04 Gyr

Baryon density Ωb 0.0484±0.0005

Matter density Ωm 0.308±0.012

Dark energy density ΩΛ 0.692±0.012

Dark energy equation of state† w −1.006±0.045

Sum of neutrino masses ∑mν < 0.23 eV

Curvature density |Ωk| < 0.005

Redshift for rad/matter equality zeq 3365±44

† The coefficient w in P = wε .
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Fits to power spectra determine cosmological parameters.

• The Planck CMB power spectrum is shown above and

• Planck cosmological parameters are shown in Table 20.2.
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Figure 20.18: Redshift and scale factor in the early Universe using cosmo-

logical parameters consistent with Planck satellite data. Redshift z = 11.09

corresponds to the most distant galaxy that had been observed as of 2017.

Evolution of the early Universe for a Friedmann cosmology us-

ing parameters from Planck data is illustrated in Fig. 20.18.

• As of late 2017, the largest redshift observed was z =
11.09 for the irregular galaxy GN-z11.

• From Fig. 20.18, this redshift corresponds to light emitted

about 400 million years after the big bang.

This indicates that galaxy formation was well un-

derway during reionization of the Universe, which

began ∼ 200 million years after the big bang.
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The precision with which parameters are now being determined

from

• CMB data

• high-redshift supernovae

• (supplemented by lensing, baryon acoustic oscillation,

and other observational data from more traditional obser-

vational astronomy)

is unprecedented.

Over little more than a decade these new obser-

vations transformed cosmology into a quantitative

science constrained by precise data.
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20.10 Seeds for Structure Formation

CMB fluctuations reflect conditions when matter and radiation

decoupled.

• If the CMB were perfectly smooth, it would be difficult to

understand how structure could have formed.

• A period of exponential growth in the early Universe

called cosmic inflation may have been crucial to produc-

ing the observed CMB density fluctuations (next chapter).

• However, the observed CMB fluctuations are too small

by themselves to account for the large-scale structure ob-

served today without help from dark matter.

• Dark matter was crucial in aiding structure formation.

1. Because dark matter does not couple to photons, it

could begin to clump earlier than the normal matter.

2. Because there is so much more dark matter than nor-

mal matter, it could clump more effectively.

• Thus, dark matter provided the initial regions of higher

density that seeded the early formation of structure in the

Universe.

• This permitted structure formation to proceed faster than

it would have otherwise.

• These ideas are illustrated schematically on the next page.
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The temperature is still above the 

decoupling transition, so visible 

matter cannot clump. But the dark 

matter has begun to clump, forming 

density concentrations that will be 

the seeds for attracting the visible 

matter when it decouples from the 

photons.
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and radiation are coupled, so any 
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Visible matter decouples from 

photons and begins to clump. This 

can proceed rapidly because dark 
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Figure 20.19: Formation of structure. Dark dots are dark matter; lighter dots

are normal matter.
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As already discussed, hot and cold dark matter suggest different

paradigms for formation of structure in the early Universe.

• Hot dark matter implies high velocities for the dark parti-

cles.

• They will be stopped only after passing through a volume

containing of order 1015M⊙ (mass of galaxy superclus-

ters).

• This implies that they can stream freely over 10–100 Mpc

distances.

• Hot dark matter streaming freely on these scales disfavors

structure formation on any smaller scales:

In a Universe dominated by hot dark matter

• the formation of structure occurs first on

large scales and

• this structure must then break apart to form

smaller structures.

This is called the top-down model for structure for-

mation.
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On the other hand,

• Cold dark matter has relatively low velocity and

• tends to travel only a small distance before being stopped.

• This favors the formation of structure on small scales such

as galaxies, and then

• larger structures can form by aggregation of these smaller

structures.

This is termed the bottom-up model of structure

formation.



20.10. SEEDS FOR STRUCTURE FORMATION 967

The top-down scenario has some serious problems:

• Observations the furthest back in time see quasars,

gamma-ray bursts, and galaxies.

• They do not see superclusters of galaxies.

The best current simulations indicate that formation of structure

was

• dominated by cold dark matter in a bottom-up scenario,

though

• quantitative details may require a small admixture of hot

dark matter.

As we have already noted, the cold dark matter is

• essential for accelerating the bottom-up sce-

nario because otherwise

• the Universe would not be old enough to have

assembled the large-scale structure seen in

the current Universe.
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20.11 Summary: Dark Matter, Dark Energy, and Structure

Let’s conclude this chapter by summarizing our understanding

of dark matter, dark energy, and formation of structure.

• If inflation is correct (next chapter) and the cosmological

constant were zero,

– the matter density of the Universe would be exactly

the closure density,

– which would lead to flat geometry.

– However, that is not the nature of our Universe ac-

cording to observations.

• Current data indicate that the Universe is indeed flat, as

predicted by inflation, but

1. it does not contain a closure density of matter because

there is a non-zero cosmological constant. Instead,

2. about 30% of the closure density is supplied by matter

3. and about 70% is supplied by dark energy (vacuum

energy or a cosmological constant).

4. Luminous matter contributes a small fraction of the

closure density, implying that

5. the vast majority of the mass density is dark matter.

Thus, the present Universe is dominated by dark

matter and dark energy.



20.11. SUMMARY: DARK MATTER, DARK ENERGY, AND STRUCTURE969

• Known neutrinos are relativistic (hot dark matter).

1. They could aid the formation of large structures like

superclusters but not smaller structures like galaxies.

2. Thus, (the known) neutrinos are not likely to account

for more than a small fraction of the dark matter.

3. WMAP and Planck data support this conclusion.

• On the scale of galaxies and clusters of galaxies, 90% of

the total mass is not seen.

1. A significant fraction of the dark matter could be nor-

mal (baryonic), in the form of small, very low lumi-

nosity objects like white dwarfs, neutron stars, black

holes, brown dwarfs, red dwarfs, Jupiters, . . . .

2. However, microlensing and searches for subluminous

objects have not found enough of these “normal” ob-

jects to account for the mass of galaxy halos.

• Further, strong constraints from big bang nucleosynthe-

sis compared with observed abundances of light elements

indicate that most of the dark matter cannot be baryonic.

1. Thus, much of the dark matter is likely to be nonbary-

onic and not neutrinos, and to be cold (massive).

2. Current speculation centers on undiscovered elemen-

tary particles as candidates for this cold dark matter.

3. However, no such particles have been found so far.
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• Large-scale structure and its rapid formation in the early

Universe is hard to understand,

– given the smallness of the CMB fluctuations implied

by COBE, WMAP, and Planck measurements,

– unless cold dark matter seeds initial structure forma-

tion.

• The models of structure formation most consistent with

current data are the class of ΛCDM models that

– combine a cosmological constant (denoted by Λ) with

– cold dark matter (CDM)

– to give an accelerating but flat universe,

with the cold dark matter seeding structure formation.

• The origin of dark energy is an almost complete mystery.

– The most economical explanation would be the en-

ergy of quantum vacuum fluctuations.

– However, with our present understanding of how

to calculate the vacuum energy that explanation is

highly inconsistent with observations.

We will consider further the energy of vacuum fluc-

tuations in the last chapter.



Chapter 21

Extending Classical Big Bang Theory

The big bang is our standard model for the origin of the Uni-

verse. This place is well earned.

• At a broad conceptual level, many cosmology observa-

tions make sense only if there was a big bang in our past.

• At a more nuts and bolts level, the standard big bang

model accounts quantitatively for precise observational

data not easily be explained by any competing theory.

However, some observations in modern cosmol-

ogy suggest that the classical big bang is an

• essentially correct, but

• perhaps incomplete

picture of the origin and evolution of our Universe.

In this chapter we address some of these issues.

971
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21.1 Successes of the Big Bang

Let’s begin by summarizing the role of the big bang theory in

modern cosmology. The standard cosmology rests on a rela-

tively few observations and concepts:

1. The redshifts of distant galaxies imply that

• we live in an expanding Universe that is

• described at the simplest level by the Hubble law.

2. On large enough scales (beyond superclusters of galaxies)

the Universe appears to be both

• homogeneous and

• isotropic.

This is called the cosmological principle.

3. Properties of distant quasars suggest that these powerful

energy sources were once

• more energetic and

• more closely spaced than they are today,

implying that the Universe has evolved with time.

4. The cosmic microwave background (CMB) is all-

pervading and

• highly isotropic but with fluctuations at the 10−5

level, and

• has a blackbody spectrum, with T = 2.725 K.
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5. The elemental composition of the Universe is (by mass)

three parts H to one part He, with but a trace of heavier

elements.

6. The Universe appears to be charge neutral on large scales.

Conversely, observations indicate that

• the Universe is highly asymmetric with respect to

matter and antimatter,

• with no evidence for significant equilibrium concen-

trations of antimatter.

7. There are many fewer baryons than photons in the Uni-

verse.

8. In contrast to the homogeneity on very large scales,

• matter on scales comparable to superclusters of

galaxies and smaller exhibits complex and highly

evolved structure.

• This contrasts sharply with the smoothness of the

CMB.

• Furthermore, observations indicate that this structure

began to develop very early in the history of the Uni-

verse.
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9. Detailed analysis of fluctuations in the CMB and of the

brightness of distant Type Ia supernovae indicate that

(a) The expansion of the Universe is presently accelerat-

ing.

(b) The geometry of the Universe is remarkably flat (eu-

clidean).

10. The bulk of the matter in the Universe is

• not luminous (dark matter) and

• observable only through its gravity.

Various observational constraints imply that most dark

matter is not baryonic.
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The first five observations fit well within classical big bang cos-

mologies:

• Observations (1)–(2) indicate that we live in an expanding,

isotropic universe,

• Observations (3)–(5) indicate that

– this Universe has evolved over time and

– had a beginning in a very hot, very dense initial state

(the big bang).

The remaining observations need not be inconsistent with the

classical big bang, but they require either

• ad hoc imposition of particular initial conditions on the

Universe, or

• assumption of specific microscopic properties for the mat-

ter and energy fields that the Universe contains.

Furthermore, observation (4): existence of a very

smooth CMB but with fluctuations at the 10−5

level

• is one of the great triumphs of the big bang

theory, but

• it raises a potentially serious problem.
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21.2 Problems with the Big Bang

As indicated in the previous section, observational properties

(6)–(11) constitute potential problems for the classical big bang

model.

• They do not invalidate the big bang.

• However, they indicate that the big bang in its minimal

form may be incomplete.

• Much of this incompleteness is likely to originate in

– an inadequate understanding of how the particle and

field content of the Universe influences its history.

– Thus, the incompleteness might be addressed by a

better understanding of how those particles and fields

couple to the evolution.

Let’s now discuss these isues in more depth.
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21.2.1 The Horizon Problem

Observational property (4) (isotopy of the CMB) presents a po-

tential conflict with causality:

• The CMB has nearly the same temperature in widely sep-

arated parts of the sky.

• This is understandable only if those regions were in causal

contact in the past.

• But in the standard big bang model it is easy to show that

– regions on the sky separated by more than a degree or

two in angle could not have exchanged light signals

since the big bang.

– Thus, they could never have been in past causal con-

tact.

• That is, they lie outside each other’s horizons, as illus-

trated in Fig. 21.1 on the following page.
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Figure 21.1: Horizons in an expanding universe. (a) A (cosmological) hori-

zon is the greatest distance from which light could have reached us since

the beginning of time. (b) Horizons expand with time, so objects currently

outside our horizon may come within our horizon in the future. (c) Cos-

mological horizons are defined relative to each observer, so each has her

own horizon. (d) Horizon problem produced by the CMB having identical

temperatures on opposite sides of the sky for an observer: how do A and

B know to have the same temperature if they could never have exchanged

signals in the past?
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Figure 21.2: The flatness problem: producing a flat Universe today requires

remarkable fine-tuning of the initial curvature for the Universe.

21.2.2 The Flatness Problem

Observational property 9(b) implies that the Universe is flat.

• Hence, the Universe must be very near the closure density.

• This condition is possible, but only if parameters are very

finely tuned in the early universe (Fig. 21.2).

• The fractional deviation of density from critical density at

any time in the evolution of the Universe is (Problem)

∆ρ

ρ
=

ρ−ρc

ρ
=

3kc2

8πGa2ρ
,

• Unless flatness is tuned to one part in 1060 at the Planck

time, we end up with a Universe that is far from flat today.

This is a possible, but not very natural initial condition.
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Figure 21.3: The magnetic monopole problem of the standard big bang:

where are the massive relic particles that would be expected to be produced

at phase transitions like grand unification (labeled GUTs)?

21.2.3 The Magnetic Monopole Problem

Massive magnetic monopoles might be produced at phase tran-

sitions in the early universe (Fig. 21.3). This causes problems:

• Such particles have never been observed.

• They would have caused a more rapid change from radia-

tion to matter dominated evolution in the early Universe.

• This would negate many correct big bang predictions.

These problems are removed if we assume that

such particles are not produced in large numbers.

But why is this initial condition the correct one?
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21.2.4 The Structure and Smoothness Dichotomy

Observational properties (4) and (8) (smoothness of CMB vs.

existence of large-scale structure) present a compatibility issue:

• The remarkably high smoothness of the CMB implies that

the early Universe was strikingly devoid of density pertur-

bations.

• Where then did the density perturbations responsible for

the growth of rich structure in the present Universe on the

supercluster and smaller scale originate?

The form of the density perturbations required to

give the observed structure is known so they could

be postulated as initial conditions, but again we

would like to know why.
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21.2.5 The Vacuum Energy Problem

Observation 9(a) (accelerated expansion) has a simple expla-

nation only if the Universe contains dark energy.

• This would be most naturally explained if dark energy is

a consequence of vacuum fluctuations.

• However, estimates of the vacuum energy content of the

Universe are spectacularly wrong in comparison with the

corresponding observational constraints.

• The accelerated expansion is consistent with the big bang

picture if we simply postulate the existence of dark energy

in the Universe in the required amount.

But it is highly unsatisfying to have no understand-

ing of where this fundamental influence on the

evolution of the Universe comes from.



21.2. PROBLEMS WITH THE BIG BANG 983

21.2.6 The Matter–Antimatter and Baryogenesis Problem

Observation (6) indicates that the physical universe contains

almost entirely matter with little corresponding antimatter.

• We can impose this as an initial condition.

• But that is bothersome given that matter and antimatter

enter on an equal footing in modern elementary particle

physics.

• A closely-related problem (because annihilation of

baryons with antibaryons produces photons) is how to ac-

count for the large excess of photons over baryons in the

Universe (Observation 7).
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21.2.7 Modifying the Classical Big Bang

We shall now discuss some possible resolutions of these prob-

lems.

• In attempting to resolve the problems we have to be care-

ful to preserve the successes of the big bang model.

• The successful predictions of the big bang model rest pri-

marily on the evolution of the Universe at times later than

about one second after the initiation of the big bang.

• Therefore, any modification of our cosmological model

that influences the Universe at times earlier than about

one second after the big bang

– will leave the successes of the big bang intact

– if they leave appropriate initial conditions for the sub-

sequent evolution.

We begin with a proposed modification of the evo-

lution of the Universe that

• is operative only in the first tiny fraction of a

second of the big bang and that

• has the potential to resolve the first four prob-

lems in a single stroke.
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21.3 Cosmic Inflation

The theory of cosmic inflation is based on a simple but striking

idea that has been discussed already in conjunction with the de

Sitter solution:

• In the presence of an energy density constant over all

space, the Einstein equation admits an exponentially

growing solution.

• A short burst of exponential growth before settling down

into more normal big bang evolution would have poten-

tially large implications for the evolution of the Universe.

• We shall take the essential point of inflation to be this gen-

eral idea that the early Universe experienced a period of

exponential growth.

• There are many specific versions of inflationary theory

that implement this in different ways.

• For the most part we shall leave those specifics for the

interested reader to pursue in the specialist literature.

• Our reason is that

– there is compelling evidence that the basic idea of in-

flation is necessary to explain evolution of the early

Universe, but

– no specific current version of inflation gives a com-

pletely satisfactory accounting of the cause and de-

tailed effects of the inflationary period.
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21.3.1 Inflationary Theory

From earlier discussion of the de Sitter solution,

• A universe with pure vacuum energy expands exponen-

tially,
a(t) = eHt,

where the Hubble parameter H is constant.

• The basic idea of inflation is that shortly after birth the

Universe was dominated by a constant energy density.

• This drove an exponential expansion for a very short pe-

riod that caused rapid cooling because of the expansion.

• Then at the end of this period the Universe exited from

inflationary conditions and reheated.

• The mechanism for reheating generally involves the rapid

conversion of the constant energy density driving inflation

into the mass–energy of more normal particles.

• This then produced a situation dominated by radiation

rather than vacuum energy.

After inflation, the Universe began evolving in a

standard (hot) big bang scenario (power law de-

pendence of the scale factor on time):

a(t)∼ eHt

︸ ︷︷ ︸

inflation

−→ a(t)∼ tn.
︸ ︷︷ ︸

hot big bang
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In various versions of inflation different reasons are assumed

for the initial conditions triggering the exponential expansion.

• The original inflationary idea due to Alan Guth assumed

that inflation was driven by a Lorentz scalar field associ-

ated with a first-order phase transition.

• This is conceptually simple, but proved to be incompatible

with observations (as Guth himself realized).

• It was found that the resulting inflation could not halt in a

manner that would give something that looks like the real

Universe.

• In subsequent versions of inflation the inflation was often

assumed to be driven by a scalar field having a time de-

pendence of a particular form called a slow rollover tran-

sition.

• Although such theories often give a reasonably good ac-

count of data, they suffer from

1. having little connection to scalar fields known already

to exist in elementary particle physics, and

2. requiring extremely fine empirical tuning of parame-

ters to account well for data.

In keeping with the philosophy outlined above, we

omit discussion of these different forms of infla-

tion and instead concentrate on the consequences

of inflationary expansion.
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Figure 21.4: Inflationary cosmology. (a) In the inflationary epoch the Uni-

verse expands exponentially, which can increase the scale factor by factors

of 1050 or larger in of order 10−32 s. (b) The Universe cools as it expands ex-

ponentially. At the end of inflation, some mechanism reheats the Universe,

which then continues a standard hot big bang evolution.

Figure 21.4 illustrates the behavior of the scale factor and the

temperature in highly schematic fashion during inflation and

the following big bang evolution.

• During inflation the Universe expanded at a much higher

rate than in normal big bang evolution.

• At the same time, the temperature dropped rapidly in the

exponentially expanding Universe.

• Finally, when the period of inflation halted the Universe

first rapidly reheated and then began to decrease in tem-

perature according to the standard big bang scenario.

The question marks represent our substantial lack

of knowledge concerning the Universe prior to the

inflationary period.
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21.3.2 Taking the Inflationary Cure

The inflationary scenario provides (in principle) a solution of

the four fundamental problems posed above.

Solution of the Horizon Problem

The solution of the horizon problem is illustrated in Fig. 21.5.

• The tremendous expansion means that regions that we see

widely separated in the sky now at the horizon were much

closer together before inflation.

• Thus, they could have been in contact by light signals.
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Solution of the Flatness Problem

The tremendous expansion greatly dilutes any initial curvature.

• Think of standing on a basketball. It would be obvious that

you are standing on a two-dimensional curved surface.

• Now imagine expanding the basketball to the size of the

Earth.

• As you stand on it now, it will appear to be flat, even

though it is actually curved on large scales.

• The same idea extended to four-dimensional spacetime

accounts for the present flatness (lack of curvature) in the

space of the Universe.

Out to the greatest distances that we can see the

Universe looks flat on large scales, just as the Earth

looks approximately flat out to our horizon.
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Solution of the Monopole Problem

The rapid expansion of the Universe tremendously dilutes the

concentration of any magnetic monopoles that are produced.

• They become so rare in any given volume of space that

we would be very unlikely to ever encounter one in an

experiment designed to search for them.

• Nor would they have sufficient density to alter the gravity

and thereby the normal expansion of the Universe follow-

ing inflation.
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Two observational properties,

4: Smoothness of the CMB and

8: Evolved large-scale structure,

present a compatibility issue:

• The remarkably high smoothness of the CMB implies that

the early Universe was largely devoid of density perturba-

tions.

• Where then did the density perturbations responsible for

the growth of rich structure in the present Universe on the

supercluster and smaller scale originate?

The form of the density perturbations required to

give the observed structure is known empirically,

so they could be postulated as initial conditions,

but again one would like to know why.
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The Structure and Smoothness Dichotomy

Perhaps the most important consequence of inflation is that it

provides a possible explanation for the origin of large-scale

structure.

• The inflationary explanation is in fact rather remarkable.

• During inflation quantum fluctuations (Fig. 21.6)

• are stretched from microscopic to macroscopic size by the

exponential expansion.

• Because this process occurs during the entire time of in-

flation, we end up with

– density fluctuations of macroscopic size

– that vary over many length scales.
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• Technically, this produces what is termed a scale-

invariant spectrum of density fluctuations.

• This is known as a Harrison–Zeldovich spectrum.

• This is the spectrum of density perturbations is most likely

to give the observed large-scale structure of the Universe.

• Because of the quantum nature of the fluctuations, they

also are gaussian.

• “Gaussian” means that if fluctuations are expanded in

a fourier series or in spherical harmonics, different

wavenumbers or multipole orders are not correlated.

• These density perturbations will generally be expanded

beyond the horizon during inflation.

• But after inflation is over and normal big bang evolution

sets in, the horizon grows with time.

• Eventually the density perturbations re-enter the horizon

and serve as nucleation centers for structure formation.
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altitude balloon observations compared with various theoretical models.

• Simulations of structure formation give reasonable results

when effects of inflation are included.

• Furthermore, fluctuations in the CMB are described best

by theories that include the effect of inflation.

– Fig. 21.7 compares the angular fluctuations in tem-

perature for the CMB with various models with and

without inflation, and with and without dark energy.

– Models with both dark energy and inflation are

clearly favored.
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21.3.3 Inflation Doesn’t Replace the Big Bang

Inflation is not a theory in competition with the big bang:

• The theory of inflation modifies only the first tiny instants

of creation.

• After the completion of the brief period of inflation, it

is assumed that big bang evolution proceeds as described

earlier.

Thus, inflation should be viewed as

• a modified form of the big bang theory that

accounts for

• effects on initial conditions

not included in the standard big bang theory.
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21.4 The Origin of the Baryons

In the standard big bang model

• the observed

– preponderance of matter over antimatter and

– preponderance of photons over baryons

are introduced through initial conditions without funda-

mental justification.

• It would be highly desirable to understand the origin of

the baryons from a deeper perspective.

• This has proved to be a highly-elusive goal.

Andrei Sakharov first enumerated the ingredients required to

generate baryon asymmetries within the standard big bang

model:

1. There must exist elementary particle interactions in the

Universe that do not conserve baryon number NB.

2. There must exist interactions that violate both charge con-

jugation symmetry (C) and the product of charge conjuga-

tion and parity (P) symmetries, denoted CP.

3. There must be departures from thermal equilibrium dur-

ing the evolution of the Universe.
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In these requirements

• Baryon number NB takes the value +1 for a baryon and

−1 for an antibaryon.

• Total baryon number is then the algebraic sum of these

numbers for all the particles in a reaction.

• Conservation of baryon number (observed in every exper-

iment so far) means that this number does not change in

the interaction.

• Charge conjugation symmetry (C) is symmetry under ex-

change of a particle with its antiparticle.

• Parity symmetry (P) is symmetry under inversion of the

spatial coordinate system.

• CP symmetry is symmetry under inversion of the coordi-

nate system and exchange of particle with antiparticle.

Most interactions conserve these symmetries to

high precision but the weak interactions are known

to violate P, C, and CP.
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• Departures from thermal equilibrium are likely to have oc-

curred at various times in the evolution of the Universe.

• At least the weak interactions are known to violate both C

and CP symmetry.

Thus (in principle) all ingredients exist to account for baryon

asymmetry except for baryon non-conserving reactions.

• Experimentally, baryon non-conservation has never been

observed.

• However, there are theoretical reasons to believe that

baryon conservation might not be an exact symmetry but

just one that has not yet been observed to be violated.

• For example baryon non-conservation may occur only on

a energy scale not yet reached in laboratory experiments

but that could have occurred in the early Universe.
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One class of elementary particle theories that could have played

a role in producing the baryons is that of Grand Unified Theo-

ries (GUTs).

• In the Standard Electroweak Theory of elementary parti-

cle physics the electromagnetic interactions and the weak

interactions have been (partially) unified.

• This means that at high enough energy (in this case a scale

of about 100 GeV, (where 1 GeV = 109 eV) the weak and

electromagnetic interactions take on the same properties.

• A GUT attempts to extend this idea to unify weak, elec-

tromagnetic, and strong interactions into a single unified

theory.

• The characteristic GUT energy scale is very high (1014−15

GeV is a common estimate), but on that scale GUTs typi-

cally violate baryon number strongly.

• At one time GUTs were favored to account for baryogen-

esis but there have since been shown to be difficulties with

this approach.

• Thus a viable theory of baryon asymmetry may require

– a baryon-violating phase transition at

– a lower energy than the GUTs scale.
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A possible alternative mechanism is leptogenesis.

• Leptogenesis postulates that perhaps the baryon asymme-

try was generated by strongly CP-violating processes in

the neutrino sector.

• But it is not clear that this can account for the observed

baryon asymmetry of the Universe because

• the known electroweak interactions do not exhibit interac-

tions with the required characteristics.

• However, the correct electroweak theory could be more

general than the present one,

– which is not tested exhaustively above 100 GeV, and

– is now known to be contradicted by the small but fi-

nite masses observed for neutrinos.

Thus, an improved electroweak theory eventually

might be able to account for the baryon asymme-

try, but that is mostly speculation at this point.
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Part IV

Gravitational Wave Astronomy
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Chapter 22

Gravitational Waves

• Maxwell’s theory permits the existence of propagating

waves in the electromagnetic field.

• Likewise, Einstein’s theory of general relativity predicts

that fluctuations in the metric of spacetime can propagate

as gravitational waves.

• Until 2015 gravitational waves could only be inferred in-

directly.

• That changed dramatically with the detection in Septem-

ber, 2015, of GW150914 by the Laser Interferometry

Gravitational Wave Observatory (LIGO).

• GW150914 was interpreted as a gravitational wave gener-

ated by merger of two ∼ 30M⊙ black holes.

• Thus was gravitational wave astronomy born.

Gravitational waves are of considerable current in-

terest for several reasons.

1005
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Figure 22.1: The gravitational wave spectrum with potential sources and
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NS. Terrestrial interferometers, space-based interferometers, and pulsar tim-

ing arrays for detecting gravitational waves will be discussed later. Cosmic

microwave background polarization refers to expected signatures imprinted

on the CMB by gravitational waves.

22.1 Significance of Gravitational Waves

The schematic spectrum of gravitational waves, their possible

origin in various astronomical events, and potential methods of

detection are illustrated in Fig. 22.1.
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Unprecedented Tests of General Relativity

Before the observation of GW150914,

• gravitational waves represented the last classical predic-

tion of general relativity not tested directly.

• The Binary Pulsar provides strong indirect evidence for

emission of gravitational waves from that system, but no

gravitational wave had been observed directly.

– This is not because gravitational waves are rare;

– it is because they interact so weakly with matter.

• General relativity is tested by the mere existence of gravi-

tational waves and by their detailed properties.

• For example, GR predicts that gravitational waves

– can have only two states of polarization and

– must travel at light velocity.

• Some alternative theories of gravity predict gravitational

waves with more polarization states and with v 6= c.

• Furthermore, detection of GW150914 and its interpreta-

tion as a binary black hole merger provides the first test of

GR in the strong gravity, high-velocity, nonlinear limit.

• All prior direct tests: deflection and redshift of light, pre-

cession of orbits, and so on, correspond to the relatively

weak gravity limit of general relativity.
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A Probe of Dark Events

Gravitational waves can signal events that release large gravi-

tational energy but little electromagnetic radiation.

• Indeed, the evidence is that GW150914 was

– an enormously violent event

– that converted∼ 200M⊙ per second into gravitational

waves at peak luminosity, for which

– no obvious electromagnetic counterpart was ob-

served.

• Thus, gravitational waves may provide an alternative—or

perhaps the only—probe of some events releasing large

gravitational energy.
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The Deepest Probe

Their weakness makes gravitational waves hard to detect but

• That same weakness means that gravitational waves can

in principle be seen from earlier epochs (Fig. 22.2).

• Photons decouple∼ 105 yr after the big bang, so we can’t

see direct photons from earlier periods.

• Neutrinos decouple ∼ 1 s after the big bang, so neutrinos

can probe only back to that time.

• Gravitational waves could probe near the Planck scale.
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22.2 Linearized Gravity

The Einstein equation may be expressed in the form (Problem)

Rµν =−8πG(Tµν − 1
2gµνT λ

λ ).

• Because this equation is non-linear, general solutions that

correspond to gravitational waves are difficult to obtain.

• If we assume the gravitational waves to be weak, the met-

ric may be approximated as

gµν(x) = ηµν +hµν(x) (weak gravity)

– where ηµν is the metric of (flat) Minkowski space and

– the rank-2 Minkowski tensor hµν is small.

• The linearized vacuum Einstein equation then results from

– inserting this approximate metric into the vacuum

Einstein equation,

Rµν = 0

(obtained by setting the stress–energy tensor Tµν to

zero) and

– expansion of the resulting equations to first order in

the small quantity hµν .



22.2. LINEARIZED GRAVITY 1011

22.2.1 Linearized Curvature Tensor

• The Ricci curvature tensor Rµν is given by

Rµν = Γ
γ
µν ,γ −Γ

γ
µγ ,ν +Γ

γ
µνΓσ

γσ −Γσ
µγΓ

γ
νσ ,

where the Christoffel symbols Γ
γ
µν are related to the metric

tensor gµν by

Γ
γ
µν =

1

2
gγδ

(
∂gνδ

∂xµ
+

∂gµδ

∂xν
− ∂gµν

∂xδ

)

.

• To zeroth order in hµν , the Christoffel coefficients vanish

and so does Rµν , since ∂g/∂x = 0 for gµν → ηµν .

• To first order in hµν ,

δΓ
γ
µν =

1

2
ηγδ

(
∂hνδ

∂xµ
+

∂hµδ

∂xν
− ∂hµν

∂xδ

)

.

• The last two terms in the Ricci tensor are quadratic in ∂h,

Rµν = Γ
γ
µν ,γ −Γ

γ
µγ ,ν + Γ

γ
µνΓσ

γσ −Γσ
µγΓ

γ
νσ ,

︸ ︷︷ ︸

quadratic in ∂h

and may be discarded to first order in h, giving

δRµν =
∂(δΓλ

µν)

∂xλ
−

∂(δΓλ
µλ )

∂xν
+O

(

h2
)

,

for the linearized Ricci tensor.
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22.2.2 Wave Equation

Substitution and some algebra yields (Problem)

δRµν = 1
2(−✷hµν +∂µVν +∂νVµ),

where the 4-dimensional Laplacian (d’Alembertian operator)

is

✷≡ ηµν∂µ∂ν =− ∂ 2

∂ t2
+∇∇∇2,

with the definitions

∂µ ≡
∂

∂xµ
∂ µ ≡ ∂

∂xµ
,

and where the Vν are given by

Vν ≡ ∂λ hλ
ν − 1

2∂νhλ
λ

= ∂λ ηλδ hδν − 1
2∂νηλδ hδλ .

Note that raising and lowering of indices in lin-

earized gravity uses contraction with the flat-space

metric ηµν ,

h
γ
ν ≡ ηγδ hδν

rather than through contraction with

gµν = ηµν +hµν .
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Thus the vacuum Einstein equation to this order yields the wave

equation (Problem)

✷hµν −∂µVν −∂νVµ = 0.

• Since hµν is symmetric, this constitutes a set of 10 linear

partial differential equations for the metric perturbation

hµν .

• One refers to these as the linearized vacuum Einstein

equations and to the resulting theory as linearized grav-

ity.

As is clear from the derivation, we may expect this

to be a valid approximation to the full gravitational

theory when the metric departs only slightly from

that of flat spacetime.
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22.2.3 Degrees of Freedom and Gauge Transformations

The equation

✷hµν −∂µVν −∂νVµ = 0.

cannot yield unique solutions in its present form because of the

freedom of coordinate transformations:

• Given one solution (metric), we may generate another by

a coordinate transformation.

• This is related to a similar ambiguity in electromagnetism

(EM) associated with freedom to make gauge transforma-

tions without altering the electric and magnetic fields.

• If hµν solves the linearized Einstein equations,

– then so does h′µν where

– h′µν is related to hµν through a general coordinate

transformation x→ x′.

• This is reminiscent of the gauge ambiguity in EM, which

can be removed by fixing (choosing) a specific gauge.

• (If you are unfamiliar with this concept, see the discussion

of the Maxwell equations in Ch. 4.)

• The “gauge ambiguity” in linearized gravity can be re-

moved in a similar way by fixing the coordinate system.
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The coordinate independence of GR is analogous to the gauge

ambiguity in electromagnetism.

• The symmetric tensor hµν has 10 independent compo-

nents, but

• gravitational waves have only 2 independent degrees of

freedom.

• However, a judicious choice of coordinate system yields 8

constraints allowing unique solutions of

✷hµν −∂µVν −∂νVµ = 0.

that have only 2 physical degrees of freedom.

The freedom to make gauge (coordinate) transfor-

mations is of crucial importance in understanding

gravitational waves, so let’s now examine this in a

little more detail.
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22.2.4 Choice of Gauge

In electromagnetism (EM) we can make different choices of the

(vector and scalar) potentials that give the same electric and

magnetic fields and thus the same classical observables.

• Something similar is possible in linearized gravity.

• Small coordinate changes can be made that don’t change

ηµν in

gµν(x) = ηµν +hµν(x),

but that alter the functional form of hµν .

• Under such small changes in the coordinates

xµ → x′µ = xµ + εµ(x),

where εµ(x) is similar in size to hµν .

• Then the metric is changed to,

gµν(x) = ηµν +hνµ(x) → ηµν +h′µν(x)

= ηµν +hµν(x)−∂µεν −∂νεµ .

• The transformation hµν → h′µν , with

h′µν = hµν(x)−∂µεν −∂νεµ ,

is termed a gauge transformation, by analogy with EM.

• If hµν is a solution of

✷hµν −∂µVν −∂νVµ = 0.

then so is h′µν .
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Table 22.1: Gauge invariance in linearized gravity and electromagnetism

Linearized gravity Electromagnetism†

Potentials hµν Vector potential: AAA(t,xxx)

Scalar potential : Φ(t,xxx)

Fields Linearized Riemann Electric field: EEE(t,xxx)

curvature: δRαβδγ(x) Magnetic field: BBB(t,xxx)

Gauge transformation hµν → hµν−∂µεν −∂ν εµ Aµ → Aµ −∂ µ χ

Example of a gauge ∂ν h̄µν = 0 ∂ µAµ = 0

condition (“Lorentz”)

Field equations ✷h̄µν = 0 ✷Aµ = 0

in Lorentz gauge

†The 4-vector potential is Aµ ≡ (Φ,AAA) and χ is an arbitrary scalar function.

• Gauge transformations in E&M lead to

– new potentials Aµ but

– the same electric fields EEE and magnetic fields BBB.

• Likewise, gauge transformations in gravity lead to

– new potentials hµν but

– the same fields [linearized form δRµνβγ(x) of the Rie-

mann curvature tensor].

Analogies between

• coordinate (“gauge”) transformations in lin-

earized gravity and

• gauge transformations in classical E&M

are summarized in Table 22.1.
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A standard gauge choice analogous to choosing Lorentz gauge

in electromagnetism permits the linearized vacuum gravita-

tional equations to be replaced by the two equations

✷ h̄µν(x) =

(

− ∂ 2

∂ t2
+ c2∇∇∇2

)

h̄µν = 0,

∂ν h̄µν(x) = 0,

• where the first is a wave equation corresponding to the

linearized Einstein equation,

• the second is a (Lorentz) gauge constraint, and

• the trace-reversed amplitude is defined by

h̄µν ≡ hµν − 1
2ηµνh,

where h≡ hα
α is the trace (sum of diagonal elements).

As in electromagnetism, the “Lorentz” gauge is re-

ally a family of gauges. This will be used to simply

things further below.
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22.3 Weak Gravitational Waves

Let us now seek solutions of

✷ h̄µν(x) = 0,

∂ν h̄µν(x) = 0.

We expect the solution to be a superposition of components in

the form

h̄µν(x) = αµνeik·x = αµνeikα xα
,

where

• αµν is a constant, symmetric 4× 4 matrix called the po-

larization tensor and

• k is the 4-wavevector,

kµ =
(ω

c
, kkk
)

,

with ω the wave angular frequency.
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22.3.1 States of Polarization

The polarization tensor has 10 independent components.

• However, requiring that

h̄µν(x) = αµνeik·x,

satisfy the gauge condition ∂ν h̄µν(x) = 0 implies that

ikµαµν exp(ik · x) = 0,

which is true generally only if

kµαµν = 0 (ν = 0,1,2,3).

• These four equations reduce the independent components

of αν
µ from ten to six.

• But we have not yet exhausted the gauge (coordinate) de-

gree of freedom because any coordinate transform

xµ → x′µ = xµ + εµ(x)

that leaves

∂ν h̄µν(x) = 0

valid does not alter linearized gravity physically.

We now show that this freedom can be used to set

any four linear combinations of the h̄µν to zero.
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22.3.2 Polarization Tensor in Transverse–Traceless Gauge

The remaining gauge freedom alluded to at the end of the pre-

ceding section may be used to transform to transverse traceless

(TT) gauge by choosing

h̄0i = h̄ti = 0 (i = 1,2,3) Tr h̄≡ h̄
β
β
= 0.

In terms of the polarization tensor αµν , this corresponds to

α0i = 0 Trα = α
µ
µ = 0.

The gauge conditions

kµαµν = 0

with ν = 0 and α0i = 0 then require that α00 = 0, so four of the

αµν vanish:

α0µ = 0.

Furthermore, for i = 1,2,3 the gauge conditions require the

transversality condition to be satisfied,

k jαi j = 0.

Note: In TT gauge h = h̄, so the bar may be

dropped on h as long as we work in TT gauge.
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Let’s take stock. We started with 10 independent components

of the symmetric polarization tensor αµν . We then found that

• The condition h̄0i = 0 requires α01 = α02 = α03 = 0.

• The requirement

∂ν h̄µν(x) = 0

yields α00 = 0.

• Therefore, the four components α0µ vanish in TT gauge.

• The trace condition

Trh≡ h
β
β
= 0.

gives one constraint and the transversality condition

k jαi j = 0 (i = 1,2,3)

gives three additional constraints for a total of four con-

straints.

In summary, in TT gauge,

• ten αµν

• minus four αµν that are identically zero,

• minus four constraints on αµν ,

leave two independent physical polarizations for

gravitational waves.
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22.3.3 Helicity Components

Further insight comes from asking how the αµν change under

rotations of the coordinate system about the z axis.

• Helicity is the projection of the angular momentum on the

direction of motion.

• Generally a gravitational plane wave can be decomposed

into helicity components ±2, ±1, 0, and 0.

• However, the components with helicity 0 and ±1 vanish

under a suitable choice of coordinates.

• Thus, only the helicity components ±2 are physically rel-

evant for gravitational waves.

• This explains why there are two independent physical

states of polarization.

It is in this sense that quantum field theory asso-

ciates gravity with a spin-2 field.
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Compare with the analogous situation in electromagnetism,

which is described by a 4-vector field Aµ .

• This suggests that the Maxwell field should have 4 inde-

pendent states of polarization αµ .

• However, kµαµ = 0 reduces this to 3 and

• the freedom to make gauge transformations that leave the

EEE and BBB fields unchanged demonstrates explicitly that the

number of independent polarizations is actually only 2.

• Furthermore, a decomposition under rotations about the z

axis yields helicities 0 and ±1,

• but only the helicities ±1 are physically relevant.

• These correspond to the 2 independent states of polariza-

tion for a massless vector (spin-1) field.

That there are only two physical states of polarization for the

photon is tied intimately to its masslessness and associated lo-

cal gauge invariance.

• A massive vector field has 3 states of polarization and is

not locally gauge invariant.

• Likewise, that the gravitational field exhibits only 2 phys-

ical states of polarization is a consequence of the mass-

lessness of the graviton.

• A massive spin-2 field would have additional physical po-

larization states.
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22.3.4 General Solution in TT Gauge

Assume the wave to propagate on the z axis with frequency ω .

• The requirement that

h̄µν(x) = αµνeik·x,

satisfy the wave equation

✷ h̄µν(x) = 0,

implies that the wavevector satisfies

kµkµ = 0.

Thus k is a null vector with

kµ = (ω ,0,0,ω)

• From the preceding two equations with c restored,

kµkµ =−ω2

c2
+ kkk2 = 0 −→ ω

|kkk| = c.

• Thus the group and phase velocities are equal to c, just as

for electromagnetic waves.

The speed of gravity is exactly equal to the speed

of light.
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As you are asked to show in a Problem, for TT gauge

• The transversality condition k jαi j = 0

• the null wavevector kµ = (ω ,0,0,ω),

• the earlier result that α0µ = 0, and

• the trace condition Trα = 0,

mean that the only nonvanishing components of α are

α11 α12 = α21 α22 =−α11.

Furthermore, from kµ = (ω ,0,0,ω) we have

ik · x =−i(ωt−ωz)

and the general solution for z axis propagation with fixed fre-

quency ω in TT gauge is

hµν(t,z) =










0 0 0 0

0 α11 α12 0

0 α12 −α11 0

0 0 0 0










eiω(z−t),

which exhibits explicitly the transverse and traceless proper-

ties, with two independent polarization states.

Furthermore, since k is a null vector, the gravita-

tional wave propagates at the speed of light.
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• (Note that since we are in TT gauge we have dropped the

bar on h̄µν .)

• The part of the wave that is proportional to αxx = α11 is

called the plus polarization (denoted by +) and

• the part proportional to αxy = α12 =α21 is called the cross

polarization (denoted by ×).

• For example a purely cross-polarized plane wave propa-

gating in the z direction may be represented as

h×µν(t,z) =










0 0 0 0

0 0 α12 0

0 α12 0 0

0 0 0 0










eiω(z−t).
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• The most general gravitational wave in TT gauge is a su-

perposition of waves having the form

hµν(t,z) =










0 0 0 0

0 α11 α12 0

0 α12 −α11 0

0 0 0 0










eiω(z−t),

with different ω , directions of propagation, and ampli-

tudes for the two polarizations.

• It may be expressed as

hµν(t,z) =










0 0 0 0

0 f+(t− z) f×(t− z) 0

0 f×(t− z) − f+(t− z) 0

0 0 0 0










,

– where we assume propagation of the gravitational

wave along the z axis, and where

– f+(t − z) and f×(t − z) are dimensionless functions

characterizing the shape and amplitude of the wave.
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22.4 Gravitational Waves versus Electromagnetic Waves

Much of the discussion in this chapter has emphasized similar-

ities between gravitational waves and electromagnetic waves.

However, it is important to point out also that there are some

fundamental differences.
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22.4.1 Interaction with Matter

Electromagnetic waves interact strongly with matter but gravi-

tational waves interact extremely weakly with matter. This has

two consequences:

• Gravitational waves are much harder to detect than elec-

tromagnetic waves.

• Gravitational waves are not significantly absorbed by in-

tervening matter.
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22.4.2 Wavelength Relative to Source Size

• Electromagnetic waves can be used to form an image.

• This is because their wavelength is typically smaller than

the size of the emitting system.

• In contrast, the wavelength of gravitational waves is typi-

cally greater than or equal to the source size.

• Thus, they generally cannot be used to form an image.

• Hence detecting gravitational waves has been likened to

hearing sound.

Ultimately this is because

• electromagnetic waves are generated by local

moving charges within a larger source, while

• gravitational waves are generated by bulk mo-

tion of the entire source.
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22.4.3 Phase Coherence

Photons are emitted incoherently from a typical astronomical

source.

• In contrast, gravitons for astrophysical gravitational waves

strong enough to detect are generated by bulk motion of

large masses, so they are typically phase-coherent when

emitted.

• In this sense, gravitational waves are similar to laser light.

• This coherence has two important observational conse-

quences.

– If the waveform is well modeled, matched filtering

techniques (later chapter) can extend the distance at

which sources can be detected.

– The direct observable for a gravitational wave is the

strain, falling off as 1/r for a source at distance r.

This may be contrasted with observables for inco-

herent electromagnetic radiation, which are typi-

cally energy fluxes falling off as 1/r2.
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22.4.4 Field of View

Electromagnetic astronomy is typically based on

• deep images with

• small fields of view.

• This allows observers to mine large amounts of informa-

tion from a small region of the sky.

In contrast, gravitational wave astronomy

• sees essentially the entire sky at once, but

• with relatively low resolution compared with that typical

of electromagnetic astronomy.

The difference has been likened to the angular res-

olution contrast between hearing and seeing.
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22.5 Response of Test Particles to Gravitational Waves

We cannot detect a gravitational wave locally

• In a local enough region the effects of gravity may be

transformed away (equivalence principle).

• Thus the effect of a gravitational wave on a single point

test particle has no measurable consequences.

Gravitational waves may be detected only by their

influence on two or more test particles at different

locations.
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22.5.1 Response of Two Test Masses

• Assume a linearized gravitational wave of + polarization

propagating on the z axis in TT gauge,

hµν(t,z) =










0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0










f (t− z),

with a corresponding time-dependent metric

ds2 =−dt2 +(1+ f (t− z))dx2 +(1− f (t− z))dy2+dz2.

• Consider two test masses with

– Mass A initially at rest at the origin, xi
A = (0,0,0),

– Mass B initially at rest at a point xi
B = (xB,yB,zB),

with a gravitational wave propagating on the z axis.

• Since the particles are at rest before the gravitational wave

arrives, the initial 4-velocities are

uA = uB = (1,0,0,0).

• For the test masses the geodesic equation is given by

d2xi

dτ2
=−Γi

µνuµuν =−Γi
µν

dxµ

dτ

dxν

dτ
.



1036 CHAPTER 22. GRAVITATIONAL WAVES

The undisturbed spacetime is assumed flat and Γi
µν vanishes.

• From

δΓ
γ
µν =

1

2
ηγδ

(
∂hδ µ

∂xν
+

∂hδν

∂xµ
− ∂hµν

∂xδ

)

.

we have to first order

d2(δxi)

dτ2
= −δΓi

µνuµuν =−δΓi
00

= −1

2
η iδ

(
∂hδ0

∂x0
+

∂hδ0

∂x0
− ∂h00

∂xδ

)

,

where

uA = uB = (1,0,0,0).

has been used.

• But in TT gauge hδ0 = 0, so

d2(δxi)

dτ2
=−δΓi

00 = 0

To this order

• the coordinate distance between A and B is

not changed by the gravitational wave.

• However, the proper distance between A and

B is changed.
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For example, assume A and B to lie on the x axis and to be

separated by a distance L0. From

ds2 =−dt2 +(1+ f (t− z))dx2 +(1− f (t− z))dy2+dz2.

the relevant line element is then

ds2 =−dt2 +(1+ f (t− z))dx2,

corresponding to the metric

gµν =

(

−1 0

0 1+h11(t,0)

)

,

where hxx = h11 and we have chosen z = 0 at time t.
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Figure 22.3: Test mass separation perturbed by a gravitational wave.

Then the proper distance between A and B is

L(t) =
∫ L0

0
(−detg)1/2 dx

=
∫ L0

0
(1+h11(t,0))

1/2 dx

≃
∫ L0

0
(1+ 1

2h11(t,0))dx =
(
1+ 1

2h11(t,0)
)

L0.

Therefore the change in distance between the masses is

δL(t)

L0
≃ 1

2h11(t,0),

which oscillates as indicated schematically in Fig. 22.3.

The amplitude is very small, however! We expect

δL

L0
∼ 10−21

for typical gravitational waves.
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If spacetime is viewed as an elastic medium, then from the the-

ory of elastic solids

• the dimensionless quantity δL/L0 may be termed the

(fractional) strain associated with the deforming wave.

• However, this strain is very small, with δL/L0 ∼ 10−21

for a typical gravitational wave.

• This implies that spacetime is an extremely stiff medium,

since a large energy is required to create a perceptible dis-

tortion of the medium.

Interferometers are designed to measure the strain produced by

gravitational waves. This has two important implications for

such detectors:

1. The gravitational-wave strain produced by astronomical

events

• will be extremely small, and this requires

• measurements of exacting precision.

2. Because the strain is proportional to the amplitude of the

wave,

• the strain measured on Earth for events at distance r

will fall off as r−1,

• not as r−2, as would an energy flux characteristic of

most kinds of astronomical observations.
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Gravitational wave incident along z-axis

Time
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Figure 22.4: Effect of a gravitational wave incident along the z axis on an

array of test masses in the x–y plane.

22.5.2 The Effect of Polarization

The influence of polarization may be illustrated by the effect of

a gravitational wave on an planar test mass array.

• Like electromagnetic waves, gravitational waves are

transverse.

• Thus only separations in the transverse directions are

changed by the gravitational wave.

• The effect of purely plus-polarized and purely cross-

polarized gravitational waves on an initially circular array

of test masses is illustrated in Fig. 22.4.

As in Fig. 22.3, the magnitude is greatly exaggerated.
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Gravitational wave incident along z-axis
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Each polarization is seen to give rise to an elliptical oscillation

in the distribution of the test masses.

• The cross polarization pattern is rotated by π
4 relative to

the corresponding plus polarization pattern.

• The 45o relative rotation results from gravity being de-

scribed by a rank-2 tensor field (spin-2 field).

• An electromagnetic field corresponds to a rank-1 tensor

Aµ (spin-1 or vector field) and

• the rotation angle between the two independent states of

polarization is instead 90o.
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Figure 22.5: Schematic laser interferometer gravity wave detector. In the

light storage arms light is multiply reflected, increasing the effective length

of the arms.

22.6 Gravitational Wave Detectors

Modern gravitational wave detectors use laser interferometers

with kilometer or longer arms (Fig. 22.5).

• Laser light is split and directed down two arms.

• Suspended, mirrored test masses reflect the light at the

ends of the arms.

• The reflected light is recombined and

• interference fringes are analyzed for evidence indicating

changes in the distances to the test masses.
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Interferometer

arms

x

y

z

Test mass

distribution

Mass

Mass Detector

Laser

Figure 22.6: Analogy between interaction of a gravitational wave with a test

mass distribution and with an interferometer.

Because light is interfering over long path lengths, it is possible

to detect extremely small changes in distance.

• This is necessary, since to detect gravitational waves from

expected astronomical events fractional changes in dis-

tance of order 10−21 or smaller must be measured.

• 10−21 is approximately the ratio of the width of a human

hair to the distance to Alpha Centauri!

Laser interferometers may be viewed as extremely

precise ways to measure the distortions for a small

array of test masses (Fig. 22.6).
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Figure 22.7: The proposed LISA space-based gravitational wave interfer-

ometer. This system consists of three drag-free satellites that implement

Michelson laser interferometers having 2.5 million kilometer arms. (Unlike

for LIGO, the laser arms will not be multiple-reflection cavities.) Space-

based interferometers like LISA would be sensitive to much lower frequen-

cies than those on Earth because (1) they can have very long interferometer

arms, and (2) because there is little interference from environmental noise

(in particular seismic noise), which limits the low-frequency performance

of Earth-based systems.

Several gravitational wave laser interferometers are now oper-

ational, under construction, or proposed. For example,

• Ground-based detectors such as LIGO and Virgo are now

in operation.

• A proposed space-based array, LISA, would have 2.5 mil-

lion kilometer interferometer arms and could be launched

by the 2030s.

• The schematic arrangement for LISA, and its proposed or-

bit, are illustrated in Fig. 22.7.
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Figure 22.8: Strain amplitude and frequency ranges expected for gravita-

tional waves from various astronomical sources. The minimum strain detec-

tion bounds for advanced LIGO (aLIGO) at full design capacity (∼2020),

advanced Virgo (adV) at full design capability (∼ 2020), advanced LIGO in

the first observing run after the upgrade [aLIGO(0), indicated by the dashed

curve], during which the gravitational wave GW150914 was observed in

2015, and the proposed space-based array LISA are indicated.

• Amplitude and frequency windows for LIGO, Virgo, and

LISA, and ranges expected for important sources of grav-

itational waves, are illustrated in Fig. 22.8.

• Space-based interferometers like LISA can go to much

lower frequencies because they can have very long arms

and little environmental noise.
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22.6.1 Detecting Very Long Wavelengths

The figure shown above omits long-wavelength sources with

frequencies below 10−6 Hz. Sources of considerable astronom-

ical interest in this frequency range include

1. Mergers of very massive black holes found in the centers

of galaxies (∼ 109 M⊙), which are expected to occur in the

10−7 to 10−9 Hz range with strains as large as 10−16.

2. A stochastic background of supermassive black hole

mergers related to large-scale structure formation.

3. A stochastic background associated with cosmic inflation

and first-order phase transitions in the early Universe.
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Detection of some events with very long wavelengths may be

feasible with a pulsar timing array (PTA).

• In a PTA millisecond pulsars are viewed as precise clocks

and a set of them is monitored for timing changes indicat-

ing the passage of a gravitational wave.

• Millisecond pulsars are favored because they are faster

and more stable than average pulsars.

• These PTAs may be thought of as natural interferometers

with arms of galactic scale (kiloparsecs).

Pulsar timing arrays are sensitive to gravitational

waves in the frequency range 10−9 to 10−6 Hz.
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Figure 22.9: The expected reach of Advanced LIGO for detection of a neu-

tron star merger event when at full design capability in 2020.

22.6.2 Reach of Advanced LIGO and Advanced VIRGO

Fig. 22.9 illustrates the reach expected for Advanced LIGO.

• The outer sphere has an approximate radius of 150 Mpc.

• The inner sphere indicates the corresponding reach of

LIGO before the upgrade to Advanced LIGO.
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Figure 22.10: The expected reach of Advanced Virgo by 2020.

Figure 22.10 illustrates the projected reach of Advanced Virgo

at full design capacity (2020).
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Chapter 23

Weak Sources of Gravitational

Waves

The preceding chapter introduced the basic idea of gravitational

waves in terms of a linearized approximation to gravity.

• In this chapter and the next we consider potential sources

of detectable gravitational waves.

• We begin with the simpler case of weak gravitational

waves, described by linearized gravity with weak sources.

The next chapter will give a general introduction

to the more difficult problem of describing strong

sources of gravitational waves.

1051
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23.1 Production of Weak Gravitational Waves

To study the production of gravitational waves, we must in gen-

eral solve the full non-linear Einstein equations with source

terms Tµν .

• This is a formidable problem, generally only tractable for

large-scale computation (numerical relativity).

• However, we can gain considerable insight by studying

a less complex situation, the linearized Einstein equation

with sources.

• This is an analytically accessible problem that has many

parallels with the study of sources for electromagnetic

waves.

• It has been shown by numerical simulation that many key

features for the production of weak gravitational waves

carry over in recognizable form for the production of grav-

itational waves in strong-gravity environments.

• Therefore, our approach in this chapter will be to concen-

trate on a more quantitative treatment of sources for weak

gravitational waves

We shall then conclude in the following chapter

with qualitative order–of–magnitude remarks and

some numerically computed examples for strong-

gravity wave sources.
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23.1.1 Energy Densities

In an electromagnetic field or a Newtonian gravitational field it

makes sense to talk about local energy densities.

• In a Newtonian field the energy density at a point xxx is

ε(xxx) =− 1

8πG
(∇∇∇Φ(xxx))2,

where Φ(xxx) is the Newtonian gravitational potential.

• There is no corresponding local energy density in GR.

• Such a local density would contradict the equivalence

principle (gravity vanishes in a local inertial frame).

• However, it makes sense to speak of an approximate en-

ergy density associated with a weak gravitational wave of

wavelength λ , if λ is much shorter than the curvature R

of the background spacetime.

Such approximations become very good at large distances from

the source of a gravitational wave, where curvature associated

with the source becomes negligible and λ/R→ 0.

Therefore, we may formulate a description of en-

ergy loss from gravitational wave sources at large

distances from the source where we may associate

an approximate energy density with a wave by av-

eraging over several wavelengths.
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23.1.2 Multipolarities

The lowest-order contribution from a source to electromagnetic

radiation corresponds to dipole motion of the source.

• The gravitational field is a tensor rather than vector field.

• Like the electromagnetic field, the production of gravita-

tional waves requires non-spherical motion of the charge,

which is

– electrical charge for the electromagnetic field and

– inertial mass for the gravitational field.

• However, for the gravitational field no monopole or dipole

component contributes to the generation of gravitational

waves.

• The lowest order gravitational wave generation that is per-

mitted corresponds to time-dependent quadrupole distor-

tions of the source mass.

As a result, many of the formulas for sources of

electromagnetic waves and for weak gravitational

waves are similar but not identical.
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23.1.3 Linearized Einstein Equation with Sources

Adding a source to the linearized Einstein equation in Lorentz

gauge gives the wave equation

✷h̄µν =−16πGTµν ,

• where the stress–energy tensor Tµν describing the source

is assumed small, consistent with the linear approximation

for the metric,

• ✷ is defined by

✷≡ ηαβ ∂α∂β =− ∂ 2

∂ t2
+∇∇∇2

• and h̄µν(t,xxx) is the trace-reversed amplitude given by

h̄µν ≡ hµν− 1
2ηµνhλ

λ .

Solutions of the wave equation with sources can be found using

• Green’s function methods similar to those used to solve

wave equations in electromagnetism.

• We skip the details and jump to the results.
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The metric perturbation for

• long-wavelength gravitational waves

• far from a nonrelativistic source

is found to be

h̄i j(t,xxx)r→∞ ≃
2

r
Ï i j(t− r),

• where double dots denote the second time derivative and

• The second mass moment Ii j(t) is given by

Ii j(t)≡
∫

ρ(t,xxx)xix jd 3x ,

where ρ(t,xxx) is the mass density of the source.
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R

Figure 23.1: A contact binary as a source of gravitational waves.

23.1.4 Gravitational Wave Amplitudes

The gravitational wave amplitude h̄i j is given by

h̄i j(t,xxx)r→∞ ≃
2

r
Ï i j(t− r),

in linear approximation.

• Let us make some estimates based on this formula using

as a simple model for gravitational wave emission a binary

star system.

• For simplicity, we shall assume the two stars

– to be of the same radius and mass,

– to revolve in circular orbits about their center of

mass, and

– to be in an orbit such that the surfaces of the two stars

touch (contact binary).

Figure 23.1 illustrates.
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R

The second mass moment is

Ii j(t) =

∫

ρ(t,xxx)xix jd 3x = MR2+MR2 = 2MR2.

The system revolves with a period P and taking the derivative

twice with respect to time gives a factor ω2 ∼ 1/P2

Ï i j ≃ 2
MR2

P2
.

Insertion of this approximation in

h̄ i j(t,xxx)r→∞ ≃
2

r
Ï i j(t− r),

leads to

h̄ i j ≃ 2

r
Ï i j =

4MR2

rP2
.
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R

The relation

h̄i j ≃ 2

r
Ï i j =

4MR2

rP2
.

can be expressed in terms of source velocities by noting that

• In one period each star travels a distance C = 2πR.

• Therefore, the velocity of the center of mass for a star is

v =
2πR

P
,

• This can be solved for the ratio R/P and used to rewrite

h̄ i j as

h̄ i j ≃ 4MR2

rP2
−→ h̄ i j ≃ Mv2

π2r
.

This is a specialized result obtained assuming

crude approximations, but more careful deriva-

tions indicate that it has broader validity than its

derivation would suggest.
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R

If we note that

• the Schwarzschild radius and mass are related by rS = 2M,

• reinsert factors of c and G, and

• drop the numerical factors (note that the numerical factors

dropped are larger than order unity),

the expression

h̄i j ≃ Mv2

π2r
.

may be rewritten as

h̄≃ rS

r

v2

c2
.

The amplitude of the metric perturbation is

• largest for compact sources that have

• radii comparable to rS.
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As noted above, the result

h̄≃ rS

r

v2

c2
.

is more general than its derivation might suggest.

We shall take it as a qualitative guide to gravita-

tional wave amplitudes far from a weak source.
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Weak gravitational waves are generated primarily by systems

that are gravitationally bound or nearly so.

• Therefore the virial theorem is applicable and we may ex-

pect kinetic and potential energies to be comparable,

1

2
Mv2 ∼ GM2

R
,

• From this we may write

v2

c2
≃ 2GM2

MRc2
=

rS

R
= ε2/7,

where we have defined a gravitational wave emission effi-

ciency factor

ε ≡
(rS

R

)7/2

(the justification for this terminology will be given below).

• Therefore, h̄ may be expressed in the form

h̄≃ rS

r

v2

c2
≃ r2

S

rR
= ε2/7 rS

r
,

= 9.6×10−17ε2/7

(
M

M⊙

)(
kpc

r

)

,

which is dimensionless.
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23.1.5 Amplitudes and Event Rates

The preceding results may be used to estimate amplitudes and

event rates for candidate gravitational wave events.

• Assume ε = (rS/R)7/2 ∼ 0.1 and that the mass participat-

ing in gravitational wave generation is ∼ 1M⊙

• (These are reasonable guesses for merging neutron stars

or asymmetric core collapse supernovae).

• For events in the galaxy, take r ∼ 10 kpc.

• Then we may estimate

h̄ = 9.6×10−17ε2/7

(
M

M⊙

)(
kpc

r

)

≃ 5×10−18.

• But within our galaxy, on average,

– supernova explosions occur only once every 50 years

– neutron star mergers occur only once every 105 or 106

years.

Therefore, to obtain a reasonable event rate we

must look for gravitational waves from sources at

much larger distances.
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The nearest rich cluster containing thousands of galaxies is

Virgo, at a distance of about 16.5 Mpc.

• Therefore, if we go out to 100 Mpc or more, we may ex-

pect event rates for gravitational waves from merging neu-

tron stars and asymmetric core-collapse supernovae to be

much higher because

• we are now surveying many thousands or tens of thou-

sands of galaxies.

• But the average observed metric perturbation (which is di-

rectly related to the strain detected by the detectors) be-

comes h̄∼ 10−21−10−22.

Thus, we expect that to detect systematic gravita-

tional wave events the detectors must be able to

sample strains reliably at the ∆L/L0 ≃ 10−21 level

or better.
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23.1.6 Power in Gravitational Waves

The power radiated in gravitational waves for a system that

• has velocities well below c and

• weak internal gravity

is given by the quadrupole formula,

L =
dE

dt
=

1

5

〈

I-
...

i j I-
...

i j
〉

=
1

5

G

c5

〈

I-
...

i j I-
...

i j
〉

,

• 〈 〉 denotes a time average over a period,

• the triple dot means a third time derivative, and

• the reduced quadrupole tensor I- is defined by

I- i j ≡ Ii j− 1
3δ i jTr I,

where Tr I ≡ Ik
k .

This formula is the gravitational analog for radi-

ated power in electromagnetism but it has

• a different factor (1/5 instead of 1/20) and

• corresponds to quadrupole radiation rather

than dipole radiation.
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As shown in a Problem,

L =
dE

dt
=

1

5

G

c5

〈

I-
...

i j I-
...

i j
〉

,

may be reduced to

L≃ L0

r2
S

R2

(v

c

)6
,

where the characteristic scale for radiated gravitational wave

power is set by

L0 ≡
c5

G
= 3.6×1059 erg s−1,

and the total energy ∆E emitted in one period P can then be

calculated as

∆E ≃ LP ≃Mc2
(rS

R

)7/2
= εMc2.

Therefore, we conclude that

ε =
(rS

R

)7/2

parameterizes the efficiency of converting mass to

energy by gravitational wave emission.



23.2. GRAVITATIONAL RADIATION FROM BINARY SYSTEMS 1067

23.2 Gravitational Radiation from Binary Systems

• In preceding sections we have made some qualitative esti-

mates for gravitational wave emission from binary stars.

• In this section we derive in a somewhat more rigorous

fashion a formalism applicable for such systems.
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Figure 23.2: Coordinate system for binary stars in circular orbits.

23.2.1 Gravitational Wave Luminosity

A binary system with circular orbits is illustrated in Fig. 23.2

• a1 and a2 are the distances of the masses m1 and m2, re-

spectively, from the center of mass, and

• ϕ = ωt is the azimuthal angle between the line joining the

stars and the x axis.

The components of the second mass moment reduce to a sum,

I i j(t)≡
∫

ρ(t,xxx)xix jd 3x −→ I i j = m1xix j +m2xix j

for two discrete masses (superscripts label coordinates and sub-

scripts label objects).
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x

y

z

ωt

a1

a2

m1

m2

Introduce polar coordinates for each star i,

xi(t) = ai cosωt yi(t) = ai sinωt zi(t) = 0,

and evaluate the mass moments. For example,

Ixx = I11 = m1a2
1 cos2 ωt +m2a2

2 cos2 ωt

= (m1a2
1+m2a2

2)cos2 ωt

= µa2 cos2 ωt

= 1
2
µa2(1+ cos2ωt),

• where a≡ a1+a2,

• the reduced mass is µ = m1m2/(m1 +m2), and

• the identity
m1a1 = m2a2 = µa

was used.
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x

y

z

ωt

a1

a2

m1

m2

Carrying out a similar steps for all components gives

Ixx = I11 = 1
2 µa2(1+ cos2ωt),

Ixy = Iyx = I12 = 1
2 µa2 sin2ωt,

Iyy = I22 = 1
2
µa2(1− cos2ωt).

Computing second time derivatives of Ii j and inserting in the

amplitude equation gives

h̄i j =
4ω2µa2

r







−cos2ω(t− r) −sin2ω(t− r) 0

−sin2ω(t− r) cos2ω(t− r) 0

0 0 0






.

• The appearance of 2ω in the arguments means that the

frequency f of the emitted gravitational wave radiation

will be twice the orbital frequency ω .

• This is because the mass distribution varies with a period

equal to half the rotational period.
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x
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z
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m2

From above,

Tr I = I xx + I yy = µa2,

and İ-
i j
= İ i j, so that the radiated luminosity is given by

L =
1

5

〈

I-
...

i j I-
...

i j
〉

=
1

5

〈

I
...

i j I
...

i j
〉

.

From the second time derivatives found above, the triple time

derivatives are

I
...

xx(t) = 4ω3µa2 sin2ωt I
...

yy(t) =−4ω3µa2 sin2ωt

I
...

xy(t) = I
...

yx(t) =−4ω3µa2 cos2ωt
,
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Thus the radiated gravitational wave power is

L =
1

5

〈

(I
...

xx)2 +2(I
...

xy)2 +(I
...

yy)2
〉

=
1

5

[
1

P

∫ P

0

(

(I
...

xx)2 +2(I
...

xy)2 +(I
...

yy)2
)

dt

]

=
16ω6µ2a4

5P

∫ P

0

(

sin2 2ωt +2cos2 2ωt + sin2 2ωt
)

dt

=
32

5
ω6µ2a4

=
32

5

G4

c5

M3µ2

a5
,

where M ≡ m1+m2 and

• the second step averages over one period,

• the integral in line three evaluates to 2P,

• in the last step Kepler’s 3rd law was used to eliminate ω ,

• and factors of G and c have been restored.

Often it is convenient to express the power in terms of the pe-

riod P rather than the separation a. Using Kepler’s 3rd law

again,

L =
128

5
42/3 G7/3

c5
M4/3µ2

(π

P

)10/3

.
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The preceding expressions have assumed circular orbits.

• The corresponding luminosity for eccentric binary orbits

can be approximated as

L = f (e) L̄ f (e) =
1+ 73

24 e2 + 37
96 e4

(1− e2)7/2
,

• where the orbital eccentricity is e and

• the luminosity assuming circular orbits is L̄.
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Example: Assume that in the binary above m1 = m2 = 1M⊙,

and that the period is 6 hours. Restoring factors of G and c,

L =
128

5
42/3 G7/3

c5
M4/3µ2

(π

P

)10/3

= 2.3×1045

(
M

M⊙

)4/3( µ

M⊙

)2(
1 s

P

)10/3

erg s−1.

Inserting the masses and period gives a luminosity of

L = 5.2×1030 erg s−1,

if circular orbits are assumed.
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23.2.2 Gravitational Radiation and Binary Orbits

The total energy is negative (it is a bound system), so if the

energy is reduced by gravitational wave emission

• the period P (and size) of a binary orbit must decrease.

• The emission of gravitational wave radiation also tends to

circularize elliptical orbits, so assume orbits to be circular.

The total orbital energy of the system is given by

E =−Gm1m2

2a
=−GµM

2a
,

where

• M = m1+m2 is the total mass,

• µ = m1m2/M is the reduced mass, and

• a = a1+a2 is the average separation of the binary pair.
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Utilizing the preceding result and Kepler’s 3rd law for the pe-

riod P

E =−Gm1m2

2a
=−GµM

2a
P2 =

4π2

GM
a3,

and assuming that L =−dE/dt where

• L is the gravitational wave luminosity and

• dE/dt is the rate of energy loss from the orbital motion,

the rate of change for the period is given by

dP

dt
=−96

5

G3

c5

M2µ

a4
P.

Utilizing Kepler’s 3rd law to eliminate a in favor of P,

dP

dt
=−192π

5

G5/3

c5

m1m2

M1/3

(
2π

P

)5/3

.

This is a dimensionless measure of how the binary

orbit is altered over time by emission of gravita-

tional waves.



23.2. GRAVITATIONAL RADIATION FROM BINARY SYSTEMS 1077

The preceding formulas for dP/dt assumed circular orbits. If

the binary has an eccentric orbit we may approximate

dP

dt
= f (e)

(
dP

dt

)

0

,

with the definitions

(
dP

dt

)

0

≡−192π

5

G5/3

c5

m1m2

M1/3

(
2π

P

)5/3

f (e) =
1+ 73

24 e2+ 37
96 e4

(1− e2)7/2
.

for an orbital eccentricity e.
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23.2.3 Gravitational Waves from the Binary Pulsar

If the orbit for the Binary Pulsar were circular, then after eval-

uating constants in the preceding equations

(
dP

dt

)

0

= −3.66×10−6 (m1/M⊙)(m2/M⊙)

(M/M⊙)1/3

(
1 s

P

)5/3

= −2×10−13,

• where M ≡ m1 +m2,

• the observed masses of m1 ∼ m2 ∼ 1.4M⊙, and

• the orbital period of 7.75 hours were used.

But the Binary Pulsar orbit is eccentric with e = 0.617, so

dP

dt
= f (e)

(
dP

dt

)

0

= (11.84)× (−2×10−13)

= −2.37×10−12,

where an eccentricity factor f (e) = 11.84 was computed.

• Assuming this rate to be constant, the total change in pe-

riod over one year is ∆P≃−7.5×10−5 s.

• This decrease is tiny but easy to measure because of the

precise pulsar clock.

From this rate of orbital decay the inspiral time to

merger is about 3×108 years.
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Figure 23.3: Observed periastron shift of the Binary Pulsar orbit because of

gravitational wave emission. Data points are the measurements of Taylor

and Weisberg and the dashed curve is the prediction from general relativity.

Fig. 23.3 illustrates for the Binary Pulsar

• the cumulative shift of the periastron time (time of closest

approach) as a function of elapsed time,

• compared with a calculation assuming emission of gravi-

tational waves to be responsible for this shift.

• The quality of the data (note error bars), and the agree-

ment with general relativity are remarkable.

The Binary Pulsar provides strong indirect evi-

dence for the existence of gravitational waves.
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Chapter 24

Strong Sources of Gravitational

Waves

Our discussion so far has been in terms of linearized gravity

• However, for gravitational wave sources such as

– mergers involving some combination of neutron stars

and black holes, or

– the core collapse of a massive star

strong curvature invalidates linear approximations.

• In strong gravity, reliable calculations are difficult and can

only be produced through numerical simulations.

• Nevertheless, those simulations show that many features

from the linear regime survive in strong gravity.

In particular, calculations suggest that many basic

features of strong gravitational wave sources can

be obtained by dimensional analysis.

1081
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24.1 A Survey of Candidate Sources

In this section we

• summarize some likely strong sources of gravitational

waves and

• give some results of numerical simulations.

These fall into two categories:

• Merger of binary compact objects when their orbits decay

because of gravitational wave emission.

– Binary black hole mergers

– Binary neutron star mergers

– Merger of a black hole and a neutron star.

• Core collapse in massive stars.

Events in both categories may exhibit rapid asymmetric motion

of large compact masses.

• This the essential condition for production of strong grav-

itational waves.

• The asymmetric motion of the mass in these events is ex-

pected to differ in characteristic ways.

• Hence the detailed gravitational wave pattern should carry

information about the type of event that produced it.
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24.1.1 Merger of a Neutron Star Binary

Gravitational waves from merging neutron stars in relatively

nearby galaxies should be observable.

• The possibility of neutron stars merging might remote.

• However, once a neutron star binary is formed its

– orbital motion radiates energy as gravitational waves,

– the orbits must shrink by energy conservation,

and inevitably the two neutron stars must merge.

• The most relevant question is the timescale for merger.

• One typically speaks of merger within a Hubble time [∼
14 billion years], meaning that

• the orbital separation decays fast enough for the merger to

occur on a timescale less than the age of the Universe.

• Presently several observed binary systems are predicted to

have a merger timescale less than the Hubble time.

• For example, the orbit of the Binary Pulsar

– has shrunk to a separation at nearest approach of

about 750,000 km today,

– with a decay rate that should lead to merger in about

3×108 years.
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Formation of the neutron star binary (more generally any binary

involving neutron stars and/or black holes) is not easy, however.

• Either a binary, or multiple-star system

– must form with two stars massive enough to undergo

core collapse and produce two compact objects,

– and the compact objects must remain bound to each

other through both core collapse events,

• or the binary results from gravitational capture in a dense

star cluster through

– tidal dissipation of kinetic energy in a binary en-

counter, or

– a 3-body encounter in which one object carries off

enough energy to leave the other two bound

These are improbable scenarios.

• However, calculations and direct observation of compact-

object binaries indicate that they are not impossible.

• Some estimates indicate that there is about one binary neu-

tron star merger each day in the observable Universe.

The probability of neutron star merger in any given

region of space is very small, but the Universe is a

very big place.
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Figure 24.1: Simulation of the merger of two neutron stars. The elapsed

time is about 3 ms and the approximate Schwarzschild radius for the com-

bined system is indicated. The rapid motion of several solar masses of mate-

rial with large quadrupole distortion and sufficient density to be compressed

near the Schwarzschild radius indicates that this merger should be a strong

source of gravitational waves (Source: S. Rosswog simulation).

Figure 24.1 shows a numerical simulation of a merger.

• The orbit of the binary has decayed steadily as a result of

gravitational wave emission, causing the stars to

• spiral together at a rapidly-increasing rate near the end.

• The sequence of images in Fig. 24.1 illustrates the merger

over a period of milliseconds near when the surfaces of

the neutron stars first touch.
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• In this simulation,

– The large asymmetric mass distortion,

– the high velocities generated by

– revolution on millisecond timescales, and

– the highly-compact mass distribution,

imply that mergers of neutron stars will be a strong source

of gravitational waves.
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• As the figure above illustrates,

– frequencies for gravitational waves emitted from neu-

tron star mergers (labeled compact binary inspirals)

– are expected to be accessible to Earth-based interfer-

ometers like LIGO or Virgo.

Later we shall discuss the first observation of grav-

itational waves from neutron star merger.
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The outcome of such neutron star mergers will depend on the

total mass of the two neutron stars.

• Presently, our (relatively poor) understanding of neutron

star equations of state suggests an upper limit ∼ 2−3 M⊙
for the mass of a rapidly-spinning neutron star.

• If the total merger mass is less than this the merger will

likely lead to a rapidly-spinning (because of the large ini-

tial orbital angular momentum of the binary) neutron star.

• If the total merger mass is more than ∼ 2− 3 M⊙, the

likely outcome will be a Kerr black hole with a large spin.

• Such a merger of two neutron stars is also a prime candi-

date for producing a short-period gamma ray burst,

• which raises the possibility of detecting a gamma-ray

burst and gravitational waves in coincidence from the

same event.

Later we shall describe observation of the first

such multimessenger event.
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24.1.2 Stellar Black Hole Mergers

Merging stellar black holes produce strong gravitational waves.

• Such mergers have many similarities with merging neu-

tron stars, and both are likely to leave behind

• a rapidly spinning Kerr black hole.

• There is one essential difference, however.

• Both Schwarzschild and Kerr black holes correspond to

vacuum solutions of the Einstein equations.

• Thus, there is only gravity—curved spacetime—and no

matter involved (neglecting accretion from other objects).

• All mass is concentrated at the black hole singularities,

which are hidden by the event horizons.

Thus, black hole mergers are simpler than neutron

star mergers, which involve matter interactions.

• The initial configuration is characterized only by

– spins and masses of the black holes, and

– the binary orbital parameters,

as a consequence of the no hair theorem.

• The final configuration is even simpler: the single Kerr

black hole is characterized only by its mass and spin.
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Figure 24.2: Snapshot of gravitational wave emission from inspiral of a

binary black hole system.

Figure 24.2 illustrates gravitational wave emission from an in-

spiraling black hole pair based on numerical simulations of

general relativity.

• The black holes revolving around their center of mass are

at the center.

• The spirals trailing from them are the outwardly propagat-

ing gravitational waves

• that are being generated by the revolving binary system.

Later in this chapter, observational evidence for

gravitational waves from the merger of stellar

black holes will be discussed.
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24.1.3 Merger of a Black Hole and a Neutron Star

It is possible to have a binary system in which one object is a

neutron star and one a stellar black hole.

• As for other compact binaries, the orbit will decay by

gravitational wave emission,

• leading eventually to a merger.

• Equations of state and observations suggest an upper limit

of around 2M⊙ for neutron stars,

• but there is in principle no limit on the mass of the black

hole.

• The black hole component of the binary already exceeds

the upper mass limit for a neutron star.

• Thus it is likely that the outcome of a merger between a

black hole and a neutron star is a rapidly-spinning Kerr

black hole.

As for the neutron star merger, the dense matter

and associated equation of state for the neutron star

likely makes this merger more complex than that

of two black holes.
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24.1.4 Core Collapse in Massive Stars

In the core collapse of a massive star

• the collapsing core has densities comparable to that of a

neutron star and

• in the collapse

– a solar mass or more of material may be set in motion

– with velocities of order 10% of light velocity.

• If such a collapse were to proceed with spherical symme-

try, no gravitational waves would be produced.

• However, numerical simulations of core collapse gener-

ally find

– large asymmetries generated by

– large-scale supersonic convection

(which is in turn driven by large entropy or concentration

gradients in the core).

• These asymmetries will produce quadrupole distortions

of mass that vary rapidly.

Thus collapsing stellar cores are potential sources

of detectable gravitational waves.
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• As the figure above illustrates, the frequencies for grav-

itational waves emitted from core collapse events are ex-

pected to be accessible to Earth-based interferometers like

LIGO or Virgo.
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24.1.5 Merging Supermassive Black Holes

The cores of many—perhaps all—massive galaxies host black

holes containing 106 M⊙−109 M⊙. For example,

• The fully-resolved orbits of individual stars at the center

of the Milky Way indicate a 4×106 M⊙ black hole and

• Analysis of velocity fields near the centers of giant ellip-

tical galaxies often indicate that

– billions of solar masses of non-luminous material

– is packed into a region comparable in size to the Solar

System.

The simplest conclusion is that these are supermassive

black holes.

There also is very strong observational evidence that galaxy

mergers have been common in the past history of the Universe.

Therefore, it may be expected that the merger of

supermassive black holes can occur as a conse-

quence of galaxy collisions.
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From the figure above,

• The frequency of gravitational waves from massive and

supermassive black holes is too low for observatories like

LIGO or Virgo.

• However the proposed space-based LISA array would be

sensitive to such events with black hole masses less than

about 107 M⊙.

Pulsar timing arrays may be able to detect gravi-

tational waves from the merger of even more mas-

sive black holes.
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Quantitative investigation of supermassive black hole mergers

requires large-scale computer simulations.

• However dimensional analysis arguments

– based on the quadrupole power formula and

– supported by numerical simulation

suggest that peak luminosities are set by the scale c5/G,

L≃ L0

r2
S

R2

(v

c

)6
L0 ≡

c5

G
= 3.6×1059 erg s−1

• For merger of supermassive black holes

L ∝ L0 ≃ η
c5

G
≃ η×1059 erg s−1,

with the factor η accounting for details of the merger and

being of order 1% in typical cases.

• If such events occur, their luminosities would surpass that

of any other event in the Universe for a period of days.

• To set some perspective, if η ∼ 0.01 this luminosity is

about

– 106 times larger than supernova or gamma ray burst

photon luminosities,

– 1010 times larger than quasar luminosities, and

– 1023 times larger than solar luminosity.
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24.1.6 Sample Gravitational Waveforms

Some computed gravitational waveforms for events of the type

described above are displayed in Figs. 24.3 (next slide).
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Figure 24.3: Some computed gravitational waveforms. All are h+ polar-

ization except for (a), where both h+ and h× are shown. In the bottom six

panels strain is given in dimensionless units of 10−21 by assuming a distance

to the source. In the top two panels rh is shown, where r is the distance to

the source in cm. Further details may be found in the references for each

case. (a)–(b) Equal-mass black hole mergers (BH–BH). (c) Black hole and

neutron star merger (BH–NS) at 15 Mpc. (d)–(e) Neutron star mergers (NS–

NS) at 15 Mpc. Case (d) is a 1.2 M⊙+1.8 M⊙ merger (all masses baryonic).

Case (e) is a 1.2 M⊙+ 1.2 M⊙ merger. (f)–(h) Supernova at 15 kpc for

two progenitor masses; time measured from bounce. Panel (h) displays the

initial burst of panel (f) at higher resolution.
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Different classes of events have characteristic waveforms and

within classes the waveforms are often sensitive to details. For

example,

• Mergers are characterized by the chirp waveform,

– corresponding to amplitude and frequency rising

rapidly near merger,

– followed by low-amplitude ringdown,

with details depending on the type of merger.

• Supernova explosions are characterized by a much more

complex wave pattern reflecting detailed microphysics

that varies with characteristics of the progenitor star.

• Hence, it may be expected that waveform templates like

those displayed in the preceding figure may be used to

identify classes of gravitational wave events.

With data from a sufficient number of events, the

detailed waveforms might shed new light on the

physics underlying each class of events.
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24.2 Multimessenger Astronomy

Gravitational waves from neutron star mergers

• might determine the neutron star equation of state better

than our present understanding, and

• gravitational waves from core collapse supernovae might

constrain the supernova mechanism more rigorously than

from present data.

• This would be particularly true if such events were ob-

served in more than one way, such as

– detection of both gravitational waves and neutrinos

emitted from a core collapse supernova, or

– detection of gravitational waves from a neutron star

merger also observed as a short-period γ-ray burst.

• The simultaneous detection of multiple signals from the

same event is termed multimessenger astronomy.

• While technically demanding, it has the potential to lead

to much deeper understanding of objects like neutron stars

and core collapse supernovae.

Later in this chapter we will describe an observed

multimessenger event involving a gamma-ray burst

from merging neutron stars in coincidence with

gravitational waves.
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24.3 The Gravitational Wave Event GW150914

On September 14, 2015, almost 100 years had passed with no

direct detection of Einstein’s predicted gravitational waves.

• The LIGO interferometers in Livingston, Louisiana and

Hanford, Washington were online and taking data.

• At 09:50:45 UTC the Livingston detector observed a

strong transient lasting ∼ 200 ms.

• 7 ms later Hanford observed a similar transient.

• These transients were identified within 3 minutes by

generic low-latency scans as a likely gravitational wave.

• The signal had the obvious character of a compact merger

event (the chirp pattern described below).

• Low-latency data pipelines scanning focused almost im-

mediately on a possible gravitational wave from the coa-

lescence of two black holes.

• Several months of thorough analysis confirmed with

greater than 5σ confidence that

• the transient GW150914 was indeed a gravitational wave

emitted from the merger of two black holes.

Thus GW150914 confirmed Einstein’s century-old

prediction that fluctuations of the spacetime metric

could propagate as gravitational waves.
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24.3.1 Observed Waveforms

The observed waveforms in the Livingston and Hanford detec-

tors for GW150914 are shown in Fig. 24.4 (next page)
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H1 L1

Figure 24.4: The gravitational wave event GW150914 observed by LIGO.

The left panels correspond to data from the Hanford detector (H1) and the

right panels to data from the Livingston detector (L1). All times are relative

to 09:50:45 UTC on September 14, 2015. The top row is measured strain

in units of 10−21. In the top right panel the Hanford signal has been su-

perposed on the Livingston signal as described in the text. The second row

shows numerical relativity simulations of the waveform assuming a binary

black hole merger event projected onto each detector in the 35-350 Hz band.

Shaded areas indicate 90% credible regions for two independent waveform

reconstructions. The third row shows the residuals after subtracting the nu-

merical relativity waveform in the second row from the detector waveform

in the first row. The fourth row shows strain versus frequency and time,

with grayscale contours indicating strain amplitude. The rapidly-rising fre-

quency pattern (chirp) is indicative of a binary merger event.
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H1 L1

• The wave arrived first at the Livingston detector (L1) and

then 6.9+0.5
−0.4 ms later at the Hanford detector (H1).

• In the top-right image the H1 wave has been superposed,

shifted by 6.9 ms, and inverted to account for relative ori-

entations of the two detectors (orientations relative to local

north of L1 and H1 differ by 72◦).

• This superposition and a 24:1 signal to noise ratio leaves

little doubt that the same wavefront, traveling at light-

speed, passed first through Livingston and then Hanford.
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H1 L1

• In the second row of the above figure, numerical relativity

simulations of the waveform for merging black holes and

wavelet reconstructions with and without an astrophysical

black hole merger model are shown.

• The third row displays the result of subtracting the nu-

merical relativity waveform in the second row from the

observed waveform in the first row.

• The last row shows a time-frequency representation of the

data, with the grayscale contours representing strain.
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H1 L1

• The frequency–time plot in the bottom row indicates that

over a period of ∼ 0.2 seconds the signal swept upward in

frequency from about 35 Hz to 250 Hz.

• This signal, rising in frequency and strain (“the chirp”),

is indicative of the final rapid inspiral of a merger event,

with a peak strain ∼ 1.0×10−21.

• This changed the test mass separation by ∼ 4×10−16 cm

(0.005 times the diameter of a proton).
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24.3.2 Source Localization

GR predicts that gravitational waves travel at lightspeed.

• The light-travel time from Livingston to Hanford is 10 ms.

• A valid coincidence between L1 and H1 must lie in a

±10 ms window, depending on wavefront orientation.

• The actual difference in time for the coincidence then pro-

vides primary directional information for the source.

• Amplitude and phase information in the two detectors then

can be used to further refine the location.

• The observed time difference was ∼ 7 ms,

• with the gravitational wave passing through Livingston

first.

This indicates that the wave source was in the

southern-hemisphere sky.

• At the time of observation no other gravitational wave ob-

servatories were acquiring data.

• Thus only the two LIGO detectors were available to deter-

mine source position, primarily through arrival time.
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• Data from L1 and H1 permitted the source to be localized

to an area of∼ 600 deg2, as illustrated in the above figure.

• Further analysis improved this to 230 deg2.

• Follow-up observations at radio, optical, near-IR, X-ray,

and gamma-ray wavelengths reported no obvious electro-

magnetic counterpart to the gravitational wave event.

Thus GW150914 appears to have been invisible to

non-gravitational observatories.
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H1 L1

24.3.3 Comparisons with Candidate Events

The qualitative features of the data provide strong evidence that

GW150914 corresponded to a binary merger event.

• Over 200 ms the frequency increased from 35 to 150 Hz,

and the amplitude increased to maximum over ∼ 8 cycles.

• This suggests the inspiral of orbiting masses m1 and m2

caused by gravitational wave emission.
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H1 L1

• To leading order in v/c, this evolution is characterized by

a particular mass combination called the chirp mass M ,

M = µ3/5M2/5 =
(m1m2)

3/5

(m1+m2)1/5

=
c3

G

(
5

96
π−8/3 f−11/3 ḟ

)3/5

,

– where µ = m1m2/(m1 +m2) is the reduced mass,

– M = m1 +m2 is the total mass,

– f is the observed frequency, and ḟ its time derivative.

• The last expression for M follows from retaining lowest

order in a post-Newtonian expansion.
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H1 L1

Thus the chirp mass can be deduced from the observed wave,

and this in turn implies a relationship between m1 and m2.

• Estimating f and ḟ from the data yields M ≃ 28M⊙.

• This implies a total mass M = m1 +m2 ≥ 70M⊙ in the

detector rest frame (Problem).

• The sum of the Schwarzschild radii for the binary compo-

nents is thus constrained to be 2GM/c2 ≥ 210 km.

• This implies that to reach an orbital frequency of 75 Hz

(half the maximum gravitational wave frequency)

• the objects had to be very compact with small separation.
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H1 L1

• Binaries involving white dwarfs are excluded because they

are neither compact enough nor massive enough.

• Binary neutron stars are eliminated because they are com-

pact enough but not massive enough.

• A neutron star, black hole binary is eliminated because it

would be required by the chirp mass to be very massive

(Problem) and so would merge at much lower frequency.

Only merger of 2 black holes with m1+m2 ∼ 60−
70 M⊙ is consistent with the data.
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Figure 24.5: Numerical simulation of gravitational wave emission from

merger of two black holes. Grayscale contours represent the amplitude of

the gravitational radiation. Orbits of the black holes are indicated by dotted

curves and their spins are indicated by the arrows.

24.3.4 Binary Black Hole Mergers

Simulation of such a merger is shown in Fig. 24.5. Compar-

isons with candidate templates indicated that

• GW150914 corresponded to the merger of two ∼ 30 M⊙
black holes to form a 60 M⊙ Kerr black hole.

• The final black hole had a spin ∼ 70% of the maximum

possible for a Kerr black hole.

• Approximately ∼ 3 M⊙c2 of gravitational wave energy

was emitted in the merger.
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• From the black hole merger model the peak gravitational

wave luminosity was ∼ 3.6×1056 erg s−1.

• This equals the conversion of ∼200 solar masses per sec-

ond into gravitational-wave energy.

• (100,000 times larger than the peak photon luminosity of

a supernova)!

• From the strain amplitude a luminosity distance of 230−
550 Mpc was inferred.

• This corresponds to a redshift z = 0.05−0.12.

• Assuming the standard cosmology, this redshift implies

that the merger occurred 12.2− 13.1 Gyr after the big

bang.
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Table 24.1: Properties of three LIGO black-hole merger candidates

Quantity GW150914 GW151226 LVT151012

Signal to noise ratio 23.7 13.0 9.7

False alarm rate (yr−1) < 6.0×10−7 < 6.0×10−7 0.37

Significance > 5.3σ > 5.3σ 1.7σ

Primary black hole mass (M⊙) 36.2+5.2
−3.8 14.2+8.3

−3.7 23+18
−6

Secondary black hole mass (M⊙) 29.1+3.7
−4.4 7.5+2.3

−2.3 13+4
−5

Chirp mass (M⊙) 28.1+1.8
−1.5 8.9+0.3

−0.3 15.1+1.4
−1.1

Total mass (M⊙) 65.3+4.1
−3.4 21.8+5.9

−1.7 37+13
−4

Final black hole mass (M⊙) 62.3+3.7
−3.1 20.8+6.1

−1.7 35+14
−4

Final black hole spin 0.68+0.05
−0.06 0.74+0.06

−0.06 0.66+0.09
−0.10

Radiated mass (M⊙) 3.0+0.5
−0.4 1.0+0.1

−0.2 1.5+0.3
−0.4

Peak luminosity (erg s−1) 3.6+0.5
−0.4×1056 3.3+0.8

−1.6×1056 3.1+0.8
−1.8×1056

Source redshift z 0.09+0.03
−0.04 0.09+0.03

−0.04 0.20+0.09
−0.09

Luminosity distance (Mpc) 420+150
−180 440+180

−190 1000+500
−500

Sky localization (deg2) 230 850 1600

Masses in source frame. Multiply by (1+ z) for detector frame. Redshift assumes standard cosmology.

Spin given in units of spin for an extremal Kerr black hole.

• Parameters for the black hole merger GW150914 deter-

mined from the waveform simulations compared with data

are displayed in column two of Table 24.1.

• Also shown are data for two other events.

– GW151226 was a confirmed black hole merger;

– LVT151012 likely was also, but its confidence level

of 1.7σ did not permit claiming it as such.
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• The analysis is in principle able to determine the spins of

the initial and final black holes,

• with the final spin generally more tightly constrained than

the initial spins.

• Only the spin of the final Kerr black hole is shown in the

table because in the present data analysis uncertainties for

initial spins are of order 100%.
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Figure 24.6: Estimated gravitational-wave strain projected onto detector H1

for GW150914. The inset image illustrates the black hole horizons as the

two black holes coalesce, as deduced from numerical relativity calculations.

More GW150914 simulation details are given in Fig. 24.6.

• The inset image illustrates the event horizons of the two

black holes merging into that of a single final black hole.

• The bottom panel shows black hole separation versus time

in units of rS = 2GM/c2, and velocity in units of c, where

– M is the total mass, the relative velocity is

v

c
=

(
GMπ f

c3

)1/3

,

– and f is the gravitational wave frequency.
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In Fig. 24.7 (next page) a simulation of what the black holes

might have looked like from up close during the merger is

shown.
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Figure 24.7: Computer simulation of the GW150914 merger. (a) The undis-

torted background field of stars in the absence of the black holes. (b)–

(g) Successively later times in the merger sequence. (h) The final Kerr

black hole. Notice the strong gravitational lensing effects near the black

holes. The background stars are fixed in position as in (a) for each panel but

the gravitational lensing completely distorts their apparent positions. The

ring around the black holes is an Einstein ring caused by strong focusing of

light from stars behind the black holes.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

• The dark, well-defined shapes are the shadows of the black

hole event horizons as they block all light from behind.

• The flattened dark features around them and distorted star

fields are strong gravitational lensing effects.
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24.3.5 Matched Filtering

Detection of gravitational waves often relies on matched filter-

ing.

• The method originated in applications such as radar and

2D image processing.

• Matched filtering correlates

– a known (template) signal with a measured signal

– to ascertain the presence of the template in the mea-

sured signal.

• It is considered to be the optimal linear filter for maxi-

mizing signal to noise in the presence of added random

noise.

For gravitational waves, libraries of template

waveforms computed theoretically are used to an-

alyze the detected signal for a match.
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Figure 24.8: (Left) Amplitude spectral density of strain noise for the L1

(black spectrum) and H1 (gray spectrum) detectors, and recovered signals of

GW150914, GW151226, and LVT151012 (bands). (Right) Time evolution

of the recovered strain signals from a reconstruction..

Strain signal and noise levels are displayed in the left panel of

Fig. 24.8 for the first three LIGO gravitational wave candidates.

• The amplitude of GW150914 is large and at merger it lies

well above the detector noise spectrum.

• Hence a signal to noise ratio of ∼ 24 for GW150914.

• For GW151226 and LVT151012 the amplitudes are much

closer to the noise at merger, leading to lower values of

signal to noise (13.0 and 9.7, respectively).

In these latter events, matched filtering was essen-

tial to extract the waveform from the noise.
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GW151226

Figure 24.9: Top: strain (gray) and template wave (black); Next two panels:

signal to noise ratio (SNR); Bottom: energy vs. frequency and time.

Consider the discovery of GW151226 (Fig. 24.9):

• Top panel: Strain data filtered to reject known noise in

gray; best-match template with same filters in black.

• The signal to noise ratio is in general poor, as indicated in

the next two panels, and in the frequency–time plot shown

in the bottom panel almost no structure can be discerned.

Matched filtering was essential to even identify

GW151226 as a gravitational wave.
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Maximum amplitude

Figure 24.10: Estimated gravitational wave strain for GW151226 projected

onto the LIGO Livingston detector (full bandwidth, without filtering). Top:

The reconstructed wave (90% credible region) is shown in gray and a numer-

ical relativity simulation in black. Bottom: Gravitational wave frequency

(left axis) computed from numerical relativity waveform. The cross marks

the maximum amplitude, approximately coincident with merger of the black

holes. The right axis gives an effective relative velocity v/c that can be re-

lated to f during the inspiral using post-Newtonian approximations.

The reconstructed wave for GW151226 is shown in Fig. 24.10.

• GW151226 has been confirmed to be a gravitational wave

at the 5.3σ confidence level.

• Analysis indicates that this event corresponded to

– merger of 14M⊙ and 8M⊙ black holes

– at a distance of about 440 Mpc.
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24.3.6 Binary Masses and Inspiral Cycles

The right side of the above figure indicates that

• many more oscillations were detected in GW151226 over

a longer period (∼ 55 cycles over almost 2 seconds)

• than for GW150914 (∼ 8 cycles over 0.2 seconds).

• This is a consequence of the lower masses for the merger

in GW151226 relative to GW150914,

• which means that the GW151226 wave spent more time

in the detector sensitive band above about 30 Hz.

The 55 cycles observed for GW151226 extended

the effective reach of the instrument by a factor

proportional to
√

55 for that event.
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24.3.7 Binary Masses and Inspiral Cycles

The dependence of gravitational wave frequency on black hole

masses in mergers has some important consequences:

1. The lower-mass merger GW151226 was more difficult to

detect than GW150914 because of smaller strain, but

• because GW151226 was observed over many cycles,

matched filtering was particularly effective, and

• lower-mass GW151226 was more sensitive to some

inspiral parameters than higher-mass GW150914.

2. Mergers more massive than for GW150914 will be in-

creasingly difficult for LIGO to study because fewer cycles

will come above the detector cutoff at ∼ 30 Hz.
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24.3.8 LIGO–Virgo Triple Coincidences

A network of multiple interferometers can determine the loca-

tion of a gravitational wave source by triangulation using

• time differences,

• phase differences, and

• amplitude ratios for arrival of the gravitational wave.

When advanced Virgo came online in 2017, simultaneous de-

tection of a gravitational wave by the two LIGO detectors and

Virgo became possible.

• The first such triple coincidence was realized in the detec-

tion of GW170814.

• GW170814 corresponded to the merger of 30.5M⊙ and

25.3M⊙ black holes to produce

• a final 53.2M⊙ black hole with spin ∼ 70% of maximal

for a Kerr black hole.

• The merger occurred at a luminosity distance of 540 Mpc

(redshift z∼ 0.11).

• It released a total of ∼ 2.7M⊙c2 of gravitational-wave en-

ergy, and

• reached a peak luminosity of ∼ 3.7×1056 erg s−1.
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Figure 24.11: Localization of GW170814 by a LIGO–Virgo triple coinci-

dence. Lightest gray indicates LIGO rapid localization, darkest gray repre-

sents initial LIGO–Virgo coincidence, and intermediate gray represents the

triple coincidence after full analysis. All contours are 90% confidence level.

(a) Position on the celestial sphere. (b) Luminosity distance.

The increased localization both in

• angular position and

• luminosity distance

afforded by the LIGO–Virgo triple coincidence for GW170814

is illustrated in Fig. 24.11.
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• The angular localization was improved from

– an uncertainty box of 1160 deg2 in the LIGO rapid

response alone to

– 60 deg2 in the the LIGO–Virgo triple coincidence.

• This also permitted the luminosity distance to be sharp-

ened from

– 570+300
−230 Mpc in the initial LIGO rapid response to

– 540+130
−210 Mpc in the final triple-coincidence analysis.

The overall effect was to decrease by an order of

magnitude the event volume relative to LIGO anal-

ysis alone.
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24.4 Testing General Relativity in Strong Gravity

General relativity has passed all tests but earlier tests have all

been in the regime of relatively weak gravity.

• The most interesting predictions and most stringent tests

of GR are in the dynamical, highly nonlinear, strong-field

regime such as the merger of black holes, where

– gravitational fields are very large,

– space is strongly and dynamically curved, and

– velocities approach the speed of light.

• All prior evidence for black holes was indirect, typically

depending on electromagnetic radiation emitted far from

the event horizon (from relatively weak gravity).

The best strong-gravity tests before GW150914

were in high-gravity binary pulsar systems. But

these still probe relatively weak gravity.

• The signature for GW150914 near peak strain and in ring-

down bears imprints of the strong field near the horizons

of the merging and final black holes.

GW150914 is perhaps the most direct evidence yet

for existence of black holes, and of whether their

properties are consistent with GR.
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Analysis of the first gravitational waves detected by LIGO in-

dicate no obvious breakdown of GR.

• To give one example, general relativity predicts that grav-

itational waves should travel at the speed of light.

• This implies that the putative graviton mediating the grav-

itational force is massless.

• Hence any deviations of gravitational wave speed from c

may be parameterized in terms of a finite graviton mass.

• If the graviton had a finite mass it would travel at v< c and

there would be a dispersion of the wave (lower frequencies

traveling slower than higher frequencies).

– The LIGO/Virgo analysis of GW170104 found no ev-

idence for such an effect and placed an upper limit for

the mass of the graviton of

mg ≤ 7.7×10−23 eV/c2.

– Thus GW170104 provided strong evidence that the

speed of gravity is indeed equal to the speed of light.

– An even more stringent limit on the speed of gravity

set by merging neutron stars will be discussed below.

Thus initial data suggest that the basics of GR in

strong fields are correct, but even more stringent

tests should be forthcoming as more gravitational

waves are detected.



1132 CHAPTER 24. STRONG SOURCES OF GRAVITATIONAL WAVES

24.5 A New Window on the Universe

The most enduring contribution of the gravitational waves de-

tected in Advanced LIGO’s and Virgo’s first observing runs

may be that

It opens a new window on the Universe for strong-

gravity events.

For example,

• the detection of GW150914,

• the enormous radiated power (a peak luminosity of more

than 1056 erg s−1) inferred from the data, and that

• no reproducible electromagnetic observations signalled

the event despite a concerted effort, indicate that

There could be many events occurring in our Uni-

verse that

• emit gravitational waves of incredible power

but that

• leave little or no electromagnetic footprint.
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24.6 Gravitational Waves from Neutron Star Mergers

On August 17, 2017, LIGO–Virgo detected GW170817.

• This gravitational wave had a very different signature rel-

ative to previous black hole merger events.

• The amplitude and frequency built slowly with more than

3000 cycles recorded over ∼ 100 seconds before peak.

This new kind of GW would soon be interpreted as originating

in merger of 2 neutron stars, but the show wasn’t over yet!

• Approximately 1.7 seconds after peak GW strain both the

– Fermi Gamma-ray Space Telescope (Fermi) and the

– International Gamma-Ray Astrophysics Laboratory

(INTEGRAL)

observed a gamma-ray burst of two seconds duration in

the same part of the sky as the GW source.

• Within hours various observatories discovered a new point

source in the irregular/elliptical galaxy NGC 4993, lying

within the position error box for the gravitational wave.

• In the ensuing weeks a multitude of observatories studied

the transient afterglow in NGC 4993 (named officially AT

2017gfo) intensively at various wavelengths.

Thus was the discipline of multimessenger astron-

omy born.
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Figure 24.12: (a) Gravitational wave GW170817 (LIGO) and (b) gamma-

ray burst GRB 170817A (Fermi satellite). The source was at a luminosity

distance of 40 Mpc (130 Mly) and the gravitational wave and gamma-ray

burst arrived at Earth separated by only 1.7 seconds.

The gravitational wave GW170817

• was identified by matched filtering against post-

Newtonian waveform models and

• corresponded to the loudest gravitational wave signal ob-

served to that date, with a signal to noise ratio of 32.4.

The coincidence of the gravitational wave and the

gamma-ray burst is illustrated in Fig. 24.12.
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Figure 24.13: Localization of gravitational wave GW170817 and gamma-

ray burst GRB 170817A. The 90% contour for LIGO–Virgo localization is

shown in the darkest gray. The 90% localization for the gamma-ray burst

is shown in intermediate gray. The 90% annulus from triangulation using

the difference in GRB arrival time for Fermi and INTEGRAL is the lighter

gray band. The zoomed inset shows the location of the transient AT 2017gfo

(small white star) that was observed at various wavelengths.

Sky localization of GW170817 is illustrated in Fig. 24.13.

• The final combined LIGO–Virgo sky position localization

corresponded to an uncertainty area of 28 deg2.

• The total mass determined for the binary was between

2.73M⊙ and 3.29M⊙, and the two individual masses

• were between 0.86M⊙ and 2.26M⊙.

These masses and the waveform indicate that the

compact objects that merged were neutron stars.
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24.6.1 New Discoveries Associated with GW170817

The location of the afterglow is indicated by the small white

star in the error box of the figure above.

• The luminosity distance was 40+8
−14 Mpc, which is

• consistent with the known distance to the host galaxy.

The multimessenger nature of GW170817 proved to be a trea-

sure trove of discoveries having fundamental importance in

• astrophysics,

• the physics of dense matter,

• gravitation, and

• cosmology.
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Viability of Multimessenger Astronomy:

The event confirmed that

• gravitational wave detectors could see and distinguish

events that did not correspond to merger of two black

holes.

• It also demonstrated for the first time that electromagnetic

signals could be detected in coincidence with a confirmed

gravitational wave event, and

• demonstrated sufficient source localization that the event

could be observed at many different wavelengths.

All told, more than 70 facilities observed the event

at

• optical,

• radio,

• X-ray,

• gamma-ray,

• infrared, and

• ultraviolet

electromagnetic wavelengths.
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Mechanism for Short-Period GRBs:

• The interpretation of the event as the merger of binary

neutron stars and

• the coincident (short-period) gamma-ray burst

provided the first conclusive evidence for the hypothesis that

short-period gamma-ray bursts are produced in the merger of

neutron stars.

• The gamma-ray burst was relatively weak, suggesting that

the gamma-ray burst beam was not pointed directly at

Earth.

• Confirmation of this hypothesis came two weeks after the

initial event when radio waves and X-rays characteristic

of a gamma-ray burst were detected.

This evidence taken together represents the first

definite association of a gamma-ray burst with a

progenitor.
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Figure 24.14: Theoretical path for the r-process. Nuclei produced along

the r-process path will undergo rapid β− decay back toward the stability

valley, thus producing most of the neutron-rich and some of the β -stable

isotopes, as well as all the actinide nuclei found in nature. (The β -stable

isotopes beyond iron but below the actinide gap can be produced also in

the slow neutron capture or s-process in red giant stars.) The two drip lines

denote the boundaries beyond which a nucleus becomes unstable against

spontaneous emission of neutrons or protons, respectively.

Site of the r-Process:

The signature of heavy-element production in the event

• demonstrated that neutron star mergers are one (perhaps

the dominant) source of the

• rapid neutron capture or r-process thought to make many

of the heavy elements (see Fig. 24.14).
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• Now we have a quantitative way to investigate the relative

importance of the two primary candidate sites for the r-

process:

– core collapse supernovae, and

– neutron star mergers.

• Already it is clear that the dominant attitude of not very

long ago that the r-process was associated mostly with

core-collapse supernovae is probably not correct.
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One common theme for understanding the origin of r-process

nuclei is to ask whether they were produced

• in a few rare events (neutron star mergers occur maybe

only once every million years in a large galaxy), or

• in many much more common events (core collapse super-

novae occur about once every 50 years in a large galaxy).

Some evidence had been accumulating that at least some r-

process nuclei were produced in rare events.

The neutron star merger leading to GW170817

gives direct evidence for significant production of

r-process nuclei in a single rare event.
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Observation of a Kilonova:

The expanding radioactive debris in GW170817 was observed

at UV, optical, and IR wavelengths.

• This gave the first direct evidence for the kilonova (also

termed a macronova)

• that is predicted to occur following such mergers as a re-

sult of radioactive heating by newly-synthesized r-process

nuclei.

• The direct nucleosynthesis of r-process species likely

ceases after a second or two,

• but most initially-synthesized isotopes would be highly

radioactive and

• the cloud of debris can be kept warm (103− 104 K) by

radioactive decay for as long as weeks.

That the gamma-ray burst was emitted off-axis rel-

ative to Earth may have been essential in allowing

the kilonova to be observed.
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Figure 24.15: Geometry of GW170817 afterglows. Neutron-rich ejected

matter labeled “Tidal dynamical” emits a kilonova peaking in the IR (solid

arrows and solid curves labeled “Red” in the time–luminosity diagrams) as-

sociated with production of heavy r-process nuclei and high opacity (the red

kilonova). Additional mass is emitted by winds along the polar axis (dot-

ted arrows and dotted curves labeled “Blue”) that is processed by neutrinos

emitted from the hot central engine, giving matter less rich in neutrons and

a kilonova peaking in the optical that is associated with production of light

r-process nuclides and lower opacity (the blue kilonova).

As illustrated in Fig. 24.15, if the GRB is seen nearly on-axis,

the GRB afterglow masks the kilonova.

• The usual GRB afterglow is indicated by dashed curves.

• It dominates on-axis but viewed off-axis it appears as a

low-luminosity component delayed by days or weeks
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Nuclei Far from Stability:

The r-process runs far to the right (neutron-rich) side of the β -

stability valley in the chart of the isotopes shown above

• Little definitive information exists here because the iso-

topes cannot be made in traditional accelerators.

• Kilonova lightcurves are a statistical mix of contributions

from many neutron-rich nuclei with no sharp lines

• because of the high velocities (v∼ 0.3c) for the ejecta.

• However, they carry information about the average de-

cay rates and other general properties of these largely un-

known r-process nuclei.

This can give nuclear structure constraints far from stability.
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The Speed of Gravity:

The GRB arrived within 1.7 seconds of the gravitational wave

from a distance of 40 Mpc (figure above).

• This established conclusively that the difference between

– the speed of gravity and

– the speed of light

is no larger than 3 parts in 1015.

Thus it took 1.7 seconds of observation to elimi-

nate from contention alternatives to general rela-

tivity for which gravity does not propagate at c.
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Neutron-Star Equation of State:

The multimessenger nature of GW170817 indicates that neu-

tron star mergers will

• provide an opportunity to make much more precise state-

ments about the neutron-star equation of state.

• For example, the merger wave signature is sensitive to the

tidal deformability of the neutron star matter near merger.

• This is of fundamental importance for understanding

dense matter because

• prior observations have been unable to constrain candidate

equations of state sufficiently to understand (for example)

– the maximum mass of a neutron star and

– the minimum mass of a black hole

to better than an uncertainty of about a solar mass.
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Demographics of Neutron-Star Binaries:

The observation of GW170817 provides quantitative informa-

tion about the probability that neutron star binaries form in or-

bits that can lead to merger in a Hubble time .

• This probability has been rather uncertain to this point.

• The rate currently inferred corresponds to 0.8 × 10−5

mergers per year in a galaxy the size of the Milky way.

An accurate determination of the merger rate has implications

for

• our understanding of stellar evolution,

• the site of the r-process, and

• the expected rate of gravitational wave detection from

such events.
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Determination of the Hubble Constant:

The multimessenger nature of the GW170817 event provides

an independent way to determine the Hubble constant H0.

• This can be accomplished by comparing the

– distance inferred from the gravitational wave with

– the redshift of the electromagnetic signal.

• Presently, different methods of determining the Hubble

constant yield a value typically in the range

H0 ∼ 67−73 km s−1Mpc
−1

,

– with analyses of the CMB giving values nearer the

lower end of this range and

– traditional “distance-ladder” methods like Cepheid

variables giving values nearer the higher end.

• Analysis of GW170817 suggests a value in the middle

with large uncertainties,

H0 ∼ 70+12
−8 km s−1Mpc

−1
.

• We may expect an accumulation of such multimessenger

events to yield a precise, independent determination of H0.

For example, 100 independent GW detections with

host galaxy identified as in GW170817 could de-

termine H0 with an uncertainty of 5%.
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Off-Axis Gamma-Ray Bursts:

The initial observation of the kilonova followed days later by

observation of X-ray and radio emission

• provides strong corroborating evidence for the beamed

nature of gamma-ray bursts and

• represents the first clear detection of a weak, off-axis GRB

and its slowing in the interstellar medium.

Systematic studies of such events should greatly enrich our un-

derstanding of gamma-ray bursts.



1150 CHAPTER 24. STRONG SOURCES OF GRAVITATIONAL WAVES

We have insufficient space to elaborate on all these topics, but

let’ look at one in more detail: the kilonova powered by the

production of radioactive r-process nuclei.
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24.6.2 The Kilonova

Simulations of neutron star mergers identify two mechanisms

for mass ejection:

1. Matter may be

• expelled dynamically by tidal forces on millisecond

timescales during the merger itself, and

• as surfaces come into contact shock heating at the

surfaces may squeeze matter into the polar regions.

2. On a longer (∼ 1 s) timescale matter in an accretion disk

around the merged objects can be blown away by winds.

As ejected matter decompresses, heavy elements are made by

rapid neutron capture.

• If the matter is highly neutron-rich, repeated neutron cap-

tures form the heavy r-process nuclei (58≤ Z ≤ 90);

• if the ejecta is less neutron-rich, light r-process nuclei

(28≤ Z ≤ 58) are synthesized.

• Matter ejected in the tidal tails is cold and very neutron

rich, and tends to form heavy r-process nuclei.

• The disk winds and ejecta squeezed into the polar regions

– are irradiated by neutrinos from the central region,

which converts some neutrons to protons.

– This favors the light r-process.
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The photon opacity of the r-process ejecta may play a leading

role in the observable characteristics of kilonova events.

• The photon opacity is generated largely by transitions be-

tween bound atomic states (bound–bound transitions).

• For light r-process nuclei the valence electrons typically

fill atomic d shells.

• In contrast a substantial fraction of heavy r-process

species produced by simulations (often 1–10% by mass)

are lanthanides (58≤ Z ≤ 71).

• For lanthanides the valence electrons fill the f shells.

• These have

– densely-spaced energy levels and

– an order of magnitude more line transitions

than for the d shells in light r-process species.

• As a consequence,

The opacity of heavy r-process nuclei

• is roughly a factor of 10 larger than the opac-

ities for light r-process species, and

• they have correspondingly long photon diffu-

sion times.
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Hence the cloud of light r-process species

• is considerably less opaque

• has shorter diffusion times, and

• tends to radiate in the optical and fade over a matter of

days.

In contrast, the cloud of heavy r-process species

• radiates in the IR

• for as long as weeks because of the

– high opacity and

– long photon diffusion times.

This accounts for observed characteristics of the

transient AT 2017gfo, which differed essentially

from normal astrophysical transients:

• It brightened and faded quickly in the optical,

but

• quickly-growing IR emission was strong for

many days, and

• only after a period of days or weeks did X-ray

and RF signals begin to emerge.
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The preceding considerations suggest a general picture of the

geometry of GW170817 that is illustrated in the figure above.

• The kilonova transient AT 2017gfo that followed the

gravitational wave GW170817 and associated gamma-ray

burst GRB 170817A had two distinct components.

• First, tidal dynamical ejection flung out on ms timescales

very neutron-rich matter at high velocities v∼ 0.3c.

– This matter underwent extensive neutron capture to

produce heavy r-process species.

– It had extremely high opacity because of the lan-

thanide content.
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• Second, winds ejected matter from the disk region on a

timescale of seconds.

– This matter was subject to

* shock heating and to

* irradiation by neutrinos from the hot center.

– Both tended to decrease the neutron to proton ratio.

• Nucleosynthesis in this less neutron-rich matter

– was likely to produce light r-process matter of lower

opacity, since

– there weren’t enough neutrons to produce lanthanides

and other heavy r-process nuclei.
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Figure 24.16: Evolution of components of the GW170817 kilonova. Flux is

a sum of two spatially-separated components: dominantly-optical emission

from light r-process isotopes (“blue kilonova”, labeled Lr) and dominantly-

IR emission from heavy r-process isotopes (“red kilonova”, labeled Hr).

This picture is supported by model simulations of Fig. 24.16.

• These simulations exhibit clearly early emergence and

rapid decay of the optical component associated with the

light r-process (blue kilonova, labeled Lr).

• This is followed by the longer-lived IR component associ-

ated with the heavy-r process (red kilonova, labeled Hr),

• which grows within days to dominate the lightcurve.
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• The general features of this composite model resemble the

observed time evolution of AT 2017gfo.

• The red and blue kilonova components were visible only

because

– the GRB was seen off-axis, which

– suppressed the GRB afterglow by relativistic beam-

ing so that

– the underlying kilonova was visible (see figure

above).
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24.7 Gravitational Waves and Stellar Evolution

The interpretation of GW150914 as a black hole merger poses

some challenging questions for theories of stellar evolution.

For example, how does a binary composed of two

30M⊙ black holes even form?

Presumably either

• A binary formed with two stars of large mass and survived

successive core collapses for each star, or

• The black holes formed independently in a dense cluster

and then were captured by gravity into a binary orbit.

Neither is easy to realize without untested assumptions.

Thus, future gravitational waves detected from

• merger of two black holes,

• merger of a black hole and neutron star,

• merger of two neutron stars, and

• core collapse supernovae

will illuminate—and pose challenges to—our un-

derstanding of stellar evolution for massive stars.
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Comprehensive simulations indicate that the binary black holes

responsible for the gravitational waves observed thus far

• could have formed in isolated binary star evolution,

• provided that they formed in regions having low concen-

tration of elements heavier than helium (regions of low

metallicity).
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24.7.1 Metallicity and Stellar Mass

Major factors limiting stellar masses are (1) cooling of gas

clouds collapsing to stars and (2) stability with respect to mass

ejection caused by radiation pressure.

• Radiation pressure grows rapidly with star mass since

– it varies as T 4 and

– more massive stars are hotter.

• Photon opacity has a major influence on how massive a

star can become, and

• opacity is greatly increased by the presence of metals (el-

ements with atomic number greater than two) because

– they produce many electrons when ionized and

– photons scatter strongly from free electrons.

• Generally, low metal content (low metallicity) favors the

birth of more massive stars:

– Metals aid in cooling gas clouds collapsing to stars,

– so low metallicity implies higher temperatures and

– these higher temperatures favor collapse of more

massive gas clouds (this is called the Jeans criterion).

– Then reduced wind mass loss because of low opacity

keeps these nascent stars from expelling mass,

– so they can grow even more massive by accretion.
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The big bang produced almost no metals.

• Thus metallicities and hence opacities in the first genera-

tion of stars (called Population III or Pop III) were very

low.

• Simulations indicate that typical Pop III stars could have

had masses of hundreds to thousands of solar masses.

• These could have produced black holes of comparable

mass when their cores collapsed at the end of stellar evo-

lution.

Subsequent generations of stars formed from material enriched

in metals produced in supernova explosions of earlier stars.

• They had increasingly larger metal content.

• In today’s more metal-rich Universe few stars grow more

massive than 50–100 M⊙.
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24.7.2 A Possible Evolutionary Scenario for GW150914

Figure 24.17 (following page) illustrates a possible evolution-

ary scenario for the production of GW150914.
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Figure 24.17: A scenario for evolution of the massive black hole binary

leading to GW150914. ZAMS means zero age main sequence (the time

when the star first enters the main sequence), MS means main sequence,

HG means a star evolving through the Hertzsprung gap (the evolutionary

region between the main sequence and the red giant branch), CHeB means

core helium burning, a He star is a star exhibiting strong He and weak H

lines (indicating loss of much of its outer envelope), and BH indicates a

black hole. Time is measured from formation of the binary and the scale is

highly nonlinear. The separation of the pair is a and the eccentricity of the

orbit is e.
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A massive binary formed about 2 billion years after the big

bang (redshift z∼ 3.2), with

• initial masses of 96.2M⊙ (star A) and 60.2M⊙ (star B),

• a metal fraction Z that was 0.03 times that of the Sun,

• an average separation a∼ 2500R⊙, and

• an orbital eccentricity e = 0.15.
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Star A evolved quickly, expanded, and transferred more than

half of its mass to star B by Roche lobe overflow, as star A

evolved through the Hertzsprung gap to core helium burning.

• Star A then collapsed directly to a 35.1M⊙ black hole,

with no ejection of a supernova remnant, but with 10% of

the mass carried off by neutrinos during the collapse.

• When the first black hole had formed, star B had accreted

to 84.7M⊙ and evolved to core helium burning.
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The expansion of star B initiated a common envelope (CE)

phase with the black hole that formed from star A.

• During the CE phase the average separation of the binary

components was reduced from a∼ 3800R⊙ to a∼ 45R⊙.

• At the end of the CE phase the mass of the black hole

formed from star A was 36.5M⊙ and star B was now a

helium star of mass 36.8M⊙.

Star B then collapsed directly to a black hole.
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• This left a binary black hole system with masses of

36.5M⊙ and 30.8M⊙, respectively, and

• orbital separation a = 47.8R⊙.

• This system then spiraled together through gravitational

wave emission for 10.3 billion years,

• and merged about 1.1 billion years ago (z∼ 0.09) to pro-

duce GW150914.
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The simulations described above paint a compelling picture but

they entail large uncertainties because of

• assumptions such as the value of metallicity, and because

• accretion and (in particular) common envelope evolution

are the poorly understood aspects of binary evolution.

Tests of these assumptions and increasingly strong constraints

on models of massive binary star evolution may be expected as

gravitational wave astronomy matures.

One crucial feature of the mechanism outlined

above is direct collapse of massive stars in a bi-

nary to black holes,

• without ejecting a supernova remnant and

• without giving a strong natal kick to the black

hole that is formed, so that it remains in the

binary.

The following page gives direct observational ev-

idence that such failed supernovae may occur in

nature.
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24.7.3 Direct Collapse of Massive Stars to Black Holes

A failed supernova candidate is shown in the following figure.

(a) The 25 M   

red supergiant 

N6946-BH1 in

2007 (optical).

Optical

(b) Former location 

of N6946-BH1 in

2015 (optical).

(c) Former location 

of N6946-BH1 

in 2015 (IR).

IR

• In 2007 the 25M⊙ red supergiant N6946-BH1 was bright

in optical images [center of circles in panel (a)].

• In 2009 this star underwent a weak optical outburst and

then faded rapidly over a matter of months.

• In 2015 N6946-BH1 had disappeared in the optical [panel

(b)] but a faint IR signal remained [panel (c)].

These results suggest birth of a black hole in a

failed supernova, with IR emission from weak ac-

cretion on the black hole.
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Figure 24.18: A summary of black hole masses determined from X-ray

binary and gravitational wave data as of November, 2017. Arrows indicate

black hole mergers.

24.7.4 Measured Stellar Black Hole Masses

Black holes are one conjectured endpoint for stellar evolution.

We have discussed two reliable methods of identifying stellar

black holes and determining their masses:

• Mass-function analysis of X-ray binary systems, and

• Analysis of gravitational waves from binary black hole

mergers discussed in this chapter.

Fig. 24.18 summarizes masses for 37 black holes

determined from these two types of analysis.
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24.7.5 Are Stellar and Supermassive Black Holes Related?

Is there is a connection between the formation of stellar-mass

black holes and of supermassive black holes? Two extremes

have been discussed.

• The light seeds model, in which supermassive black holes

formed by successive merger of black holes created by

core collapse of stars.

• The heavy seeds model, in which 10,000− 100,000M⊙
seeds for supermassive black holes may have formed by

– direct collapse of gas clouds, or possibly from

– rapid merger of black holes from massive first-

generation (Pop III) stars.

As of 2019, the jury is still out on this issue.

Thus, it is possible that evolution of massive stars

ending in the creation of stellar black holes also

has implications for supermassive black holes.



1172 CHAPTER 24. STRONG SOURCES OF GRAVITATIONAL WAVES



Part V

General Relativity and Beyond

1173





Chapter 25

Tests of General Relativity

This final Part concerns the future of gravitational theory. We

begin with an analysis of how well GR has stood the test.

• This chapter gathers in one place a list of some observa-

tional and experimental tests of general relativity. It is

relatively brief because

– the list of observables for which general relativity pre-

dicts meaningful differences with Newtonian gravity

is itself rather brief, and

– many of these tests already have been discussed in

preceding chapters.

• Our primary concern will be comparison of general rela-

tivity with observation and experiment.

• However, it is important also to compare the predictions

of GR with alternative theories of gravity.

1175
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25.1 Alternative Theories of Gravity

Many alternatives to general relativity as the modern theory of

gravity have been proposed. Two motivations have assumed

increasing importance in recent years:

• The incompatibility of general relativity with quantum me-

chanics, suggesting that general relativity is not complete.

• The distaste of some for the mysterious nature of dark

matter and dark energy in the standard cosmology,

• which has motivated a view that they may be fictions

masking a failure of current gravitational theory.

One of the best-known example of an alternative

to general relativity is the scalar–tensor theory of

Brans and Dicke.
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Alternatives and Observations:

Most alternatives to general relativity are ruled out quickly by

observations.

• For example, they may fail to predict the correct deflection

of light in a gravitational field.

• However, some alternatives are not obviously falsified by

current observations.

• Typically in these still-viable theories

– the gravitational force derives from the spacetime

metric, as for general relativity, but

– they differ in that additional fields are added.

– For example, a long-range scalar (spin-0) field may

supplement the spin-2 tensor field of GR.

For such theories to be consistent with the observed properties

of gravity the relationship of the additional fields to matter is

one-way:

• Matter may create the fields and thereby make contribu-

tion to the curvature of the spacetime metric, but

• The new fields don’t act back on the matter because matter

is assumed to respond only to the metric.
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Tests with Gravitational Waves:

One distinction between general relativity and alternatives may

be in gravitational wave emission.

• For example, in scalar–tensor theories scalar and dipole

gravitational waves may be emitted in addition to the

quadrupole waves predicted by general relativity.

• This could modify the rate of gravitational wave emission

late in the inspiral for merging neutron-star or neutron star,

black hole binaries in an observable way.

Various alternatives to general relativity require also that grav-

itational waves travel at a speed different from that of light.

The finding from GW170817 that the speed of

gravity can differ by no more than 3 parts in 1015

from that of light would seem to pose serious prob-

lems for such theories.
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It is convenient to divide the tests of general relativity into four

broad categories:

1. the classical tests,

2. the modern tests,

3. the strong-field tests, and

4. the cosmological tests.

As part of this discussion, we shall introduce also

the parameterized post-Newtonian (PPN) formal-

ism, which is a standard framework used to com-

pare the predictions of GR

• with data and

• with other theories of gravity.
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25.2 The Classical Tests of General Relativity

The tests proposed originally by Einstein are sometimes termed

the classical tests of general relativity.

• Precession of the perihelion for Mercury was confirmed

already at the publication of the theory. Much larger pre-

cession effects have since been measured for systems such

as

– The Binary Pulsar (4.2◦ per year) and

– The Double Pulsar (17◦ per year),

in agreement with the amount predicted by general rela-

tivity.

• The bending of light in the Sun’s gravitational field was

confirmed in 1919 during Solar eclipse observations.

– These measurements have since been repeated more

precisely and

– extended to a variety of gravitational lensing phenom-

ena described further below,

with results consistent with the theory of general relativity.
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• The redshift of light in a gravitational field, or equiva-

lently gravitational time dilation

– was suggested initially in the spectra of white dwarfs.

– It was confirmed later in direct experiments on Earth.

It also is confirmed implicitly every time the Global Posi-

tioning System (GPS) is used for location and navigation

(Problem).

The existence of a gravitational redshift is a neces-

sary condition for general relativity to be valid.

– However, this is sometimes viewed as a less-

stringent condition than others because it

– follows from the equivalence principle alone.

• The existence of gravitational waves was confirmed

– indirectly by the Binary Pulsar and

– directly by LIGO.

It is fair to conclude that the classical tests of gen-

eral relativity have all been passed with a rather

high level of confidence.
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25.3 The Modern Tests of General Relativity

There are various newer tests that we may term the modern tests

of general relativity. In many cases the feasibility, accuracy,

and precision of this class of tests has been aided by

• rapid advances in detection and measurement technology,

and by

• the advent of routine spaceflight to place observational

and experimental platforms in space.

The analyses of these modern tests of general rel-

ativity often systematize results in terms of the

parameterized post-newtonian (PPN) formalism,

which we now introduce.
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25.3.1 The PPN Formalism

In comparing general relativity with other theories of gravity

and with observation it is useful to have a method that

• Expresses the nonlinear Einstein equations in terms of the

lowest-order deviations from Newtonian gravity.

• Such approaches may be applied to any theory of gravity

– that derives from a spacetime metric and

– embodies the strong equivalence principle.

• However, they are most useful in weak gravity since they

are based on expansions.

• GR and most viable alternative theories of gravity fit this

prescription.

• Under conditions of weak gravity

– the differences between the predictions of general rel-

ativity and Newtonian gravity can be expressed in

terms of expansions in powers of a small parameter.

– The relevant small parameter is v/c, where v is a char-

acteristic velocity for the system.

This post-Newtonian expansion (it adds correc-

tions that go beyond Newtonian gravity) reduces

to Newtonian gravity in the limit c→ ∞.
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We now illustrate how the PPN formalism works in more detail.

• The most general static, spherically-symmetric metric can

be expressed in the form

ds2 =−A(r)(cdt)2 +B(r)dr2+ r2dθ 2+ r2 sin2 θdϕ2.

• In the limit of flat spacetime this becomes the Minkowski

metric expressed in spherical coordinates,

ds2 =−(cdt)2 +dr2+ r2dθ 2+ r2 sin2 θdϕ2.

• Thus A(r) and B(r) parameterize the deviation of the met-

ric from flat spacetime.

• This suggests that for weak gravity the departure from a

flat metric can be described by an expansion in an appro-

priate small parameter.

Any viable relativistic gravitational theory should agree with

the results of Newtonian gravity in the weak-field limit.

• Comparing with the general metric, agreement with New-

tonian gravity for weak fields requires to lowest order

(Problem)

A(r) = 1− 2GM

rc2
+ . . . B(r) = 1+ . . . ,

where the dots indicate higher-order corrections.
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• The expansions

A(r) = 1− 2GM

rc2
+ . . . B(r) = 1+ . . . ,

suggest that the small dimensionless parameter appropri-

ate for an expansion of the metric is GM/rc2.

• This is not surprising, since it was shown earlier that

GM/rc2 is a natural measure of the strength of gravity.

• Expanding A(r) and B(r) in powers of GM/rc2 gives

A(r) = 1− 2GM

rc2
+2(β − γ)

(
GM

rc2

)2

+ . . .

B(r) = 1+2γ

(
GM

rc2

)

+ . . . ,

where the particular form of the expansion coefficients in

terms of the parameters β and γ is conventional.

– The lowest-order corrections to the flat-space spheri-

cal metric

A(r) = 1− 2GM

rc2
+ . . . B(r) = 1+ . . . ,

may be termed the Newtonian corrections.

– Hence the higher-order terms (shown in red above)

are called the post-Newtonian corrections.

– Their size is characterized by the post-Newtonian pa-

rameters β and γ in this example.
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More generally, the parameterized post-Newtonian (PPN) for-

malism

• isolates the differences between general relativity and ex-

periments or other theories of gravity

• in the values of a set of parameters associated with coef-

ficients of terms in the post-Newtonian expansion of the

metric.

• There are ∼ 10 such parameters in typical applications,

each tested by particular experiments or observations.

• For example, in the PPN formulation of Will

– the parameter γ is associated with light deflection and

time delay, and

– the parameter β is associated with orbital perihelion

shift.

– General relativity predicts β = γ = 1, whereas

– a different metric theory of gravity might predict val-

ues different from unity.

Thus, modern experimental tests of gravity are of-

ten reported in terms of measured differences of

PPN parameters like β and γ from their values ex-

pected in general relativity.
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Example: Frequency shifts of radio signals to and from the

Cassini spacecraft as it passed near the Sun on its way to Saturn

in 2002

• were used to constrain the PPN parameter γ to the range

γ = 1+(2.1±2.3)×10−5.

• Using the precise Cassini value of γ coupled with lunar

rangefinding data permitted the constraint

β = 1+(1.2±1.1)×10−4.

to be placed on the PPN parameter β .
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25.3.2 Results of Modern Tests

We now summarize results of some modern tests of GR.

1. Shapiro time delay is a test in the same spirit as the clas-

sical tests and has been confirmed for observations in the

Solar System and beyond.

• For example, both the time delay and the deflection of

light in a gravitational field are proportional to a PPN

factor γ +1, where γ = 1 for general relativity.

• Radio ranging to the Viking spacecraft on Mars

– verified the light delay prediction of GR for light

travel near the Sun to an accuracy of 0.1%

– and found that γ = 1±0.002.

• As already noted, frequency shifts of radio signals to

and from the Cassini spacecraft found

γ = 1+(2.1±2.3)×10−5.

2. Gravitational lensing, which is the generalization of the

deflection of light in the Sun’s gravitational field to a range

of lensing phenomena, has been confirmed in many deep-

field observations.

3. Frame dragging and geodetic effects, which have been

confirmed by Gravity Probe B measurements of gyro-

scopic precession for a satellite in polar Earth orbit.



25.3. THE MODERN TESTS OF GENERAL RELATIVITY 1189

4. Modern equivalence principle tests in several categories:

• High-precision torsion balance experiments:

– The original Eötvös experiments established the

equivalence of inertial and gravitational mass

with a sensitivity of one part in ∼ 109.

– Modern variations have achieved 1 part in ∼
1013.

• The strong equivalence principle requires self-

gravitating bound objects to follow the same paths in

gravitational fields.

– This Nordtvedt effect has been tested precisely by

lunar-ranging experiments that

– monitor the distance between Earth and reflectors

on the Moon to centimeter accuracy.

– They confirm that the Earth and Moon fall toward

the Sun at the same rate to 1 part in ∼ 1013.

• Another consequence of the strong equivalence prin-

ciple is that G should not vary with time or place.

– Lunar ranging measurements place an upper limit

Ġ

G
= (4±9)×10−13 yr−1.

– The precision with which Ġ/G is measured is

growing quadratically with the elapsed time for

lunar-ranging measurements.
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We may conclude that the modern tests of general relativity

have provided strong confirmation of the theory within the lim-

its of their (often quite high) precision.
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25.4 Strong-Field Tests of General Relativity

Tests of general relativity described above were all carried out

in relatively weak gravity, where nonlinearities are small.

• Until recently, it wasn’t easy to test GR in the strong-

gravity, highly nonlinear regime because

• all gravitational fields in the Solar System are weak.

• This has changed now, with tests in much stronger fields:

1. Tests at intermediate field strength using binary and

triplet star systems containing pulsars.

2. Tests at intermediate field strength by tracking stars

near the Milky Way central black hole.

3. Tests at high field strengths using direct detection of

gravitational waves from compact mergers.

1. Pulsars in binary and triplet systems containing compact ob-

jects in tight orbits generally

• sample stronger gravitational fields, and

• can be measured precisely because of pulsar timing.

Tests with the Binary Pulsar, the Double Pulsar,

and PSR J0348+0432

• support validity of GR in stronger fields, and

• confirm indirectly emission of gravitational

waves at the rate predicted by GR.
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2. Orbits of stars around the supermassive black hole at Sgr A*

provide tests of general relativity for

• gravitational source masses ∼ 106 times larger

• and gravitational fields ∼ 100 times stronger

than for tests of general relativity by binary pulsars.

3. Direct observation of gravitational waves now promises a

whole range of general relativity tests in the

• strong gravity regime (binary neutron star merger and core

collapse supernova), and the

• very strong gravity regime (binary black hole merger).

In particular, analysis of gravitational waves observed so far

suggests that

• black holes exist,

• which confirms a fundamental strong-gravity prediction

of GR, and that

• the extreme gravity near their event horizons is correctly

described by general relativity.
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Figure 25.1: Field strength versus mass for some tests of general relativ-

ity. Gravitational waves from merging stellar-size black holes and the orbits

of test stars around the 4× 106 M⊙ black hole at the center of the Milky

Way test gravity in fields that are 102 to 106 times stronger than that for all

previous tests.

The characteristic field strength in units of ε = GM/Rc2 versus

source mass for some experimental and observational tests of

general relativity are summarized in Fig. 25.1.
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Example: A typical modified form of gravity assumes that

• gravity is described by a metric tensor, as for GR, but

• an additional field alters the interaction over some range.

The modified gravitational potential is often written as

U =
GM

r

(

1+αe−r/λ
)

,

where α and λ parameterize the additional interaction.

Star orbits around the black hole at Sgr A* place

an upper limit |α|< 0.016 for λ = 150 AU.

These Sgr A* observations probe GR in an untested regime:
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We may expect that increasingly-stringent tests of general rela-

tivity in stronger gravity will accumulate through

• further monitoring of multiple star systems containing

pulsars,

• tracking the stars orbiting the supermassive black hole at

the center of the Galaxy, and

• the detection of gravitational waves from various binary

merger and supernova events.
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25.5 Cosmological Tests of General Relativity

In principle cosmological observations test general relativity.

• Indeed, some would argue that the observed expansion of

the Universe is a confirmation of general relativity.

• It is indeed true that general relativity is consistent with a

remarkable variety of cosmological data for the expanding

Universe.

• However, the lack of fundamental understanding for the

– source of dark matter and

– source of dark energy

undermines attempts to confirm general relativity inde-

pendently from cosmological observations alone.

To take one extreme example:

• The mainstream has accepted that dark matter and dark

energy are necessary components of a Universe that is cor-

rectly described by general relativity.

• However, a small minority argues that effects attributed to

the presence of “dark matter” and “dark energy" are not

evidence of unseen matter and energy at all.

• Rather (in this view) they are a failure of current gravita-

tional theory to describe the interactions of normal matter

and energy.
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Recall that in the history of astronomy an apparent failure of

gravitational predictions typically has been ascribed to one of

two alternatives:

1. Gravitational theory is correct but there is unknown mass

affecting the system, or

2. Gravitational theory is failing to describe the interactions

of known masses and must be replaced.

Historically, each alternative has been right at different times:

1. The first in the discovery of Neptune through its pertur-

bations on of Uranus using Newtonian gravity with an as-

sumed unknown mass outside the orbit of Uranus, and

2. the second by Einstein’s demonstration that the excess

precession of Mercury’s perihelion was not caused by an

unknown mass in Newtonian gravity but instead indicated

that a better theory of gravity was required.
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Evidence favors strongly the mainstream view that general rel-

ativity is the correct classical theory of gravity, and thus that

dark matter and dark energy are real.

• However, until there is a deeper understanding of the

source of dark matter and dark energy the consistent point

of view must be that

• Cosmological observations are consistent with general

relativity but are not yet an independent test of it.

• Stated slightly differently, dark matter and dark energy are

key components of the new cosmology and at present the

only evidence for their existence is gravitational.

Hence it is clear that the new cosmology

• Is in impressive agreement with the aggregate

of cosmological data, but

• It cannot be viewed as a rigorous independent

test of general relativity as the correct classi-

cal gravitational theory

until more is understood about the intrinsic nature

of dark matter and dark energy.



Chapter 26

Beyond Standard Models

Preceding chapters have described gravitational physics within

the context of “standard models” of particular disciplines:

• General relativity as the standard model of classical grav-

ity.

• The gauge theory of telectroweak and strong interactions

as the Standard Model of elementary particle physics.

These theories have been remarkably correct, but there is evi-

dence that they are incomplete. For example,

• That the principles upon which general relativity and

quantum mechanics rest are logically incompatible, and

• the black hole quantum information paradox point toward

the need for a new theory of quantum gravity, without

defining what that theory should be.

• Evidence that neutrinos undergo flavor oscillations indi-

cates that the Standard Model of particle physics is in-

complete, but does not indicate clearly how to extend it.

1199
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In this chapter some of the still-developing ideas for extending

our current understanding of gravity and its interactions with

elementary particles will we introduced.
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26.1 Supersymmetry and Dark Matter

In preceding chapters we have examined a number of results

suggesting that most of the matter in the Universe is not seen

by any standard probe except gravity.

• This unseen mass is termed dark matter, implying that it

does not couple significantly to non-gravitational probes

(electromagnetism, the weak interactions, or the strong in-

teractions).

• A dilute gas of dark matter obeys an equation of state sim-

ilar to that of normal matter, but we do not know what dark

matter is.

• Likewise, we have seen empirical evidence that the Uni-

verse contains a mysterious dark energy that permeates all

of space and is causing the expansion of the Universe to

accelerate.

• The dark matter appears at this point to be distinct from

the dark energy. For example, dark energy seems to re-

quire an equation of state that is fundamentally different

from that of any known particle or of dark matter (negative

pressure and antigravity effects).

Potential explanations of the dark matter in partic-

ular generally invoke a property of the Universe

that is conjectured theoretically but for which this

is not yet any evidence called supersymmetry.
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26.1.1 Fermions and Bosons

In quantum mechanics, all elementary particles can be divided

into two classes, bosons and fermions, having fundamentally

different statistical properties.

• Fermions have half-integer spin and obey Fermi–Dirac

statistics.

– Fermion wavefunctions are completely antisymmetric

under exchange of two identical fermions.

– The most notable implication of fermionic statistics

is the Pauli exclusion principle: no two identical

fermions can occupy the same quantum state.

• Bosons have integer spin and obey Bose–Einstein statis-

tics.

– Boson wavefunctions are completely symmetric under

exchange of two identical bosons.

– The most notable implication of bosonic statistics is

boson condensation: Many identical bosons can (in-

deed, often prefer to) occupy the same quantum state.

We do not have an explanation of why fermions

and bosons have these properties, but they do, and

all elementary particles discovered so far can be

classified as either bosons or fermions.
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26.1.2 Normal Symmetries

Normal symmetries in quantum field theory relate bosons to

bosons or fermions to fermions, but not bosons to fermions.

• For example, the (approximate)† symmetry called isotopic

spin is important in nuclear physics and particle physics.

– One implication of isotopic spin symmetry is that

there is a relationship between protons and neutrons

such that,

– in a certain sense the neutron and the proton are really

just different manifestations of the same particle.

• Particles that are related in this way by an isotopic spin

symmetry are termed isotopic spin multiplets.

†Experts will note that isotopic spin symmetry

• is not exact,

• is not fundamental, and that

• neutrons and protons are composite and not

fundamental particles.

Nevertheless, it is useful to introduce normal

symmetries in a simple way using isotopic spin

with nucleons considered as elementary particles

(which they effectively are at low energy).
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A symmetry or approximate symmetry like isospin is a very

powerful idea, but note that in this example

• Isotopic spin symmetry, just as for any ordinary symmetry,

relates particles that are of the same quantum statistical

type (the neutron and the proton are both spin-1
2

fermions).

• There is no known instance of a set of particles that appear

to be related by an isotopic spin symmetry in which some

of the particles are bosons and some are fermions.
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26.1.3 Symmetries Relating Fermions and Bosons

There are theoretical reasons to believe that the Universe will

eventually be found to exhibit a fundamental symmetry that

goes beyond normal symmetries and relates fermions to bosons.

• This conjectured “super” symmetry is termed, appropri-

ately, supersymmetry.

• In the supersymmetry picture,

– every fermion in the Universe has a partner boson of

the same mass, and

– every boson in the Universe has a partner fermion of

the same mass.

Example: The Universe contains elementary parti-

cles called electrons that are

• spin-1
2 fermions with a

• mass of 511 keV.

According to the supersymmetry idea, there is also

a supersymmetric partner of the electron called a

selectron that

• is a spin-0 boson with

• a mass of 511 keV.
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The problem with the supersymmetry idea is that no one has

ever seen the supersymmetric partner of any elementary parti-

cle that we know to exist.

• However, there are theoretical arguments suggesting that

supersymmetry may be a broken symmetry.

• Then the masses of supersymmetric partners of known el-

ementary particles might be pushed up to a high value by

the symmetry breaking.

• If the broken supersymmetric masses are large enough,

they would not have been produced in any accelerator ex-

periments carried out so far.

Thus, there is strong theoretical prejudice that bro-

ken supersymmetry exists in the Universe, though

we have yet to find any direct evidence for it.
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The most favored explanation for dark matter has been that it

consists of as-yet undiscovered elementary particles that are su-

persymmetric partners of known elementary particles.

• Then the very weak coupling to ordinary matter, and thus

the “darkness” of the dark matter, could be explained as a

quantum selection rule effect.

• That is, supersymmetric particles would be expected to

carry supersymmetric quantum numbers not carried by or-

dinary particles.

• Hence, the probability for interaction of supersymmet-

ric particles with ordinary matter would be strongly sup-

pressed by conservation laws and selection rules associ-

ated with these quantum numbers.

For those lacking a background in quantum me-

chanics, this can be translated roughly as super-

symmetric matter and ordinary matter are so dif-

ferent that they don’t even know how to interact

with each other.

• Supersymmetry may also play an important role in relat-

ing dark energy to quantum fluctuations of the vacuum,

though we shall see that our understanding of this issue is

far from satisfactory.
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Experiments as of late 2017 at the Large Hadron Collider

that were predicted by various educated guesses to have high

enough energy to produce supersymmetric particles have failed

to find evidence for them.

• This does not necessarily rule out broken supersymmetry

as the origin of dark matter.

• However, it suggests that

– at best that the simplest ideas about supersymmetry

and dark matter may have to be discarded, and

– at worst supersymmetry may have nothing to do with

dark matter.

Thus, there is abundant gravitational evidence that

dark matter exists, but at present there isn’t a scin-

tilla of evidence in support of what has been the

leading candidate to explain it.
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26.2 Vacuum Energy from Quantum Fluctuations

We have seen empirical evidence that the Universe contains a

mysterious “dark energy” that permeates all of space and is

causing the expansion to accelerate.

• Supposing this to be true, what is the source of this re-

markable behavior (which we have seen to be equivalent

to the presence of antigravity in the Universe)?

• Given the successes of relativistic quantum field theory in

elementary particle physics, it is natural to seek the source

of the dark energy in terms of relativistic quantum fields.
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No dilute gas of known particles can exhibit an equation of state

similar to that inferred for dark energy.

• Thus, if the source of dark energy lies in quantum fields,

those fields must be associated with as-yet undiscovered

elementary particles.

• But the empirical evidence also suggests that dark energy

is a property of space itself, and would still exist even in

empty space (no particles and no fields).

• Quantum physicists term the ground state (lowest energy

state) of a system the vacuum state.
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Classically, the vacuum state of the Universe would consist of

a state with no matter or fields, and no energy. But quantum

field theory complicates this issue in two ways:

1. Because of spontaneous symmetry breaking (hidden sym-

metry,) the vacuum state of a system (the lowest-energy

state) need not be a state with no fields present.

Various examples are known where a state with no

fields present is actually higher in energy than a

state with a particular combination of fields, so that

the lowest-energy state has fields present.

2. Classically, if there are no fields the energy is zero.

• But even a state that, on average, has no fields has

non-zero energy ∆E because of fields that fluctuate

into and out of existence over a period ∆t such that the

uncertainty principle relation ∆E ·∆t ≥ h̄ is satisfied.

• These are termed vacuum fluctuations and the asso-

ciated energy is termed the zero-point energy or the

vacuum energy.

The reality of the vacuum energy is demonstrated

• indirectly by the many successes of the Standard

Model of elementary particle physics, and

• directly through phenomena measurable in the labo-

ratory like the Casimir effect.
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In light of point 2, the vacuum state of the Universe (“empty

space”) will have a non-trivial content because of vacuum fluc-

tuations.

• It is tempting to try to associate the effects of dark energy

with these vacuum fluctuations.

• Let us attempt a quantitative estimate of the energy density

of empty space associated with quantum vacuum fluctua-

tions to see if these effects could account for the acceler-

ated Universe.
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26.2.1 Vacuum Energy for Bosonic Fields

Bosonic fields are simpler than fermionic fields, so we first as-

sume the vacuum energy to be associated with bosonic fields.

• In quantum field theory, bosonic fields may be expanded

in terms of an infinite number of harmonic oscillators.

• Assuming all fields to be bosonic and expanding them as

a collection of harmonic oscillators, the total energy is

E = ∑
i

(ni +
1
2
)h̄ωi,

where ni can be zero or any positive integer (bosons).

• Thus, even if the Universe is “empty”, there is a vacuum

energy associated with zero-point energies of the fields

E = EΛ = 1
2 ∑

i

h̄ωi.

• This sum is over oscillators defined at each point, so vac-

uum energy density should be constant over all space.

• Converting the sum to an integral over momentum using

h̄ω =
√

p2c2+m2c4,

and neglecting masses, yields a constant energy density εb
Λ

for bosonic vacuum fluctuations,

εb
Λ ∝

∫ ∞

0
p3dk = ∞.
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Since we have found

εb
Λ ∝

∫ ∞

0
p3dk = ∞,

our first simplistic attempt to estimate the energy density of the

vacuum leads to nonsense.

• But general relativity likely breaks down on the Planck

scale.

• Thus it is plausible that new physics on that scale intro-

duces a momentum cutoff in the preceding integral.

• Setting the upper limit of the integral to the Planck mo-

mentum Ppl ≃ 1019 GeV c−1 gives

εb
Λ ≃

(cPpl)
4

16π2h̄3c3
≃ 0.824×10118 MeV cm−3,

which is very large but at least finite.

• But cosmological observations indicate that vacuum en-

ergy density is the same order of magnitude as the critical

(closure) density, which is only about 10−2 MeV cm−3.

Therefore, this simple estimate of the vacuum en-

ergy density gives a value that is about 120 orders

of magnitude too large to account for the observed

acceleration of the Universe!
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This estimate of the vacuum energy density has been termed

The most spectacular failure in all of theoretical

physics.

It is not yet clear whether this means that

1. vacuum fluctuations are not responsible for the accelera-

tion of the Universe, or whether it means that

2. we have a (monumental) lack of understanding of how to

properly calculate the vacuum energy density.

Some improvement in our estimate is afforded by assuming

• the Universe to be composed of fermionic fields in addi-

tion to bosonic ones, and

• to assume that there is a supersymmetry that relates the

boson and fermion fields.

A serious treatment of this subject is beyond our

scope, but we now make some simple estimates of

the vacuum energy density expected if a supersym-

metry between fermions and bosons exists.
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26.2.2 Vacuum Energy for Fermionic Fields

Because fermionic wavefunctions are antisymmetric and

bosonic wavefunctions are symmetric under exchange,

• fermionic fields have a spectrum that is like a sum over

harmonic oscillators for bosons, except that

1. The sign of the 1
2
h̄ωi term is negative and

2. Occupations ni are restricted to 0 or 1 (Pauli princi-

ple):

E = ∑
i

(ni− 1
2)h̄ωi, (ni = 0,1).

• Thus, the zero-point energy for fermionic fields (corre-

sponding to ni = 0) is negative.

This looks even less promising as an explanation of the accel-

erating universe than bosonic vacuum fluctuations.

Note though that negative energy densities are in-

triguing for three staples of science fiction:

• warp drives,

• wormholes, and

• time machines.

These might be hypothetically possible if we had at

our disposal exotic material with a negative energy

density. Alas, no such material is known.



26.2. VACUUM ENERGY FROM QUANTUM FLUCTUATIONS 1217

26.2.3 Supersymmetry and Vacuum Energy

The potential relevance of supersymmetry to the vacuum en-

ergy is clear from the preceding observation that

• the zero-point energy of fermion fields is opposite in sign

to that of boson fields.

• If by supersymmetry every fermion field has a partner su-

persymmetric boson field, their contributions to the vac-

uum energy density can cancel each other.

• Indeed, a detailed theoretical treatment suggests that if

supersymmetry were exact, the zero-point energy of all

boson and fermion fields would exactly cancel, leaving a

vacuum energy density equal to zero.

• But we have already argued above that supersymmetry (if

it exists) must be at least partially broken to be in accord

with observations.

Therefore, if the Universe has a broken supersym-

metry,

• the contributions of fermion and boson fields

to zero-point energy could almost, but not

quite, cancel,

• leaving a small net vacuum energy density.
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A supersymmetric quantum field estimate gives for the vacuum

energy density associated with zero-point motion of the fields

εΛ =

(

m2
f −m2

b

P2
pl

)

εb
Λ,

• where εb
Λ is the earlier bosonic estimate and

• ∆m2 ≡m2
f −m2

b is the difference in mass square scales be-

tween bosonic (b) and fermionic (f) supersymmetric part-

ners.

Hence, our earlier absurdly high estimate will be reduced by

the initial factor involving the mass square difference ∆m2:

εΛ =

(

∆m2

P2
pl

)

︸ ︷︷ ︸

reduction

εb
Λ,

• But the failure so far to observe supersymmetric particles

in experiments places a lower limit ∆m2/P2
pl ≥ 10−34.

• Thus our new estimate of ∆m2 is still more than 80 orders

of magnitude too large to accord with observation.

Even by cosmological standards that is a little be-

yond the pale, strongly suggesting either that

• dark energy is not vacuum energy, or

• we don’t really understand vacuum energy!



26.3. QUANTUM GRAVITY 1219

Table 26.1: Quantities characteristic of the Planck scale

Quantity Value

Planck mass 1.2×1019 GeV/c2

Planck length 1.6×10−33 cm

Planck time 5.4×10−44 s

Planck temperature 1.4×1032 K

26.3 Quantum Gravity

As we imagine extrapolating the history of the Universe back-

ward in time,

• The big bang theory tells us that the Universe becomes

more dense and hotter, and the relevant distance scales

become shorter.

• But if the distance scales become short enough (of atomic

dimensions or smaller), the theory of quantum mechanics

must be used to describe physical events.

• Therefore, as we extrapolate back in time to the beginning

of the Universe, eventually we reach a state of sufficient

temperature and density that a fully quantum mechanical

theory of gravitation would be required.

• This is called the Planck era, and the corresponding scales

of distance, energy, and time are called the Planck scale..

Quantities characteristic of the Planck scale are

listed for reference in Table 26.1.
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It is instructive to compare the Planck scale with the scale of

actual data for properties of elementary particles.

• In the largest particle accelerators, energies of several hun-

dred GeV can be reached.

– The temperature of a gas having particles of this av-

erage energy is approximately 1015 K, and

– the time after the big bang when the temperature

would have dropped to this value is about 10−10 s.

• Therefore, all speculation about the Universe at times ear-

lier than this is based on theoretical inference.

• Clearly the Planck scale lies far beyond our present or

foreseeable ability to probe it directly, but presumably was

relevant in the first instants of the big bang.

• At the Planck scale we must apply the principles of quan-

tum mechanics to the gravitational force.

• But our best theory of gravity is general relativity and it

does not respect the principles of quantum mechanics.

• Likewise, our best microscopic theory is quantum me-

chanics, and it does not respect the principles of general

relativity.
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• What is required then is a theory of gravity that also is

consistent with quantum mechanics. This could be termed

a theory of quantum gravity.

• Unfortunately, no one has yet understood how to accom-

plish this very difficult task, and we do not have an inter-

nally consistent theory of quantum gravity.
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26.3.1 Superstrings and Branes

Our ordinary description of the microscopic world, quantum

mechanics, is based on the idea that elementary particles are

point-like (exist at a point in space).

• A point has zero dimension, since it has neither breadth,

width, nor height.

• This feature of quantum mechanics leads to serious tech-

nical mathematical problems.

• In our description of the strong, weak, and electromag-

netic interactions, a complex mathematical prescription

has been worked out that avoids these problems.

• The technical term for this prescription is renormalization.

Renormalization systematically removes infinite

quantities that would otherwise crop up in the the-

ory and leaves us with a logically consistent quan-

tum description.
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Gravity is Special

• Because of its fundamental properties, the renormaliza-

tion procedure that works for the other three fundamental

interactions fails for gravity.

Ultimately this failure is because the

• electromagnetic, weak, and strong interac-

tions are mediated by spin-1 fields, but

• gravity is mediated by a spin-2 field.

• Thus, if we try to apply ordinary quantum mechanics to

gravity we end up with quantities that become infinite in

the theory.

• Since we don’t understand how to deal with these infini-

ties, quantum gravity based on point-particle quantum me-

chanics is not logically consistent.

• This has two related implications.

1. We cannot describe gravity on the Planck scale.

2. We cannot join gravity with the other three forces into

a unified description of all forces.
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The most promising present alternative for a theory of quan-

tum gravity is called superstring theory, but it is not yet clear

whether it can provide a correct picture.
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Figure 26.1: Schematic illustration of points, strings, and branes.

One-Dimensional Building Blocks

The basic idea of superstrings changes the assumption that ele-

mentary building blocks of the Universe are point-like particles.

• Instead, superstring theory assumes that they are tiny

(Planck length) objects that are not points but instead have

a length: they are like strings.

• These strings are assumed to possess a supersymmetry, so

these elementary building blocks are called superstrings.

• Because they have a length, they are 1-dimensional, rather

than the 0-dimensional particles of ordinary quantum me-

chanics. The top portion of Fig. 26.1 illustrates.

• Assuming that the building blocks are not pointlike per-

mits many of the troublesome infinities to be avoided.
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Brane Theory

Once the basic idea of superstrings were introduced in the early

1980s, five different versions of string theory were developed.

• In the 1990s, it was realized that these five versions were

actually strongly related to each other.

• They seemed different because the discussion to that point

had been based on approximate solutions.

• More exact solutions indicated that existing versions of

superstrings could be unified in a more general theory.

• This unified theory is called m-brane theory— often short-

ened to M-theory—because it generalizes the idea of fun-

damental particles having 1 dimension to m dimensions.

• The resulting geometrical surfaces are called m-branes,

with the integer m signifying the number of dimensions.

The lower portion of the above figure illustrates a 2-brane: a

2D object with dimensions comparable with the Planck length.
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The Basic Stuff of the Universe

Superstring theory, and its generalization M-theory, imply that

our current “elementary particles” are not really elementary.

• They have an internal structure on the Planck scale.

• This internal structure consists of elementary building

blocks that are not point particles but are instead 1-branes

(strings), 2-branes, 3-branes, . . . (theory suggests that

branes up to 9-branes can exist).

• We have no hope in the foreseeable future to probe the

Planck scale directly.

• Thus the challenge to these new theories is whether they

can make any testable scientific predictions at energies be-

low the Planck scale that would allow their validity to be

checked.
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26.3.2 Testing Branes and Superstrings

The present discussion implies that a logically-consistent quan-

tum theory of gravity and a unification of all four fundamental

forces may be possible based on M-theory.

• It is difficult to be certain because its mathematical meth-

ods are challenging and still being developed.

• As a consequence, the theory can’t yet be used to make

systematic predictions that can be tested by currently-

feasible experiments.

• Recall that a hallmark of modern science is experimental

verification of hypotheses: a theory must pass the experi-

mental test to be acceptable as a description of nature.

It is hoped that M-theory will be capable of a quan-

titatively testable prediction within a decade or so,

but it is not yet clear that this is feasible.
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One idea leading to a qualitative testable prediction concerns

the strength of the gravitational force.

• According to brane theory the true number of dimensions

for spacetime is more than the four in evidence.

• It has been proposed that the well-known weakness of

gravity is an artifact of our observations being confined

to four spacetime dimensions.

• In this proposal, gravity really is very strong but most of

its strength has “leaked” into other dimensions that are

not visible in our low-energy world.

• Thus, as particle accelerators probe higher energies and

therefore shorter length scales,

• eventually they might begin to see evidence for additional

dimensions well before the Planck scale.

• As a consequence, the effective strength of gravity might

suddenly begin to grow as the energy of the probe is in-

creased.

With any foreseeable technology there is no hope

of compressing matter into a tiny black hole if the

strength of gravity varies in the same manner mea-

sured at larger scales in the laboratory.
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But if the strength of gravity were to grow more rapidly than

expected at very short distances,

• it would be much easier to make a small black hole.

• Hence the appearance of mini black holes in high-energy

particle collisions,

• which could be detected through their rapid decay in a

burst of Hawking radiation,

• would be indirect confirmation of the brane-theory hy-

pothesis.

• The highest-energy collisions presently available are for

– the Large Hadron Collider (LHC) near Geneva, and

for

– the highest-energy cosmic rays.

There is no evidence thus far for the production of

black holes in such collisions.
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26.3.3 The AdS/CFT Correspondence

One development that has received considerable atten-

tion is called AdS/CFT correspondence or more generally

gauge/gravity duality.

• This is a conjectured relationship between

– a theory of quantum gravity in a particular spacetime

and

– a quantum field theory formulated on the boundary of

that spacetime.

– Hence the quantum field theory is defined in a space

with one less dimension than the spacetime in which

the gravity is defined.

• The AdS/CFT correspondence is a specific example of the

holographic principle discussed in earlier chapters.
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AdS refers to

• a 5-dimensional anti-de Sitter space,

• which corresponds to a metric formulated in five dimen-

sions that is like the de Sitter metric but with the opposite

sign for the cosmological constant.

• AdS has constant negative curvature, with gravity that is

attractive (unlike the repulsive gravity of de Sitter space).

The boundary of 5D AdS is 4D.

• It is proposed that a conformal field theory (CFT), (quan-

tum field theory in 4D that is invariant under conformal

transformations), lives there, and that

• the CFT is dual to the theory of gravity in AdS space in

that solutions in one space imply corresponding solutions

in the other space.

In this picture

• the anti-de Sitter space is called the bulk space and

• the quantum field theory lives in the boundary space.

5D AdS is particularly useful as the bulk space be-

cause it possesses symmetries analogous to those

of conformal transformations in 4D.



26.3. QUANTUM GRAVITY 1233

AdS does not resemble reality: it is 5D and our accelerated

expansion suggests de Sitter rather than anti-de Sitter space.

• The importance of AdS lies in the duality mapping a string

theory in AdS to a quantum field theory on its boundary.

• This implies that 4D QFT solutons can be obtained from

5D gravity solutions through duality relations.

• Most interesting is that if the theory on one side of the du-

ality is strongly coupled (difficult to solve) then the theory

on the other side is weakly coupled (easier to solve).

Thus, it has been proposed that the AdS/CFT duality might al-

low quantum field theories for say

• quantum chromodynamics (QCD) or

• highly-correlated electron systems

(strongly coupled and difficult to solve) to be solved using the

weakly-coupled dual in anti-de Sitter space.

• In current implementations the CFT side does not look

like real quantum field theories.

• For example, the CFT side has a high degree of supersym-

metry not exhibited by real QCD.

However some important features of the CFT re-

semble those of actual 4D quantum field theories.
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How Many Dimensions?

Superstring theories indicate that even our ideas about the num-

ber of dimensions in spacetime may require revision.

• These theories suggest that spacetime has more dimen-

sions than the four (three space and one time) that we are

used to dealing with in our everyday lives.

• However, the extra dimensions are conjectured to not be

visible until we get down to distances close to the Planck

length.

• This is perhaps not a completely crazy idea:

• We know of examples where we can be fooled about the

number of dimensions for a space if we cannot resolve it

on a sufficiently microscopic scale.

A simple analogy is a cylindrical pipe.

• A cylinder is a 2D surface, but

• if we view the pipe from a distance it looks

like a line, which is a 1D surface.

Only when we are close can we see the “hidden”

extra dimension.
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Spacetime

Wormhole

Figure 26.2: A wormhole that connects two regions of the same approxi-

mately flat space.

26.3.4 Spacetime Foam, Wormholes, and Such

The domain of quantum gravity is presumably bizarre by our

usual standards. Since we do not have an adequate theory, we

cannot make very precise statements, but

• Qualitatively we have reason to believe that on this scale

even space and time may become something other than

our usual conceptions.

• For example, spacetime may develop “wormholes”, such

as the one illustrated in Fig. 26.2 for the more easily visu-

alized 2-dimensional case.

• A wormhole could connect two regions of the Universe

without going through the normal space in between the

two points.
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Even more disconcerting is the possibility that spactime may

no longer even be continuous below the Planck scale.

• This has been described poetically as dissolution of space-

time into a frothing and bubbling “spacetime foam”.

• Relativity implies that space and time are not what they

seem, but with relativity we could at least retain the idea

of spacetime as a continuous thing.

• With quantum gravity, even that may not be possible.
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Quantum Fluctuations of the Metric

Gravity differs fundamentally from the other basic forces,

which act in spacetime.

• For other basic forces, spacetime is often roughly a pas-

sive “stage” for physical events.

• But gravity distorts spacetime and is in turn generated by

distortion of spacetime.

• Thus, quantum fluctuations of the gravitational field don’t

occur on a passive stage.

• Rather, it is the spacetime stage itself (the metric) that fluc-

tuates at the quantum level of the gravitational field.

This accounts for many of the strange possibilities

described in this section.
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26.3.5 The Ultimate Free Lunch?

In quantum mechanics even “empty” space is fluctuating with

energy and particle–antiparticle pairs can materialize as excita-

tions out the vacuum.

• The strangest of all the strange ideas associated with quan-

tum gravity is that

• perhaps the Universe itself is a fluctuation in the “space-

time vacuum” (which corresponds to the absence of space

and time).

• That is, perhaps at creation an expanding spacetime ap-

peared out of “nothing” as a quantum fluctuation, giving

birth to our Universe.

This idea has been dubbed the “ultimate free

lunch”, since it corresponds to creating a Universe

from literally nothing, not even space or time.
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26.3.6 The Breakdown of Current Physical Laws

Since we do not yet have a consistent wedding of general rela-

tivity with quantum mechanics, the presently understood laws

of physics may be expected to break down on the Planck scale.

• Therefore, our standard picture of inflation followed by

the standard big bang says nothing about the Universe at

those very early times preceding inflation.

• In this respect then, we can be relatively certain that our

currently understood laws of physics are not complete.

• However, the Planck scale is so incredibly small that this

may have been significant only in the fleeting instants cor-

responding to the creation of the Universe, so is it rele-

vant?

• One viewpoint is that we have no method to probe the

Planck scale, so it is of no significance in the here and

now.

• However, if the Universe passed through the Planck scale

early in its history, it is possible that events at the Planck

scale influenced the the nature of the Universe today.
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26.3.7 Does the Planck Scale Matter?

If the Universe passed through the Planck scale early in its his-

tory, it is possible that the Universe is the way that it is because

of events that happened at the Planck scale.

• Perhaps the “ground rules” governing physical law in our

Universe were laid down at the Planck scale.

• Then those rules could have been different if different

things had happened at the Planck time.

• Hence the Planck scale could be scientifically relevant to

a present understanding of the Universe by delimiting the

possibilities through setting initial conditions.

As an example, M-theory implies that the actual number of

spacetime dimensions is greater than the four that are perceived

in our low-energy world, but that

• the “extra” dimensions are not visible to low-energy

probes.

• One paradigm for rendering the extra dimensions invisible

is compactification.

• In compactification the extra dimensions are “rolled up”

to such small dimensions that that they can be seen only

by probes having Planck-scale energies.

• In this regard, recall the earlier analogy of whether a pipe

appears to be 1D or 2D depending on spatial resolution.
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In condensed matter physics it is often possible to find or con-

struct materials that effectively have fewer than three spatial

dimensions because their interactions in the directions defined

by other dimensions are negligible.

• There are many examples from effective 1D and 2D ma-

terials that the number of spatial dimensions for a many-

body system

• can have a profound effect on the types of collective

(emergent, in the jargon) states that exist at low energy.

• The properties of the everyday world are strongly influ-

enced by such emergent states.

• Thus the nature of reality at the scale of daily existence

may depend fundamentally on the number of spacetime

dimensions compactified at the Planck scale.

Finally, there might be undiscovered objects in the present Uni-

verse that carry information about the Planck scale.

• For example, suppose that Hawking mini black holes were

created early in the big bang.

• Then the potentially-observable endpoint for evaporation

of those black holes through Hawking radiation could

probe the Planck scale, even in the present Universe.

• If that were true, then even science in the here and now

might be impacted directly by the Planck scale.


