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Chapter 1

Introduction

General relativity is a theory of gravity that represents a radical
new view of space and time.

* It supercedes Newtonian mechanics and Newtonian grav-
ity.

¢ It reduces to those theories in the limit of velocities that
are small with respect to the speed of light ¢ and gravita-
tional fields that are weak.

* [t reduces to the theory of special relativity in the limit of
weak gravitational fields, or for sufficiently local regions
of spacetime in the presence of strong gravitational fields.




CHAPTER 1. INTRODUCTION

General relativity revises fundamentally the very meaning of
space, time, and gravity:

* The effects of gravity no longer appear as a force but as
the motion of free particles constrained to move in the
straightest paths possible in a curved spacetime.

» That is, general relativity will identify the effects of grav-
ity as arising from curvature in spacetime itself on free
particles.

John Wheeler: mass tells space how to curve;
curved space tells matter how to move.

* Implied in the circularity of this statement is another ba-
sic feature ofgeneral relativity: it is a highly non-linear
theory:

Only when we know the curvature of space can
we know the distribution and motion of matter, but
the curvature of space is only understood when we
know the distribution and motion of the matter.




As a result of the non-linear nature of general relativity and
its formulation on a 4-dimensional spacetime manifold, it is
difficult to find exact solutions and only a few of clear physical
significance are known.

* In the general case one must solve the resulting non-linear
equations numerically (numerical relativity).

* However, we shall see that the simplest known solutions
of general relativity may be formulated in remarkably
transparent and elegant mathematical terms because of
symmetries.

* These formulations may then be used to understand some
of the most intriguing aspects of the theory:

— black holes,

— quasars,

— gamma-ray bursts,
— dark matter,

— dark energy,

— the new cosmology

— gravitational waves.

These lecture notes are an attempt to come to grips with these
ideas at a level appropriate for an advanced undergraduate
physics major.




CHAPTER 1. INTRODUCTION



Chapter 2

Coordinate Systems and
Transformations

A physical system has a symmetry under some operation if the
system after the operation is observationally indistinguishable
from the system before the operation.

Example: A perfectly uniform sphere has a sym-
metry under rotation about any axis because after
the rotation the sphere looks the same as before the
rotation.
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The theory of relativity may be viewed as a symmetry under
coordinate transformations.

* Two observers, referencing their measurements of the
same physical phenomena to two different coordinate sys-
tems should deduce the same laws of physics from their
observations.

* In special relativity one requires a symmetry under only
a subset of possible coordinate transformations (those be-
tween systems that are not accelerated with respect to each
other).

* General relativity requires that the laws of physics be in-
variant under the most general coordinate transformations.

To understand general relativity we must begin
by examining the transformations that are possible
between different coordinate systems.




2.1. COORDINATE SYSTEMS IN EUCLIDEAN SPACE

2.1 Coordinate Systems in Euclidean Space

Our goal is to describe transformations between coordinates in
a general curved space having

* three space-like coordinates and

¢ one timelike coordinate.

However, to introduce these concepts we shall begin with the
simpler and more familiar case of vector fields defined in three-
dimensional euclidean space.

* Assume a three-dimensional euclidean (flat) space having
a cartesian coordinate system (x,y,z), and an associated
set of mutually orthogonal unit vectors (i, j, k) .

* Assume that there is an alternative coordinate system
(u,v,w), not necessarily cartesian, with the (x,y,z) coor-
dinates related to the (u,v,w) coordinates by

X:X(M,V,W) y:y(u,v,w) Z:Z(M,V,W),

¢ Assume that the transformation is invertible so that we can
solve for (u,v,w) in terms of (x,y,z).
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Example 2.1

Take the (u,v,w) system to be the spherical coordinates (r,0,¢), in
which case

x = x(u,v,w) y =y(u,v,w) z=2z(u,v,w),
takes the familiar form

x=rsinfcos @ y=rsinfsin@ z=rcos0,

with the ranges of values r > 0and 0 < 0 < mwand 0 < ¢ < 27.




2.1. COORDINATE SYSTEMS IN EUCLIDEAN SPACE

* The equations
X:X(Z/I,V,W) y:y(u,v,w) Z:Z(M,V,W),

can be combined into a vector equation that gives a posi-
tion vector r for a point in the space in terms of the (u, v, w)
coordinates:

r=x(u,v,w)i+yu,v,w)j+z(u,v,w)k.

e For example, in terms of the spherical coordinates

(r,0,9),

r=(rsin@cos@)i+ (rsin@sin@)j—+ (rcosb)k.

* The second coordinate system in these examples gener-
ally 1s not cartesian but the space is still assumed to be
euclidean.

e In transforming from the (x,y,z) coordinates to the
(r,0, ) coordinates, we are just using a different scheme
to label points in a flat space.

* This distinction is important because shortly we shall con-
sider general coordinate transformations in spaces that
may not obey euclidean geometry (curved spaces).
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2.1.1 Basis Vectors

At any point P(ug,vg,wo) defined for specified coordinates
(ug,vo,wp), three surfaces pass. They are defined by u = uy,
v = Vg, and w = wy, respectively.

* Any two of these surfaces meet in curves.
* From

r=x(u,v,w)i+y(u,v,w)j+z(u,v,w)k.

we may obtain general parametric equations for coordi-
nate surfaces or curves by setting one or two of the vari-
ables (u,v,w) equal to constants.

* For example, if we set v and w to constant values, v = vy
and w = wg, we obtain a parametric equation for a curve
given by the intersection of v =vg and w = wy,

r(u) = x(u,vo,wo) i +y(u,vo,wo) j +z(u, vo, wo) k,

* This is a parametric equation in which u plays the role
of a coordinate along the curve defined by the constraints
v =vg and w = wy.




2.1. COORDINATE SYSTEMS IN EUCLIDEAN SPACE 13
(a) 3D space (b) 3D space
parameterized parameterized
by (x, y, 2) 1D surface defined by by (r, 6, ¢)
intersection of 9 = constant ,
Z=2Zgand x = xg —
2D surfaces r = constant curve
2D surface o /
defined A
by z = z5 I C?
| 0 = constant _— e
/ P (46, Yo 20  conetgn
»/y “ - X
|
X \ ¢ = constant
y (half-plane)
y 2D sm_Jrface
defined r = constant
by X = Xo (sphere)

Figure 2.1: Examples of surfaces and curves arising from constraints. (a) In
3D euclidean space parameterized by cartesian coordinates (x,y,z), the con-
straints x = xy and z = zo define 2D planes and the intersection of these
planes defines a 1D surface parameterized by the variable y. (b) In 3D space
described in spherical coordinates (r, 6, @), the constraint » = constant de-
fines a 2D sphere, the constraint 6 = constant defines a cone, and the con-
straint ¢ = constant defines a half-plane. The intersection of any two of
these surfaces defines a curve parameterized by the variable not being held

constant.

Fig. 2.1(b) illustrates for spherical coordinates (r, 8, ¢):

* The surface corresponding to r = constant is a sphere pa-
rameterized by the variables 6 and ¢.

* The constraint 8 = constant corresponds to a cone param-
eterized by the variables r and ¢.

* Setting both r and 6 to constants defines a curve that is the
intersection of the sphere and the cone, which is parame-
terized by the variable @.
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¢ Partial differentiation of

r=x(u,v,w)i+y(u,v,w)j+z(u,v,w)k,

with respect to u, v, and w, respectively, gives tangents to
the coordinate curves passing though the point P.

* These may be used to define a set of basis vectors e;
through

or or or

euEE _8v eWE%,

with all partial derivatives evaluated at the point P =
(40, v0,w0)-

* This basis, generated by the tangents to the coordinate
curves, 1s sometimes termed the natural basis. The fol-
lowing example illustrates for a spherical coordinate sys-
tem.
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Example 2.2

Consider the spherical coordinate system defined through

x=rsinfcos @ y=rsinfsin@ z=rcos0.

The position vector r is
r=(rsin@cos@)i-+ (rsin@sin@)j+ (rcos0)k,

and the natural basis is obtained from

e =e = % = (sinfBcos )i+ (sin@sin@) j+ (cosO) k
ezzegzg—;: (rcosOcos )i+ (rcosOsin@)j— (rsinb)k
e3=ep= g—; = —(rsin@sin@)i+ (rsinbcos @) j.

These basis vectors are mutually orthogonal because
é|-é)=ep-e3—=e3ze = 0
For example,

e -e)= rsin9c039c032(p+rsin600563in2(p— rcosOsinf

— rsin 6 cos 9£c0s2 @ + sin” (@) —rcosBsind = 0.

=1
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From the scalar products of the basis vectors with themselves, their
lengths are

le;| =1 lex| =r le3| = rsinf

and we can use these to define a normalized basis,

e = % = (sin@cos )i+ (sin@sin@)j+ (cosO)k
1
e) = % = (cosBcos@)i+ (cosBsing)j— (sinO)k
2
e R .
ey = \e_; = —(sin@)i+ (cos@)j.

These basis vectors are now

* mutually orthogonal and

e of unit length.

They are illustrated in the following figure.
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0 = constant , z ¢h= ﬁconlStant
r = constant curve / e
r = constant % )
Surface \ \\\\\
y

Figure 2.2: Basis vectors for the natural basis in spherical coordinates.

Figure 2.2 illustrates the geometry of the basis vectors derived
in the preceding example.
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* In many applications it is usual to assume that the coordi-
nate system is orthogonal so that the basis vectors

or or or

ey =— e, =— e,=—
Y7 u Y Y ow’

are mutually orthogonal, and to normalize these basis vec-

tors to unit length.

* In the more general applications that will interest us, the
natural basis defined by the partial derivatives in the pre-
ceding equation need not be orthogonal or normalized to
unit length

However, in the simple examples shown so far the
natural basis is in fact orthogonal.
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2.1.2 Dual Basis

It is also valid to construct a basis at P by using normals rather
than the tangents to the coordinate surfaces.

* We assume that
x = x(u,v,w) y=y(u,v,w) z=2z(u,v,w),
is invertible so we may solve for
u=u(x,y,z) v=1(x,y,2) w=w(x,y,2),

* The gradients

Ju. Ju . Jdu

Jdv. dv . odv
VV—al-Fa—y]‘Fa—Zk

ow . Jdw . Jdw
VW:$1+8—y]+8—Zk

are normal to the three surfaces through P defined by u =
up, v ="vg, and w = wy, respectively.

» Therefore, we may choose as an alternative to the natural

basis
or

% evzg eWE%,

e, =

the basis

e =Vu e’ =Vy eV =Vw.
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* This basis (e*,e”,e"), defined in terms of normals, is said
to be the dual of the normal basis, defined in terms of
tangents.

* Notice that we have chosen to distinguish the basis

e =Vu e’ =Vy e =Vw.

from the basis

ar ar _or

e, =— e, =— e,=—
YT Ou YT oy Y ow’

by using superscript indices and subscript indices, respec-

tively.

These two bases are equally valid.

* For orthogonal coordinate systems the set of normals to
the planes corresponds to the set of tangents to the curves
in orientation, differing possibly only in length.

e If the basis vectors are normalized, the normal basis and
the dual basis for orthogonal coordinates are equivalent
and our preceding distinction is not significant.

* However, for non-orthogonal coordinate systems the two
bases generally are not equivalent and the distinction be-
tween upper and lower indices is relevant.

The following example illustrates.
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Example 2.3

Define a coordinate system (u,v,w) in terms of cartesian coordinates
(x,y,z) through

X=u+v y=u—v z="2uv+w.
The position vector for a point r is then
r=xi+yjt+zk=u+v)i+wu—v)j+ QQuv+w)k

The natural basis is

or

(4] Eeu:£:i+j+2\/k
0

ezzev:a—:zi—j—i—Zuk
or

ez =¢e, = aw — k.

Solving the original equations for (u,v,w),

u=3x+y) v=3ix-y)  w=z-1(*-y?),

and thus the dual basis is

d d d
ol — ot VY — az azj+a—uk:%(i+j)

d d )
ezzeV=Vv:a;1—|—a—;j avk %(1—])
e3EeW=Vw—a—w +8_w +8_wk_ —(u+v)i+(u—v)j+k.

ox ay 07
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* What about orthogonality? We can check by taking scalar prod-

ucts. For example,
ej-ey=(i+ j+2vk)-(i— j+2uk)
= i% — j% +4uv = 4uy,

where the orthonormality of the basis (i, j, k) has been used. For
the natural basis we find in general

e1-82:4uv e2-e3:2u é3-eéq = 2.
Thus the normal basis is non-orthogonal.

Taking the scalar products of the natural basis vectors with them-
selves gives

81-81:2—|—4V2 82-82:2+4u2 ey-e3=1,
so the natural basis is also not normalized to unit length.

It 1s also clear from the above expressions that generally e; is
not parallel to €', so in this non-orthogonal case we see that the
normal basis and the dual basis are distinct.
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The preceding example illustrates that for the general case of
coordinate systems that are not orthogonal,

e =Vu e'=Vvy e’ =Vw (dual basis)

and

or or or

— e, = — e, = —
u Y Y ow

dv
define different but equally valid bases, and the placement of
indices in upper or lower positions is important.

e, = (natural basis)

* In general relativity we shall generally be
dealing with non-orthogonal coordinate sys-
tems.

* Henceforth the reader should assume that the
upper or lower placement of indices in equa-
tions is significant.
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2.1.3 Expansion of Vectors

An arbitrary vector V may be expanded in terms of the tangent
basis {e;} and an arbitrary dual vector @ may be expanded in
terms of the dual basis {e'}:

3
V= Vlel + V2e2 + V3e3 = Z Ve, =V'e; (natural basis)

i=1

3
0 =oe +me’+ we’ = Z w;e' = w;e’ (dual basis)
i=1
where we have introduced in the last step of each equation the
Einstein summation convention:

* Anindex appearing twice on one side of an equation, once
as a lower index and once as an upper index, implies a
summation on that index.

* The summation index is termed a dummy index; summa-
tion on a dummy index on one side of an equation implies
that it does not appear on the other side of the equation.

 If an index appears more than twice on the same side of
an equation, it probably indicates a mistake.

* Since the dummy (repeated) index is summed over, it does
not matter what the repeated index is, as long as it is not
equivalent to another index in the equation.

From this point onward, we shall usually assume
the Einstein summation convention.
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2.1.4 Scalar Product of Vectors and the Metric Tensor
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* The upper-index coefficients V' of the basis vectors e; in
V=V'e +V?e,+Vie;

are termed the components of the vector in the basis e; =
{el , €2, 83}‘

e The lower-index coefficients @; of the basis vectors e’ in
_ 1 2 3
D=we + e  + e

are termed the components of the dual vector in the basis
e ={e' e ).

* Remember: Components of vectors and dual vectors gen-
erally are distinct for non-orthogonal coordinate systems.

However,

* Vector and dual vector spaces are related fundamentally.

« This permits vector components V* and dual vector com-
ponents ; to be treated as if they were different compo-
nents of the same vector.

The first step in establishing this relationship is to
introduce a scalar product and a metric.
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2.1.5 Vector Scalar Product and the Metric Tensor

Utilizing the expansions in a vector basis:
* We can write the scalar product of two vectors A and B as
A-B=(A'e))-(B'e;) = e;-e;A'B) = g;;A'B/,
where the metric tensor component g;; is defined by
gij=e;-e;.
* Likewise, for the scalar product of dual vectors & and 8
a-B = oe’-Be’ =g/ oyp,
where metric tensor components with upper indices are
g/ =ée,
and the scalar product of dual vectors and vectors is
o-B= Oc,-ei-Bjej = gj-(x,'Bj,
where the metric tensor component with mixed indices is

i — i

General properties of the metric tensor will be dis-
cussed below but first we use it to establish a re-
lationship called duality between vector and dual
vector spaces.
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There is little practical difference between vectors and dual vec-
tors in euclidean space with cartesian coordinates.

* However, in a curved space the situation is more complex.

* The essential issue is how to define a vector or dual vector
in a curved space, and what that implies.

The essential mathematics will be discussed in more depth
later, but the salient points are that

1. Vectors are not specified directly in a curved space, but
instead are defined in a euclidean vector space attached to
the manifold at each point called the tangent space.

2. Likewise, dual vectors are defined in a euclidean vector
space attached to the manifold at each spacetime point that
is called the cotangent space.

3. The tangent space of vectors and the cotangent space of
dual vectors at a point P are different but dual to each
other in a manner that will be made precise below.

4. This duality allows objects in the two different spaces to
be treated as effectively the same kinds of objects.

As will be discussed further later, vectors and dual
vectors are special cases of fensors, and this per-
mits an abstract definition in terms of mappings
from vectors and dual vectors to real numbers.
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To be specific,

* Dual vectors @ are linear maps of vectors V to the real
numbers: @(V) = &,V € R.

* Vectors V are linear maps of dual vectors @ to the real
numbers: V(@) = Via; € R.

Expressions like @(V) = @;V' € R can be read as

* “Dual vectors @ act linearly on vectors V to produce
@;V' =Y ; o;V', which are elements of the real numbers,”

* or “Dual vectors @ are functions (maps) that take vectors
V as arguments and yield @;V’, which are real numbers”,

Linearity of the mapping means, for example,
o(aA+PBB)=o0w(A)+Po(B),

where @ is a dual vector, o and 3 are arbitrary real numbers,
and A and B are arbitrary vectors.

* [t is easy to show that the space of vectors and the space
of dual vectors are both linear vector spaces.

* The vector space of vectors and corresponding vector
space of dual vectors are said to be dual to each other
because they are related by

oV)=V(®)=VacR.
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Notice further that A-B = g; inBj

* Defines a linear map from the vectors to the real numbers,
since it takes two vectors A and B as arguments and re-
turns the scalar product, which is a real number.

* Thus one may write
AB)=A-B=AB =g, A'B’.
* But since in A;B' = g; inBj the vector B is arbitrary,
A = gijA/,
* This specifies a correspondence between a vector with

components A’ in the tangent space and a dual vector with
components A; in the cotangent space.

» Likewise, the above expression can be inverted using that
the inverse of g;; is g/ to give
A'=g"A;.
* Hence, using the metric tensor to raise and lower indices

by summing over a repeated index (contraction),

* we see that vector and dual vector components are related
through contraction with the metric tensor.

* This is the precise sense in which the tangent and cotan-
gent spaces are dual: they are different, but closely related
through the metric tensor.
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The duality of the vector and dual vector spaces may be incor-
porated concisely by

* Requiring that for the basis vectors {e;} and basis dual
vectors {e'} satisfy

ei(ej) = ei-ej = 5},

where the Kronecker delta is defined by

si—) 1=

J .
0 i#j

* This implies that the basis vectors can be used to project
out the components of a vector V by taking the scalar
product with the vector,

Vizei-V ViZei-V.
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A lot of important mathematics has transpired in the last few
equations, so let’s take stock.

* For a space with metric tensor, vectors and dual vectors
are in a one-to-one relationship that permits them to be
manipulated effectively as if a dual vector were just a vec-
tor with a lower index.

* Indices on vectors can be raised or lowered as desired by
contraction with the metric tensor.

Since all spaces of interest here have metrics, this
reduces the practical implications of the distinc-
tion between vectors and dual vectors to keeping
proper track of upper and lower positions for in-
dices.




32 CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

2.1.7 Properties of the Metric Tensor

* Because it may be defined through scalar products of basis
vectors, the metric tensor must be symmetric in its indices:

gijzgﬁ 8ij = &ji-
* Since
gl-jaibj = g,-jbjai = aib,- gijaibj = gijbjdi = aibi
are valid for arbitrary vector components, it follows that
giib' =b;  g'bj="b".

That 1s,

Contraction with the metric tensor may be used to
raise or lower an index on a vector.

* Thus the scalar product of two vectors may be written in
any of the following equivalent ways,

a-b=db;,=ab = gijaibj = gija,'bj = gj-aibj.
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* From the preceding expressions
b'=g"bj=g"gubt  b'=§b
~——
bj
and since this is valid for arbitrary components &',
g'gj = arjg’ = 8.

* Viewing g"/ as the elements of a matrix G and g; ; as the
elements of a matrix G, the equations

g =g¢"  gij=gj
are equivalent to the matrix equations
G=G" G=(",

where T denotes the transpose. The Kronecker delta is
just the 3 x 3 unit matrix /, implying that

88k = grjg’" = &
may be written as the matrix equations

GG=GG=1.

The matrix corresponding to the covariant com-
ponents of the metric tensor is the inverse of the
matrix corresponding to the contravariant compo-
nents of the metric tensor: one may be obtained
from the other by matrix inversion.
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Box 2.1 The metric tensor for 3-dimensional euclidean space
Components: gij =ere; gi=e-e g=e-e =27
Scalar product: A-B=g;A'B/ = g'AB;=g'AB/ =A'B;=AB'
Symmetry: gV =g"  g;=gj
Contractions:  g;A/ =A;  gA;=A
Orthogonality: 8¢ =818 = §
Matrix properties : GG=GG=1I G =[g"] G = [gi/]

Some basic properties of the metric tensor are summarized in
the box above.
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2.1.8 Line Elements and Distances

35

* Coordinates u' (), u?(t), and u3(t) parameterized by ¢.

* As the parameter ¢ varies, the points characterized by the
specific values of the coordinates

will trace out a curve in the three-dimensional space.

* The position vector for these points as a function of ¢ is

r(t) =x(u' (1), u?(0),0 () )i+ y(u' (), (1), (1))

* By the chain rule

dr _ or du' Lo du2+ or du’
dt — oul dt  Ju? dt  Jdud dt

F=u'e +ite, +iles,

where the definitions

a0

_ dr du’
- dt dt

have been used.
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* In summation convention the equation
F=1i'e) +ite)+ire;,
is i =d'e,.
« This may be expressed in differential form as dr = du'e;.

* Thus the squared infinitesimal distance along the curve is

ds* = dr-dr = du'e;-du'e;
=ée;-ej duiduj
=g jduiduj ,

where g;; = e;-e; has been used.
8ij J
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* Notice that in expressing the line element
ds® = 8ij du‘du’
we use the usual convention that da? = (da)?.

« That is, da® means the square of da, not the differential
of a?.

e Thus ds* = g; jduiduj is the infinitesimal line element for
the space described by the metric g;;.

* The length d of a finite segment between points a and b is
obtained from the integral

b b o b/ dut dui\
d:/ ds:/ (gijdu’du])l/zz/ (gijd_L;d_L;) dt,

where ¢t parameterizes the position along the segment.

b

ds
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For example:

* The line element for two-dimensional euclidean space in
cartesian coordinates (x,y) is given by

ds® = dx® + dyz,

which is just the Pythagorean theorem for right triangles
having infinitesimal sides.

* The corresponding line element expressed in plane polar
coordinates (r, @) is then the familiar

ds® = dr* + r*d¢>.
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Example 2.4
For plane polar coordinates (r, @) we have
X =7rcosQ y=rsingQ,
so the position vector may be expressed as
r=(rcos@)i+ (rsing) j.

Then the basis vectors in the natural basis are

0 J
el = 8_: = (cos@)i+(sing)j ex= # = —r(sin@)i+r(cos@)j.

The elements of the metric tensor then follow from g;; = e;-e;:

gl = cosz(p—l—sinz(p =1 g = ;fz(cosz(p—ksin2 Q)= P2

and g1» = go1 = 0, or in matrix form

1 0
g. ¢ = .
Y 0 72
Then the line element 1s

ds® = gijdxiduj = g11(du’)? + goo(du®)? = dr* + r*d@?,

1

where u! = r and u? = ¢.

This can be expressed as the matrix equation

2 (g 1 0 dr
45— (d d@(Orz)(d(P)

= (dr do) ( ) = dr* + rde?.
r’de
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The line elements expressed in cartesian and polar coordinates
in the preceding two examples

* Correspond to the same space, parameterized in terms of
different coordinates.

* The form of the line element is different in the two param-
eterizations, but

 for any two nearby points the distance between them is
given by ds, independent of the coordinate system.

e Thus, the line element ds 1s invariant under coordinate
transformations.

* Since the distance between any two points that are not
nearby can be obtained by integrating ds, we conclude that
generally

The distance between any two points is invari-
ant under coordinate transformations for metric
spaces.
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The line element, which is specified in terms of the metric ten-
sor, characterizes the geometry of the space because

* integrals of the line element define distances and
* angles can be defined in terms of ratios of distances.

Indeed, we could verify all the axioms of euclidean geometry
starting from the line elements if we chose to do so.
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2.2 Integration

Integration enters into physical theories in various ways, for
example in the formulation of conservation laws.

e It 1s important to understand how the volume element for
integrals behaves under change of coordinate systems.

* Trivial in euclidean space with orthonormal coordinates.

* Non-trivial in curved spaces, or even in flat spaces param-
eterized in non-cartesian coordinates.

We illustrate in flat 2D space with coordinates (x!,x?) and basis
vectors (e1,e;), assuming an angle 6 between the basis vectors.

* As you are asked to demonstrate in a problem, the 2D
volume (area) element is in this case

dA = \/detgdx'dx?,

where detg is the determinant of the metric tensor g;;.

e For orthonormal coordinates g;; is a unit matrix So
(detg)'/?2 =1.

« But in the general case the (detg)!/2 factor is not unity
and its presence is essential to making integration invari-
ant under change of coordinates.

As we will show later, this 2D example generalizes easily to
define invariant integration in 4D spacetime.
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2.3 Differentiation

Taking derivatives of vectors in spaces defined by position-
dependent metrics will be crucial in general relativity.

* First consider the simpler case of taking the derivative of
a vector in a euclidean space, but one parameterized with
a vector basis that may depend on the coordinates.

* We may expand a vector V in a convenient basis e;,
V = V’ei.

* By the usual product rule, the partial derivative is given by
a sum of two terms,

oV V! .e;
o0~ ads Vo
X X X

component basis

1. The first term represents the change in the component
Vi

2. The second term represents the change in the basis
vectors e;.

* For the situation where we can choose a basis that is in-
dependent of coordinates, the second term is zero and we
recover the expected formula.

* However, if the basis depends on the coordinates the sec-
ond term will generally not be zero.




44

CHAPTER 2. COORDINATE SYSTEMS AND TRANSFORMATIONS

In the second term of

vV Vi . de;
_81': —8J.el- +V—aj,
X X X

component basis

« The factor de;/dx/ resulting from the action of the deriva-
tive operator on the basis vectors is itself a vector and can
be expanded in the vector basis,

de i
oxJ

_ 1%

* The expansion coefficients Ff-‘j may be interpreted as spec-

ifying the projection on the k axis of the rate of change in
the j direction of a basis vector pointing in the i direction.
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To give a concrete example, consider the 2D euclidean plane

parameterized by polar (r,0) = (x!,x?) coordinates.

* Taking basis vectors (e,,eg), we have (for example)

de,
20
* Where the coefficient F;G is associated with the rate of

change of the basis vector e, with respect to 0 in the di-
rection e,

; 0
[ =Tleer+ 1 pe0,

* The coefficient Ffe is associated with the rate of change
of the basis vector e, with respect to 6 in the direction eg.
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* The coefficients Fi.‘j are called connection coefficients or
Christoffel symbols.

* Their generalization to 4-dimensional spacetime will be
discussed more extensively later.

¢ There we shall see that the connection coefficients are cen-
tral to

1. The definition of derivatives

2. A prescription for parallel transport of vectors in
curved spacetime.
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Figure 2.3: Measuring the circumference of a circle in curved space.

2.4 Non-Euclidean Geometry
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Let us now consider non-euclidean geometries. A simple ex-
ample is afforded by a sphere, as in Fig. 2.3.

* Imposing a standard polar coordinate system (6, ¢) on the
surface of the sphere, the line element for a sphere is given
by

ds* = R*(d6* +sin® 0d¢?),

where R is the radius of the sphere.
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Let’s calculate the ratio of the circumference of a circle to its
radius for this non-euclidean space.

* We may define a circle in the two-dimensional space by
marking a locus of points lying a constant distance S from
a reference point (north pole in above figure).

» The 6 angle subtended by S is S/R and r = Rsin(S/R).
Then from the geometry in the above figure, the circum-
ference of the circle is

C=2m 27tRsinS 2nS |1 s +
=2Tr = — = — 4. .
R 6R?

* Alternatively, we may obtain the same result by integrat-
ing the line element ds> = R%(d 6% + sin> 0d¢?),

2 S S
szds: ; RsinEd(p:27tRsinE.
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* If the radius of the circle is much less than the radius of
the sphere, the higher-order terms in the expansion of the
sine may be ignored and we obtain the euclidean result
C~2nS.

* But more generally the deviation of the circumference of
small circles drawn on the sphere from 27§ is a measure of
how much the sphere deviates from euclidean geometry.

Later, we will see how to use such considerations
to define a quantitative measure of curvature for
non-euclidean surfaces.
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2.5 Transformations

It often proves useful to express physical quantities in more
than one coordinate system.

* [t therefore becomes necessary to understand how to trans-
form between coordinate systems.

* This issue becomes particularly important in general rela-
tivity where it is essential to ensure that the laws of physics
are not altered by the most general transformation be-
tween coordinate systems.

Let’s consider two simple examples.
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Figure 2.4: Rotation of coordinate system for a vector x.

2.5.1 Rotational Symmetries

Consider the familiar example of the description of a vector
under rotation of a coordinate system about the z axis by an
angle @, as illustrated in Fig. 2.4.

* In terms of the original basis vectors {e;} the vector x has
the components x; and x».

* After rotation of the coordinate system by the angle ¢ to
give the new basis vectors {e!}, the vector x has the com-
ponents x| and x}, in the new coordinate system.

* The vector x can be expanded in terms of the components
for either of these bases:

] 1/
x=xe;=x"e,
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* We may use the geometry of the above figure to find that
the components in the two bases are related by the trans-

formation
! cos@ sing 0 x!
¥? | =| —sing cosg 0 x|,
X3 0 0 1 X3

which may also be expressed as

X! = Rjx/,

where the R; are the elements of the matrix in the preced-
ing equation.

 This transformation law holds for any vector. (We may, in
fact, define a vector in the x—y plane to be a quantity that
obeys this transformation law.)
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Another simple example of a transformation is that between
inertial frames in classical mechanics.

¢ Transformations between inertial frames with the same
orientation are called boosts.

* In Newtonian physics time is considered an absolute quan-
tity and boosts take the Galilean form

¥=x(xt)=x—-vt ' =t(x1)=1t

* The Newtonian version of relativity asserts that the laws of
physics are invariant under such Galilean transformations.

e Although the laws of mechanics at low velocity are in-
variant under Galilean transformations, the laws of elec-
tromagnetism (Maxwell’s equations) are not.

e Indeed, the failure of Galilean invariance for the Maxwell
equations was a large motivation in Einstein’s eventual
demonstration that the laws of mechanics are not invariant
with respect to Galilean transformations at high velocity.
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* As we shall discuss further later, in the absence of grav-
ity the laws of both mechanics and electromagnetism are
generally only invariant under Lorentz transformations.

* In the presence of a gravitational field, neither Galilean
nor Lorentz invariance holds and we will be forced to seek
a more general invariance to describe systems that are sub-
ject to gravitational forces.




Chapter 3

Tensors and Covariance

The term covariance implies a formalism in which the laws of
physics maintain the same form under a specified set of trans-
formations.

EXAMPLE: Lorentz covariance implies equations that are con-
structed in such a way that they do not change their form under
Lorentz transformations (three boosts between inertial systems
and three rotations).?

“An inertial system is a frame of reference in which Newton’s first law of
motion holds. Thus, for example, rotating frames and accelerated frames are
not inertial. An inertial system is therefore in uniform translational motion
with respect to any other inertial frame.

55
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3.1 Spacetime Coordinates and Transformations

We will be concerned extensively with spacetime, which is an
example of what mathematicians call a manifold.

* An n-dimensional manifold is

— a set that can be parameterized continuously by
— n independent real coordinates for each point (mem-
ber of the set).

* We will assume the manifold to be differentiable at each
point. Then we have a differentiable manifold.

* A coordinate system

— associates n real parameters (labels) uniquely with
each point of an n-dimensional manifold M

— through a one-to-one mapping from R’ (cartesian
product of n copies of the real numbers R) to M.

A cartesian product X x Y of two sets X and Y is
the set of all possible ordered pairs (x,y) with x an
element of X and y an element of Y.

* Generally, more than one overlapping set of coordinates
is required to parameterize an entire manifold uniquely.

— (See the discussion of charts and atlases in the book.)

— For example, at least 2 overlapping sets of coordi-
nates are required to parameterize a 2D sphere.
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* Subsets of points within a manifold define
— curves and
— surfaces,

which represent submanifolds of the full manifold.

* The manifolds that will interest us will be endowed with
additional structure (in particular a geometry specified by
a quadratic metric called Riemannian geometry).

e However, this will be sufficient definition for our initial
purposes. We will get to Riemannian geometry and its
central place in general relativity later.

We will sometimes use loose physics language and
refer to manifolds simply as spaces.
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Because relativity implies that space and time enter descrip-
tions of nature on comparable footings,

* it will be useful to unify them into a 4-dimensional con-
tinuum termed spacetime.

* Spacetime is an example of a differentiable manifold.

* In spacetime points will be defined by coordinates having
four components,

— the first labeling the time multiplied by the speed of
light c,

— the other three labeling the spatial coordinates:
x=at = (02 2 0) = (e, %),
where x denotes a vector with three components

(x!,x%,x%) labeling the spatial position.

* The first component x° is termed timelike and the last three

components (x',x?,x3) are termed spacelike.

* As for the earlier discussion, the placement of indices in
upper or lower positions is meaningful.

* Bold symbols will be used to denote (ordinary) vectors
defined in the three spatial degrees of freedom,

* with 4-component vectors in spacetime denoted in non-
bold symbols.

* For spacetime the modern convention is to number the in-
dices beginning with zero rather than one.
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The coordinate systems of interest will be assumed to be quite
general, subject only to the requirement that

* they assign a coordinate uniquely to every point of space-
time, and that they be

* differentiable to sufficient order for the task at hand at ev-
ery spacetime point.
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Covariance and Tensor Notation

* We shall be concerned generically with a transformation
between one set of spacetime coordinates, denoted by

x=x" = (% xh 2% 5%

and a new set
= (x) uw=0,1,2.3
where x = x* denotes the original coordinates.
 This notation is an economical form of
= ER (X% x) (u=1,2,...)

* where the single-valued, continuously differentiable func-
tions EH

. . : 12 4
e assign a new (primed) coordinate (x' ,x’ X3y ) to a

point of the manifold with old coordinates (x!,x?,x3 x*).

This transformation may be abbreviated to x'* =

EH(x) and, even more tersely, to x'* = ¥ (x).

* Coordinates are just labels, so laws of physics cannot de-
pend on them. Hence the system x’* is not privileged and

this transformation should be invertible.

* Notice carefully that we are talking about the same point
described in two different coordinate systems.




3.2. COVARIANCE AND TENSOR NOTATION

61

As introduced in Chapter 2, we shall generally use the Einstein
summation convention for 4D spacetime:

* An index that is repeated, once as a superscript and once
as a subscript, implies a summation over that index.

* Such an index is a dummy index that is removed by the
summation and should not appear on the other side of the
equation.

* A repeated (dummy) index may be replaced by any
other index not already in use without altering equation:
AoB® = AgBP.

* A superscript (subscript) in a denominator counts as a sub-
script (superscript) in a numerator.

* Greek indices (o, 3,...) denote the full set of spacetime
indices running over 0, 1, 2, 3.

* Roman indices (i, j,...) denote the indices 1, 2, 3 running
only over the spatial coordinates.

* Placement of indices matters: generally x* and x, will be
different quantities.

» At all stages of manipulating equations, the indices on the
two sides of an equation (including their up or down place-
ment) must match.
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As a minimum, we must consider the transformations of
* Fields
* Derivatives of fields
* Integrals of fields.

The first two are necessary to formulate equations of motion,
and the latter enter into various conservation laws.

To facilitate this, we shall introduce a set of math-
ematical quantities called fensors that are a gener-
alization of the idea of scalars and vectors to more
components.

As a starting point, we must look more carefully at how to de-
fine vectors in a curved space.
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Figure 3.1: Tangent spaces and vectors in curved spaces, illustrated for the
manifold S. Vectors (indicated by arrows) are defined in the tangent spaces
at each point, not in the curved manifold. Embedding the 2D manifold in
3D euclidean space is for visualization purposes only; the tangent space has
a specification that is intrinsic to the 2D manifold.

Spacetime is characterized by a manifold that is not euclidean.

* In euclidean space we are used to representing vectors as
directed line segments of finite length.

 This picture won’t do in curved spacetime, which is lo-
cally but not globally euclidean, so extended straight lines
have no meaning.

* Thus in non-euclidean manifolds the first question that we
need to address is how to define a vector at some space-
time point.

* Answer: vectors are not defined in the curved manifold
itself but rather in a tangent space that may be visualized
for a 2D manifold as a plane tangent to the point on the
curved surface, as illustrated in Fig. 3.1 for a 2D sphere.
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Point P
Fem——— T
(/////// Point P’
Tangent

space _

atP Manifold Tangent
__—~ space

at P’

* The idea conveyed by the above figure in which planes
tangent to a 2D surface are shown embedded in a 3D space
is useful conceptually but it is potentially misleading.

* Defining the tangent space at each point is an intrinsic
process with respect to a manifold and does not require
embedding it in a higher-dimensional manifold, as will be
shown later.




3.3. TANGENT AND COTANGENT BUNDLES

3.3 Tangent and Cotangent Bundles
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An n-dimensional Riemannian manifold has at each point P

* An n-dimensional euclidean vector space Tp with a basis
defined by the directional derivatives evaluated at P for
coordinate curves passing through P.

* This is termed the tangent space and vectors at P are de-
fined within that space.

* An intrinsically-defined n-dimensional euclidean vector
space with a basis defined by viewing the coordinate
curves as scalar fields and evaluating their gradients at P.

* This is termed the cotangent space Tp and dual vectors P
are defined within this space.

* The tangent space Tp and the cotangent space T are dual
to each other.

The definitions given above make clear that

* Vectors and dual vectors are local to a point.

* The tangent and cotangent spaces in which they are de-

fined may be constructed from the properties of the mani-
fold alone.

Thus the tangent space and cotangent space at each
point of a manifold have an intrinsic meaning, in-
dependent of embedding in higher dimensions.
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* The tangent bundle TM of a manifold M is a manifold
consisting of all the tangent vectors defined in M, which
is given by the disjoint union of all of its tangent spaces
TP.

* Likewise, a cotangent bundle T*M of the manifold M is
defined by the disjoint union of all the cotangent spaces
Ty in M.

* Tangent or cotangent bundles are examples of a fiber bun-
dle, which is a manifold E that is locally the cartesian
product E = F X B of two spaces,

— the base space B, and

— the fiber space F (with the fiber at P corresponding to
the tangent space Tp at P),

but that globally may have a different topological struc-
ture.

* For a manifold of dimension n the tangent and cotangent
fiber bundles are of dimension 2n.
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Figure 3.2: Tangent bundle T'S' for the 1-dimensional manifold S'.

Fig. 3.2 illustrates the basic idea of a tangent bundle for a man-
ifold corresponding to a circle.

* (a) The manifold M = S I (the circle) and some of its tan-
gent spaces (lines tangent to the circle).

* (b) The corresponding fangent bundle (locally and glob-
ally R! x S1).

* (c) Figure (b) cut vertically and rolled out flat. Figure (b)
corresponds to identifying A <+ A’ and B <+ B'.

* (d) Tangent bundle with nontrivial topology (Mobius
band) generated by identifying

A B Bo A
in (c).

« This is locally R! x S!, but not globally.
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The lines corresponding to the tangent spaces (fibers) should
be imagined extending to infinity to accommodate vectors of
arbitrary length.

* The overlaps of these lines in (a) are meaningless since
each tangent space is defined independently at a different
point of the manifold.

* Therefore, in (b) the lines (fibers) corresponding to tan-
gent spaces have been rotated and arrayed perpendicular
to the base manifold so that they do not overlap.

* A location y on a fiber may be interpreted as existing at the
point P = x where the fiber intersects the base space, with
y (vector length) given by the distance to the intersection
of the fiber with the base space.

 Thus (x,y) identifies a point in the fiber bundle manifold
uniquely.
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* Cases (b) and (d) are equivalent locally but distinct topo-
logically: the orientation of the fiber winds through 7 for
once around the base space in (d), so that (d) cannot be
deformed continuously into (b).
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3.4 Coordinates in Spacetime

A universal coordinate system can be chosen in flat space,

* Basis vectors can be chosen that are mutually orthogonal
and constant.

e Furthermore, these constant basis vectors can be normal-
ized to unit length once and for all.

* Much of ordinary physics is conveniently described using
such orthonormal bases.

* The situation is more complicated in curved manifolds (or
in uncurved manifolds expressed in non-cartesian coordi-
nates).

* Because of the position-dependent metric of curved space-
time it is most convenient in general relativity to choose
basis vectors that

— depend on position and that

— need not be orthogonal.

* Since such basis vectors are position-dependent, it usually
1s not useful to normalize them.
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3.4.1 Coordinate and Non-coordinate Bases
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The standard conception of a vector as a directed line segment
has ill-defined meaning in a curved manifold.

* The key to specifying vectors in curved space is to sepa-
rate the “directed” part from the “line segment” part of
the usual definition.

* This is because the direction for vectors of infinitesimal
length can be defined consistently in curved or flat spaces
using directional derivatives.
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X2

Consider a curve in a differentiable manifold along which one
of the coordinates x* varies while all others x¥ (v # p) are held
constant.

 This curve will be termed the coordinate curve x*.
 The figure above illustrates for a 2D manifold.

e Through any point P in spacetime 4 such curves will
pass, corresponding to the coordinate curves x* with u =
(0,1,2,3).

* A convenient set of position-dependent basis vectors
eu( =0,1,2,3) can be defined at each point P in the
manifold by

e — Lim 0s
B 8xh—0 Sy
where Js is the infinitesimal distance along the coordinate
curve x* between the point P with coordinate x* and a
nearby point with coordinate x* + dx*.




34.

COORDINATES IN SPACETIME

73

* For a parameterized curve x* (1) having a tangent vector
t with components t* = dx* /dA (summation convention),

dxt

= ey,

dr "

the directional derivative of an arbitrary scalar function
f(x*) that is defined in the neighborhood of the curve is

df _ Lim [[(&(A+e) - fF(A))

-y _
t=t eu—

AL~ €0 €
I
CdA OxH T ok’

» Since f(x) is arbitrary this implies the operator relation
d dit* d _ d
dA  dA oxM oxM’

e Hence we find that

— the tangent components t* are associated with a
unique directional derivative and

— the partial derivative operators d /dx* define the ba-
sis vectors ey,
d

euzﬁz@.

* This permits an arbitrary vector to be expanded as

d
_yM, _yu % _yu
V=Vhe, =V =VHY,.
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Figure 3.3: Tangent space 7p at a point P for a curved 2D manifold M. The
vectors tangent to the coordinate curves at each point define a coordinate or
holonomic basis. This figure is a generalization of Fig. 3.1 to an arbitrary
curved 2D manifold with a position-dependent, non-orthogonal (coordinate)
basis. This embedding of M in 3D euclidean space is for visualization pur-
poses only; the basis vectors e; and e, of the tangent space are specified by
directional derivatives of the coordinate curves evaluated entirely in M at
the point P.

* Position-dependent basis vectors (that generally are nei-
ther orthogonal nor normalized) define a coordinate basis
or holonomic basis.

* A basis using orthonormal coordinates is then termed a
non-coordinate basis or an anholonomic basis.

* A coordinate basis is illustrated schematically in Fig. 3.3
for a generic curved 2D manifold.

e The definition of a vector in terms of directional deriva-
tives is valid in any curved or flat differentiable manifold.

* It replaces the standard idea of a vector as the analog of a
displacement vector between two points, which does not
generalize to curved manifolds.
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The separation between nearby points is
ds = ey (x)dx",
from which
ds* = ds-ds = (e - ey)dxtdx’ = gyydxtdx”
with the metric tensor components g, defined by,
eu(x)-ey(x) = guv(x),

which implies that in a coordinate basis the scalar product of
vectors A and B is given by

A B — (AME“) . (Bvev) — g‘uvAqu

These equations may be taken as a definition of a
vector coordinate basis {ey, }.
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The preceding discussion has been specifically for vectors and
involves defining a basis for the tangent space T} at each point P

using the tangents d /dx* to coordinate curves passing through
P.

* By analogy, a similar intrinsic procedure can be invoked
to construct a basis for dual vectors in the cotangent space
Ty at a point P using gradients to define basis vectors.

* This leads to equations analogous to those for the tangent
space, but with the indices of the basis vectors in the upper
position.

* A set of dual basis vectors e* may be used to expand dual
vectors ® as
o = wyet,

* This allows the metric tensor with upper indices to be de-
fined through

et (x) - e"(x) = " (x),

with the scalar product of arbitrary dual vectors ¢ and 3
given by
o-fB=g" auBy.

These equations may be taken as a definition of a
dual-vector coordinate basis {e*}.
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An orthonormalized non-coordinate basis is specified by re-
quiring

where (See Ch. 4)

—1 000
000 diag(—1,1,1,1)
- =dag(—1,1,1,
Nuv 0 010 g

001

is the metric tensor of (flat) Minkowski spacetime.

* A common notational convention has been employed of
using hats on indices to indicate explicitly that this is an
orthonormal and not coordinate basis.

* Also, it is common to use 7 to denote specifically the met-
ric for Minkowski space rather than the more general g.

e As elaborated further in the Problems,

— the basis vectors of a coordinate basis have a vanish-
ing Lie bracket, e, ey] =0, while

— for a non-coordinate basis [ey,ey] # 0,

where the Lie bracket of two vector fields A and B 1s de-
fined by the commutator

A, B] = AB — BA.

* This provides a formal way to identify a coordinate basis.
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* The formulation of general relativity is most natural in a
coordinate (holonomic) basis.

* However, we will see later that curved spacetime is locally
euclidean, and that

* observers in a laboratory of small extent in spacetime can
define a local coordinate system in a non-coordinate basis
for interpreting measurements.

e Thus it 1s natural to

— formulate general relativity in a coordinate basis, but

— to use a non-coordinate basis for interpretation of
some measurements.

We won’t often need to display a basis explicitly
in applications, but unless stated otherwise a coor-
dinate basis will be assumed.
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3.5 Tensors and Coordinate Transformations

In formulating general relativity we are interested in how quan-
tities that enter the physical description of the Universe change
when the spacetime coordinates are transformed.

* This requires understanding the transformations of

- fields,
— their derivatives, and

— their integrals,

e To facilitate this task, it is useful to introduce a set of
mathematical objects called tensors.

— These have a fundamental definition without refer-
ence to specific coordinate systems.

— However, for physical applications it often proves
convenient to view tensors as components expressed
in a basis that transform in a precise way if the coor-
dinate system is changed.

* We shall develop and use both views of tensors.
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* Let’s note that our interest here almost always will be in
tensor fields, which correspond to tensors of a given type
defined at every point of the manifold.

* Since this is a rather trivial generalization of a tensor de-
fined at a point, the discussion will for brevity often use
shorthand like “vector” or “tensor” to mean “vector field”
or “tensor field”, respectively.

e This is unlikely to engender confusion, since the meaning
should be clear from the context.
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The rank of a tensor will be given a more fundamental defi-
nition below, but practically it is the total number of indices
required to specify its components in some basis.

e Thus scalars are tensors of rank zero and vectors or dual
vectors are tensors of rank one.

» This may be generalized to tensors carrying more than one
index.

* As for vectors and dual vectors, the indices may either be
upper (contravariant) or lower (covariant).

— Tensors carrying only lower indices are termed co-
variant tensors.

— Tensors carrying only upper indices are termed con-
travariant tensors.

— Tensors carrying both lower and upper indices are
termed mixed tensors.

* [t is convenient to indicate the fype of a tensor by the or-
dered pair (p,q), where when evaluated in a basis

— p is the number of contravariant (upper) indices,

— g is the number of covariant (lower) indices,

and the rank of the tensor is p +g.

Thus a dual vector is a rank-1 tensor of type (0, 1)
having one covariant index.
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Not all quantities with indices are tensor components; it is
their mathematical properties that mark objects as tensors, not
merely that they carry indices when evaluated in a basis.
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There are two general views that we might take of tensors:

* Mathematicians prefer to define tensors in an elegant and
abstract manner that often is more precise in defining
some essential underlying mathematical concepts. This
1s sometimes called the index-free formalism.

* The characterization of tensors in terms of their transfor-
mation properties is particularly useful from a physical
perspective.

We shall first discuss tensors from the mathemati-
cian’s perspective, and then discuss them in terms
of their transformation properties.
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3.6 Tensors as Linear Maps to Real Numbers

From a fundamental perspective, a tensor of type (n,m)

* has input slots for n vectors and m dual vectors, and

* acts linearly on these inputs to give a real number.

If wisa (0,1) tensor (dual vector) and A and B are
(1,0) tensors (vectors), linearity of the mapping
implies things like

w(aA+bB) =aw(A)+bw(B) € R,

where a and b are arbitrary scalars and R denotes
the set of real numbers.

* This definition makes no reference to components of the
vectors or dual vectors.

* Hence the tensor map must give the same real number,
irrespective of any choice of coordinate system.

In summary, a tensor is

* a function of vectors and dual vectors them-
selves, rather than of their components, or

* an operator that accepts vectors and dual vec-
tors as input and produces a real number.
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As a warmup exercise, consider a real-valued function of the
coordinates f(x).

¢ This function

— takes no vectors or dual vectors as input and

— yields a real number (the value of the function at x) as
output.

» Thus it is a tensor of rank zero (a scalar).

Let’s now give a few less-trivial examples of how
this approach to tensors works, beginning with
vectors and dual vectors.
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Vector Space:

A vector space has a precise axiomatic definition but for our
purposes it will be sufficient to view it more loosely as

* A set of objects (the vectors) that can be

— multiplied by real numbers and

— added in a linear way

while exhibiting closure: any such operations on elements
of the set give back a linear combination of elements.

* For arbitrary vectors A and B, and arbitrary scalars a and
b, one expects then that expressions like

(a+b)(A+B) =aA+aB+ bA + bB
should be satisfied.

* A basis for a vector space is a set of vectors that

— span the space (any vector is a linear combination of
basis vectors) and

— are linearly independent (no basis vector is a linear
combination of other basis vectors).

* The number of basis vectors is the dimension of the space.

For spacetime, vector and dual vector spaces are
vector spaces of dimension 4 that are defined at
each point of the manifold.
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Confusion Alert

Be aware that “vector” is being used in our discussion in three
senses:

* As an arbitrary element of an abstract vector space, ac-
cording to the definition given above.

* As an element of an abstract vector space that also is a
vector in the precise sense defined above [a tensor of type

(1,0)].

* Sometimes as a generic term for an element of an abstract
vector space that is either a vector or a dual vector.

Which meaning is intended is usually clear from
the context.
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3.6.1 Vectors and Dual Vectors

Suppose a vector field to be defined on a manifold such that

* Each point P has associated with it a vector V that may be
expanded in a (coordinate) vector basis e,

V — V'ueu,

where the basis vectors e, are defined in the tangent space
Tp at each point of the manifold.

e There is a corresponding dual vector field @ defined at
each point P that may be expanded in a (coordinate) dual-
vector basis et

o = oyet,

where the basis dual vectors e* are defined in the cotan-
gent space Tp at each point of the manifold.

* Hence the ey, are basis vectors in the tangent bundle of the
manifold and

o the e* are basis vectors in the cotangent bundle of the
manifold.
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Duality: As introduced in Chapter 2 for euclidean spaces, the
vector spaces for V and @ are said to be dual:

» The space of vectors (tangent bundle): all linear maps of
dual vectors to the real numbers.

* The space of dual vectors (cotangent bundle): all linear
maps of vectors to the real numbers.

* This duality of vector and dual vector spaces can be im-
plemented systematically by requiring that

Hley) =l ey =8y,
where the Kronecker delta is given by
S — { bu=v
0 u#v
* Alternative notation: A(B) <> (A, B), so we can also write
(M, ey) = et ey =38,
* Example: A dual vector ® acts on a vector'V as

oV)=(w,V)=owue"(V'ey) (expand in basis)
= oy Vet (ey) (linearity)
= CO“VVS\‘,l (duality: e*(ey) = &%)
= a)“V” € R (scalar product € R),

where R denotes the real numbers.
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Note: Basis vectors are defined in the tangent bundle and basis
dual vectors are defined in the cotangent bundle of the mani-
fold.

* Thus for applications in spacetime our concern is really
with the action of vector fields on dual vector fields and
vice versa.

e Thus what is returned is not a real number but rather a
scalar field of real numbers defined over the manifold.

* This is just another example where for simplicity we have
been careless about speaking of some thing when what is
really meant is a field of those things.

We trust that the reader is sophisticated enough by
now to realize when “thing” really means “field of
things”.
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The preceding discussion illustrates clearly that

* A dual vector 1s an operator that accepts a vector as an
argument and produces a real number: the scalar product
o, VH, which is

— unique and

— independent of basis

as output.

* A vector is an operator that accepts a dual vector as an
argument and produces a real number equal to the scalar
product, V(@) = @, V¥, that is unique and independent of
basis.

e These definitions involve no uncontracted indices, so the
results are independent of any basis choice.

This suggests that vectors and dual vectors may be defined fun-
damentally in terms of linear maps to the real numbers, with
no reference to a specific basis:

1. A dual vector is an operator that acts linearly
on a vector to return a real number.

2. A vector is as an operator that acts linearly on
a dual vector to return a real number.

For those conversant with linear algebra this may sound famil-
iar, as suggested by the following example.
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In the language of linear algebra,

* vectors may be represented as column vectors and

e dual vectors as row vectors,

and their matrix product is a number.

A=(a b) B= (d)

c
AB = (a b) (d) =ac+bd eR

may be regarded as the dual vector A acting linearly on the
vector B to produce the real number ac + bd:

* For example,

A(B) e R.

e For readers familiar with Dirac notation for matrix ele-
ments in quantum mechanics,

— a ket |a) is a vector and

— a bra {(a| is a dual vector

in the quantum linear vector space called Hilbert space.

* Mathematically the vector space of bras is the dual of the
vector space of kets. Thus the overlap (f| i) is a number
(a c-number in quantum lingo).
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Components in a Basis: These definitions of vectors and dual
vectors are independent of any choice of basis but practically it
often is convenient to work in a basis.

* The components of a basis may be constructed from
VE=V(et) =€tV oy = 0(ey) =ey- 0,

which may be interpreted (for example) as

A vector accepts a basis vector e* as input and acts
linearly on it to return a real number that is the
component of the vector evaluated in that basis.

» The validity of the equations above is easily checked:
etV =t (Vqy) =V%H(ey) =VESy =VH,

ep-0 = ey (0ge”) = wgey(e”) = 0 b = Wy,

where we have used
— the basis expansions,
V =V%, 0 = wge’.
— linearity,
w(aA+bB) =aw(A)+bw(B) € R,
— and duality,

Hley)=et ey, =60
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B

Transformations: Consider a coordinate transformation x* —

on a dual vector @ = wy et and on a vector V = VHe,,.

* Requiring that the distance ds be invariant under coordi-
nate transformation means that the basis vectors e and

ey must transform as (see Problems)

ax'H oxV
u M _ eV
et > e 8x" ey — eu 3x’”

How then do the components @, and V# transform?

Consider the dual vector @, which is a geometrical object
existing independent of representation in a coordinate sys-
tem, so it must be invariant under change of coordinates.

This requires the components of @ to transform as

8xo‘
Wy — O, = v O

since then @ is invariant under x* — x'*:
o' :wLe’ H (expand in basis)
= ox W, ox" e’  (transform basis and components)
ax'H /”8xv )
— gj; % 0ge’ = ?Cv wge” (linearity + chain rule)

=wge’ 8 (apply dx%/dx" = 6%)

=wee* = (scalar product € R).

This transformation law for the components @y is the same one
that will be used later to define a dual vector.
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We have just shown that the definition of a dual vector as a ge-
ometrical object that maps vectors linearly to the real numbers

* is independent of representation in any particular basis,
but

* in a particular basis the components of dual vectors must

transform as o
ox

/
wv%wvzmwa.

* By a similar proof, vector components V¥ may be shown
to have the transformation law

ax'*

%
8xVV.

VYo v =

* In the index-free picture currently under discussion

— tensors are defined as linear maps of vectors and dual
vectors to the real numbers, and

— the transformation laws and associated tensor algebra
for representation in a basis follow from that defini-
tion.

Later, we will see that we can turn things around
and use such transformation laws as a definition of
tensors.
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3.6.2 Tensors of Higher Rank

Higher-rank tensors may be constructed by taking tensor prod-
ucts (denoted by ®; also termed the direct product or the Kro-
necker product) of lower-rank tensors.

The tensor product of two vector spaces U and V
produces a new vector space U® V.

o If U has a basis {uy,us,...} and

* V has a basis {vi,vs,...},

then U® V is spanned by a basis consisting of all
pairs (u,-,vj-).

Schematically, a mixed tensor T of rank (p,q) may be ex-
pressed as

T:T.ul.uz---,upv] Vz---quMl ®eu2® ®eup®€vl®€v2® ®qu7

where {ey, } is a vector basis and {e"} is a dual vector basis.
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Components of higher-rank tensors may be evalu-
ated by putting basis vectors in its input slots.

* For example, consider a rank-2 tensor T. Its covariant,
contravariant, and mixed components are given by

T(eu,ev) :T‘uv T(e“,ev) :T‘uv

T(ey,e") :Tuv T (e!,ey) :T“v,
from which it follows that for vectors A and B,

T(A,B) =T(A e, ,Bey)

— T(e‘u,ev)A'qu — T‘uvA'qu.
——
Tuv

Likewise for contravariant and mixed components.

* As another example, the tensor product U =V QT of a
vector 'V and a rank-2 tensor T is a rank-3 tensor with one
possible set of components

U“aﬁ — (V®T)Ha[3: (VRT)(e" eq,ep)

=V (e!')T (eq,ep)
= VHT,p.

In the mixed rank-3 tensor we have offset the up-
per and lower indices horizontally. The reason is
associated with the symmetry under permutation
of indices and will be discussed later.
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Finally consider the scalar product
A 'B — guvAqu.
* The metric tensor g may be interpreted as an operator that

— takes two vectors as input and

— returns their scalar product,

which is a real number. For example:

8(A,B) = g(Atey,B"ey)
= g(ey,ey)A*BY
= guvA“BV
—A-B €R,

* since it takes two vectors as input and acts linearly on both
of them to return a number (this is an example of a multi-
linear mapping),

e Therefore, g, represents components of a rank-2 tensor
of type (0,2).
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For quantum mechanics in Dirac notation a ket |i) is a vector
and a bra (f| is a dual vector in Hilbert space.

* A matrix element of an operator Q is of the form (f| Qi)
in Dirac notation.

* In quantum mechanics, a a matrix element is a scalar.

» Thus the operator Q is a rank-2 tensor of type (1, 1), since
it takes one vector and one dual vector as input and pro-
duces a scalar.

(In quantum mechanics a matrix element may be a complex
rather than real number, but that distinction is not important in
the present discussion.)
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3.6.3 Identification of Vectors and Dual Vectors

Let’s now greatly simplify keeping track of the difference be-
tween vectors and dual vectors by demonstrating that

At a point P the metric tensor map establishes a
one-to-one relationship between a

* vector in the tangent space at P and a

* dual vector in the cotangent space at P.

¢ Consider the metric tensor, viewed as a rank-2 tensor that

— accepts two vectors as il’lpll'[S and

— acts on them (multi-)linearly to give a real number.

* Schematically, this may be written as the operator g(-, ),
where the dots indicate the input slots for the two vectors.

* Suppose that a vector V is inserted into only one of the
slots, giving g(V, -).

» What is the object g(V, -)?

— It has one open slot that can accept a vector,

— on which it will act linearly to return a real number.

But that is just the definition of a dual vector!

* Because it is associated directly with the vector V, let’s
call this dual vector V = g(V, -).
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* The components of this dual vector may be evaluated by
inserting a basis vector as argument in the usual way,
Vu=Vi(ey) =g(V,eu) (definition)
=g(VVey,ey) (expand V in basis)
=VVg(ey,ey) (rearrange using linearity)

= gquV (definition of metric components).
* Likewise, using that g,y and gtV are matrix inverses,
V'u - g'quv.
* Thus, the properties of the metric tensor

— imply that vectors and dual vectors may be treated as
if they were both vectors,

— one with an upper index and one with a lower index,

— with the two related by contraction (summing over
repeated indices) with the metric tensor,

Vu — g‘quv V” - gquv.

This is true only for manifolds with a metric, but
that is always the case for GR.
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¢ The relations

V‘u == gquV V” == g'quv.

are of great practical importance since

— they allow the same symbol to be used for a vector
and its corresponding dual vector, and

— they reduce handling of vectors and dual vectors to

— keeping proper track of the vertical position of indices
in the summation convention.

* This identification works only for manifolds with met-
ric tensors but that is no limitation for general relativity,
which deals only with metric spaces.

* The scalar product between two vectors U and V can now
be calculated as

— the complete contraction UgV? of one of the vectors

— with the dual vector associated with the other vector:

g(U,V) = g‘uquVv = UvVV.

The scalar product has no indices left after con-
traction and is said to be fully contracted.
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Because tensors of higher rank are products of vectors and dual
vectors, the preceding discussion is easily generalized:

e Contraction with the metric tensor can be used to raise or
lower any index for a tensor of any rank.

* For example,
ARV — guagvﬁAaB A,uvlo _ g#PApvlo‘

* Since indices can be raised or lowered at will by a metric,

Tensors may be thought of as geometrical objects
of a particular tensorial rank, irrespective of their
particular vertical arrangement of indices when
evaluated in a specific basis.

* Of course this is true only in the abstract; index placement
matters when tensors are evaluated in a specific basis.
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3.7 Tensors Specified by Transformation Laws

In the preceding discussion tensors have been introduced at a
fundamental level through linear maps from vectors and dual
vectors to the real numbers.

e Howeyver, it was shown also that

— when tensors are expressed in an arbitrary basis,

— their components obey well-defined transformation
laws under change of coordinates.

* This view of tensors as groups of quantities obeying par-
ticular transformation laws is often the most practical for
physical applications because

— It is less abstract and requires less new mathematics.

— A physical interpretation often requires expression of
the problem in a well-chosen basis anyway.

— The component index formalism has a handy built-in
error checking mechanism:

Failure of indices to balance on the two sides of an
equation is a sure sign of an error.

* The next sections will summarize the use of tensors to for-
mulate invariant equations by exploiting the transforma-
tion properties of their components.
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3.7.1 Scalar Transformation Law

Tensors may be viewed as generalizing the idea of scalars and
vectors, so let’s begin with these more familiar quantities.

Simplest possibility: A field has a single component (magni-
tude) at each point that is unchanged by the transformation

Quantities such as @(x) that are unchanged under the coordi-
nate transformation are called scalars.

EXAMPLE: Value of the temperature at different
points on the surface of the Earth.
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3.7.2 Vectors and Dual Vectors

Recall also that we can classify tensors by a notation (n,m),
where n 1s the number of upper indices and m is the number of
lower indices when evaluated in a basis.

* Thus a scalar is a tensor of type (0,0), since it carries no
indices.

e The sum of n and m 1s the rank of the tensor. A scalar is a
tensor of rank zero.

There are two kinds of rank-1 tensors, having the index pattern
(0,1) and (1,0), respectively. The first is called a dual vector,
covariant vector, or 1-form:




3.7. TENSORS SPECIFIED BY TRANSFORMATION LAWS 107

DUAL VECTOR:

The gradient of a scalar field ¢(x) = d@(x)/dx transforms un-
der change of coordinates as

(T ) =5 (5).

Remember in such expressions:

¢ the Einstein summation convention, and

* that all partial derivatives are understood implicitly to be
evaluated at some point P = x.

A tensor having a transformation law that mimics that of the
scalar field gradient,

oxV

Aul) = gam

Ay(x) (dual vector)

is of type (0,1) and is termed a dual vector (also 1-form, co-
variant vector, or covector).
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ECONOMY OF NOTATION: The preceding equation

oxV

Aul) = 5o

Ay(x) (dual vector)

really means four equations:

Ix? ox! ox? ox>
/

/.L: 8x/” A3 (‘LL:O,172,3>

each containing four terms. It is equivalent to the matrix equa-
tion

ox° oxl o9x? 9x’ \
(A6 \ ( ox’0 ax0 9x0 9x° (AO \
ox0 ox! ax2 a9x
ox'l ox'l ox! o9x!
ox0 ox! ax2 ax
ox'*> ox? Ix? Ix?
/ ox0 ox! ax2 ax
\A3 ) \ ox? ox? ox? ox> / \A?) )
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VECTORS: A differential dx transforms like

i

d gr
o oxV

dx”,

which suggests a second rank-1 transformation rule

ax'*

A™ (o) = dxV

AY (x) (vector).

A tensor that behaves in this way is of type (1,0) and is termed
a vector or contravariant vector.

Notice carefully the difference between the transformation laws
for a vector and a dual vector,

;o oxY
Ay(x) = ax—/uAv(x) (dual vector),
i
AN () = %Av(x) (vector).

The transformation rules are similar, differing only in

* the vertical placement of the old coordinates x and new
coordinates x’ in the partial derivatives, and

* the corresponding vertical placement of indices required
for consistency in the summation convention.
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The dual vector and vector transformation laws,

;o oxY
Ay (') = ax—,uAv(x) (dual vector)
i
At () = %);v AY(x)  (vector).

may be viewed as matrix equations,
Ay () = Oyav) AN =UYAY (),

with the matrices defined by

ox' ~  Ox R
== U=— UvU =1,
ox

where I is the 4 X 4 unit matrix. In these transformations

¢ the matrix U 1is called the Jacobian matrix and

e the matrix U is called the inverse Jacobian matrix.
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The historical use of covariant to refer to lower indices and
contravariant to upper indices arises from tensor invariance.

¢ In terms of the Jacobian matrix U and the inverse Jacobian
matrix U, under the coordinate transformation x — x’

— a vector transforms as V'* = U“f VYV and

— a dual vector transforms as @/, = U Va)v,

[J

with a corresponding change of coordinate basis.

e A vector V 1s invariant, so the basis vectors must transform
in just such a way to cancel the change in the components.

 Specifically, since invariance of V requires
V=VHe, =V,

the basis vectors must transform as eL

Ve, =USV U eq =US ULV eq = Ve,

= Uﬁ’ev so that

where Ul UO‘ o was used.

* By a similar proof the invariance of ® = wye* requires
that the basis dual vectors transform as ¢’* = Ut eV

* Thus lower-index components transform with U, just as
the components of the vector basis e, transform. They co-
vary with the basis and are termed covariant components.

* But upper-index components transform with U and thus
“opposite” to transformation of the basis vectors ey, ; they
contra-vary and are termed contravariant components.
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Summarizing, we expect the possibility of two rank-1 tensors:

1. Dual vectors (also called one-forms, covariant vectors, or

covectors), which carry a lower index and transform like
the gradient of a scalar:

I dx¥
Ay (x') = WAV(X) (dual vector).

2. Vectors (also called contravariant vectors), which carry an
upper index and transform like the coordinate differential:

ax'*

A" (x/) - oxV

AY (x) (vector).

In the general case they must be distinguished (by
placement—upper or lower—of their indices).
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Covariant and contravariant indices on vectors permit a scalar
product to be defined as

This transforms as a scalar because from

ox" ox’H

Aul) = S5pdvl) A ) = S AYW)

we have that

ox¥  ox* oxV ox’*

I pl Al plH o __ a
A = AUBT = guay gua B = g g P

a 1%
— WxaAvBa — S&IAvBa
— AaBOC — A ‘B7
where the Kronecker delta is given by

8x’“_8xu_{1 (u=v)

H’_ _— =
VT o vy

Thus A’-B' = A-B and the scalar product is invariant.

Eliminating indices by summing over repeated
ones is called contraction. The scalar product has
no tensor indices left so it is fully contracted.
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3.7.4 Rank-2 Tensors

Three kinds of rank-2 tensors transform as

Ox% JxP

Tav = G v Tap
v Ix* ﬂlv B
B ox gxB %7
ax’* ox’Y
A S o101 ¢]
= Ix% JxP e

This pattern may be generalized to tensors of any rank.

* Covariant Tensors: carry only lower indices
» Contravariant Tensors: carry only upper indices

* Mixed Tensors: carry both upper and lower indices

EXAMPLE: the Kronecker delta 5‘)’ 1s a rank-2 mixed tensor.

Handy to recall:

* Upper index u on left side requires right-side
“factor” dx’* /dxV (prime in numerator).

* Lower index Vv on left side requires right-side
“factor” dx* /dx’V (prime in denominator).

* “Vertical position of index on left = vertical
position of primed coordinate on right”
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Not all quantities carrying indices are tensors! It is

* the transformation laws for components in a basis, or

* that they provide linear maps to the real numbers

that define tensors.

NOTE: We often employ a standard shorthand by
using

* “atensor Ty, to mean

* “a tensor with components 7}, when evalu-
ated in a basis.




116 CHAPTER 3. TENSORS AND COVARIANCE

3.7.5 Metric Tensor

A rank-2 tensor of particular importance is the metric tensor
guv because it is associated with the line element

ds* = guydx*dx”

that defines distances in metric spaces. It is symmetric (guv =
gvu) and satisfies the usual rank-2 transformation rule

, Ix* oxP
Sy = 57 g Sa

The contravariant components of the metric tensor g"V are de-
fined by

guocgav = 5;‘:-

(That is, guv and gV are matrix inverses.)
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Contractions with the metric tensor may be used to raise and
lower (any number of) tensor indices; for example,

A'u — g'uvAv Au — guvAv

T'uv :gvaT'ua Taﬁy:ga'ug%Tuﬁ ¢

Thus, the scalar product of vectors may also be expressed

A-B= guvA“Bv EA\/BV.

In mixed-tensor expressions as above the relative horizontal or-
der of upper and lower indices can be important.

* For example, in
T“v = gvaTH*

the notation indicates that the mixed tensor on the left side
of the equation was obtained by lowering the rightmost
index of TH% on the right side.

* This distinction is immaterial if the tensor is symmetric
under exchange of indices (see following pages).

e However, which index is lowered or raised matters for ten-
sors that are antisymmetric under index exchange:

T“v =gvaT““ Tv'u :gvaTOm

are equivalent if T is symmetric, but different if 7 is anti-
symmetric.
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Vectors and dual vectors are distinct entities that are defined in
different spaces.

* However, the preceding discussion make it clear that for
the special case of a manifold with metric,

* indices on any tensor may be raised or lowered at will by
contraction with the metric tensor.

Defining a metric establishes a relationship that
permits vectors and dual vectors to be treated as
if they were (in effect) different representations of
the same vector.

* Our discussion will usually proceed as if A* and A, are
different forms of the same vector that are related by con-
traction with the metric tensor,

* But secretly we will remember that they really are differ-
ent, and that it is only for metric spaces that this conflation
is not likely to land us in trouble.
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3.8 Symmetric and Antisymmetric Tensors

The symmetry of tensors under exchanging pairs of indices is
often important.

* An arbitrary rank-2 tensor can always be decomposed into
a symmetric part and an antisymmetric part:

TocB - %(Taﬁ +T[3a) + %(Taﬁ - Tﬁa)a

where the first term is clearly symmetric and the second
term antisymmetric under exchange of indices.

* For completely symmetric and completely antisymmetric
rank-2 tensors we have

Top = +Tpq TP =x1P2 TP —17P

where the plus sign holds if the tensor is symmetric and
the minus sign if it is antisymmetric.

* More generally, we say that a tensor of rank two or higher
is

— Symmetric in any two of its indices if exchanging
those indices leaves the tensor invariant and

— Antisymmetric (sometimes termed skew-symmetric)
in any two indices if it changes sign upon switching
those indices.
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* Symmetrizing and antisymmetrizing operations on tensor
indices may be denoted by a bracket notation in which

— () indicates symmetrization and

— [] indicates antisymmetrization

over indices included in the brackets.

* For example, symmetrization over all indices for a rank-N
covariant tensor Ty g o corresponds to

1
Tiap,. .0) = N (Sum permutations on indices ., f3,... ®)

and antisymmetrization over all indices of Ty g ¢ corre-
sponds to

1
Tiap,...0] = N (4 Sum permutations on indices a, 3,... ®),

where the notation = indicates that terms of the sum have

— a plus sign if they correspond to an even number of
index exchanges and

— a negative sign if they correspond to an odd number
of index exchanges.

* Thus, for rank-2 contravariant tensors we may write

T(@B) — L(Teb | TBa) TloBl = LB _ TBa)

|
\S]]
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* In the more general case one may be interested in sym-
metrizing or antisymmetrizing over only a subset of in-
dices for higher-rank tensors.

e If the indices are contiguous the above notation suffices
with only the indices to be symmetrized or antisym-
metrized included in the brackets.

* In the event that indices to be symmetrized or antisym-
metrized are not adjacent to each other, the preceding no-
tation may be extended by using vertical brackets to ex-
clude indices from the symmetrization or antisymmetriza-
tion.

Example: The expression

Togivis] = 3(Tapys — Tusyp)

corresponds to a rank-4 covariant tensor that has
been antisymmetrized in its second and fourth in-
dices only.
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3.9 Summary of Algebraic Tensor Operations

Various algebraic operations are permitted for tensors:
* Multiplication by a scalar: For example,
aA*Y = B*V,
where a is a scalar and A*Y and B*V are rank-2 tensors.

* Addition or subtraction: Two tensors of the same type
may be added or subtracted (meaning that their compo-
nents are added or subtracted) to produce a new tensor of
the same type. For example,

AR _ pH — C“,
where A*, BH, and CH are vectors.

* Multiplication: Tensors may be multiplied by forming
products of components. The rank of the resultant tensor
will be the sum of the ranks of the factors. Example:

AMV - Uqu,

* Contraction: For a tensor of type (n,m), a tensor of co-
variant rank n — 1 and contravariant rank m — 1 may be
formed by setting one upper and one lower index equal
and taking the implied sum. For example,

_AM
A=A",

where A is a scalar and A, is a mixed rank-2 tensor.
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3.10 Tensor Calculus on Curved Manifolds

To formulate physical theories in terms of tensors requires the
ability to manipulate tensors mathematically.

* In addition to the algebraic rules for tensors described in
preceding sections, we must formulate

— a prescription to integrate tensor equations and

— a prescription to differentiate them.

e Tensor calculus 1s mostly a straightforward generalization
of normal calculus but additional complexity arises for
two reasons:

— It must be ensured that integration and differentiation
preserve any physical symmetries.

— It must be ensured that operations on tensor equations
preserve the tensor structure.

¢ We will see that

— tensor integration requires a simple modification of
the standard integration rules, but

— derivatives of tensors require a less-simple modifica-
tion with far-reaching mathematical and physical im-
plications.
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3.10.1 Invariant Integration

Change of volume elements for spacetime integration:

ox
4 4 /1
dx=det(g>dx,

where det(d(x)/d(x')) is the Jacobian determinant of the trans-
formation between the coordinates.

¢ The metric tensor transforms as

, ox* oxP

8uv = 5 7r 5 v 8ap (triple matrix product).

e Therefore, since:

determinant of a product = product of determinants,

e the determinant of the metric tensor g = detgy, trans-
forms as

;o ox ox ax\ Ig|

which gives when inserted into the first equation
Vigld*x= Vg%,

(|g| because g can be negative in 4-D spacetime).
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Therefore, in integrals we shall employ

dV = \/|g|d*,

as an invariant volume element.
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Example: The metric for a 2-dimensional spherical manifold
(2-sphere) is specified by the line element

ds® = gi jdxidxj )
which is explicitly in spherical coordinates
dl* = R*d6? 4 R*sin” 0d¢.
This may be written as the matrix equation

di* = (d6 do) R0 a6
0 R?sin’6 do .

N 7
~~

8ij

The area of the 2-sphere may then be expressed as the “invari-
ant volume integration”

2 T
A:/\/|g\d2 :/ d(p/ J/detg;; d6
0 0
21 T
:/ d(p/ R*sin0d6 = 47R.
0 0

where the metric tensor g;; is the 2 X 2 matrix in the preceding
equation for the line element.

In this 2-dimensional example the sign of the de-
terminant is positive, so no absolute value is re-
quired under the radical.
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3.10.2 Covariant Differentiation

Let’s now consider the derivatives of tensor quantities. First in-
troduce two common compact notations for partial derivatives

dp(x) u_ 99(x)

@ =Pu=—57 Mo =gt = Iy

¢ The derivative of a scalar is a covariant vector and scalars
and their derivatives are well-defined tensors.

* But, for the derivative of a dual vector, by the product rule

0A] d dx%
Ay = 50w = g (Aax—u)
———

Ay
0A o Ix“ 02 x%
A ‘|’AaW (d/dx of product)
Ay OxP Ox“ 02 x%
- 0xB oxY ox'H +Aa8x"’8x’”
chain rule
oxP ox® 02x%
" b g ot 9o,
Te?zgor Not a\trensor/

where Ay g = dAq/ dxB. In curved spacetime the second
term can’t be eliminated:

Fartial differentiation is NOT COVARIANT in
curved spacetime for tensors of rank 1 or higher!
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Partial differentiation is not generally a covariant operation in
curved manifolds.

 This will complicate the formalism immensely because

* the utility of the tensor framework rests on preservation of
tensor structure under transformations.

It is desirable to define a new covariant derivative that ensures
this automatically.

* The terms that violate tensor transformation laws for par-
tial derivatives of tensors will involve second derivatives.

* The offending non-tensorial contributions can be elimi-
nated systematically by introducing additional fields on
the manifold.

* There is more than one way to do this, each leading to
a different form of covariant differentiation. We will ad-
dress three in this chapter:

1. covariant derivatives and

2. absolute derivatives, whichuse derivatives of the met-
ric tensor field to cancel non-tensorial terms, and

3. Lie derivatives, which use derivatives of an auxiliary
vector field defined on the manifold to the same end.

We begin with the covariant derivative.
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3.11 The Covariant Derivative

Let’s define the Christoffel symbols Fg B by requiring that they
obey a transformation law

o oxM oxv ox'* 92 o
'uvax/a axlﬁ axK +axlaaxlﬁ 8)6“ .

A
ap=T

(Fg B 1S not a tensor—see the 2nd derivatives above!) Then this
transformation law imples that (Problem),

/ A o1 ox% 8xﬁ
(A = TlA's) = (Aap = Tiphe) S 5w

7

EB;W EBaﬁ

For the quantity in parentheses this is the transformation law
for a rank-2 covariant tensor:

, ox* oxP

Puv =Papgm 57

This suggests that we define the covariant derivative of Ay, as

tensor

7 N

_ A
Au;v = A‘u’v - ]‘—‘,uVA)L
not tensor  not tensor

where in our notation

* a subscript comma denotes partial differentiation;

* a subscript semicolon denotes covariant differentiation

with respect to the variables following it.
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¢ Then the covariant derivative of a dual vector

tensor

7 Aoa
A,v= A — I, A
uv u,v vAaL
N~~~ \“,_/
not tensor  not tensor

transforms as a covariant tensor of rank 2, even though
neither of its terms is a tensor.

e It will be useful to introduce also an alternative notation
for the covariant derivative:

VyAu = Ay = dyAu — T A;.

where V, denotes an operator that takes the covariant
derivative with respect to x*:
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Likewise, we can introduce the covariant derivative of a vector
in either of the notations:

At =4t 4TL,A% VAR =guat 4T A%

where the result 1s a mixed rank-2 tensor, and the covariant
derivatives of the three possible rank-2 tensors through

Auv;),: Auv,)L - Fg)LAocv - F%Au(x,
L AH U a0 o A M
A ViAo A V,A +Fo¢),A v 1A e
AR = ARV T A% T, AR,
or in alternative notation

V?LAuv: a/lAuv - F‘Of,lecv - F%Auoca
VAR = 0,48, + T A%, —T% A%,
V3 ARV = 0, ARV 4 TL A%V + Ty, AR,

where the derivatives now define rank-3 tensors.




132 CHAPTER 3. TENSORS AND COVARIANCE

From the form of equations like
V}LAH,V: alA‘uv - FZAAGV - F?/AA,Ua7
VA =AY, +TE A%, TS, AR,
V3ARY = 9y ARV + L A%V + Ty, AR,

we may formulate simple rules for constructing the covariant
derivative of a tensor having any rank:

* Form the ordinary partial derivative of the tensor

* Add one Christoffel symbol term having the sign and form
for a dual (covariant) vector for each lower index of the
tensor

* Add one Christoffel symbol term having the sign and form
for a (contravariant) vector for each upper index of the
tensor.
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Most rules for partial differentiation carry over with suitable
generalization for covariant differentiation.

Example:
Covariant derivative of a product

(AuBv):a = ApaBv +AuBy:j.-

which is the usual (Leibniz rule) result.

The most important exception concerns the properties of suc-
cessive covariant differentiations.

* Although partial derivative operators normally commute,
covariant derivative operators generally do not commute
with each other.

» The covariant derivative of the metric tensor vanishes
(Problem):

Vocg,uv = 8uv,a — 0,

Some implications:

— Raising and lowering index by contraction with g,y
commutes with covariant differentiation.

— This will allow in the Einstein field equations a vac-
uum energy term (accelerated expansion and dark en-
ergy) when we address cosmology.
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3.12 Absolute Derivatives

Absolute derivatives (also termed intrinsic derivatives) are
closely related to covariant derivatives.

* Covariant derivatives are defined over an entire manifold
in terms of partial derivatives plus correction terms to can-
cel non-tensorial character.

* Absolute derivatives are defined only along constrained
paths in terms of ordinary derivatives plus correction
terms to cancel non-tensorial behavior.

* Using D/Dao to denote the absolute derivative along a path
parameterized by o,

DA dA dx"

D; = dc;x _FQYABE (Dual vectors),
DAa . dAa o de}/

Do = do +FB)/A Io (Vectors),

with generalizations for higher-order tensors similar to
that discussed earlier for covariant derivatives.

* The essential utility of both covariant and absolute deriva-
tives is that

— When they are applied to tensor fields they produce
tensor fields.

— They provide a prescription for parallel transport in
curved spaces that will be discussed later.
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3.13 Lie Derivatives

The covariant derivative was introduced as a modification of
partial differentiation that respects tensor structure.

* An alternative way to modify partial differentiation so that
when applied to tensors it yields tensors is through the Lie
derivative.

¢ The covariant derivative uses derivatives of the metric ten-
sor to cancel non-tensorial terms arising in partial differ-
entiation.

* In contrast, the Lie derivative uses derivatives of an auxil-
iary vector field to cancel those same terms.

* We shall use primarily the covariant derivative to imple-
ment differentiation in curved spaces.

* However, it will be important in various contexts to have
at least a conceptual understanding of the Lie derivative.

A primary reason is that symmetries important for
a broad range of physical applications have an in-
timate connection to Lie derivatives.
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Dragged

tensor
atQ 4 Tensor

at P ; at Q

()

Figure 3.4: (a) A congruence for a manifold. (b) Tangent vector field for the
curves of the congruence. (c) Lie dragging using the congruence to compare
tensors at two nearby points.

The basic idea: The starting point is the idea of a congruence
for a manifold, which is

* a set of non-intersecting curves that are

* space-filling in that for each point in the manifold exactly
one curve of the congruence passes through it.

« As an example, for the sphere S? curves corresponding to
lines of latitude define a congruence since for every point
on §? exactly one curve of latitude passes through it.

Figure 3.4(a) illustrates a congruence for a general manifold.

* For each point in the manifold a basis vector may be de-
fined by a tangent to the curve at that point [Fig. 3.4(b)].

* Thus a congruence defines a vector field on the manifold.

» The converse is also true. For any vector field X* defined
on a manifold, a congruence can be generated by finding
the curves for which the vectors of the vector field are
tangent at each point of the curve.
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* Such congruences are familiar to the physicist in the guise
of streamlines connecting magnetic field vectors or illus-
trating fluid velocity fields.

* In the present more general context,

— a curve of the congruence for a vector field X* is
termed an orbit and

— the vectors X* are said to generate the orbit.

Figure (c) above illustrates the main idea of the Lie derivative.

e For a tensor field defined on the manifold, a tensor at the
point P (here illustrated by a vector) is

» “dragged” (prescription given below) from the point P to
the nearby point Q, along a curve of the congruence.

* This process is called Lie dragging.

Then the tensor defined naturally at Q, and the ten-
sor dragged from P, may be subjected to the usual
difference procedure to define a derivative since
they are now located at the same point. The re-
sulting derivative is termed the Lie derivative.
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Constructing Lie derivatives: Suppose that we have a manifold
with a vector field X* and a corresponding congruence.

e | et some tensor field be defined on the manifold.

* To be definite for this example it will be taken to be a
contravariant rank-2 tensor, T*" (x).

* Now consider the transformation for small Su,
T u
27 =x" + X" (x) ou.
 This will be regarded as an active transformation in which

— the point P at x*

— 1is sent to the point Q at
xH+ XH(x)bu,

with both points labeled in the same coordinate system.

By construction the point Q lies on the congru-
ence through P that is generated by X*; see Fig.
(c) above.
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Now consider the tensor with components TV (x) at P.

» It is mapped to the tensor with components T*Y(x’) at Q
by the transformation

K =xH 4+ XH(x) Su.

* That is, the tensor is Lie-dragged from P to Q by the trans-
formation, as illustrated in Fig. (c) above.

* By the usual tensor transformation law,

where we have again used
K =xH 4+ XH(x) Su.

* This gives the tensor T*V Lie-dragged from P to Q.
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* The Lie derivative of THY with respect to the congruence
of the vector field X is defined by

THY (x) — TV (x)
ou ) '

ng“vE Lim (

ou—0

e The tensor 7"V (x’) was given above by
T AY
_ ox'" dx 7B (x)
Ix% JxP
— THY (x) + [aﬁva“ﬁ + 8aX”TO“’] Su,

T//.Lv (x/)

and the tensor THY (x’) can be determined by expanding in
a Taylor series around x,

THY () = TRV (x) + (8u) 9o THVX* + 6 (5u2> .
* Then substituting gives for the Lie derivative of THY,

THY = X% THY —THY9y XY — T* 9o XH.

By a similar procedure Lie derivatives for tensors of other ranks
can be determined. For example,

Zx9 =X¢ =X,
LA = X% 9uAH — A% 0 XM,
LAy =X 0qAu +AqduX?,
LxAuv = X%0eApuy + AuadvX® +AavduX?,
AR = X%, AR — ARY9, XY — A% 9 XM,
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Mathematically the Lie derivative is a more primitive concept
than the covariant derivative because it requires less added
structure on the manifold.

* For example, in the preceding derivations no appeal was
made to either a metric or to connection (Christoffel) co-
efficients.

* For manifolds of interest for general relativity (those hav-
ing a metric and a torsion-free connection; see Section 7.8
of book), all partial derivatives dy, may be replaced by co-
variant derivatives V, in the Lie derivative

This is because all terms involving connection co-
efficients cancel identically if V; is substituted for
dy in the preceding expressions for Lie derivatives.

For example,
gXA‘uv — XaVaA‘uv +AuaVvXa +Aavv‘uXa
and

LxAuy =X%00Auy +ApadvX* +Aqvdu X%,

are equally valid if the manifold has a torsion-free connection.

This demonstrates explicitly that even though only
partial derivatives were used in its construction,
the Lie derivative of a tensor is a tensor.
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Lie transport and isometries:

A tensor T is said to be

* Lie-transported along a curve of the congruence associ-
ated with the vector field V if the Lie derivative vanishes,

ST =0.

* An interesting question for a manifold with metric is
whether there exists a vector field K such that the Lie
derivative of the metric vanishes,

We shall take this question up later, where it will be shown that

* if Zk applied to the metric tensor gives zero,
* then K is a Killing vector field and

* the corresponding Killing vectors indicate directions in
which the metric is invariant.

Such symmetries of the metric are called isome-
tries.
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3.14 Invariant Equations

The properties of tensors elaborated above ensure that

Any equation will be invariant under general co-
ordinate transformations provided that it equates
tensors of the same type (equates components hav-
ing the same upper and lower indices when ex-
pressed in a basis).

EXAMPLES:

o If A*,, and B", each transform as mixed rank-2 tensors

and A", = B¥, in the x coordinate system, then in the x’
coordinate system A", = B'*,.

» Likewise, an equation that equates any tensor to zero (that
1s, sets all its components to zero) in some coordinate sys-
tem is covariant under general coordinate transformations,
implying that the tensor is equal to zero in all coordinate
systems.

* However, equations such as A"u = 10 or A* = By, might
hold in particular coordinate systems but generally not in
all coordinate systems because they equate tensors of dif-
ferent kinds:

— a mixed rank-2 tensor with a scalar in the first case;

— a dual vector with a vector in the second.
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The preceding discussion suggests that invariance of a theory
under general coordinate transformations will be guaranteed by
carrying out the following steps.

1. Formulate all quantities in terms of tensors,

» with tensor types matching on the two sides of any
equation, and

e with all algebraic manipulations corresponding to
valid tensor operations (addition, multiplication, con-
traction, ...).

2. Redefine any integration to be invariant integration.
3. Replace all partial derivatives with covariant derivatives.

4. Take care to remember that a covariant differentiation
generally does not commute with a second covariant dif-
ferentiation.

As will be demonstrated in subsequent chapters,
this prescription in terms of tensors will provide a
powerful formalism for dealing with mathematical
relations that would be much more formidable in
standard notation




Chapter 4

Lorentz Covariance and Special
Relativity

To go beyond Newtonian gravitation we must consider, with
Einstein, the intimate relationship between the curvature of
space and the gravitational field.

* Mathematically, this extension is bound inextricably to the
geometry of spacetime, and in particular to the aspect of
geometry that permits quantitative measurement of dis-
tances.

e [ et us first consider these ideas within the 4-dimensional
spacetime termed Minkowski space.

As we shall see, requiring covariance within
Minkowski space will lead us to the special the-
ory of relativity.

145
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4.0.1 The Indefinite Metric of Spacetime

A manifold equipped with a prescription for measuring dis-
tances is termed a metric space and the mathematical function
that specifies distances is termed the metric for the space.

* Familiar examples of metrics were introduced earlier.

* In this section those ideas are applied to flat 4-dimensional
spacetime, which is commonly termed Minkowski space.

* Although many concepts will be similar to those intro-
duced earlier, fundamentally new features will enter.

Many of these new features are associated with the indefinite
metric of Minkowski space.

* Minkowski space is flat but it is not euclidean, for it does
not possess a euclidean metric.

* Many of the metrics employed in earlier chapters could be
put into a diagonal form in which the signs of the diagonal
entries could all be chosen positive.

* Such a metric is termed positive definite.

* In contrast, we will see that the Minkowski metric

— can be put into diagonal form but
— it1is an essential property of Minkowski space that the

diagonal entries cannot all be chosen positive.

Such a metric i1s termed indefinite, and it leads to properties
differing fundamentally from those of euclidean spaces.
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4.1 Minkowski Space

In a particular inertial frame, introduce unit vectors e, e, €2,
and e3 that point along the ¢, x, y, and z axes. Any 4-vector A
may be expressed in the form,

A=Ay +Ale; + A% +Ades.

and the scalar product of 4-vectors is given by

AB — BA — (A“eu)(Bvev) — 6“‘€vAqu.

Note that generally we shall use
* non-bold symbols to denote 4-vectors
* bold symbols for 3-vectors.

We sometimes use a notation such as b* to stand
generically for all components of a 4-vector.

Defining the metric tensor 1),y in Minkowski space,

T’uv = eu'ev,

(it is conventional to denote the metric by 1,y rather than g,y
in Minkowski space) the scalar product may be expressed as

A'B — n‘uvAqu,
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and the Minkowski-space line element is
ds* = —c*dt* + dx* 4 dy* + dz* = nyyditdxY,

where the metric tensor of flat spacetime may be expressed as

(1000

My = 0100 — diag (—1,1,1,1).
0 010
L 0 001

Thus ds® = Nuvdxtdx" corresponds to the matrix equation

1000\ [ car

, 0 100 || ar
ds” = (cdt dx dy dz) ,

0 010]|]| a

001/ \ dz

where ds? is the spacetime interval between x and x + dx with

x= (" x1 X2 x%) = (er,x! X2, = (et,x).

e The Minkowski metric 1s indefinite and is
sometimes termed pseudo-euclidean.

* As explained below, such metrics are also
said to have a Lorentzian signature.
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Example 4.1

Given a Minkowski vector with components
AM = (A A1 A%, A7),

what are the components of the corresponding dual vector? Using
Nuv for the metric tensor, the indices may be lowered through the
contraction

\%

Therefore, using the Minkowski metric tensor

[ ~100 0

| o100
=1 01 0
\ 0 001

the elements of the corresponding dual vector are
Ay = (—A% A1 A% A7),
This illustrates explicitly that

 vectors and dual vectors generally are not equivalent in non-
euclidean manifolds, but that

e they are in one-to-one correspondence though contraction with
the metric tensor.
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The Minkowski-space metric

-1 000
1 00
010
001

Nuv =

is diagonal, with relative sign of the diagonal terms (— + ++).

* This sign pattern is termed the signature of the metric.

* (Some authors instead define the signature to be an integer
equal to the difference of the number of positive signs and
number of negative signs.)

* [t is also common in the literature to see the opposite sig-
nature, corresponding to the pattern (+ — — —) that re-
sults from multiplying the metric above by —1.

* This choice is conventional (no physics depends on it).
Metrics with the signature (— + + +) or (+ — — —) are
sometimes said to be Lorentzian.

* However, it is an essential property of Minkowski space
that it is not possible to have the same sign for all terms in
the signature of the metric.

The Minkowski metric is indefinite, in contrast to
the positive definite metric of euclidean spaces.
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4.1.1 Invariance of the Spacetime Interval
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Special relativity follows from two assumptions:

* The speed of light is constant for all observers.

* The laws of physics can’t depend on coordinates.

The postulate that the speed of light is a constant is equivalent
to a statement that

The spacetime interval ds® is an invariant that
1s unchanged by transformations between inertial
systems (the Lorentz transformations; see below).

* This invariance does not hold for the euclidean spatial in-
terval dx? + dy® 4 dz?,

e nor does it hold for the time interval c2dt2.

* Only the particular combination of spatial and time inter-
vals defined by

not invariant not invariant

— N - ny
ds? = —cPdi* +dx* + dy2 + dzzj

N

invariant

is (Lorentz) invariant.

Because of this invariance, Minkowski space is the
natural manifold for special relativity.
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Example 4.2

Let’s use the metric to determine the relationship between the time
coordinate ¢ and the proper time 7, with 72 = —s? / 2. From

ds®> = —c2di? + dx? + dy* + dZ?,

we may write

—ds®> 1
de® = CZS = (P — d® —dy’ - d7)
( 3
1 dx\ > dy 2 dz\*
—d*{1-= | (= = =
va (@) @) @)

2
v 2
=(1——=|dr.

where v is the magnitude of the ordinary 3-velocity. Therefore, the
proper time T that elapses between coordinate times t; and ¢, 1s

t V2 1/2
T = / (1 — —2) dt.
n C

The proper time interval Tiy is shorter than the coordinate time in-
terval ty —t1 because the square root is always less than one. If the
velocity is constant, this reduces to

2 1/2
AT = (1——2) Ar,
C

which is the usual statement of time dilation in special relativity.
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Table 4.1: Rank 0, 1, and 2 tensor transformation laws

Tensor Transformation law
Scalar =0
ox"
) ,
Covariant vector A w= oA
ox'*
Contravariant vector At =_—"_A4AY
oxY
) ox® JxP
Covarlant rank-2 T‘u,.V = WW ap
) ox'* ox’Y
Contravariant rank-2 T = TP
ox® oxP
) ox® ox’"
Mixed rank-2 T"

HT OxEgxB T @

4.2 Tensors in Minkowski Space

mation laws

=0
A//,L — A.UVAV
\%
Al =N, Ay

mv _ A M ()
TV = A* AV ST
Thy = AL'AP Tys

T/.uv — A“’}/AV(ST};S

In Minkowski space transformations between coordinate sys-
tems are independent of spacetime. Thus derivatives appearing
in the general definitions of Table 4.1 for tensors are constants
and for flat spacetime we have the simplified tensor transfor-

Scalar

Contravariant vector
Covariant vector
Contravariant rank-2 tensor
Covariant rank-2 tensor

Mixed rank-2 tensor

where the A*,, don’t depend on the spacetime coordinates.
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In addition, for flat spacetime we may use a coordinate system
for which the second term of

oxP ox® 02x
A’ _ = 4 -
v BB 5V g “ox"Y ox'H
Tensor Not a tensor

can be transformed away and in flat spacetime covariant
derivatives are equivalent to partial derivatives.

In the Minkowski transformation laws the A" y are
elements of Lorentz transformations, to which we
now turn our attention.
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4.3 Lorentz Transformations

In 3-dimensional euclidean space, rotations are a particularly
important class of transformations because they change the di-
rection for a 3-vector but preserve its length.

* We wish to generalize this idea to investigate abstract ro-
tations in the 4-dimensional Minkowski space that change
the direction but not the length of 4-vectors.

* Such rotations in Minkowski space are termed Lorentz
transformations.




4.3. LORENTZ TRANSFORMATIONS

157

] e2
e; A
\
\
\
\
\
\
\oX
\
\ 2 .
\ o
\ D
\ M _-
\A/qT s -
\ Lo -
Ve X S
oy - ]
X2 \ ///’: X1
\ - :
\ 7 :
\ - :
\ - :
- q)\ :
X

metric tensor g;; in the following way

Rgi;R" = gij,

condition that R be an orthogonal matrix.

Consider rotation of a 2D euclidean coordinate system (above)

* The length of an arbitrary vector x will be unchanged by
this transformation if we require that x-x = x"-x’.

* Since x-x = g;;x'x/, this requires that the transformation
matrix R implementing the rotation x = R'x/ act on the

where R is the transpose of R (switch rows and columns).

* For euclidean space the metric tensor is just the unit matrix
so the above requirement reduces to RR™ = 1, which is the

Thus, we obtain by this somewhat pedantic route
the well-known result that rotations in euclidean
space are implemented by orthogonal matrices.
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* But the requirement Rg;;R" = g;; is valid generally, not
just for euclidean spaces. Thus, let’s use it as guidance to
constructing generalized rotations in Minkowski space.

* By analogy with the above discussion of rotations in eu-
clidean space, we seek a set of transformations that leave
the length of a 4-vector invariant in the Minkowski space.

e We write the coordinate transformation in matrix form,
dx’M = AH,dxY,

where we expect the transformation matrix A", to satisfy
the analog of Rg;;R" = g;; for the Minkowski metric 1y,

ANuyAT = Ny,

or explicitly in terms of matrix components,
A P A°C _
uw A ylpo = Nuv.

* Let us now use this property to construct the elements of
the transformation matrix A*,. These will include

— rotations about the spatial axes (corresponding to ro-
tations within inertial systems) and
— transformations between inertial systems moving at

different constant velocities (Lorentz boosts).

We consider first rotations about the 7 axis.
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4.3.1 Rotations
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For rotations about the z axis

() =)= 3) ()

where a, b, ¢, and d parameterize the transformation matrix.

* Rotations about a single axis are a 2D problem with eu-
clidean metric, so the condition Rg;;R" = g;; is

R 8ij

8ij RT

* Carrying out the matrix multiplications gives

(Y)

and comparing the two sides of the equation implies that

a’+b* ac+bd
ac+bd c*+d?

a?+ bt =1 Ard>=1 ac+bd = 0.

* These requirements are satisfied by the choices

a = cos @ b =sin @ c=—sinQ d =cosQ,

and we obtain the expected result for an ordinary rotation,

K1 e x! cos@ sing\ [x!
x'? x? —sing cosp) \x2)’
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A

Y
Y

Figure 4.1: A Lorentz boost along the positive x axis.

Now, let’s apply this same technique to determine
the elements of a Lorentz boost transformation.

4.3.2 Lorentz Boosts

Consider a boost from one inertial system to a 2nd one moving
at uniform velocity along the x axis (Fig. 4.1).

* The y and z coordinates are unaffected, so this also is ef-

* We can write the condition A1,yA" = 1y out as

fectively a 2-dimensional transformation on ¢ and x,

cdt’ a b\ [cdt
dx’' c d dx

a b -1 0 a c\ -1 0
c d 0 1 b d 0 1
—_—— —— ——  ———
A Nuv AT Nuv

(identical to rotations, except for the indefinite metric).
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* Multiplying the matrices on the left side and comparing
with the matrix on the right side in

a b -1 0 a c -1 0
<c d) (o 1) (b d)(O 1)’
gives the conditions
a—b>=1 —+d*=1 —ac+bd =0,
* These are satisfied if we choose
a = cosh& b =sinh& ¢ =sinh§ d = cosh&,
where € is a hyperbolic variable with —oo < & < o,

* Therefore, the boost transformation may be written as

cdt’ coshé sinh& \ [cdt
= (Lorentz boost).
dx’ sinhé coshé ) \ dx

Which may be compared with the rotational result

K1 cos@ sing ) [x! , ,
— (Spatial rotation).
x'? —sin@ cos@ ) \x?
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The respective derivations make clear that

* the appearance of hyperbolic functions in the boosts,
rather than trigonometric functions as in rotations, traces
to the role of the indefinite metric

in the boosts.

* The hyperbolic functions suggest that the boost transfor-
mations are “rotations”’in Minkowski space.

e But these rotations

— mix space and time, and

— will have unusual properties since they correspond to
rotations through imaginary angles.

* These unusual properties follow from the metric:
— The conserved invariant interval is not the length of
spatial vectors or time intervals separately.

— Rather it 1s the specific mixture of time and space in-
tervals implied by the Minkowski line element with
indefinite metric:

1000\ [ car
100 || dx
010]|] a
001 \dz

ds* = (cdt dx dy dz)
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Figure 4.2: Dependence of the Lorentz parameter £ on § = v/c.
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We can put the Lorentz boost transformation into a more famil-
iar form by relating the boost parameter & to the boost velocity.

* Let’s work with finite space and time intervals by replac-
ing dt — t and dx — x in the preceding equations.

* The velocity of the boosted system is v = x/t. From

ct’\  [cosh§ sinh& ) fct
) sinhé coshé ) \x /)’

the origin (x' = 0) of the boosted system is

e Therefore, x/t = —csinh& /cosh&, so

v _x  sinh§

BEEZ—

ct  coshé

—tanh&.

e This relationship between & and f is plotted in Fig. 4.2.

x' = ctsinh& +xcoshE =0 —  xcosh& = —ctsinh&.
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« Using the identity 1 = cosh? & —sinh? &, and the definition

2\ 12 1
=(1-Z S
! ( Cz) 1—v2/c?

of the Lorentz y factor, we may write

cosh& — cosh2 cosh2
\ cosh? & — sinh? 5

\/l—smhzé/coshz(‘,‘ 1—/32

1—v2/c2 7
e From this result and
sinh &
B=-
cosh&

we obtain

sinh§ = —fBcoshé = —f7y.

 Thus, inserting coshé = vy and sinhE = —B7y in the
Lorentz transformation for finite intervals gives

ct’\ [cosh sinh&\ [ct
¥ sinh& coshé ) \ x
(5 )0 T)0)
v v ) \x - 1) \x
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* Writing the matrix expression

ct’ 1 B\ [ct
=7
X/ —B 1 x
out explicitly for finite intervals gives the Lorentz boost
equations (for the specific case of a positive boost along
the x axis) in standard textbook form,

=)

X =y(x—t)

/ /
y =y T =z

* The inverse transformation corresponds to the replace-
ment v — —v.

* Clearly these reduce to the Galilean boost equations
X =x(xt)=x—wvt {=t(xt)=t.

in the limit that v/c vanishes (so ¥ — 1), as we would
expect.

It is easily verified (Problem) that Lorentz trans-
formations leave invariant the spacetime interval

ds?.
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1sed

Timelike

Figure 4.3: The lightcone diagram for two space and one time dimensions.

4.4 Lightcone Diagrams

By virtue of the line element (which defines a cone)
ds? = —ctdt* + dx® + dy2 +dz?,

the Minkowski spacetime may be classified according to the
lightcone diagram exhibited in Fig. 4.3.

The lightcone is a 3D surface in 4D spacetime and
events and intervals in spacetime may be charac-
terized according to whether they lie inside of, out-

side of, or on the lightcone.
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Timelike
f;j Spacelike
Z N
Now )%
\ / .
3
Spacelike e"

ised

Timelike

The standard terminology [assuming our (—1,1,1,1) metric
signature]:

o If ds? < 0 the interval is termed timelike.

e If ds? > 0 the interval is termed spacelike.

* If ds?> = 0 the interval is called lightlike (or sometimes

null).
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Timelike
g Spacelike
i &
Now y
\ / .
N
Spacelike N -
&
Timelike

The lightcone clarifies the distinction between Minkowski
spacetime and a 4D euclidean space:

* Two points in Minkowski spacetime are separated by the
interval ds defined through

ds? = —c2dt* + dx® + dy2 +d7?.

This interval could be
— positive,
— negative, or
— zero,

which embodies impossibilities for a euclidean space.

In particular, lightlike particles have worldlines
confined to the lightcone and the square of the sep-
aration of any two points on a lightlike worldline

is ZERO.
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Example 4.3

The Minkowski line element in one space and one time dimension
[often termed (1 + 1) dimensions] is ds? = —c?dt? +dx*. Thus, if
ds* =0
252 2 dx? 2
—codt*+dx =0 — o =c° — v==c.
—
V2
We can generalize this result easily to the full 4D spacetime and we
conclude that

» Events in Minkowski space separated by a null interval (ds* = 0)
are connected by signals moving at light velocity, v = c.

* If the time (ct) and space axes have the same scales, the world-
line of a freely propagating photon (or any massless particle)
always make +45° angles in the lightcone diagram.

e Events at timelike separations (inside the lightcone) are con-
nected by signals with v < ¢, and

* Those with spacelike separations (outside the lightcone) could
be connected only by signals with v > ¢ (which would violate
causality).
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A ct

/Y

\
x

Figure 4.4: Each point of spacetime has its own lightcone.

We have placed the lightcone in the earlier illustration at the ori-
gin of our coordinate system, but in general we may imagine a

lightcone attached to every point in the spacetime, as illustrated
in Fig. 4.4.
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(a) Act (b) Act

World line of ;
massive World line
particle of massless

photon

/y /y
» X > X

Figure 4.5: Worldlines for massive particles and for massless particles such
as photons.

A tangent to the worldline of any particle defines the local
velocity of the particle and constant velocity implies straight
worldlines. Therefore, as illustrated in Fig. 4.5,

e Light must always travel in straight lines (in Minkowski
space; not in curved space), and always on the lightcone,
since v = ¢ = constant.

* Thus photons have constant local velocities equal to c.

* Worldlines for any massive particle lie inside the local
lightcone since v < ¢ (timelike trajectory, since always
within the lightcone).

* The worldline for the massive particle in this particular
example is curved (acceleration).

* For non-accelerated massive particles the worldline would
be straight, but always within the lightcone.
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Invariance and Simultaneity

* In Galilean relativity, an event picks out a hyperplane of
simultaneity in the spacetime diagram consisting of all
events occurring at the same time as the event.

» All observers agree on what constitutes this set of simul-
taneous events because Galilean relativity of simultaneity
is independent of the observer.

* In Einstein’s relativity, simultaneity depends on the ob-
server and hyperplanes of constant coordinate time have
no invariant meaning.

* However, all observers agree on the classification of
events relative to local lightcones, because the speed of
light is invariant for all observers.

As we shall now discuss, The local lightcones de-
fine an invariant spacetime structure that may be
used to classify events.
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Figure 4.6: The lightcone diagram for two space and one time dimensions.

4.5 Causal Structure of Spacetime

The causal properties of Minkowski spacetime are encoded in
its light cone structure, which requires that v < ¢ for all signals.

* Each point in spacetime may be viewed as lying at the
apex of a lightcone (“Now”).

* An event at the origin of a lightcone may influence any
event in its forward lightcone (the “Future”).

* The event at the origin of the lightcone may be influenced
by events in its backward lightcone (the “Past”).

* Events at spacelike separations are causally disconnected
from the event at the origin.

* Events on the lightcone are connected by v = ¢ signals.
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The lightcone is a surface separating the knowable
from the unknowable for an observer at the apex of
the lightcone.

This lightcone structure of spacetime ensures that all velocities
obey locally the constraint v < c.

* Velocities are defined and measured locally.

* Hence covariant field theories in either flat or curved space
are guaranteed to respect the speed limit v < c.

* This is true irrespective of whether globally velocities ap-
pear to exceed c.

EXAMPLE: In the Hubble expansion of the Uni-
verse,

» Galaxies beyond a certain distance (the hori-
zon) would appear to recede from us at ve-
locities in excess of c.

e However, all local measurements in that ex-
panding, possibly curved, space would deter-
mine the velocity of light to be c.
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4.5.1 Time Machines and Causality Paradoxes

When time travel comes up it is usually about going backward
in time.

* Traveling forward in time requires no special talent.

* [t is easy to arrange various scenarios consistent with rel-
ativity where a person could travel into a future time even
faster than normal.

* For example, in the twin paradox discussed later it is pos-
sible to arrange for a traveler to arrive back at Earth cen-
turies in the future relative to clocks that remain on Earth.

 Similar options exist using the gravitational time dilation
to be described later chapters.

However, the real question is, could you go back in time to
explore your earlier history?

* No! Not according to current understanding.

* To bend a forward-going timelike worldline continuously
into a backward-going one requires going outside the lo-
cal lightcone, requiring that v > c.

* If closed timelike loops were permitted, travel to earlier
times might be possible.

* However, they are forbidden if energy densities are never
negative and the Universe has the topology in evidence.
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Thus, the determined time traveler has two options:

* Find some negative energy, or

* Find structures with an exotic spacetime topology allow-
ing closed timelike loops.

Unfortunately for the aspiring time traveler,

* negative energy is probably forbidden in classical gravity
and

* there is no evidence at present for exotic spacetime topolo-
gies with closed timelike loops.

* These statements are based entirely on clas-
sical gravity considerations;

* it is unknown at present whether they could
be modified by some future understanding of
quantum gravity.
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From the preceding discussion we may conclude that

* the axioms of special relativity are fundamentally at odds
with the Newtonian concept of absolute simultaneity,
since

* the demand that light have the same speed for all ob-
servers necessarily means that

* the apparent temporal order of two events depends upon
the observer.

However, the abolishment of absolute simultaneity

* introduces no causal ambiguity because
* all observers agree on the lightcone structure of spacetime.

* Thus, for example, all observers will agree that

Event A can cause event B only if A lies in the past
lightcone of B.




178  CHAPTER 4. LORENTZ COVARIANCE AND SPECIAL RELATIVITY

N
ct' %/, ,/
Y
ct A ,

h 7

Q

A 7

n
& Y

Y
7/
7
Y
7
i/
Y
//
-0
—a //
7
7, x'
7
Y
’ Gt;)(%
7,
Y
Y
7/
.7 N o = tan-1(v/c)
Y

Figure 4.7: Lorentz boost transformation in a spacetime diagram.

4.6 Lorentz Transformations in Spacetime Diagrams

It is instructive to look at the action of Lorentz transformations
in the spacetime (lightcone) diagram. If we consider boosts
only in the x direction, the relevant part of the spacetime dia-
gram in some inertial frame corresponds to a plot with axes ct
and x, as in the figure above.
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Let’s ask what happens to these axes under the Lorentz boost

)

e The ¢’ axis corresponds to x' = 0. From the 2nd equation

/ VX
o =cy(t——=
C

X = vy(x—vt).

x=vt — x/c=(v/c)t = P,
so the equation for the y’ axis is ct = xB !, with B = v/c.

« Likewise, the x’ axis corresponds to ¢’ = 0, which implies
from the 1st equation that ct = (v/c)x = xp.

e Thus, the equations of the x’ and ¢’ axes [in the (x,ct) co-
ordinate system] are ct = xf8 and ¢t = x !, respectively.

e The x’ and ¢’ axes for the boosted system are also shown
in the figure for a positive value of f3.

* Time and space axes rotated by same angle, but in oppo-
site directions (Cause: the indefinite Minkowski metric).

* The rotation angle is given by tang = v/c.
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Ordinary rotations: the two axes rotate by the same angle in
the same direction
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Lorentz boost “rotations”: the two axes rotate by the same an-
gle but in opposite directions

¢ = tan-1(v/c)
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Figure 4.8: Comparison of events in boosted and unboosted frames.
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Most of special relativity follows from this figure.

* For example, relativity of simultaneity is illustrated above.

e Points A and B lie on the same ¢’ line, so they are simulta-
neous in the boosted frame.

* But from the dashed projections on the ct axis, event A
occurs before event B in the unboosted frame.

e Likewise, points C and D lie at the same value of x’ in the
boosted frame and so are spatially congruent, but in the
unboosted frame xc # xp.

Relativistic time dilation and space contraction
follow rather directly from these observations.
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Example 4.4

The time registered by a clock moving between two points depends
on the path followed, as suggested by the time-dilation formula.

2
dt* = (1 - V—2> dr’.
C

The proper time 7 is the time registered by a clock
carried by an observer on a spacetime path.

That this is true even if the path returns to the initial spatial position
is the source of the twin paradox of special relativity.

e Twins are initially at rest in the same inertial frame.

e Twin 2 travels at v ~ ¢ to a distant star and then returns at the
same speed to the starting point.

e Twin 1 remains at the starting point.

 The relevant spacetime paths are:

cta
Ct2 ...................... 1
Worldline ™. Distant
Twin 1 ~  star
" Worldline
ot Lo Twin 2
1 - X

(0]

 The elapsed time on the clock carried by Twin 2 is always smaller
than that for the clock carried by Twin 1 (see above equation).
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cta

Ct2 ...................... 4\\
Worldline ™. Distant
Twin 1 ~  star
" Worldline

ot Lo ! Twin 2

1 - X

X

* The (seeming) paradox arises if one describes things from the
point of view of Twin 2, who sees Twin 1 move away and then
back.

* This seems to be symmetric with the case of Twin 1 watching
Twin 2 move away and then back.

But it isn’t: the twins travel different worldlines,
and different distances along these worldlines.

» For example, Twin 2 experiences accelerations but Twin I does
not, so their worldlines cannot be equivalent.

e Their clocks record the proper time on their respective world-
lines and thus differ when they are rejoined.

* This indicates unambiguously that Twin 2 is younger at the end
of the journey.

When properly analyzed, there is no paradox in
the “twin paradox”.
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Space Contraction

Consider a rod of proper length Ly, as measured in its own rest
frame (ct,x), that is oriented along the x axis.

ct A ct' 4
/
!
\ _-v
- X
- /60;\‘5/\3““
- CcAt = (vic) Lo
-7 /\ o =tan"1(v/c)
—_—
X
| - Lo > |

Note: “Proper” in relativity denotes a quantity measured in the
rest frame of an object (proper time, proper length, ...).

What is the length of the rod L as observed in
the boosted (ct',x') frame? Fundamental measure-
ment issues:

* Distances must be measured between space-
time points at the same time.

» Elapsed times must be measured at spacetime
points at the same place.

Example: Length of an arrow in flight is not given
by the difference between the location of its tip at
one time and its tail at a different time. The mea-
surements must be made at the same time.




4.6. LORENTZ TRANSFORMATIONS IN SPACETIME DIAGRAMS

185

CAt = (vic) Lo
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X

* The frame (ct’,x') is boosted by a velocity v along the
positive x axis relative to the (ct,x) frame.

* Therefore, in the primed frame the rod will have a velocity
v in the negative x’ direction.

* Determining the length L observed in the primed frame re-
quires that the positions of the ends of the rod be measured
simultaneously in that frame.

e The axis labeled x’ has constant ¢’ (bottom figure), so the
distance L (top figure) is the length in the primed frame.
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* The distance L seems longer than Lg, but this is deceiving
because the diagram is in Minkowski spacetime but our
brain has a euclidean-space bias.

* We are familiar with perceived distances being different
from actual distances from flat map projections.

Map Projections

A me mE me RA SRS A8 G4 WE RA RA B8 S8 Se B8 Se e = me me B8 Be ee S8 e ma

Mercator
(preserves angles,
distorts sizes)

Source: http://www.culturaldetective.com/worldmaps.html
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CAt = (vic) Lo

|: Lo > X

* A Mercator projection of the globe onto a euclidean
sheet of paper gives misleading distance information—
Greenland isn’t really larger than Brazil, for example,

We must always trust the metric to determine the
correct distance in any space.
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CAt = (vic) Lo

X
| - Lo > |

* From the Minkowski indefinite-metric line element
ds? = —c2dr* + dx*.
and from the triangle (Minkowski Pythagorean theorem),
L* =L} — (cAr)*.

* But cAr = (v/c) Ly (because from the diagram tan¢ =
cAt /Ly and tan @ = v/c). Therefore,

L=(L§—(cAt)?)'/?
(- ()
w(i-2)"

* L is shorter than the proper length Ly, even though it
seems longer in the figure. TRUST THE METRIC!

1/2

But this is just special relativistic length-
contraction, which is seen to be nothing more than
the Pythagorean theorem for Minkowski space.
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Figure 4.9: (a) Timelike, lightlike (null), and spacelike separations.
(b) Lorentz transformation that brings the timelike separated points A and
C of (a) into spatial congruence (they lie along a line of constant x" in the
primed system). (c) Lorentz transformation that brings the spacelike sepa-
rated points A and B of (a) into coincidence in time (they lie along a line of
constant ¢’ in the primed system.

As we have seen, the spacetime separation between any two
events (spacetime interval) may be classified in a relativisti-
cally invariant way as

1. timelike,
2. lightlike, or

3. spacelike

by constructing the lightcone at one of the points, as illustrated
in Fig. 4.9(a).
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The geometry of the above figures suggests another important
distinction between points at spacelike separations [the line AB

in Fig. (a)] and timelike separations [the line AC in Fig. (a)]:

boost by v/c = tan @,

— in which A and C have the same coordinate x'.

* If two events have timelike separation, a Lorentz transfor-
mation can bring them into spatial congruence.

* Figure (b) illustrates a coordinate system (ct’,x’).
— Itisrelated to the original system by an x-axis Lorentz
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On the other hand
* If two events have a spacelike separation, a Lorentz trans-
formation exists that can synchronize the two points.
* Figure (c) illustrates an x-axis Lorentz boost by v/c =
tan ¢ to a system in which A and B have the same time t'.
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v =c line.

A.

A with point B

from A.

Notice that the maximum values of ¢ and @, are limited by the

* Thus, the Lorentz transformation to bring point A into
spatial congruence with point C

— exists only if point C lies to the left of the v = c line

— and thus is separated by a timelike interval from point

» Likewise, the Lorentz transformation to synchronize point

— exists only if B lies to the right of the v = c line,

— meaning that it is separated by a spacelike interval
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4.7 Lorentz Covariance of Maxwell’s Equations

We conclude this chapter by examining the Lorentz invariance
of the Maxwell equations that describe classical electromag-
netism. There are several motivations.

* [t provides a nice example of how useful Lorentz invari-
ance and Lorentz tensors can be.

* The properties of the Maxwell equations influenced Ein-
stein strongly in his development of the special theory of
relativity.

* There are many useful parallels between general relativ-
ity and the Maxwell theory, particularly for weak gravity
where the Einstein field equations may be linearized.

Understanding covariance of the Maxwell equa-
tions will prove particularly important when grav-
itational waves are discussed in later chapters.
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4.7.1 Maxwell Equations in Non-covariant Form

In free space, using Heaviside—Lorentz, ¢ = 1 units, the
Maxwell equations may be written as

VE:p7
a—B—I-V><E=(),
ot

V-B=0,

0E
VxB——=j
X 2p J

where E is the electric field, B is the magnetic field, with the
charge density p and current vector j required to satisfy the
equation of continuity

dp

L 4V.j=0.
8t+ J

Maxwell’s equations are consistent with special relativity.

e However, in the above form this covariance i1s not mani-
fest, since these equations are formulated in terms of 3-
vectors and separate derivatives with respect to space and
time, not Minkowski tensors.

* It proves useful to reformulate the Maxwell equations
in a manner that is manifestly covariant with respect to
Lorentz transformations.

The usual route to accomplishing this begins by replacing the
electric and magnetic fields by new variables.
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4.7.2 Scalar and Vector Potentials

The electric and magnetic fields may be eliminated in favor
of a vector potential A and a scalar potential ¢ through the
definitions

B=VxA =-Vo——.

The vector identities

V. (VxB)=0 VxVe =0,

may then be used to show that the second and third Maxwell
equations are satisfied identically, and the identity

Vx(VxA)=V(V-A)—V?A,

may be used to write the remaining two Maxwell equations as
the coupled second-order equations

0
Vip+-—V-A=—
¢+ A P

d’A ¢
2 .
A_8t2_ ( 'A+at)_ J:

These equations may then be decoupled by ex-
ploiting a fundamental symmetry of electromag-
netism termed gauge invariance.
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4.7.3 Gauge Transformations

Because of the identity V x V¢ = 0, the simultaneous transfor-
mations

A—A+Vy (p—>(p—aa—)f

for an arbitrary scalar function ¥ do not change the E and B
fields; thus, they leave the Maxwell equations invariant.

* These are termed (classical) gauge transformations.

* This freedom of gauge transformation may be used to de-
couple the Maxwell equations.

* For example, if a set of potentials (A, @) that satisfy

vai2? =0,
ot

is chosen, the equations decouple to yield

2 2 o

which may be solved independently for A and ¢.

* Such a constraint is called a gauge condition and imposing
the constraint is termed fixing the gauge.

The particular choice of gauge in the above exam-
ple is termed the Lorenz gauge.
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Another common gauge is the Coulomb gauge, with a gauge-
fixing condition
V-A=0,

which leads to the decoupled Maxwell equations

J’A L0
Vip=— VA-——=V——j
=-r A=y =V
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Let’s utilize the shorthand for derivatives introduced earlier:

d d
oM = P (0V,0",0°,0°) ( axO’V)’

d d
ﬁ = (80781782783) - (ﬁ? V) )

where, for example, d! = d/dx; and the 3-divergence is

o =

V= (81,82,83).
A covariant formalism then results from introducing
e the 4-vector potential A*,

e the 4-current j*, and
* the d’Alembertian operator O
through the definitions
A= (9,A)=(A%4)  jF=(p.j) O=dut.
Then a gauge transformation takes the form
AH AR My =AM
and the preceding examples of gauge-fixing constraints become

8HA” =0 (Lorenz gauge) V-A =0 (Coulomb gauge).

The Lorenz condition is covariant (formulated in
terms of 4-vectors); the Coulomb gauge condition
is not covariant (formulated in terms of 3-vectors).
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The operator O is Lorentz invariant since
I Al QI AV u A uo_
O = 90" = AV A M 9y0h = 90t = .
Thus, the Lorenz-gauge wave equation may be expressed in the
manifestly covariant form

DAH = jH

and the continuity equation becomes

The Maxwell wave equations in Lorenz gauge are manifestly
covariant.

* This, coupled with the gauge invariance of electromag-
netism, ensures that the Maxwell equations are covariant
in all gauges.

* However—as was seen in the example of the Coulomb
gauge—the covariance may not be manifest for a particu-
lar choice of gauge.

Let’s now see how to formulate the Maxwell equa-
tions in a manifestly covariant form.
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4.7.4 Maxwell Equations in Manifestly Covariant Form

The Maxwell equations may be cast in a manifestly covariant
form by constructing the components of the electric and mag-
netic fields in terms of the potentials (Problems).

* Proceeding in this manner, we find that the six indepen-
dent components of the 3-vectors E and B are elements of
an antisymmetric rank-2 electromagnetic field tensor

FFY = —FVH = gHAY — 9V AH,
which may be expressed in matrix form as
0 —E! —E* —E°
El 0 -B B
E* BB 0 -B!
E’ -B*> B! 0
 That is, the electric field E and the magnetic field B

— are vectors in 3D euclidean space but

— their six components together form an antisymmetric
rank-2 tensor in Minkowski space.
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Now let’s employ the Levi-Civita symbol €qgys, Where

* €ypys has the value +1 for affyd = 0123 and cyclic per-
mutations,

e —1 for odd permutations, and

* zero if any two indices are equal,

e and use it to define the dual field tensor "V by
0 -B' —-B*> —B’
Bl 0 E} -—E?
B> —-E> 0 E!
B> E* —-E' 0

* Then two of the four Maxwell equations may be written

auFuv — jv7

 and the other two Maxwell equations may be written as

The Maxwell equations in this form are mani-
festly covariant (under Lorentz transformations)
because they are formulated exclusively in terms
of Lorentz tensors.
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Chapter 5

Lorentz-Invariant Dynamics

In the preceding chapter we introduced the Minkowski met-
ric and covariance with respect to Lorentz transformations be-
tween inertial systems. This was shown to lead to the basic
properties of special relativity:

* relativity of simultaneity,
e time dilation, and
* space contraction.

In this chapter we continue that discussion for flat Minkowski
space and consider general properties of trajectories for parti-
cles and for light in Minkowski spacetime.

203
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5.1 Geometrized Units

It is convenient to introduce a new set of units in which ¢ and/or
G can be set to unit value so that they do not appear explicitly
in equations.

* These are called geometrized units or c = G = 1 units.

* Such units are also sometimes called natural units, be-
cause they are suggested by the physics of the problem.

Geometrized units, and how to convert between
standard units and geometrized units, are ex-
plained in examples below and in an Appendix of
the book.
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Assuming ¢ = G = 1 and setting
1=¢=29979 x 10" cm s~!
1=G=6.6720x 10 8cm? g~ ! s72,

we may solve for standard units in terms of these new units.

* From the first equation 1 =2.9979 x 10!1%cm s~!, imply-
ing that

15=2.9979x10"%cm  1cm=(2.9979 x 10'%)~ 15,
and from the second 1 = 6.6720 x 1073 cm? g=! s72, so
1g=6.6720 x 10~ 3 cm? s 2

1 2
—=6.6720 x 10~ 8 cm®
0.6720>¢ 10" " em (2.9979x10100m)

—7.4237 x 10~ cm.

Thus distance, time, and mass all have the dimen-
sion of length in geometrized units.

* Likewise, we may derive from the above relations
lerg=1gcm? s 2 =8.2601 x 107%cm,
1gem™3 =17.4237 x 107 cm™2,
IMs = 1.4766 km,

and so on.
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* Velocity is dimensionless in these units since
lems ' =2.9979 x 10719

(that is, v is measured in units of v/c).

From this point onward we shall commonly work
inc=G=1 (or c =1 units if gravity isn’t in-
volved), unless the explicit restoration of ¢ or G
factors 1s desirable

e for clarity,
* to make a particular point, or

* to compute numbers in “engineering units”.
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In geometrized units

* all occurences of G and ¢ are omitted from equations.

 Calculating quantities in standard units then requires rein-
serting appropriate combinations of ¢ and G to give the
right physical dimensions for each term.

Example: it will be shown later that the Schwarzschild radius
defining the event horizon for a spherical black hole in ge-
ometrized units is rg = 2M, where M is the mass.

* Both sides of this equation have dimensions of length in
geometrized units.

e What is the Sun’s Schwarzschild radius in standard units?
The result may be obtained by inspection since

* In geometrized units 1 M = 1.4766 km.

e Thus, for the Sun

rs =2Ms =2 x 1.4766 km = 2.95 km.

Alternatively, to convert this equation to CGS units note that

* rs = 2M implies that the right side must be multiplied by
a combination of G and ¢ having the units of cm g~! to
make it dimensionally correct in the CGS system.

* Clearly this requires the combination G/c?, so in CGS
units the Schwarzschild radius is rs = 2GM /2.
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Quantity Symbol Geometrized  Standard Conversion
unit unit
Mass M & M GM /c?
Length L Z Z L
Time t Z T ct
Spacetime distance s Z Z s
Proper time T Z T cT
Energy E < ML) TP GE/ct
Momentum p &z ML) T)  Gp/c?
Angular momentum J Z? ML T)  GI/E
Luminosity (power) L dimensionless .Z(%*/.73) GL/c
Energy density € L2 M)(LT?)  Ge/ct
Momentum density T L2 M|(L2T)  Gm/c?
Pressure P L2 M) LT?)  GP/c*
Energy / unit mass € dimensionless (£/.7)? g/c?
Ang. mom./unit mass £ < LT l/c
Planck constant hi Z? ML T)  Gh/c

The standard unit of length is .Z, the standard unit of mass is .#, and the standard unit of time is .7.
To convert equations to standard units from geometrized units, replace quantities in column 2 with
quantities in the last column. To convert from standard to geometrized units, multiply by the factor of
G and c appearing in the last column.

The Table above (from Appendix of book) also may be used to
read off the same result:

e From the table, conversion of Ry = 2M from natural to

standard units requires the replacements
rs — Iy M%GM/cz.

* This gives ry = 2GM/c?.
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Finally as a check, if the problem is worked directly in CGS
units:
O _ 2(6.674 x 1078 cm? g1 s72)(1.989 x 103 g)
S (3x1019cms—1)2
=2.95x10°cm
= 2.95km,

which is the same result as obtained above.
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5.2 Velocity and Momentum for Massive Particles

Particles with finite mass follow timelike worldlines.

» The worldline for a particle is conveniently parameterized
in terms of a variable that changes continuously along the
worldline.

* For timelike trajectories the natural choice for this param-
eter is the proper time 7.

The equation of the worldline may then be expressed as
= xH(1)

and we may define a velocity 4-vector (the 4-velocity) by

u =u = .

u .u .u
o dt’ dt’ dt’ drt

The proper time interval dt and spacetime interval ds are re-
lated by

dt* = —ds,

and the coordinate time interval dt and the proper time interval
dt are related through special-relativistic time dilation:

dr:d,(l_vzy/z:%dt , (1—v2>_1/2

where v is the 3-velocity, v = dx'/dt. (Note: ¢ = 1 units!)
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5.2. VELOCITY AND MOMENTUM FOR MASSIVE PARTICLES
A ct ;

\
>

;

|

/
"

Figure 5.1: The 4-velocity along a timelike worldline

The 4-velocity for a massive (timelike) particle is

* tangent to the worldline of the particle at any point and

* lies within the forward light cone (Fig. 5.1).

Since dt = ydr,

dxo dt }/d‘c' —1/2
0 ¥ 2
“ drt drt drt < v

o _ad -(1—v2>_1/2
.

Vi Y
so that we may write for the components of the 4-velocity
—-1/2
ut =(y, ) v= (1 —vz) :

(Remember: we are using units where ¢ = 1.)
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Since we have
ds* = —dt* = nyyde*dx,
which gives, upon dividing by d7?,

dxt dxV
=My = M =

the scalar product of u with itself gives the normalization

u-u=—1,
[ 1000
0 100

l/[‘u:7 -
(v,vv) Ny 0 010
\0 001

For massive particles we may always invoke the
condition u-u = —1.
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5.2.1 4-Momenta

We may define the 4-momentum by

p" = (E,p) = mu",
where m 1s the rest mass. Since u-u = —1, the normalization of
the 4-momentum is

— 2
p2:p-p:pup“ = mPu-u= —m?.

Because ut = (¥, yv), the components of the 4-momentum are

pH = (E,p) = (ym,ymv) — Pu = mwpv = (—E,p),

with y= (1— vz)_l/z. Thus, p? = pupH* = —m? implies that

E

pup" = (—E,p) (
p

>:—m2 —  E=+/p?+m?,

which is just the most famous equation in physics,

E=+/p224+m2c* — E=mc* (p—0),

written in ¢ = 1 units.
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5.3 Geodesics

A metric allows us to define geodesics:

* A geodesic for a manifold is a path that represents the
shortest distance between any two points.

* A geodesic may also be viewed as the “straightest possi-
ble path” between two points.

* More technically, a geodesic is a curve that “parallel-

transports its own tangent vector”.

EUCLIDEAN SPACE:

“The shortest distance between two points is a straight line.”
Thus, the geodesics in Euclidean space are given by

r=0 (Newton’s 1st law)
MINKOWSKI SPACE:
ey e
dt? dr?2 7

where 7T is the proper time (time measured by a clock carried
along a worldline).

In both of the above examples, the geodesics are
straight lines (this generally will not be true in
curved spacetime).
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5.4. PRINCIPLE OF EXTREMAL PROPER TIME
A ct

Figure 5.2: Extremizing the proper time to determine the geodesic for a

particle.

5.4 Principle of Extremal Proper Time

PRINCIPLE OF EXTREMAL PROPER TIME: the
worldline for free particles between timelike sepa-
rated points extremizes the proper time (Fig. 5.2).

From (using ¢ = 1 units)
dt? = —ds* = —(—dt® +dx* + dy* + dz*))

the proper time between the points A and B is

B
TAB:/ (d* — dx? — dy* — dz?)'/?.
A




216 CHAPTER 5. LORENTZ-INVARIANT DYNAMICS

We may parameterize the path by a variable ¢ that varies con-
tinuously from O to 1 as the particle moves from A to B and

1/2
— d (N a o (aeN]
AB= |y 1\ do do do do '
The condition for an extremum is that

S/dr:O,

where the variation is generally of the explicit form

_ 9 su

Defining a Lagrangian for a metric g,y

dx dxV\ /2 1
L=|— _— — TAR = Ldo
( Suv o dG) AB /() )

the variation 6 [ dt = 0 then implies the Euler—Lagrange equa-
tion of motion

d oL N JL 0
do \ d(dx* /do) oxH

(Proved in a Box in the book.)
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EXAMPLE: Consider x* = x!. The Euler-Lagrange equation
1s

_ d 8L _|_8_L =0
_do \d(dx/dc) ) JxH B

p dinate depend
derivative dependence ~ coordinate dependence

1

For constant 71y the Lagrangian L does not depend on x* and

the Euler—Lagrange equation reduces to

Ld(a N e d (et
do \ d(dx* /do) Qxfi_ do\Ldo )

=0

Inserting 1 /L = do /dt and multiplying by do /dz, gives

d?x!

az 0

Applying similar steps to the other terms then gives the general
result (Problem)

d?xM

——=0 — No curvature for geodesic
dt?

The principle of extremal proper time implies that
geodesics in Minkowski space are straight lines.
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Principle of Extremal Proper Time (Taylor and Wheeler):

“Spacetime shouts ’Go straight!” The free stone
obeys. ...The stone’s wristwatch verifies that its
path is straight.”
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5.5 Light Rays

For particles moving at lightspeed the rest mass is identically
zero.

* Light-like particles such as photons move on the light
cone with the proper time between two points given by

dt> = —ds*> =0,

* Thus photons and other light-like (massless) particles
travel any Minkowski distance in zero proper time.

Therefore the proper time T is not a useful param-
eterization for the world line of photons and other
massless particles.

However, notice that we may write the curve x =t (correspond-
ing to v = ¢ expressed in ¢ = 1 units) parametrically as

H=uHd

where u* = (1,1,0,0) is a tangent 4-vector,

B dxH

u_ -
T

and A is a parameter.
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With this choice of parameterization the equation of motion for
the light ray may be put into the same form as that for a massive
particle

du

a =Y

which is analogous to Newton’s first law.

e Parameters A for which this is true are termed affine pa-
rameters.

* Affine parameters generally are not unique.

 For example, if A is an affine parameter then A multiplied
by any constant is also an affine parameter.

Affine parameters are convenient for light rays be-
cause they lead to equations of motion that mimic
those for timelike particles.
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For massive particles u-u = —1, but since for the photon case
ut = (1,1,0,0) for motion on the x-axis, we have

M‘u = nuvuv = (_1,1,0,0)

Thus for photons

u-u=uyu =(—1,1,0,0) x =—-1+1=0.

o O = =

The primary differences between

* equations governing the motion of massive particles and

* those governing the motion of massless particles (e.g.,
photons)

in spacetime will be associated with the difference in 4-velocity
normalizations

u-u=—1 (for massive particles),

u-u=0 (for massless particles).

Otherwise their equations of motion will be similar.
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For photons the energy E and momentum p are given by

where 7 is Planck’s constant, @ is the frequency, and k is the
wavevector. Thus,

Pt = (E,p) = (ho,hk) = hk" = h(o,k).

* Since photons are massless, the 4-momentum and 4-
wavevector are normalized such that

pp=kk=0,
which is E = pcin ¢ = 1 units.

* The equations of motion for photons may also be ex-
pressed in terms of the 4-momentum or 4-wavevector,

dk

dp _o 4k
7

d/l_o

0,

where A is an affine parameter.
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Figure 5.3: Unit vectors of a local coordinate system at a point on an ob-
server’s worldline for two space and one time dimension.

5.6 Observers

To test theory against data we must introduce observers.

* An observer may be thought of as occupying a local labo-
ratory moving on a (timelike) worldline in the spacetime.

 She carries 4 orthogonal unit vectors e, ej, e, and
ey specifying a local, orthonormal coordinate system

(Fig. 5.3).

* Note: Hats on indices indicate explicitly that this is a local
orthonormal coordinate system, not our usual position-
dependent coordinate basis.

* This coordinate system defines (locally) a time direction
and three space directions to which the observer will ref-
erence all measurements.
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* The timelike component ey will be tangent to the ob-
server’s worldline (the observer’s clock is moving in that
direction if it is at rest in the laboratory).

— Since the 4-velocity u of the observer is a unit tangent
vector (u-u = —1),

— The observer may choose any mutually orthogonal set
of three unit spatial vectors to complete the set, as
long as they are orthogonal to eg.

e Observers refer observations to the axes of their lab and
its clocks.

— Thus, they measure components of 4-vectors along
their chosen basis vectors.

— These components may be computed by raking scalar
products with the orthonormal basis 4-vectors.

Example: For the 4-momentum
p=rplep,

we have in particular that the energy measured by
an observer with 4-velocity ugpg 1S given by

E :po = —p-¢.
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5.7 Isometries and Killing Vectors
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In differential geometry, Killing vectors are standard tools for
analyzing symmetries such as those that arise as conservation
laws in the usual Lagrangian or Hamiltonian formulations of
mechanics.

* In all spacetimes, whether flat or not, one constant of mo-
tion may be deduced from the normalization of the 4-
velocity ut = dx* /dt

guvutu¥ = —1,

corresponding to the preservation of u-u for a timelike par-
ticle.

* If there are additional constants of motion, they must arise
from specific symmetries in the problem.

* In ordinary mechanics, continuous symmetries imply con-
servation laws.

Example: conservation of angular momentum fol-
lows from a potential that is spherically symmetric.

* [f a spacetime metric has a symmetry (termed an isom-
etry), that too will generally imply that some quantity is
conserved.
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Suppose the metric is independent of one of the spacetime co-
ordinates, say A9, such that

¥ — x4+ constant

leaves the metric unchanged.

e For such an isometry we define a unit vector pointing
along the direction in which the metric is constant,

K" = (1,0,0,0).

 The vector K* is termed the Killing vector associated with
the symmetry.

In flat 3D space
ds® = dx* + dy2 +d7?

and conservation of the components of linear mo-
mentum is associated with three Killing vectors

(1,0,0) (0,1,0) (0,0,1)

indicating invariance under translations in the x, y,
and z directions, respectively.
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A symmetry implied by a Killing vector means that

* Some quantity is conserved along a geodesic.

 This quantity may be found using the principle of extremal
proper time (Euler—Lagrange equation).
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Example: The Euler—Lagrange equation is

LA (oL N oL dtde) !
do \d(dxt/do)) T oxn — "= \"®*"io do

Let gy,v be independent of x!, corresponding to a Killing vector

K%=(0,1,0,0)

Then dL/dx' = 0 and (Problem)

JdL 1 dx" dxt
—8(dx1/d6) = oL (glv(x)E ‘|’gu1(x)%)
1 dxt dxt
~ oL <gl,u(x)% ‘|‘gu1(x)%)
gipdxt g ditdr dx*
“TLdo Lardo ar

= —gauK%u" = —K-u,
where we have used that g, 1s symmetric and
dt dx\'? dr
L=|— - — =1L = K%.
( SWvie do ) do lp = Sau
Then the Euler—Lagrange equation reduces to

d
%(K-u) =0 — K-u conserved on geodesic

The quantity K-u is conserved along a geodesic if
K 1s a Killing vector and u is the 4-velocity.
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For most of our applications we will be able to guess the Killing
vectors.

* However, more formally (proved in the book chapter),
Killing vectors satisfy the differential equation

VvK.u —|— V‘qu — avK‘u —|_ a‘qu — O.

e This is known as Killing’s equation.

» The vector fields that solve it are the Killing (vector) fields
associated with symmetries of the metric.
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Chapter 6

The Principle of Equivalence

The general theory of relativity rests upon two principles that
are in fact related:

 The principle of equivalence

 The principle of general covariance

Let’s consider the equivalence principle.

231
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6.1 Inertial and Gravitational Mass

1. The inertial mass is defined through Newton’s second law:
m=F/a.

2. The gravitational mass is defined through Newton’s law
of gravitation: m = r*F /GM.

3. The relationship between inertial and gravitational masses
was suggested by Galileo: different objects fall at the
same rate in a gravitational field,

4. which is equivalent to equality of inertial and gravita-
tional mass.

5. This was first established to high precision in the Edtvos
experiments of 1893.
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e

|

Torsion balance ‘

O

A ‘ ' B

W
0 Equal weights of 4

different materials

Figure 6.1: Measuring the difference between gravitational and inertial
mass.

If the inertial and gravitational masses differ

* In Fig. 6.1 a couple will be produced by the action on
the inertial mass of the centripetal effects associated with
Earth’s rotation and

° the balance Will tWiSt if mlnertlal # mgravitational.

* Result of the original E6tvos experiment: inertial and
gravitational masses are equivalent, with a sensitivity of
one part in 10° (10!3 in more modern experiments).

Weak Principle of Equivalence:

Minertial = Mgravitational -

Equivalent statement: All objects experience the
same acceleration in a gravitational field, irrespec-
tive of their masses or any other intrinsic property.
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X

(a) Stationary elevator (b) Elevator accelerated

in a gravitational field in interstellar space far

at the surface of a from any gravitating

planet. masses %

Figure 6.2: The Einstein elevator.

6.2 Strong Equivalence Principle

Einstein extended this idea to the modern equivalence principle
(sometimes called the strong principle of equivalence), based
on a thought experiment. For the elevator illustrated in Fig. 6.2,

the occupant is unable to distinguish

* an acceleration of the elevator at some point
in space where no gravitation fields act from

* the effect of a stationary elevator sitting in a
planetary gravitational field.

Henceforth, by equivalence principle we shall mean the strong
equivalence principle.
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The (strong) equivalence principle can be stated in several
equally-valid ways:

* For an observer in free fall in a gravitational field, the re-
sults of all local experiments are independent of the mag-
nitude of the gravitational field.

* All local, freely falling, non-rotating laboratories are fully
equivalent for the performance of physical experiments.
Such a laboratory is called a local inertial frame or
Lorentz frame.

* In any sufficiently /ocal region of spacetime, the effect of
gravity can be transformed away.

* In any sufficiently /ocal region of spacetime, we may con-
struct a local inertial system in which the special theory of
relativity is valid, even in a very strong gravitational field.

* all forms of mass and energy contribute equivalent quan-
tities of gravitational and inertial mass.

In these statements of equivalence a practical definition of
“freely falling” is weightlessness:

Any experiment would reveal any object to be
weightless in a freely-falling frame.

We shall give a precise definition of “local” shortly.
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I Distance fallen

Light Path seen

emitted inside elevator

Path seen
outside elevator

Figure 6.3: Equivalence and deflection of light in a gravitational field.

6.3 Deflection of Light in a Gravitational Field

By applying the principle of equivalence, Einstein obtained im-
portant results of the general theory of relativity even before
he could solve the corresponding field equations. Consider
Fig. 6.3 where a sealed elevator falls in a gravitational field.

INTERIOR OBSERVER: Equivalence — we may transform
away the effect of gravity. Observer in the interior is unaware
of any gravitational field and sees light travel in a straight line.

EXTERIOR OBSERVER: Aware of the gravitational field (sees
the elevator falling!). The spot at which the light strikes the
right wall has fallen by the same amount as the elevator.

RECONCILE (observers must agree on laws of
physics): Light follows a curved path as it prop-
agates in a gravitational field.
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6.3.1 Strength of the Gravitational Field
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Bending of the light in the gravitational field may be character-
ized by a radius of curvature (Problem)

re = —,
8
Strength of gravitational field at the surface of a gravitating ob-
ject such as a star quantified through:

R GM B Actual radius

re Rc?  Light curvature radius’

where g = GM /R? has been used. If
GM /Rc* << 1,

the field is weak (Newtonian gravity). May be expressed as

R GM m GMm/R Eg Gravitational energy

re Rc?2 m mc2  Ey  Rest-mass energy ’

* Weak Field: gravitational energy of a test particle of mass
m 1s much less than its rest mass energy.

« EXAMPLE: White dwarf Sirius B has p ~ 10®g cm™3,
which gives R/r. ~ 10~*. Even for a white dwarf gravity
i1s weak on the natural scale set by light curvature.

» EXAMPLE: At the surface of a neutron star or at the event
horizon of a black hole, gravitational curvature radius ~
actual radius — general relativity.




238 CHAPTER 6. THE PRINCIPLE OF EQUIVALENCE
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Figure 6.4: Equivalence and the gravitational redshift.

6.4 The Gravitational Redshift

INTERNAL OBSERVER: Free fall, unaware of gravity, v = vy.
EXTERNAL OBSERVER: Aware of gravity (sees elevator fall!).

» When light reaches ceiling a time ¢ = h/c has elapsed and

* the elevator has accelerated to a velocity v = gt = gh/c.

Av h GMh GM
Doppler shift : o g _ 8 C/ € R since g = R

RECONCILE: To avoid contradiction, there must
be a redshift produced by the gravitational field
that exactly cancels the blueshift (produced by ve-
locity, not gravity).
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6.4.1 Total Redshift in a Gravitational Field
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Integrated redshift assuming relatively weak gravity

Vsdv_ SGMd
/v 7__/13 r2c? &
0

Exercise: Integrating, exponentiating, and expanding the right-
side exponential (weak-field assumption) gives at radius s,

Vs GM (1 1
— ]l =—-].
Vo c? R =

For a distant observer s — oo and (field is assumed weak)

Voo GM Vo GM\ ! GM

Yo o122 MY A e

Vo Rc? Voo Rc? Rc?
Exfarand

which is valid if GM < Rc?. The corresponding gravitational
redshift z for the weak field limit is
A Ve " Rc?

7= (weak field limit)

where R is the radius of the star and M is its mass.

The full GR solution for the gravitational redshift
in a spherical gravitational field is

"GM -1/2
1—|—z:<1— G ) ,

Rc?

(derived later). Reduces to above in weak field.
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EXAMPLE: for the white dwarf Sirius B

R=585x10cm M=195x103g

Inserting these values

GM »

The measured redshift is
z=274+02x107%

from displacement of spectral lines.
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6.4.2 Gravitational Time Dilation
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Gravitational redshift also may be viewed as gravitational time
dilation:

1

time o< ————
frequency

One period of light wave = One clock tick

Aty Ve GM .
A_ti ~ol-ps (weak field limit),

EXAMPLE: For surface of Sirius B

At GM
A_ti ~1— Rz = 0.99972 (~ One second per hour slow)

The full GR solution for a spherical gravitational field gives
(derived later)

Aty .1 2GM
Y Rc2

Reduces to above weak-field result when the second term under
the radical 1s small.

Purely gravitational effect, independent of any
special relativistic time dilation due to relative mo-
tion between source and observer (GPS requires
corrections for both).
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6.5 Equivalence and Riemannian Manifolds

We cannot set up a global cartesian coordinate system on a
curved surface. But if the metric takes the quadratic form

ds® = a(x,y)dx* + 2b(x,y) dxdy + c(x,y) dy*
(2D for illustration), the geometry is locally Euclidean:
* Near any point local cartesian coordinates are valid.
* Circumference of a circle: C = 27wr+ higher-order terms
* Sum of the angles of a triangle: 7 + higher-order terms

» with higher-order terms vanishing smoothly as circles and
triangles are decreased in size.

Such a space is termed a Riemannian manifold, with a corre-
sponding Riemannian metric.

* The spacetime metric,
ds* = gyydatdx",

has such a quadratic form: it is a Riemannian manifold.

* Strictly spacetime is pseudo-Riemannian due
to indefinite metric (Lorentzian signature).

* But in GR it is common to call it loosely
“Riemannian’.
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* A Riemannian manifold is locally euclidean (and a
pseudo-Riemannian manifold is locally Minkowski).

* Conversely, if the metric is Euclidean (Minkowski) around
an arbitrary local point Py the space is necessarily Rieman-
nian (pseudo-Riemannian).
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The preceding considerations suggest that

Gravity <—  Spacetime curvature

and that
Equivalence principle — Riemannian geometry
gravity transformed away locally spacetime locally flat

which in turn implies

Gravitation <+— Riemannian Geometry

This relationship was foreshadowed in the work of Gauss and
Riemann during the 19" century:

* Gauss: all inner (intrinsic) properties of a curved surface
are described by the derivatives d£% /dx* of the functions
&*(x) implementing the transformation between

— a general coordinate system x* and

— alocal Cartesian coordinate system &%*(x).

* Because of equivalence, all effects of a gravitational field
are contained in the derivatives dE* /dx* of the E*(x).

Thus, the principle of equivalence finds its natural
mathematical expression in Riemannian geometry
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7 /.:'.::'.-:.
Tidal
forces
(a) (b)

Figure 6.5: (a) The Einstein elevator in two different local inertial frames.
(b) Tidal (differential gravitational) forces; an object experiences tidal
forces if the gravitational force (magnitude or direction) is not the same
for different parts of the object.

6.6 Local Inertial Frames and Inertial Observers

Equivalence: Elevator occupants on opposite sides of Earth
may replace gravity by a local acceleration (Fig. 6.5a).

No Contradiction: The two elevator occupants in this case can-
not be in the same local inertial frame.

Operational Definition of Local: Tidal effects (Fig. 6.5b) are
negligible. (Later: quantitative definition in terms of spacetime
curvature.)
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The preceding ideas may be expressed more precisely by spec-
ifying exactly what is meant by a local inertial frame or LIF.

* By equivalence, at each point P of a curved manifold de-
scribed by a metric gy (x) a basis exists where the metric
becomes the constant Minkowski metric:

/

g;w(xP) = Nuy =diag(—1,1,1,1).
* Specifically, because

— guv(x) at some arbitrary point x = xp is a real sym-
metric matrix,

— there exists an orthogonal transformation that will di-
agonalize it.

* Once diagonalized each coordinate can be rescaled if
needed to give the metric tensor 1,y = diag(—1,1,1,1).

* Notice two important things, however:

— Such a transformation cannot change the signature of
the metric.

— This transformation is local to the point P.

Generally a different transformation is required to
diagonalize the metric at a different point P’ if the
space is curved.
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Although g}, (xp) = Ny is valid only at a point,

* [t is possible to choose the transformation so that the first
derivatives of the metric evaluated at xp vanish also:
g’
. uv
guv(xp) = Nuy = diag (—1,1,1,1) 5 a =0.

X=Xp

* A coordinate system satisfying these conditions is called
a local inertial frame (LIF).

* However, no transformation satisfying these conditions
makes all second derivatives at xp vanish.

e Thus, “local” means that

— the observer occupies a sufficiently small laboratory
(in both space and time) that

— effects depending on second derivatives of the metric
are negligible.

* Then up to first order the freely-falling laboratory is flat
Minkowski space.

¢ Since second derivatives of the metric are associated with
tidal forces, an alternative definition is that in a LIF tidal
forces are negligible.

Thus the gravitational effects of spacetime cur-
vature are expected to appear first in the second
derivatives of the metric.
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The preceding discussion means that gravity cannot be identi-
fied with the Newtonian gravitational force:

* By the equivalence principle the Newtonian gravitational
force can be transformed to zero in a suitable reference
frame.

* Thus Newtonian gravity is an inertial force caused by
observation in a non-inertial frame, analogous to ficti-
tious centrifugal or coriolis forces that appear in rotating
frames.

* What cannot be transformed away are the tidal forces aris-
ing from the non-uniformity of the gravitational field, so
in GR tidal forces represent the true effect of gravity.

In summary, by the equivalence principle there are inertial
frames in the spacetime of general relativity. However,

* They are local, freely-falling frames.

* In the presence of gravity these local inertial frames at
different points have accelerations differing in both mag-
nitude and direction.

* Thus they cannot be glued together to form a global iner-
tial frame.

In a gravitational field there are local inertial
frames but no global inertial frames.
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6.7 Lightcones in Curved Spacetime
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Because a local inertial frame can be defined at each point of a
curved spacetime,

General relativity inherits the local lightcone
structure of special relativity.

e This structure is a coordinate-invariant statement that the
speed limit is ¢, so in general relativity

— velocities (defined locally) satisfy v < ¢ and

— the local causal classification of events into timelike,
spacelike, and null carries over in curved spacetime.

* However, the global organization of lightcones in curved
spacetime can lead to causal structure that does not exist
for unaccelerated observers in Minkowski space.

* In flat spacetime the lightcone at one point can be obtained
from one at another point by translation without change in
geometry of the lightcone.

* In curved spacetime this is no longer true since the metric
depends on location and the global causal structure can
become complicated.

An extreme consequence of global lightcone orga-
nization will be encountered when event horizons
of black holes are considered in later chapters.
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Locally flat
space

: 'j,’géﬁ;;;,ﬂay

space

Curved (W4 =

Figure 6.6: Curved spacetime and local flat inertial systems.

The Road to General Relativity

* Einstein: Inhomogeneity of gravitational field due to in-
homogeneity of gravitating matter — spacetime is curved,
with curvature related to the distribution of matter.

* Equivalence: Spacetime is a patchwork of locally flat
frames meshed smoothly into a curved space (Fig. 6.6).

* Key to relating curvature and matter distribution: Con-
nection between equivalence and Riemannian geometry.

* Some Sewing Required: 1.ocal Euclidean patches (where
special relativity holds) must be “stitched together”
smoothly to form a Riemannian manifold (Fig. 6.6).

* General Relativity: A “stitching together” by finding a
(unique) Riemannian metric determined by a nonlinear re-
lationship among mass, curvature, density.

The next two chapters will give the mathematical
framework needed to implement this prescription.




Chapter 7

Curved Spacetime and General
Covariance

In this chapter we generalize the the preceding discussion to
extend covariance to more general curved spacetimes.
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7.1 Covariance and Poincaré Transformations

* Lorentz covariance makes manifest that the principles of
special relativity (invariance under Lorentz transforma-
tions) are obeyed by a set of equations.

* Poincaré transformations:

— Six Lorentz transformations, plus

— four possible uniform translations in space and time.
Invariance under Poincaré transformations implies that

— Physics does not depend on choice of coordinate sys-
tem origin, orientation, . ...

— This implies conservation laws (energy, ... ).

* Covariance with respect to Poincaré transformations is
still insufficient to deal with gravity.

* We seek a more general covariance, valid for gravity.

General Covariance: a physical equation holds in
a gravitational field provided that

* It holds in the absence of gravity (agrees with
special relativity in flat spacetime).

* [t maintains its form under the most general
coordinate transformation x — x’ .
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7.2 Curved Spacetime

The deflection of light in a gravitational field suggests that

Gravity is associated with the curvature of space-
time.

Thus, let us consider the more general issue of covariance in
curved spacetime.
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Curved 2D Spaces and Gaussian Curvature

Gauss demonstrated that for 2-surfaces there is a single invari-
ant (Gaussian curvature) characterizing the curvature.

The gaussian curvature is generally

* For a 2-D coordinate system (x!,x?) having a diagonal
metric with non-zero elements g;; and gy,, the Gaussian
curvature K is

B 1
2811822

» _92822_325’11jL 1 3&’1133’2%L g\’
(dx1)2  (dx%)2  2g11 | dx! dx! ox?

L1 |9811d8n  (dgx ?
2g2 | 0x? Ox? dx! '

* Position-dependent.

* An intrinsic quantity expressed entirely in terms of the
metric for the space and its derivatives.
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For the special case of orthogonal coordinates (x,y),

1
Ry (x0)Ry(y0)’

K (x0,y0) =

where

* R.(xp) is the radius of curvature in the x direction and

* Ry(yo) is the radius of curvature in the y direction,

both evaluated at a point (xg,yo).

EXAMPLE: For a 2-sphere, R, = Ry = R and

1
K:ﬁ’

where R is the constant radius of the sphere.

The highly symmetric sphere has the same curvature at all
points, but in the general case curvature can vary from point
fo point.
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Figure 7.1: Measuring the circumference of a circle in curved space.

Consider the 2-sphere of Fig. 7.1, defined by
2+ =R

Let us use the circumference of a circle relative to that for flat
space to measure deviation from flatness.

* A circle may be drawn in the 2D space by marking a /o-
cus of points lying a constant distance S from a reference
point, chosen as the north pole in Fig. 7.1

* The angle 0 subtended by S is S/R and
r =RsinO = Rsin (E) )

R

¢ Then the circumference of the circle is

2
C:27rr:27rRsin%:27rS(l—S— )
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A Z

* For flat space the circumference of the circle would just
be 278, so higher-order terms measure the curvature.

* We have for the gaussian curvature of the sphere K =

1/R?. Substituting R* = 1 /K in

C=2nm 27tRsinS 2nS |1 s +
=2r = — = ——+... .
R 6R?

and solving for K in the limit § — 0 gives

K = Lim 3 (2%5——(1) — Limg (1_£)_
=0 1 3 §—0 §2 2nS

Thus, we may find the Gaussian curvature for a 2-D sur-
face by measuring the circumference of small circles.

» Later we shall generalize the Gaussian curvature parame-
ter for a 2D surface to a set of parameters (elements of the
Riemann curvature tensor) that describe the curvature of
4D spacetime.
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Notice in this and various other discussions that we often use
the mental aid of embedding a surface in a higher-dimensional
space in order to more easily visualize our arguments. How-
ever, it is important to emphasize that

The intrinsic curvature of a manifold can be

» determined entirely by the properties of the
manifold itself,

* without reference to a higher-dimensional
embedding space.
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We may illustrate determining gaussian curvature intrinsically
by using the geometry of small circles drawn on the unit 2-
sphere (See Box 7.2 in book).

* The line element is
ds® = d6? +sin® 0d¢>.
in spherical polar coordinates

* In the coordinates (6,¢) a line segment from (0,0) to
(A,0) has a length

A
S:/\/dszz/ 6 =1,
0

since @ is constant so dg? = 0.

* The set of points (A, @) with ¢ ranging from O to 27 then
defines a circle of radius S = A, with

27 27
Cz/vds2:/ sinOd@ = sinA do =2msinA.
0 0
for the circumference C.

e Thus, with S = A the Gaussian curvature is

K = Lim£<1_£) = Limi(l_%).
50 §2 2nS A—0 A2 A
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Since our interest is in the limit A — 0, we expand sinA in a
power series,

; 3 2
SISV U

A A 3!

.6 A2
K= Lim {1— (1——6 )] = 1.

This is the expected result, since it was noted earlier that the
Gaussian curvature of a 2-sphere having radius R is equal to
1/R? and R = 1 (unit sphere) has been assumed.

This gives

CHAPTER 7. CURVED SPACETIME AND GENERAL COVARIANCE
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7.3.1 Distance Intervals in Curved Spacetime

In curved spacetime the interval between two events may be
expressed as

ds® = Sap (x)dx%dxP

where the metric tensor go (x) in a curved spacetime generally

* has a more complicated form than that for Minkowski
space, and

* is a function of the spacetime coordinates.
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7.4 A Covariant Description of Matter

Curved spacetime is responsible for gravity and mass, energy,
and pressure are responsible for curving spacetime.

e Therefore, it is critical to describe the distribution of these
quantities and their coupling to gravity covariantly.

* To that end, it is convenient to introduce the stress—energy
(or energy—momentum) tensor THV, with components

1. T9 = ¢ (energy density)

2. T = P! (pressure in i direction; equivalently, momen-
tum components per unit area)

3. TY (energy flux in the direction i)

4. T (momentum density in the direction i)

5. T (i # j) (shear of the pressure component P in the
j direction).

By physical arguments the tensor T*V is symmetric, with
10 independent components.

Physically-meaningful results from general rela-
tivity require that the form of T#V be constrained
further by hypotheses that are discussed below.
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It is standard to impose a set of energy conditions on THV. ba-
sically

* These are assumptions about the way that any reasonable
form of matter should behave, and that

* are obeyed by all presently-known forms of matter.

Three common energy conditions are

1. Weak energy condition: T,yu*u" > 0 for any unit time-
like vector u*, which means that the energy density seen
by any observer may not be negative.

2. Strong energy condition: T,,u"u” + %T“ u > 0 for any
unit timelike vector u*, implying physically that the en-
ergy density plus the sum of the principle pressures must
be non-negative.

3. Null energy condition: T, ,k"k" > 0 for any null vec-
tor k*, which means physically that the sum of the energy
density plus any of the principle pressures may not be neg-
ative.

These conditions are more in the nature of recipes
based on classical experience about the way mat-
ter should behave rather than physical law.
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We simplify by restricting attention to perfect fluids, which ne-
glect energy transport and viscosity effects.

* For flat spacetime the most general perfect-fluid stress—
energy tensor consistent with Lorentz invariance is

TV = (e + P)utu” + Pn*Y  (flat spacetime),
where in this equation

— "V is the Minkowski metric,
— P is pressure,

— £ = pc? is energy density, and
— utt = dx* /d is the 4-velocity.

* Conservation of 4-momentum may be expressed by
WuTH =0 (flat spacetime).
* The most general THY in curved spacetime is
" = (e + P)utu’ + PgtV  (curved spacetime),
where gMV is the metric.
* The generalization of d,T"¥ = 0 in curved spacetime is

VuTH =0 (curved spacetime).

These equations imply a basic difference between
sources of gravity in GR and Newtonian theories.
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General relativity and Newtonian gravity differ quantitatively
in their predictions for physical observables but they also differ
fundamentally in their physical interpretation.

* The form of the stress—energy tensor
T = (e + P)utu’ + PgtV  (curved spacetime),

points to an essential difference between Einstein gravity
and the Newtonian theory.

— All components of the stress—energy tensor contribute
to the curvature and thence to gravity.

— Thus energy, mass, and pressure are all sources of the
gravitational field.

— Only mass is a source of Newtonian gravity.

By smuggling in E = mc? from special relativity
we can (by a stretch) view energy as a source for
Newton’s gravity, but not pressure.

* But what about the role of pressure in stabilizing stars
against contraction in Newtonian gravity?

— In that case forces opposing gravity are not produced
by pressure but by a pressure gradient.

— In contrast, gravity couples directly to the magnitude
of the local pressure in GR.

— Thus in GR there can be forces associated with pres-
sure even if there is no pressure gradient
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* In a universe having a finite but constant pressure the exis-
tence of the pressure could still be detected by its (general
relativistic) gravitational effect.

 This is precisely the nature of the cosmological vacuum
energy to be discussed later.

* That increasing the pressure increases the strength of grav-
ity in GR also has implications for the gravitational sta-
bility of stars.

* Specifically, it suggests a limit beyond which even in-
creasing the pressure by an arbitrary amount cannot stop a
massive object from collapsing under the influence of its
own gravity.

e This will lead soon to the idea of a black hole.
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Another important difference implied by Einstein gravity con-
cerns
uTH =0 (flat spacetime).

VuTH =0 (curved spacetime),

These appear to be similar formally but their physical meanings
are different.

* In Newtonian gravity energy and momentum are con-
served and in flat spacetime d,,TH" = 0 expresses a con-
servation law for 4-momentum.

* In a curved spacetime the constraint V,T#¥ = 0 does not
imply a conservation law because

The gravitational energy is not included in the
stress—energy tensor.

* That is, there is no well-defined concept of local energy
and momentum conservation in general relativity, ulti-
mately because it is difficult to construct a sensible local
expression for gravitational energy.

Remember: By equivalence gravity can be frans-
formed away at a point.

* The best that one can achieve is approximate 4-momentum
conservation over a finite volume.
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7.4.1 Local Energy Conservation

As indicated above, there i1s no well-defined idea of local en-
ergy and momentum conservation in general relativity.

* This is a consequence of the equivalence principle,

— which requires that all effects of gravity vanish over a
small enough region,

— but it may also be viewed more fundamentally:

* In non-GR physics conservation laws like for momentum
or energy follow from spacetime symmetry (Noether’s
theorem, which is discussed in the book).

— For example, momentum is conserved locally be-
cause of spatial translational invariance.

— Since all physical systems are expected to be transla-
tionally invariant, the law of momentum conservation
1s always valid in non-GR physics.

* But in general relativity spacetime is the solution, not a
pre-defined stage on which physics plays out.

* Hence No local symmetries are guaranteed to be common
to all GR spacetimes.

* However, energy is approximately conserved when aver-
aged over a large enough region of spacetime

* Total energy of a spacetime is well-defined if it is asymp-
totically flat (becomes flat on the boundary).
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Tangent point

Tangent
point

Figure 7.2: Tangent planes and vectors in curved spaces.

7.5 Covariant Derivatives and Parallel Transport

* Covariant derivatives have a geometrical interpretation as-
sociated with comparison of vectors located at two differ-
ent spacetime points.

* Constructing the derivative of a vector requires taking the
difference of vectors at two different points.

Recall: Vectors are defined

* in the tangent space, and each point

* has a different tangent space (Fig. 7.2).
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Tangent point

Tangent
point

Recall that the figure above is conceptually useful, but

* defining the tangent space by a local flat coordinate sys-
tem at a point is an intrinsic process with respect to the
original manifold and

* does not require embedding in a higher-dimensional man-
ifold.

Directional derivatives evaluated in the intrinsic
manifold may be used to define the tangent space.
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Tangent point

Tangent
point

Parallel transport of vectors is necessary to compare two vec-
tors at different points (e.g., to define derivatives).

* For a flat space the tangent space corresponds with the
space itself.

* Thus in a flat space we can just move one vector, keeping
its orientation fixed with respect to a global set of coordi-
nate axes, to the position of the other vector and compare.

* On a curved surface this issue is more complicated be-
cause the vectors at two points are defined in different
spaces (see the figure above).
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We would like to construct a new derivative operation on ten-
sors that fulfills three requirements:

* The operation should exhibit the properties expected of a
derivative, such as the Leibniz rule for the derivative of a
product.

* A derivative of a tensor should transform as a tensor.

* The derivative should represent the change of the whole
tensor, not just its components.

As we will now demonstrate geometrically, a
derivative satisfying these requirements corre-
sponds to the covariant derivative already intro-
duced.
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To be definite, let us illustrate for derivatives of vectors. The
formal definition of the derivative that we seek 1s

Vi(A+06A) — V(),))

oA—0

VvV, Vh,Ve, = Lim
Vv l/l€u ( 61

* V(A +06A) represents the vector V (A ) parallel transported
along the curve parameterized by A from A to A + §A.

* A basis vector field e, (A ) is assumed defined in the vicin-
ity of the curve.

* u¥ =dxV /dA (chain rule conversion)

* We use the symbol V,, anticipating equivalence with the
covariant derivative already defined.

We must now understand how to transport a vec-
tor from A to A + 8A while preserving its intrinsic
properties.
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Tangent  (a) (b) (c)
\/I’ angent
point B
1 N
~ 2 1 11
AN /AN
»
RRRRe SRR
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Figure 7.3: (a) Tangent spaces and vectors in curved spaces (see Fig. 3.1).
(b) Parallel transport of a vector in a closed path on a curved surface. The
vector rotates by 90° for parallel transport on the closed path 1 — 2 — 3.
(c) Dependence of parallel transport on the path. Parallel transport from A
to B on the direct path labeled I rotates the vector by a different amount than
for parallel transport from A to B on the two-segment path labeled II.

* Natural notion of parallel transport: keep the vector par-
allel to itself in infinitessimal steps; see Fig. 7.3 (space
locally euclidean).

* As Fig. 7.3 illustrates, parallel transport of vectors on a
curved surface is generally path-dependent.

* Hence parallel transport in curved spaces 1s not unique and
requires a prescription.

* The apparent rotation of a vector when parallel transported
around a closed path measures curvature of the manifold.

* For 2D, rotation is proportional to Gaussian curvature.

* In 4D spacetime we will find that the rotation depends on
the Riemann curvature tensor.
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7.5.1 The Affine Connection and Covariant Derivatives

Generalizing the discussion in Chapter 2 to curved spacetime,

* Differentiation of a 4-vector V = VH e, with respect to a
parameter A gives two contributions,

v d dvh  de
VH TR yu
= Vew) =" ent o VE

* where the first term represents the change in the vector
components in a fixed basis e, and

* the second term represents the change in the basis in mov-
ing from one point to another.

Introducing u* = dx* /dA and using dx — a%vd_k
av d dxV dxV
- V” V“
dr oxvdr . H Al oxv M

= 8VV“M eu "‘V'uuvave‘u.

For infinitesimal separation between x and x’ the second term
will be linear in V¥, so expand in the vector basis eu,

dv

7 (8VV + Tt V“)uveu,

. F‘OLW is called the affine connection coefficient or often just
the connection.

« The I't., define a connection between tangent spaces at
two different points of the manifold.
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It will be shown later that

» This permits a vector in the tangent space at one point to
be parallel transported and compared with a vector defined
in the (different) tangent space at another point.

* Use of the same notation for the connection coefficient
as for the Christoffel symbol is deliberate because the
connection coefficient and the Christoffel symbol may be
viewed as equivalent.

Specifically, the Christofel symbols are connection
coefficients expressed in a coordinate basis.

* Despite its indices, the Christoffel symbol does not trans-
form as a tensor.

(That’s the point! If it did transform as a tensor it
would be of no use to us.)

* The affine connection I'k,,, can be constructed from the
metric tensor and its derivatives,

o Tt vanishes if the metric is constant, and

* The Riemann tensor describing the local intrinsic curva-
ture of the spacetime may be constructed from I}, .

Thus the affine connection is central to developing
the theory of general relativity.
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Assuming equivalence of the Christoffel coefficients and con-
nection coefficients,

» comparison of with the expression from Chapter 3 for the
covariant derivative,

VAt = 9uA* + T, A%,

with the above definition

dv

7 (8V + Tt V“)uveu,

Covarlant derivative

* indicates that the quantity in parentheses in the above
equation corresponds to the covariant derivative of the
vector VH,

V,VH =9, VH 4+ T VE

* The covariant derivative represents the change of the
whole vector V, not only its components V¥,

Thus the derivative representing the change of a
vector under parallel transport along a path is the
covariant derivative evaluated along that path.
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7.5.2 Absolute Derivatives and Parallel Transport

Consider in more detail parallel transport of a vector.

* For euclidean space, parallel transport along a path pa-
rameterized by A means that

— The length and direction of the vector (referenced to a
universal cartesian coordinate system) don’t change.
— Thus in flat space the components of the vector satisfy

dV* /dA = 0 under parallel transport

* For a curved manifold both the components and the basis
vectors change and this condition generalizes to

Vi VR = o, VR +Th, VP’ =0,
where V = VHey, and u¥ = dxV /dA.

* But d,V*u¥ = dVH /dA by the chain rule and comparison
with the definition of the absolute derivative (Ch. 3),
DVH  qvH dx

= e ye—_
DA~ ar e

indicates that along a path parameterized by A,

DVH
i 0
DA

is the condition for parallel transport of a vector.

* By this prescription, at each infinitesimal step the vector
is parallel transported.
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Summary of properties of the affine connection F“i o
* I} is called the

— affine connection, or
— the connection coefficient, or
— the metric connection, or just

— the connection.

* The equivalence of notation for the affine connection and
the Christoffel symbol introduced earlier is deliberate be-
cause they may be viewed as equivalent.

* I'},o can be constructed from the metric and its derivatives.
* I} o vanishes in a space with constant metric.

. F“i o does not follow from differential geometry of the
manifold but is additional imposed structure that specifies
how tangent spaces at different points are related.

* The Riemann curvature tensor describing the local intrin-
sic curvature of the spacetime may be constructed from
the affine connection.

Thus the affine connection is central to

* defining the covariant derivative,
* implementing parallel transport of tensors, and

* measuring quantitatively the curvature of a manifold.

It will play an important role in general relativity.
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7.6 Gravity and Curved Spacetime

Free Particle: A particle moving solely under the influence of
gravity is termed a free particle in general relativity, because

* The classical gravitational force will be replicated by par-
ticles propagating with no forces acting on them, but

* the propagation is in a curved spacetime.

Equivalence Principle: in a freely-falling coordinate system
labeled by coordinates EH, the special theory of relativity is
valid and the equation of motion is given by

d*EH
e
drt?

(the special relativistic generalization of Newton’s second law).
The proper time interval d7 is

dt* = nyuyd&HdgY
and the Minkowski metric is defined by
n“v — dlag(—l, 1, 1, 1),

which by equivalence is valid in the coordinates E.
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Introduce another arbitrary coordinate system x* (not neces-
sarily inertial).

o The freely-falling coordinates & are functions of the new
coordinates, E* = EH(x), and by the chain rule

Chain rule
Pee_d g\ _d [FEar|
dt2  dt\dt ) dt| ox* dr |

A 7

Derivativet)f product
QEXA>H  d [JEXN dxt
o d? Tt (a—u) ac Y
0EXd*xH 9 [(IEX dx¥ dxH
oxt dr>  IxV (8)6”) dt dt B
Cha;rlrrule
IEX d°xH  92E% dxMdx¥
oxH dt? +8x“8x" dt dt

« Multiply by dx* /dE® (note the implied sum on )

Oxt QEX g2xH N oxt 92EX dxM dxY B
0EC Oxt dt2  QEXJxHoxV dT dT
. , N ,

~
) —1A

to obtain the geodesic equation,

dx* o dxtdxY B

x| dit dx’ _ - _8)6)’ 82&05
dt2 *dt dr

HY = 9E@ JxtoxV

(connection)
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The proper time interval in this coordinate system is

d® = MgpdE *dEP

JET e
=MNap Ot dxt axvjdxv

~~

chain rule
- 0&* 9P
N Tl OB ott axV.

=8uv

dx*dx .

Thus, the proper time interval may be written as

dr? = guvdxtdx’,

where the metric tensor is defined by

9E% QEP
Suv = Tap 5t o

It is clear that

* guv 7 Nuv. and generally

* guv = guv(x) is a function of the spacetime coordinates
because

o dE%/dxH generally depend on the spacetime coordinates.
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Much of the mathematics of general relativity lies in the disci-
pline of differential geometry. However,

* The affine connection is not part of differential geometry
since

— it is not a natural consequence of differential struc-
ture on the manifold, and

— it is in fact not even a tensor.

* The affine connection is an augmentation of differential
geometry that

— gives “shape and curvature” to a manifold;

— itis a defined rule for parallel transport on curved sur-
faces.

* The affine connection generally is not unique because we
can define many notions of parallel transport for a curved
surface.

e Nevertheless, we shall see that

Under conditions that are assumed to be satis-
fied in general relativity, the affine connection is
uniquely determined by the metric tensor.
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7.7 The Local Inertial Coordinate System

We now demonstrate explicitly that the affine connection Fﬁv
in an arbitrary coordinate system x* defines the local inertial
coordinates £ at any point X. Multiply

It 825 o
dEX IxHIxV’

A
Fuv—

through by d&P /ax* and utilize

ﬁ%_gﬁ
oxr g 7Y

to give the differential equation for the inertial coordinates

2P 98P
dxHaxV  oxr MV

This has a power series solution near the point X

d&*(X)
o) — EO 95 \A) o yu
g = £(x) + 22 0 (e xn)
19¢%(X)
+375 Thy (o = XM (Y —XY) + ...
Thus, Fﬁv and the partial derivatives d& /dx at the point X de-

termine the local inertial coordinates &* up to order (x — X)2.

This is sufficient, since the inertial coordinates are
valid only in the vicinity of the point X.
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7.8 The Affine Connection and the Metric Tensor
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We have seen from the preceding derivation that

* The affine connection Fﬁv determines the gravitational
force through the geodesic equation.

* Thus, the affine connection is the gravitational field.

* The metric tensor determines the properties of the interval
dt through
dr? = guvdxtdx”.

* This suggests that the effect of gravity is determined by

— the affine connection Fﬁv and

— the metric tensor gyy.

* Now we show that, in fact,

— the metric tensor g,y alone determines the full effect
of gravity because

— the connection Fﬁv can be expressed in terms of the
metric tensor and its derivatives.

e Thus, we shall now show that

The metric tensor may be viewed as the gravita-
tional potential.
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Let’s first differentiate

QEX QLR
Suv = naﬁﬁ dxV

with respect to xl,

dguy  J*EX 9EP IEX 92EP
Oxk  dxhoxH ox 1P T o It oxv 1B

But we have shown that the inertial coordinates E* obey the
differential equation

0P zzaﬁﬁrx
dxHoxV — oxr MV

Inserting this in the preceding equation gives

o )eB B hea
=T G o Mg 4T G o e
gov gpu
= r‘ﬁ“gpv + Fﬁvgpua
where
DEX QEP

Buv = Tap 3t gy

has been used.
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As described in more detail in the book chapter, this equation
may be solved by switching indices and exploiting that Ff{u and
guv are symmetric under exchange of lower indices to give

84 :1 vo agﬂv I Igav N agul
Ap 9 Ix* oxH oxV
1
= Egm (8uva T 8ivu—8uiv) -

Therefore the connection—and hence the gravitational field—
are determined entirely by the metric tensor and its derivatives:

In general relativity, the metric tensor is the source
of the gravitational field.
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7.9 Uniqueness of the Affine Connection

The affine connection is

* an additional feature imposed on the differential structure
of a manifold

* through a definition that generally is not unique.

e However, if a manifold has both

— a metric and

— a connection

defined for it,

* one usually makes certain compatibility demands that con-
strain the connection.

* [f the manifold has a metric tensor, the divergence of a
vector field and the metric are said to be compatible if
the inner (scalar) product of two arbitrary vectors is pre-
served under parallel transport.

* In proving preceding results we have assumed symmetry
of Fﬁv in its lower indices.

* The torsion tensor is defined by
tensor
A A A
5, = T — I
pv Qv Vi
~— ~~

not tensor not tensor

~

It measures deviation from symmetry in the lower indices.
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and determined completely by the metric if

1. The manifold is forsion-free: T‘f‘, = 0.

The connection defined on a manifold with metric g,y 1S unique

2. The covariant derivative of the metric tensor vanishes on

the entire manifold,

Vocguv =0,

which is sufficient to ensure that

3. the scalar product of vectors is preserved under parallel

transport.

In this case the connection is termed a metric connection.

The previous result that

F;f :l Vo (aguv g5y B agﬂl)
m

28 Ix* oxk oxV

determines the affine connection uniquely in terms
of the metric tensor

* is a consequence of the assumptions (1) and
(2) above.

* These assumptions are then justified after the
fact by concordance of the resulting theory
and observations.
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Chapter 8

The General Theory of Relativity

We shall now employ the central ideas introduced in the previ-
ous two chapters:

* The metric and curvature of spacetime
* The principle of equivalence

* The principle of general covariance

to construct the general theory of relativity and the correspond-
ing theory of gravitation.

We know that the weak-field, low-velocity limit of
this theory must be Newtonian gravitation, so we
begin by asking what the weak-field limit of a co-
variant theory of gravity would look like.
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8.1 Weak Field Limit

We begin by considering the weak field limit of Einstein’s the-
ory as a guide to what the full theory should look like.

In the weack field limit we should recover Newton’s
gravitational theory.

The Newtonian gravitational field may be derived from a scalar
potential ¢ that obeys the Poisson equation,

Vo =4nGp V=i—+)—+k=—

* The Newtonian equation of motion is then

d2 ] )
Y g 9%
dr? ox!

where F is the gravitational force.

* For a point-like mass M the potential is

GM
r

(p:




8.1. WEAK FIELD LIMIT

293

Earlier we showed that

% + ﬁv%% =0 (geodesic equation)
For the special case of vanishing gravity:
1. The metric is flat
guv(x) = Nyuy = constant,

in which case dgyv(x)/dx% =0.

2. The affine connection vanishes

dg dg Igun
c _1,vo v Av YU o
i =28 ( or o o )

3. Covariant derivatives equal partial derivatives.

4. The equation of motion becomes that of a free particle in
Minkowski space:

d?x

gz

Generally though, space is curved by mass,

* which produces gravity, and

* the second term in the geodesic equation does
not vanish.
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Assume for the moment gravitational fields that
e are varying slowly in time
e are weak, and
 produce low velocities, v << c.

This implies the conditions

\A’—/ \*/ A\ ~ J
Slowly varying Weak v<<c

The geodesic equation of motion in this limit reduces to

d’xH dx* dxV d>xH a0\
AT bt S oM —
a2 gy =0 7 gt 00<d1') 0

and the connection reduces to

F’u _ lg”p agOP + agOP _agOO _ _lgup agOO.
00— 2 X0 o0 oxP 2 dxP
Ne?giect
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Since the field is weak, expand the metric around the flat one,
guv = Nuv+huv

where hyy is a small correction. Then, dgoo/dxP = dhgo/dxP
and to lowest order in /.y

1 dhyo
N Fgo — __n.up_

e 1 up 9800
2 oxP

0= "8 G

From the metric 1y = diag(—1,1,1,1) the connection com-
ponents are explicitly

10h - 1 0h
0 _ 00 B 00
To=3%0 =0 Tw="357
and we thus obtain (restoring c)
d*0 N d>y _ 102 dhy
dt? 2 2 oxl’

Comparing with the Newtonian equation

dzxi i a(p

iz 0 o

we conclude that gg = —2¢/c? and thus that

2
800 = Moo +hoo = — <1+C—(§)-
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This implies a scalar-field source for weak gravity

¢ =—1c*(go0+1).

Thus we obtain in the weak-gravity limit a clear
manifestation of the Einstein conjecture that

 gravity derives from the geometry of space-
time, with

e the metric tensor g,y as its source.

At the surface of spherical gravitating object of mass M and
radius R, the potential is ¢ = —GM /R and

2¢ 2GM
~—|14+—|=—(1- :
o (102) = (%)

The second term 2GM /Rc? measures the strength of the gravi-
tational field at the surface of the object.

« It is about 1070 for the Sun.
« It is only of order 10~* even for a white dwarf.

e It is about 0.3 for the surface of a neutron star, which in-
validates the assumptions of the weak-gravity derivation.

Neutron star densities imply significant curvature
of spacetime and non-negligible general relativis-
tic corrections to Newtonian gravity.
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8.2 Recipe for Motion in a Gravitational Field

The preceding discussion suggests a general recipe for writing
the equations of motion in a gravitational field.

* Invoke the equivalence principle to justify a local
Minkowski coordinate system £ and formulate the ap-
propriate equations of motion for flat Minkowski space-
time in tensor form.

 Replace the Minkowski coordinates E# by general curvi-
linear coordinates x* in all equations.

* Replace all derivatives by the corresponding covariant
derivatives.

* Replace all integral volume elements by invariant volume
elements.

The resulting equations describe physics in a grav-
itational field.

e Because of the structure of the covariant derivatives, this
procedure clearly implies a relationship

gravity <> spacetime curvature <> mass/energy.

that we will now exploit.
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8.3 Towards a Covariant Theory of Gravity

Combining the Poisson equation
Vz(p =4nGp

with the density expressed in terms of the time—time component
of the stress—energy tensor,

1
Too=pc® — p= 2100,
and the weak-gravity scalar field,
¢ =—%c*(goo+ 1),

gives

3G : : :
& 800 = c—4T00 (First stab at covariant gravity)

This expression is clearly not yet satisfactory:

* Not covariant: it is expressed in tensor com-
ponents, not tensors.

* Not generally valid: 1t was derived assuming
weak, slowly-varying fields.

But the limit is correct, so let’s use it as a guide to
guessing the form of a fully covariant gravitational
theory.
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1. The right side of

83tG
Vig00 = —a Too

1S not a tensor, but

* since the Newtonian limit is proportional to one com-
ponent of the stress—energy tensor,

» we guess that the right side should be modified by the
replacement Tog — Tyy.

2. The right side now transforms as a rank-2 tensor, so co-
variance requires that the left side be replaced by some-
thing having the same transformation properties.

3. We assume for requirements on the new left side:

* The weak-field limit is proportional to a curvature
v? g00, SO the left side should be a covariant measure
of spacetime curvature.

e [t must be a rank-2 covariant tensor to match the
right side.

* It must be symmetric in its lower indices to match the
corresponding property of 7,y on the right side.

* It must be divergenceless with respect to covariant
differentiation since Ty;y;y = 0.

4. The candidate field equations must reduce to the Pois-
son equation describing Newtonian gravitation for weak,
slowly-varying fields and non-relativistic velocities.
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8.4 The Riemann Curvature Tensor

We must first generalize Gaussian curvature to 4D spacetime.

e Let’s introduce the rank-4 Riemann curvature tensor,

R,uv), Fu),v FGV),_'_FG Fa), Iy lr

Lowering an index by contraction with gy, it has the
symmetries

Rouvl - _Ruovl - _Roulv
Rcmv)L - Rv)Lcr,u Rcmv)L "’Rok,uv +R6v),,u =0
and also satisfies the Bianchi Identity:

RS 7o TRy + R = 0.

Uvap pAp;v

Because of the symmetries, only 20 of the 4* = 256 compo-
nents of the Riemann tensor are independent in 4-D spacetime.

2-D: 15 symmetry relations on 2* components —
1 independent component (Gaussian curvature).

* All components of sz 5 Vanish in flat spacetime.

* Conversely, if R" Vi vanishes, spacetime is flat.

20 independent components of the Riemann tensor
generalize Gaussian curvature to 4-D spacetime.
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8.5 Instrinsic and Extrinsic Curvature

4

The curvature tensor has n™ components in n dimensions.

* However, symmetries (discussed below) reduce that to
n%(n® — 1)/12 independent components.

* Thus in 4D the curvature tensor has 20 independent com-
ponents and

* in 3D it has 6 independent components.

* In 2D there are 15 symmetry relations on the 2% = 16 com-
ponents of the Riemann curvature tensor.

* This leaves only one independent component of
curvature—the Gaussian curvature already introduced.

* In 1D we find that curvature cannot be defined.

The assertion that curvature cannot be defined in 1D may not
seem right—what about a curved line?

* But curvature is meant here as an intrinsic property of a
manifold and in 1D there can be no intrinsic curvature.

* What is really meant by a “curved line” is the embedding
of a 1D surface in a higher-dimensional manifold.

* The perceived curvature of the line then is a property of
the embedding, not an intrinsic property of the 1D space.
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A manifold embedded in a higher-dimensional manifold

* inherits an induced metric from the embedding.

» The apparent curvature of embedded spaces having no in-
trinsic curvature results from this induced metric.

* This is termed extrinsic curvature.
In a similar vein, a cylinder is a flat 2D surface:

* Its Gaussian curvature vanishes and it is constructed by
* identifying two opposite edges of a flat surface.

* This also may be verified by parallel transporting a vector
in a closed rectangular path on the cylinder.

* Unlike for a sphere, the vector remains unchanged under
parallel transport on the cylinder.

* The curvature perceived for the cylinder is an artifact of
embedding the 2D cylinder in a 3D space.

GR usually deals with intrinsic curvature.

* Intrinsic curvature is specified by the Rie-
mann curvature tensor.

* Intrinsic curvature is independent of any em-
bedding in higher dimensions.

Our sole concern here will be intrinsic curvature.
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8.6 The Einstein Equations

Having now a covariant description of

* matter,

* energy,

pressure, and

spacetime curvature,

we possess the tools to implement a covariant theory of gravity.

¢ The Riemann curvature tensor is rank-4, but

* our previous reasoning indicates that we need
rank-2 tensors to describe gravity.

» This suggests that we need contractions of
the Riemann tensor with the metric tensor to
form a covariant theory of gravity.
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First form the symmetric Ricci tensor Ry by contracting the
Riemann tensor,
Ao o
Ryv=Rvy =g " "Rypuoy =R UoV>
- Fﬁval N Fﬁfl,v - Fﬁvrgc . FZ),F{/LG (Ricci tensor),

and the Ricci scalar R by a further contraction,
R=g""Ryy (Ricci scalar).
Finally multiply the Bianchi identity

o o (0 _
Ruvﬂt;p +Rupv;7t +Rulp;v =0.

by g"V and g°P and do the implied sums to give (Problem)

VaRyvap + ViRuvaa + VaRuvp =0

~
Bianchi identity

. e
Einstein tensor Vv

where the symmetric Einstein tensor 1s defined by the quantity
in parentheses,

GV =RMY — % "R (Einstein tensor).
and has vanishing convariant 4-divergence:

Gt =V,G" =0.
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The Einstein tensor
GV =RMY — 1gMVR (Einstein tensor).

is in fact the rensor that we seek to replace the left side of the
weak-field equation:

e It is a rank-2 tensor.

* [t is symmetric in its indices.

* It is a covariant measure of spacetime curvature because
* it is formed by contractions of the Riemann tensor.

* It has vanishing covariant 4-divergence.

Thus, we may express the covariant theory of gravitation in
terms of the Einstein equation,

8tG
_ 1
Guv = (Ruv — 38uvR) = - Tuv:

or even more compactly in ¢ =1 or ¢ = G = 1 units,

The tensors are symmetric so this expression represents /0
coupled, partial, non-linear differential equations that must be
solved to determine the effect of gravitation.

We shall see later that additional symmetries can
reduce this to fewer equations to be solved in some
favorable cases.
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By contraction with the metric tensor the Einstein equation can
also be written in the alternative form (Problem)

8nG |
Ruv = C—4(Tuv - quvTo(cx),

where the full contraction T, represents the frace of the stress—
energy tensor expressed as a mixed rank-2 tensor.

Vacuum Solutions: 1f the region where the solution is valid is a
vacuum,
Tuv — Taa — O.
* Then the Einstein equations reduce to the vacuum Einstein

equation
R‘uv - 07

» which involves only the Riemann curvature tensor, not the
full Einstein tensor.

Vacuum solutions of the Einstein equation satisfy the differen-
tial equation
Ruv — 0

Even though the Ricci tensor Ry, vanishes for
this solution, that does not necessarily mean that
spacetime curvature is zero, as we now discuss.
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Only Ry 1s needed to construct the vacuum Einstein equation,.

* However, only the full Riemann curvature tensor Rs v
with its 20 independent components contains complete in-
formation about the spacetime curvature.

» Because they are contracted quantities

— the Ricci tensor Ry, has only /0 independent compo-
nents and

— the Ricci scalar R only one independent component.

When R,y vanishes for the entire space then so do Ry and
R, but the converse need not hold. For example,

* A manifold for which Ry = 0 is termed Ricci flat.
* But such a manifold need not be geometrically flat.

* Only the vanishing of the full curvature tensor R,y en-
sures geometrical flatness.

Example: the Schwarzschild metric (see Ch. 9):

e It satisfies Ryy = O (Ricci flar), but corre-
sponds to a curved spacetime manifold.

* This is because Rgyyyp has non-vanishing
components, even though R,y = 0.

Indeed, the curvature is so strong that it can lead
to a black hole with an event horizon.
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To fix ideas, lets illustrate calculation of the quan-
tities that enter the Einstein tensor in a simple 2D
case with uniform curvature.

Example: Consider a 2D spherical surface in 3D Euclidean
space. Let’s find the components of

the metric tensor,

the non-zero connection coefficients,

the Riemann curvature tensor,

the Ricci tensor, and

the Ricci scalar curvature.
In standard polar coordinates the line element is
ds* = a*(d6? +sin® 0d¢?),

where a is the radius of the sphere. This corresponds to a diag-
onal metric with

2 2 .2
8o =a 8op =a sin” 0 gop =8¢0 =0,

and since g1V is the matrix inverse of gy,

g0 L e 1
a? a2sin® 0
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The connection coefficients are given by

[¢ —1l,vo ag.uv+ag),v_aglﬂL
du =28 oxr  oxH dxV )

Thus from the metric
2 2 i
89 =a 8pp =a"sin" 6 809 =896 =0,
the connection coefficients with 6 as an upper index are

Fg(p:—sinecose rgezrgq,:rg’,g:o

and the connection coefficients with ¢ as an upper index are
o _ 1 _ o _ 1P _
Fe(p—F(pe—cotO Lo =Tpp=0.

This then permits us to calculate the Riemann tensor and its
contractions.
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The Riemann curvature tensor is given by
(o3 __ 710 (e} (o3 o (o3 o
R UVA Fuk,v - F,uv,)L + FO!VF;UI o Falruv'

This is a 2D space so there will be only one independent com-
ponent, which (up to symmetries) can be taken as

0 0
R9 _ ar(p(p_aF(P9+1—*9 FOC _1—*9 FOC
00 — " )p 20 ab” 99— L ag’ 9o
ory
P

_ 6 ¢ _ 2
—W—FWPF(PO—SIH 0.

The metric tensor may be used to lower the upper index,
Ryyap = glULR;LvaB’ which leads to

2. 5.2

where the symmetry Ry = Ryjoy has been used. The Ricci
tensor 1s then given by

_ 1T A A 10O o T4
RﬂV - Fuv,l B Fu/l,v + Fuvrlc - F,LL)LFVCF7

and its non-vanishing components are
00 -2
R(p(p =g R9(p9(p =sin“ 0 Rgg = g(P(PR(pQ(pQ =1.

Finally, the Ricci scalar curvature is the full contraction of the
Ricci tensor with the metric tensor,

2
R=g""Ruy =g""Rop+8""Roo = 5,

which is, up to a multiplicative factor, the Gaussian curvature.
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8.6.1 Limiting Cases of the Einstein Tensor
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It is not hard to show that the Einstein tensor

Guv = Ryv — %guvR
has the following limiting behavior:

* For weak, non-relativistic fields,

0 .9

Aa A
Goo — Voo V=i=+j=—+ :
dy 0z

ox

e If spacetime is flat (no curvature), G,y — 0.

¢ If there were no

— matter
— energy

— pressure

in the universe, then G,y — 0.

as required in our derivation of the weak-field limit.

These are exactly the properties expected from a
theory of gravity

* in which gravity is curved spacetime and

* mass—energy—pressure curves spacetime

that reduces to Newtonian gravity for weak fields.
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8.7 Solving the Einstein equations

The foregoing development has produced a set of field equa-
tions describing gravity covariantly.

* However, to apply this formalism systematically it is nec-
essary to find solutions for the field equations.

* This is no easy task, given that

— the Einstein equations represent a set of coupled, non-
linear, partial differential equations, and that

— the appropriate boundary conditions may involve
tricky issues, particularly in the limit of strong grav-

1ty.

In subsequent chapters it will be found that two assumptions
can be used to find important solutions analytically that appear
to represent physically-observable objects:

* Assume the field to be weak, or

* Assume the metric describing the field to have a high de-
gree of symmetry.
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8.7.1 Solutions in the Limit of Weak Fields

Analytical solutions may be obtained by positing a relatively
weak gravitational field.

e Then it is justified to expand the metric about the
Minkowski-space metric.

* Since most gravitational fields are weak, this can be very
useful.

* Earlier this approach was used to show that Newtonian
gravity is the weak-field limit of general relativity.

* Later, it will be used to predict the existence of gravita-
tional waves.
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8.7.2 Solutions with a High Degree of Symmetry

A second assumption that can lead to meaningful analytical so-
lutions of the field equations is to idealize the problem by as-
suming a high degree of symmetry.

* Then it is possible to decouple the Einstein equations and
reduce the problem to solving a subset of the original
equations.

* In this case it may be possible to obtain solutions without
making a weak-field assumption.

* This will be the approach that we shall take to finding an-
alytical solutions relevant for black holes and for cosmol-
ogy in later chapters.
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8.7.3 Solutions by Numerical Relativity
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If gravity is strong without a high degree of symmetry for the
source it 1s necessary to resort to numerical relativity, where
solutions are obtained from large-scale computer simulations.

» Standard approaches to solution of partial differential
equations on a computer often require that the usual text-
book representation of general relativity be reformulated.

* Ideally one would like to use a model of an object de-
scribed by general relativity to supply some “initial data”.

* Then these initial data are evolved numerically according
to the Einstein field equations to some final equilibrium
situation.

* The problem is that the coordinate independence of the
usual formulation of GR means that

— there is no natural notion of “time” and

— “initial data” has no clearly-defined meaning.

* A typical approach is to reformulate general relativity by
splitting spacetime into 3+1 dimensions of space and time.

* In this formulation Einstein’s equations take a form better
adapted to solving the initial value problem numerically
on a computer.
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 Full-blown numerical relativity is beyond the scope of our
presentation because it involves advanced issues in

— general relativity,
— numerical analysis, and

— computational science.

* However, it is assuming increasing importance with the
emphasis on

— black holes and

— gravitational waves.

in modern astrophysics.

Although we will not cover numerical relativity in
any depth, we will

* give some allusions to it,
* use some of its results, and

e cite some literature references

in the course of our discussion.




Chapter 9

The Schwarzschild Spacetime

One of the simplest solutions of the Einstein equations corre-
sponds to

» a metric that describes the gravitational field exterior to a
mass that is

static,

spherical,

uncharged,

without angular momentum, and

isolated from all other mass.

* It was obtained by Schwarzschild in 1916.

Schwarzschild found the solution while serving in
World War I, before Einstein could find any exact
solutions for his field equations.

317
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The Schwarzschild solution is

* A solution of the vacuum Einstein equations
Ry =0.
* Only valid in the absence of matter and non-gravitational
fields (Tyy = 0).
* Spherically symmetric and
* time independent.

* (Later we will see that time independence and spherical
symmetry are related to each other for the Schwarzschild
solution.)

Thus, the Schwarzschild solution

* is valid outside spherical mass distributions,
but

* the interior of a star will be described by a
different metric.

since it 1s a vacuum solution valid only in the ab-
sence of matter or energy.
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9.1 The Form of the Metric

Let’s work in spherical coordinates (r,0,¢) and seek a time-
independent solution assuming that

e The angular part of the metric will be unchanged from its
form in flat space because of the spherical symmetry.

* The parts of the metric describing dt and dr will be modi-
fied by functions that depend only on the radial coordinate
r.

Therefore, let us write the 4-D line element as

ds®> = —B(r)dt* + A(r) drzj \+r2d62 + r?sin® Od(p%,

Modified from flat space Same as flat space

where A(r) and B(r) are unknown functions that may depend
on r but not time. They may be determined by

1. Inserting this metric in the Einstein field equations for
Tyv = 0 (vacuum Einstein equations).

2. Solving the resulting equations to determine the unknown
functions A(r) and B(r).
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Substitute the metric form in the vacuum Einstein equation,
R,y = 0, and carry out the following steps (Problem):

1. With the assumed form of the metric,

[ “B(r) 0 0 0
0 A(r) 0O 0

g =

Y r 0

0
\ 0 0 0 r*sin?6

compute the non-vanishing connection coefficients Fﬁv.

e —l,vo aguv +ag/lv B 88111
=28 ox* oxt oxV

2. Use the Fﬁv to construct the Ricci tensor Ry .

R‘uv — ];_‘l

A A 1O o 1A
uv,a I 16— FMFVG,

UA,v

(Only need Ry, y, not full Gyy.)

3. Solve the resulting set of equations for A(r) and B(r).

The final solution is remarkably simple:

By =1-20 A)=B()"

(G = c =1 units), where M is the single parameter.
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The Schwarzschild line element is then

oM oM\ !
ds® = — <1——> dr? + <1——) dr?
r r

+ r2d6? + r* sin® 0d ¢,
where dt?> = —ds®>. The corresponding Schwarzschild metric
tensor is
2M
/ — <1 — —) 0 0 0 \
r
VAN
Suy = 0 (1 — —) 0 0
uv -
0 > 0
\ 0 r%sin’6 /

which is diagonal but obviously not constant.




322 CHAPTER 9. THE SCHWARZSCHILD SPACETIME

By comparing

2GM 2GM
go=—{1-—3 —  go=—|1-—3
re rc

\ 7 \ 7

Weak gra\?irty (earlier) Schwarzschild\(rG & c restored)

* we see that M (the single free parameter of the solution,
which arises mathematically as an integration constant)

* may be identified with the total mass, consisting of

— rest mass,
— contributions from energy densities and pressure,

— energy from spacetime curvature,

that is the source of the gravitational curvature.
From the structure of the metric
ds* = —B(r)dt* + A(r)dr* + r*d6* + r*sin® 0dg?,
* 0 and ¢ have similar interpretations as for flat space.

* The coordinate radius r generally cannot be interpreted as
a physical radius because A(r) # 1.

* The coordinate time t generally cannot be interpreted as a
physical clock time because B(r) # 1.

The important quantity defined by
re =2M =2GM/c?

1s called the Schwarzschild radius.
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Figure 9.1: The components gy and g;; in the Schwarzschild metric.

The line element (metric)

M oM\ !
ds® = — (1——) dr® + (1——) dr?
r r

\ . 7 \ . 7
TV TV

800 811

+r2d0% + r*sin® 0d >

appears to contain two singularities

1. A singularity at r = 0 arising from the goo term (an essen-
tial singularity).

2. A singularity at
r=rg=2M

arising from the g; term (a coordinate singularity).
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Coordinate Singularity: A place where a chosen set of coordi-
nates does not describe the geometry properly.

Example: At the North Pole

* the azimuthal angle ¢ takes a continuum of
values 0-27, so

* all those values correspond to a single point.

But this has no physical significance.

Example: Consider the 2D line element
ds® = dr* + rzd(p2

and introduce the transformation r = a?/p, giving

, a 2 22702
ds =F(dp +p2de )
This is singular at p = 0, but

* Nothing is actually pathological at that point,

* so this is a coordinate problem:

— The transformation has mapped all
points at infinity into p =0, and

— the geometry is not uniquely represented
by the (p, @) coordinates at p = 0.




9.1. THE FORM OF THE METRIC 325

Coordinate singularities are

* not essential and

* can be removed by a different choice of coordinate system.

Conversely, physical singularities cannot be removed by a co-
ordinate transformation.
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9.2 Measuring Distance and Time

What is the physical meaning of the coordinates (z,r,60,¢)?
* We may assign a practical definition to r by

1. Enclosing the origin of our Schwarzschild spacetime
in a series of concentric spheres,

2. Measuring for each sphere a surface area (conceptu-
ally by laying measuring rods end to end),

3. Assigning a radial coordinate r to that sphere using
Area = 477,

* Then we can use distances and trigonometry to define the
angular coordinate variables 0 and @.

* Finally we can define coordinate time t in terms of clocks
attached to the concentric spheres.

For Newtonian theory with its implicit assumption
that events occur on a passive background of

* euclidean space and

* constantly flowing time,

that’s the whole story.
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But in curved Schwarzschild spacetime

e The coordinates (¢,r,0,¢) provide a global reference
frame for an observer making measurements at an infinite
distance from the gravitational source.

* However, physical quantities measured by arbitary ob-
servers are not specified directly by these coordinates but
rather

Physical quantitites must be computed from the
spacetime metric.
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Proper and Coordinate Distances

Consider distance measured in the radial direction. Set
dt =d0 =dp =0

in the line element to obtain an interval of radial distance:

oM oM\ !
ds? = — (1 — —) dr + (1 — —) dr* 4+ r?d6? + r? sin? 0dp?
r r

N 7

set 1,0,¢ to constants — dt=d0=d¢p=0

dr

[ 2GM’
- 2
rc

* In this expression we term

—  ds=

1. ds the proper distance and

2. dr the coordinate distance.

The physical radial interval measured by a local
observer is the proper distance ds, not dr.

* GM/ rc? measures the strength of gravity, so the proper
distance and coordinate distance are equivalent only if
gravity is weak, either because

1. The source M is small, or

2. We are large coordinate distance r from the source.
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(1-2M/r 12

Curved space
(dr<ds)

Asymptotically
flat space
(dr ~ ds)

Asymptotically
flat space
(dr ~ ds)

Flat space
(dr = ds)

Figure 9.2: Relationship between radial coordinate distance dr and proper
distance ds in Schwarzschild spacetime.

The relationship between coordinate distance interval dr and
proper distance interval ds is illustrated further in Fig. 9.2.

* Circles C1 and C5 represent euclidean spheres of radius r.

* The circles C; and Cy4 represent spheres having an in-
finitesimally larger radius r 4 dr in euclidean space.

* In euclidean space the distance between the spheres is dr.

* But in the curved space the measured distance between
the spheres is ds, which is larger than dr, by virtue of

dr

2GM’
I=—
rc

* Notice however that at large distances from the source

of the gravitational field the Schwarzschild spacetime be-
comes flat and then dr ~ ds.

ds =
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Proper and Coordinate Times

Likewise, to measure a time interval for a stationary clock at r
e setdr =d6O = d¢ = 0 in the line element and
o use ds? = —dt*c?

to obtain

r r

N 7

oM oM\ !
ds? = — (1 — —) dr* + (1 — —) dr* 4+ r2d6? + r? sin? 0dp?

set r,0,¢ to constan;g — dr=d08=dp=0

2GM

3 dt.

—  dt=4/1

re

* In this expression

— d7 is termed the proper time and

— dt 1s termed the coordinate time.

The physical time interval measured by a local ob-
server is given by the proper time d7, not by the
coordinate time dt.

* dt and d7 coincide only if the gravitational field is weak.
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Thus we see that for the gravitational field outside a spherical
mass distribution

* The coordinates r and ¢ correspond directly to physical
distance and time in Newtonian gravity.

* In general relativity

— The physical (proper) distances and times must be
computed from the metric.

— They generaly are not given directly by the coordi-
nates.

* Only in regions of spacetime where gravity is very weak
do we recover the Newtonian interpretation.

This is as it should be: The goal of relativity is to
make the laws of physics independent of the coor-
dinate system in which they are formulated.
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The coordinates in a physical theory are like street numbers.

* They provide a labeling that locates points in a space, but
knowing the street numbers is not sufficient to determine
distances.

* We can’t answer the question of whether the distance be-
tween 36th Street and 37th street is the same as the dis-
tance between 40th Street and 41st Street until we know
how the streets are spaced.

* We must compute distances from a metric that gives a
distance-measuring prescription.

— Streets that are always equally spaced correspond to
a “flat” space.

— Streets with irregular spacing correspond to a
position-dependent metric and thus to a “curved”
space.

For the flat space the difference in street number
corresponds directly (up to a scale) to a physical
distance, but in the more general (curved) case it
does not.
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9.2.1 Embedding Diagrams

It is sometimes useful to form a mental image of the structure
for a curved space by embedding the space or a subset of its
dimensions in 3-D euclidean space.

Such mental images are called embedding dia-
grams.
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We can embed only 2 dimensions of Schwarzschild spacetime
in 3D euclidean space.

* Choose 6 = 7 and t = 0, to give a 2-D metric

r

oM\ !
dr* = (1 — —) dr* + r*de?.

* The metric of the 3-D embedding space is conveniently
represented in cylindrical coordinates as

dl* = dz* + dr* + r’de?

* This can be written on z = z(r) as

2 dz ’ 2 2. 2452 dz ’ 2. 2452
dt-=|— | dri+dri+ride = |14+ | — dr-+r<do
dr dr
e Comparing
2 dz ’ 2, 252
dl- = 1—|— d_ dr +r d(p
r

with 1
M\~
d* = (1 — —) dr* + r*de?

r

and solving for z(r) implies that

2(r) = 2+/2M(r —2M),

which is an embedding surface z(r) with the same geom-
etry as the Schwarzschild metric in the (r — ¢) plane.
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Figure 9.3: An embedding diagram for the Schwarzschild (r — ¢) plane

Figure 9.3 shows a plot of the embedding function for the
Schwarzschild metric

2(r) = 2/2M(r — 2M).
* Figure 9.3 1s not what a Schwarzschild spacetime “looks
like” physically, but

* it is a useful visualization of the Schwarzschild geometry.

Thus such embedding diagrams are a standard

representation of the Schwarzschild metric in
popular-level discussion.

335
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t A A A
» Detection with
. frequency o

Schwarzschild radius
Source
Distant observer

Emission with L
frequency o,

\

0 r=2M r=Rjy r~wo

Figure 9.4: Gravitational redshift in the Schwarzschild metric.

9.2.2 The Gravitational Redshift

Let’s now return to the gravitational redshift, which we treated
earlier with a weak-field approximation.

Consider emission of light from Ry that is detected
by a stationary observer at r >> R; (Fig. 9.4).

For an observer with 4-velocity u, the energy measured for a
photon with 4-momentum p is

E=howo=—p-u,
Observers are stationary in space but not time so

u'(r) =0 u’ #£0
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Thus the 4-velocity normalization gives

Solve for u°(r)

and we obtain

O = | = = (1 - Z—M)_l/z.

800 r

Symmetry: The Schwarzschild metric is indepen-
dent of time, implying a Killing vector

K* = (1,,0,9) = (1,0,0,0)

associated with time-displacement isometry.

Thus, for a stationary observer at a distance r,

—~1/2 -1/2
ut (r) = ((1—2M> , 0,0, 0) = (1—2—M) K*,
r r

and the energy of the photon measured at r by the observer is

ho(r) = —pu=— (1 - Z—M) o (K-p),.

r
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But X is a Killing vector, so
* K-pis conserved along the geodesic and thus
* K-pis independent of r.
Therefore, it follows that
—-1/2
ha)ozha)(r:Rl)z—<1——> (K-p)
hiwe =ho(r — o) = —(K-p).

Taking the ratio hw./hwy gives a gravitational redshift

No weak-field assumption was made so this re-
sult should be generally valid for situations cor-
responding to the Schwarzschild metric.

For the special case of weak fields,
* 2M /Ry is small,
* the square root can be expanded, and

* the G and c factors restored to give

GM
o ™ (D)) (1 ~ R 2) (valid for weak fields).
1C

This is the result found earlier from the equivalence principle.
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By viewing o as defining clock ticks, the redshift may also be
interpreted as a gravitational time dilation: clocks run slower
in stronger gravitational fields.
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9.2.3 Particle Orbits in the Schwarzschild Metric

Symmetries of the Schwarzschild metric:
1. Time independence — Killing vector K; = (1,0,0,0)
2. No dependence on ¢ — Killing vector Ky = (0,0,0,1)

3. Additional Killing vectors associated with full rotational
symmetry (won’t need in following).

Conserved quantities associated with these Killing vectors:
2M ) dt

eE=—Kiu=— K”v: 0: l—— | —
tu Suvi; U goou ( P e

. d
{=Kpu= guvKguv — gn3u’ = r?sin? Od—f.

Physical interpretation:

e At low velocities ¢ ~ (orbital angular momentum / unit

rest mass)

* Since E = p° = mu® = mdt /dr,

2M E
Lim & = Lim <1——)£—dt =u ==
m

r—>oo r—oo 7 dr B E B
and € ~ energy / (unit rest mass) at large distance.

Also we have the usual velocity normalization constraint for

timelike particles,

u-u=guyutu’ =—1.




9.2. MEASURING DISTANCE AND TIME

341

tion to a plane, which we conveniently take to be
* the equatorial plane with 8 = %,
« implying that u*> = u® =0 and d6 = 0.
Then writing the velocity constraint for timelike particles,

guvu“uv =—1.

line element,

oM oM\ !
ds® = — <1——) dr® + (1——) dr?
r r

202 | 22 2
—I—rdOG +r sm]Gd(p )
gives that ; ;

r r

which we may rewrite using

U (dxo dx! dx? dx3)
uMt = :

dt’ dt’ dt’ dz
2M\ dt d
£ = <1——) L = sin20%2,
drt

in the form

Conservation of angular momentum confines the particle mo-

out explicitly using the metric implied by the Schwarzschild

B (1 _Z_M) ()2 + (1 _2_M)_1 W)+ 2P = —1,
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We can put this in the form

1 /dr\?
EIE E —|—Veff(r),

where we define a fictitious “energy”

Newtonian correction

This is analogous to the energy integral of Newtonian mechan-
ics with

* an effective potential V¢ and
* a proper time interval d7.
The effective potential Vegr(r) is of Newtonian form except that

* The GR potential has an additional term proportional to
r~3 that is not present in the Newtonian potential.

* The Schwarzschild coordinate r and the Newtonian coor-
dinate r don’t have the same physical interpretations.
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Figure 9.5: (a) Effective potentials for timelike particles in the
Schwarzschild metric, with curves labeled by values of ¢/M. The
Schwarzschild curves with //M > /12 ~ 3.46 have one maximum and
one minimum. The innermost stable circular orbit corresponding to ¢/M =
V12 ~ 3.46 is indicated by a heavier curve. For ¢/M = 4.5 both the
Schwarzschild potential (solid) and the corresponding Newtonian potential
(dotted) are displayed. (b) Behavior of the solutions in (a) at large distances.

Figure 9.5 compares the Schwarzschild effective potential with
an effective Newtonian potential.

* The Schwarzschild potential generally has one maximum
and one minimum if £/M > \/12.

* Note the very different behavior of Schwarzschild and
Newtonian mechanics at the origin because of the correc-
tion term in

M 2 MEA
Verr(r) = o i 272 3
—————— ~—~—

Newtonian correction

Figure 9.6 on the following page summarizes possible orbits in
the Schwarzschild spacetime.
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Figure 9.6: Orbits in a Schwarzschild spacetime. Effective potential on left
and corresponding classes of orbits on right.
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9.2.4 Stable Circular Orbits

Accretion onto compact objects is a major energy source for
various astrophysical phenomena.

* Accretion typically occurs through an accretion disk, and

* tidal forces on the particles in an accretion disk tend to
circularize orbits.

Therefore, the stable and marginally-stable circu-
lar orbits for a spacetime are of particular interest
in astrophysics.
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| | | | | | | | |
¢ Unstable equilibrium | | Stable .
N
Vetr 0 B
Stable equilibrium — —
Unstable
1 1 1 1 1 1 1 1 1

Figure 9.7: Circular orbits in a Schwarzschild spacetime. Effective potential
on left and corresponding classes of orbits on right.

A circular orbit occurs in the Schwarzschild metric when E is
equal to a minimum or maximum of the effective potential, as
illustrated in arrows in Fig. 9.7.

* The radial coordinates of these orbits satisfy

o1
— 4 1202
r=omta\ e 1%

» This has two solutions if if £2/M? > 12, with

— the plus sign corresponding to a minimum and

— the minus sign to a maximum of the potential.

* The requirement that £ = V¢ at a minimum implies that

2
g2 = (1—2—M> (H—E—z).
r r

Circular
orbits



9.2. MEASURING DISTANCE AND TIME

347

The angular velocity Q of a particle as seen by a distant ob-
server in a @ = T Schwarzschild orbit is given by

Cdp 1 oMY (¢
2=a =706

which implies that

Since the period is given by P =27 /Q, this is
* equivalent formally to Kepler’s 3rd law, but

* it is expressed in terms of Schwarzschild co-
ordinates r and t rather than in terms of
proper distances and times.
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It will be useful for later applications to write out explicit com-
ponents of the velocity 4-vector for a circular Schwarzschild
orbit in the equatorial plane.

* The components are
u= (u,0,0,Qu),
* where the relation
- dpodt  1do
dtdt udt
was used.

The timelike component u’ = dt /dt may be evaluated explicitly
using the 4-velocity normalization

guvutu¥ = —1,

~1/2
u = (1—3—M> )
r

which gives
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Circular
orbits

Stable circular orbits

* do not exist at arbitrarily small radial coordinates in
the Schwarzschild spacetime, as illustrated in the figure
above.

* The minimum radius for a stable orbit occurs for £2/M? =
12.

* The corresponding radius for the innermost stable circular
orbit (ISCO) in the Schwarzschild spacetime is then

The innermost stable circular orbit is important in
determining how much gravitational energy can be
extracted from accretion onto compact objects.
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Figure 9.8: Precession of orbits in a Schwarzschild metric (highly-
exaggerated). The radial coordinate of the inner turning point r_ and of
the outer turning point r, are represented by dashed circles. Dots on the
inner circle indicate perihelion for each orbit and dots on the outer circle
indicate the corresponding aphelion. The quantity 6 ¢ indicates the shift in
angle of the perihelion for one orbital period.

9.3 Precession of Orbits

An orbit closes (on itself) if the angle ¢

* sweeps out exactly 27 in the passage between two succes-
sive inner or two successive outer radial turning points.

* In Newtonian gravity the central potential is 1 /r, implying
closed elliptical orbits (leading to Kepler’s laws).

* In the Schwarzschild metric the effective potential devi-
ates from 1/r and orbits precess:

The angle ¢ changes by more than 27 between
successive radial turning points.

Precession is illustrated in Fig. 9.8.
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To investigate this precession quantitatively we require an ex-
pression for d@ /dr. From the energy equation

2
E:%(%> +Verr(r) — %:ﬂ:\/z(E_Veff(”))a

and from the conservation equation for £,

: do do l
(=rsin20%? ., Yt
rom dt dt  r2sin’0

Combining, recalling that we chose an orbital plane 8 = %,

do deo/dt n /
dr dr/dt N r2\/2(E—Veff(l’))

- o) -1/2
e (12 (1 5)
r2 | r r

- 2 -1/2
il (1M 1+£— :
7‘2 i r 7‘2

where we have used E = %(82 —1).




352 CHAPTER 9. THE SCHWARZSCHILD SPACETIME

The change in @ per orbit, A@, can be obtained by integrating
over one orbit,

AQ = /+d(pdr+ d —2/ d(pdr

redr | oM AN
zze/r_ 7| (1—7> <1+ﬁ>]
( —1/2

v d 2GM  (*>  2GM/(?
:2€/+—r Aer—1)+ Mt 26ME

2 2,3

r r Ccr
A ~~ : J/ N\ - /
Newtonian correction

where in the last step G and ¢ have been reinserted through

GM 14
M— —- 0 — -,
C C

Evaluation of the integral requires some care be-
cause the integrand tends to oo at the integration
limits: From an earlier expressions

ar [, oM 2\1"?
e S I

which is the denominator of our integrand. But the
limits are turning points of the radial motion and
dr/dt=0atryorr_.
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In the Solar System and most other applications the values of
A@ are very small.

* Thus it is sufficient to keep only terms of order 1/ c? be-
yond Newtonian approximation.

* Expanding the integrand and evaluating the integral with
due care yields

Precession angle =0¢p =A@ — 27

2
M

~ 6T (G—> rad/orbit.
cl

This may be expressed in more familiar orbital parameters:

o In Newtonian mechanics L = mr?®, where L is the angu-
lar momentum and ® the angular frequency.

 For Kepler orbits

2 2 2
oo (L) = (P2) = () ~amatr -,
m

where e is the eccentricity and a is the semimajor axis.

This permits us to write

50— 6rGM
(p_acz(l—ez)

M AU 1
—1.861 x 107’ (M ) ( ) - rad/orbit,
® a —e€
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The form of
S0 — 61GM
¢= ac%(1—e?)
shows explicitly that relativistic precession is enhanced by

e large M for the central mass,
* tight orbits (small values of a),

* large eccentricities e.
The precession observed for most objects is small.

* Precession of Mercury’s orbit in the Sun’s gravitational
field because of general relativistic effects is 43 arcsec-
onds per century.

» The orbit of the Binary Pulsar precesses by about 4.2 de-
grees per year.

The precise agreement of both of these observa-
tions with the predictions of general relativity is a
strong test of the theory.
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9.3.1 Escape Velocity in the Schwarzschild Metric

Consider a stationary observer at a Schwarzschild radial coor-
dinate R who launches a projectile radially with a velocity v
such that the projectile reaches infinity with zero velocity.

* This defines the escape velocity in the Schwarzschild met-
ric.

* The projectile follows a radial geodesic since there are no
forces acting on it

* The energy per unit rest mass is € and it is conserved (time
invariance of metric).

* At infinity € = 1, since then the particle is at rest and the
entire energy 1s rest mass energy.

e Thus € = 1 at all times since it 1s conserved.

If ugps 1s the 4-velocity of the stationary observer, the energy
measured by the observer is

E = —p-uohs = —mu-uops

\%

- —mguvu” Uobs

0,0
- _mgOO” uobs7
where p = mu, with p the 4-momentum and m the rest mass,
and the last step follows because the observer is stationary (in
space but not in time).
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But we have that

_ oM 0o _ omM\—1/2 0 oM\ !
goo=—(1-57) wugy=(1-%) " u=(1-2F)"
From metric Stationary observer e=(1- ZTM)MO =1

Therefore,

0.0
E = —mgyou U

i I

:m( r r r

_ oMy —1/2
But in the observer’s rest frame

E=my=m(1 —vz)_l/z,

so comparison yields 2M /R = v? and thus

[2M [2GM
\% = _— _—
€sc R R

Notice that

* This, coincidentally, is the same result as for
Newtonian theory.

e Atthe Schwarzschild radius R = rg = 2M, the
escape velocity is equal to c.

This 1s the first hint of an event horizon in the
Schwarzschild spacetime.
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9.4 Radial Fall of a Test Particle
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It will be instructive for later discussion to consider a radial
plunge orbit that starts from infinity with

* zero kinetic energy (¢ = 1) and

* zero angular momentum (£ = 0).

First, let’s find an expression for the proper time as a function
of the coordinate r.

* From earlier expressions

E: = —
2 2

drt

-1 1 /dr\? M+£2 M2
ro 2r2 3’

* which implies for { =0 and € = 1,

dr B 2M 1/2
dt r '

* Choosing the negative sign (infalling orbit) and integrat-
ing with initial condition 7(r = 0) = 0 gives (Problem)

T 2 32

XM 3(2M)3/?

for the proper time T to reach the origin as a function of
the initial Schwarzschild coordinate r.
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That was the proper time 7. To find an expression for the coor-
dinate time t as a function of r,

e we note that € = 1 and is conserved. Then from

1/2
el (1 2M\d ar __ (M
r ) drt drt r

we have that

di_dijde (2T am\
dr dr/dt r r '
» This may be integrated to give (Problem)

t:to_m(_g (ﬁ)”

r\1/2 (r/2M)V/? -1
+2(55) M (r/2M)1/2 4+ 1

) |
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Schwarzschild
coordinate time t

Proper

M time t

rs=2M

-Time/M

Figure 9.9: Comparison of proper time and Schwarzschild coordinate time
for a particle falling radially in the Schwarzschild geometry.

* The proper time 7 to fall to the origin is finite.

* For the same trajectory an infinite amount of coordinate
time ¢ elapses to reach the Schwarzschild radius.

* The smooth trajectory of the proper time through rg sug-
gests that the apparent singularity of the metric there is not

real.

Later we shall introduce alternative coordinates
that explicitly remove the singularity at r = 2M
(but not at r = 0).
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9.5 Orbits for Light Rays

Calculation of light ray orbits in the Schwarzschild metric
largely parallels that of particle orbits,

* except that
dx* dx”

uu=gyy—7—= =0,
SV dA dA,
where A is an affine parameter.

» For motion in the equatorial plane (6 = 7), this becomes

(-2) () (-2) () )

* By analogy with the arguments for particle motion

2M\ dt

= Ku=|[1-"7)—
€ et ( r)d)t’
. do

0 =Ky-u=r*sin®0—
@ Uu=r"sin 7

are conserved along the orbits of light rays.

With a proper choice of normalization for A4,

* £ may be interpreted as the photon energy

* /is the photon angular momentum at infinity.
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Figure 9.10: Effective potential for photons and light ray orbits in a
Schwarzschild metric. Dotted lines on the left side give 1/b? for each orbit.

bits the equation of motion is
11 (dr\*
-e\ax) Tt

r

By following steps analogous to the derivation for particle or-

1 oM ¢?
Veir(r) = = (1 — —) b = —.

The effective potential for photons and some classes of orbits
in the Schwarzschild geometry are illustrated in Fig. 9.10.
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Figure 9.11: Deflection of light by an angle 6 ¢ in a Schwarzschild metric.

9.6 Deflection of Light in a Gravitational Field

Proceeding in a manner similar to that for the calculation of the
precession angle for orbits of massive objects, we may calculate
the deflection d@ /dr for a light ray in the Schwarzschild metric.

AGM M R
o0p = oM _ 8477 x107%( — ) ( =2 ) radians.
C2b M@ b

For a photon grazing the Sun’s surface,
* M =1Mg and
e h= 1R@,

which gives ¢ ~ 1.75 arcseconds.

Observation of this deflection during a total solar
eclipse catapulted Einstein to worldwide fame al-
most overnight in the early 1920s.
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9.7 Shapiro Time Delay of Light

Light passing near a gravitating body follows a curved path and
the time for light to travel between two points depends on this
curvature.

* The deviation in travel time between that in the curved
spacetime and the travel time if there were no curvature is
termed the Shapiro time delay.

* This does not mean that the speed of light varies.
* The local speed of light is always c,

* but the observed elapsed time for light to go between two
points in spacetime depends on the metric.

Thus, measurement of this time delay is a test of general rela-
tivity.
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To determine the time delay of light over a given path it is nec-
essary to evaluate the integral of dt /dr.

* Proceeding in a similar manner as the earlier discussion of
light deflection, we may use

OM\ di 11 (dr\*
82(“7)% ﬁ:ﬁ(ﬁ> + V)
to write
dt  dt/dA oM\ ',/ 1 ~172
R —4el1-22 S
dr~ drjdl. 8( ; ) [K <b2 Veff)]

1 oM\ /1 172

* This may be integrated to give the light travel time.
In a typical Shapiro-delay experiment,

* radar waves are bounced off a planet and

* the time to go and return is measured for paths that pass
very close to the surface of the Sun, or

* the delay in transmitting signals from space probes to
Earth is measured as the signals pass near the Sun.

The results of such experiments are consistent with
the equation above, thereby providing further con-
fidence in the validity of general relativity.
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9.8 Gyroscopes in Curved Spacetime
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Consider the behavior of gyroscopes in free fall.

* These will follow a timelike geodesic, with a 4-velocity
u(7) governed by the geodesic equation

du
% -l—Fﬁvu“uV =0.

* In addition the gyroscope will have a spacelike spin 4-
vector s* = (0, s) in this frame.

* In the freely-falling local inertial frame the 4-velocity
components of the gyroscope are u = (1,0,0,0), so

s-u=20,
which is a tensor equation and thus true in all frames.

* In flat spacetime or a local inertial frame ds* /dt = 0.

* In curved spacetime the appropriate covariant generaliza-
tion gives an equation analogous to the geodesic equation,

Ir +F‘;ﬁsauﬁ =0.

— This equation describes how the components of the
gyroscopic spin s# change along a geodesic and

— preserves the scalar product s - u on the geodesic.

As in classical mechanics the magnitude of the
spin is constant but the direction can precess.
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Let us now use the equation

u _
E —I—Faﬁsauﬁ = 0.

to investigate two predictions of general relativity that lead to

precession of the spin vector for gyroscopes in gravitational
fields,

* geodetic precession and

* dragging of inertial frames.
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9.9 Geodetic Precession

Consider a gyroscope in a circular orbit around a non-rotating
gravitating sphere of mass M.

* A comoving observer in orbital free fall will see the gyro-
scope precess, even if the source of the field is not rotating.

* This is called geodetic precession.
Assume that

* Spacetime is described by the Schwarzschild metric,
e The radius for the orbit is R, and

 The spin points initially in the direction of a distant star.
For an observer at rest in the gyroscope’s frame

* The spin has only spatial components.
* By symmetry it must remain in the same plane.

* Choosing 0 = % for this plane in Schwarzschild coordi-
nates (¢,r,0, @), any precession occurs in the ¢ direction.

For the 4-velocity (u®,u',u*,u?) = (u',u”,u®,u?) the compo-

nent in the @ direction is

_dp_dodr

do M dt
2 _=7 O="_,/= =2
dt _ di dt =

¢ =27 _
" - dt R3

= Qu'

where Q is the classical orbital angular velocity.
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Time evolution for spin components (s,s",s%,s?) is given by

evaluated in the Schwarzschild basis.

ds* uoo B
e Fﬁsu =0.

* Choose s = 0. It will remain zero because of symmetry.
* Because s-u = 0 along the geodesic, (Problem)

2
S,:7RQ ?.

1 —2M/R"

* The remaining spin components s” and s® require solving

d r
d—sl_—l-l“gcﬁsauﬂz(),
ds?
%—I—Fgﬁs“uﬁz()

* The solutions are (Problem)

sP(t) = —so\/@( QR) sin(r)
s'(1) = SO\/@ cos(t),

where sg = (s-5)!/2 is the invariant spin magnitude and

1/2
= (1—3—M) Q.
R
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A World tube of
planet or star

t=P=2m/Q

World line of
satellite

Time

Space

Figure 9.12: Geodetic world line for gyroscope in orbit around a spherical
mass.

Imagine a gyroscope on a satellite in a circular Earth orbit.

* Assume that the spin of the gyroscope starts off at t =0
pointing in the radial direction.

* The world lines for the gyroscope and Earth are illustrated
in Fig. 9.12.
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A World tube of
planet or star

t=P=2m/Q

World line of
satellite

Time

Space

* After one complete orbit with a periodt = P =27 /Q,
s"(t = P) = so(1 —2M/R)"/*cos(wP)
= so(1—2M/R)"?cos (2717%) :
* In the absence of geodetic spin precession (so that @ = Q),
the angle ¢ would change by 27 for one orbit.
* Thus the additional spin precession angle for each orbit is

w w 3m 12
Ago:27t—27r§:27t<1—§) _y [1— (1—7) ] ,

in the direction of the orbital motion, where

1/2
w= (1—3—M) Q.
R

was used in the last step.
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A World tube of
planet or star

t=P=2m/Q

World line of
satellite

Time

Space

For objects in the Solar System M /R = GM /Rc? is small, so

* The square root can be expanded to give

1

s\ 3aM 3rGM
Ap=2mw |1 —|1—— ~ = rad orbit™
R R 2R
exggnd

for the geodetic precession per orbit for gyroscopes on a
satellite in Earth orbit.

* The radial direction is perpendicular to the direction of
orbital motion.

* Hence, this expression also gives the precession measured
by an observer comoving with the gyroscope in orbit.

The precession is small, but cumulative for successive orbits.
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642 km
polar orbit

Frame-dragging

39 maslyr
Distant K i
guide star ©
(IM Pegasi) Geodetic precession

- 6606 mas/yr

Figure 9.13: Geodetic precession and frame dragging for a gyroscope on
Gravity Probe B. Precession angles are exaggerated. IM Pegasi was chosen
as the directional reference because it was approximately in the desired di-
rection for the gyroscopic spin axis and its proper motion on the celestial
sphere was known precisely.

Gravity Probe B (GP-B) tested geodetic precession for

* gyroscopes aboard a satellite in an almost circular orbit

* that averaged 642 km above the surface of the Earth.
Figure 9.13 illustrates measurement of geodetic precession.

* The expected geodetic precession per orbit is 1.22 X
1073 arcsec orbit !

* This corresponds to a predicted geodetic precession rate

of AQ /At = 6.6 arcsecyr—!.

* The geodetic precession rate measured by GP-B was
within 0.07% of this value.
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9.10 Gyroscopes in Rotating Spacetimes

The Schwarzschild solution gives a spacetime valid outside any
spherical, static, non-rotating body.

* But astronomical bodies are typically spinning.

* Thus it is important physically to ask about solutions of
the Einstein equations for rotating spacetimes.

* Some objects are spinning slowly, which suggests that
their exterior metric might be approximated by an expan-
sion about the Schwarzschild spherical spacetime.

* On the other hand, in later chapters black holes will be
encountered that are spinning with an angular momen-
tum comparable to the maximum allowed by the laws of
physics.

* These cannot in any sense be understood in terms of per-
turbations of the Schwarzschild metric.

* In the remainder of this chapter the simpler topic of very
slowly rotating spherical spacetimes will be taken up;

* in later chapters the more complex issue of strongly-
deformed metrics implying potentially large angular mo-
mentum will be addressed.
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9.10.1 Slow Rotation in the Schwarzschild Metric

As an example of a slowly-rotating astronomical body, consider
the Sun.

* [t rotates differentially with a period of about a month,
somewhat faster at the equator than at the poles.

* The spacetime outside the Sun is described by the
Schwarzschild solution provided that

1. it 1s a vacuum,
2. gravity from all other bodies can be neglected,
3. the Sun is static with no spin, and

4. the Sun is spherical.

* To a very good approximation these conditions are satis-
fied, so the Schwarzschild metric is almost (but not quite)
valid outside the Sun.

Let us now parse the “not quite” part of the preceding state-
ment.
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Take the exterior of the Sun to be a vacuum and ignore all other
masses.

e Thus deviation from the Schwarzschild metric outside the
Sun is caused only by its

1. angular momentum and by its

2. deviation from spherical symmetry.

* Deviations from spherical symmetry are very small and
caused classically by centripetal effects of its rotation.

e [f the Schwarzschild metric is expanded in powers of the
angular momentum J,

— Centripetal forces vary as @? and so come in only at
the level of the J? term in the expansion.

— Thus to Ist order in J the rotating Sun is spherical.

* However, recall that general relativity has many formal
similarities with electromagnetism and that electromag-
netic forces can arise from motion of charge.

* These are magnetic effects.
* In general relativity mass acts as “gravitational charge”.

» This suggests that gravitational “forces” (curvature of
spacetime) may arise from motion of mass (‘“mass cur-
rents”), in addition to arising from the mass itself.

This is the case, and forces arising from mass currents are
called gravitomagnetic effects in general relativity.
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Assuming a slowly-rotating spherical field, expansion about the
Schwarzschild metric to first order in J gives a metric

oM 1 4J sin? 1
ds?= — {1——+ﬁ’<—2)]dt2— {JSI—ne+ﬁ’(—2)]d(pdt
r r r r
oM 1
n {1 +2 0 (—2)] (dr2+r2(d62—|—sin2 6d(p2)> .
r r

Upon restoring factors of G and c, this may be written as

4GJ
ds> = dsg — —5 sin” 0 (rd) (cdr) + € (JZ) ,
Ccr

where

. ds% is the contribution from the unperturbed
Schwarzschild metric and

* 0 (12) indicates that terms of order J? and higher have
been discarded.

For Newtonian theory J ~ Mrv, where v is the linear velocity.
Therefore, for the coefficient of the term proportional to J,
G/  GMrv v GM

32~ 32 - X a0
CcCr Cr C Ccr

which shows that

The effect of mass motion on curvature is of or-
der v/c relative to the primary effect caused by the
mass itself, which is proportional to GM /c?r.
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z

Gyroscope
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<ty J

Figure 9.14: A gyroscope in free fall on the rotation axis of a spherical
planet in slow rotation. The initial 4-spin s of the gyroscope is perpendicular
to the 4-velocity u, and the angular momentum of the planet is J.

9.10.2 Dragging of Inertial Frames

Consider the following thought experiment:

* Imagine a spherical body in slow rotation, with a metric

ds? = ds? — @ sin 0/(rd@) (cdt) + O (12)

valid approximately in the spacetime surrounding it.

* Now imagine dropping a gyroscope from above the North
Pole with an initial spin perpendicular to the rotation axis.

Figure 9.14 illustrates.
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z

Gyroscope ~_
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Spherical coordinates are singular on the z axis, so it is conve-
nient to work in cartesian coordinates (see figure above).

¢ In cartesian coordinates the Schwarzschild metric is

4GJ dy — yd
ds* = ds? (cartesian) — W(cdt) (”%) :

where ds3 (cartesian) is the unperturbed metric.

* Only terms up to order 1/c> need be retained and terms
involving the mass M will contribute at order 1/¢>.

* Thus for small J the unperturbed Schwarzschild metric
can be replaced by its M — 0 limit, which is just the flat
Minkowski metric.

* Thus, it is sufficient to work with the approximate metric
4GJ

dy —yd
ds? (cdt)* +dx* +dy* +dz* — —— (cdt) (M) :
- r

N 7

A

. V. .
Minkowski metric ~— .
Ist—order gravitomagnetic
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Taking the spin to lie in the x—y plane, initially

ut = (u',0,0,u°) st =(0,s%,57,0),

so clearly
* s-u =0, and by symmetry arguments
* the spin will remain in the x—y plane.

The spin of the freely-falling gyroscope will be governed by
ds* moo B
7 +I" ap® U

To leading order in 1/c the only contributions to the second
term will involve

=0.

2GJ

C2 Z3

2GJ

273

Fp=T} = [ =0 =

where r = z, since the gyroscope lies on the z axis. Then

ds" Hoa B
7 +I ap’s U =0
yields the equations
ds* . 2GJ ds” 2GJ
— IO = Tyt T Y = T
i Iy,s’u 275 = ,s'u' = 23 u'.
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Utilizing u’ = dt /dr, the equations

ds* ; 2GJ , , ds’ v 1 2GJ
Iz wSu = —@syu F7 e I s'u' = @sxu :

may be written

ds* 2GJ y ds’ 2GJ N
dt 273 d 2377

and the angular rate of precession in the x—y plane is

2GJ

CZZ3 ’

Qrr =
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The result
O — 2GJ
LT = 23

was obtained in a Lorentz frame for which

* the source of the spherical field is at rest and the gyroscope
is falling.

* However, it is valid also in the frame of the gyroscope
because

— Lorentz boosts along the z axis do not affect the trans-
verse spin components s* and s”, and

— there is no time dilation to leading order in c.

This gyroscopic precession effect is called the
Lense—Thirring effect or frame dragging.

Frame dragging should be distinguished from geodetic preces-
sion, which 1s

* much larger and

* occurs even if the gravitational field source is not rotating.

Gravity Probe B measured frame dragging for
Earth’s slowly-rotating field and found a value
within 5% of the GR prediction.
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642 km
polar orbit

Frame-dragging
39 mas/yr

Distant K L
guide star ©

(IM Pegasi) Geodetic precession
- 6606 masl/yr

Effect GP-B measurement General relativity

Geodetic precession —6601.8+18.3masyr~!  6606.1 masyr—!
Frame dragging —37.24+7.2masyr"! —39.2masyr—!

The table above compares the predictions of general relativity
with measurements from Gravity Probe B for geodetic preces-
sion and frame dragging in a polar Earth orbit.

Thus GP-B found

* geodetic precession within 0.07% and

* frame dragging within 5%

of GR predictions.
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Frame dragging has been illustrated here specifically for a
slowly-rotating Schwarzschild metric.

* However, dragging of inertial frames is expected for any
metric having a field source that depends on angular mo-
mentum.

* It 1s a very small effect for Earth’s gravitational field.

* However, in later chapters extreme frame-dragging effects
will be discussed that can occur in

— much stronger,

— much more rapidly-rotating

gravitational fields.

These may be of large astrophysical importance
because frame dragging of spacetime around rotat-
ing black holes may help power some of the most
energetic events observed in the Universe.
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Chapter 10

Neutron Stars and Pulsars

Neutron stars are relevant to our discussion of general relativity
on two levels.

» They are of considerable intrinsic interest because their
quantitative description requires solution of the Einstein
equations in the presence of matter.

* In addition, they also explain the existence of pulsars and
these in turn provide the most stringent observational tests
of general relativity.

385
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10.1 A Qualitative Picture of Neutron Stars

Objects of white dwarf density are described reasonably well
by Newtonian gravity.

* For white dwarfs, general relativity corrections appear
typically at the ~ 10~% level.

* For neutron stars the densities are much higher;

* Newtonian gravity works qualitatively for neutron stars,
but a correct quantitative description requires GR.

* However, many of their basic properties can be estimated
using Newtonian concepts and simple reasoning.

* For example, the assumption that in a neutron star gravity
packs the neutrons down to their hard-core radius of ~
10713 cm yields immediately that

— the most massive neutron stars contain about 3 x 10°7
baryons (mostly neutrons)

— within a radius of about 7 km,

— with a corresponding mass of about 2.3 M.
« This implies an average density greater than 101> gcm™3,
which is several times nuclear matter density, and

* a (gravitational) binding energy of order 100 MeV per nu-
cleon, which is an order of magnitude larger than the bind-
ing energy of nucleons in nuclear matter.
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* The rotal gravitational binding energy of a neutron star is
within an order of magnitude of the rest mass energy, and

* the escape velocity 1s about 50% of the speed of light.

* The binding energy and the escape velocity both signal
that GR effects are likely to be significant.

General relativity is important for the overall properties of neu-
tron stars.

* However, over a microscopic scale characteristic of nu-
clear interactions the metric is essentially constant.

* This implies that the microphysics (nuclear and elemen-
tary particle interactions) of the neutron star can be de-
scribed by special-relativistic guantum field theory.

Thus it is possible to decouple

* gravity, which governs the overall structure,
from

* quantum mechanics, which governs the mi-
croscopic properties.

in the study of neutron stars.
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10.2 The Oppenheimer-—Volkov Equations

Neutron stars have p ~ 1014 — 101 gem=3.

* This produces gravitational fields that are of moderate
strength by GR standards (enormous by Earth standards).

» Escape velocity at the surface 1s around %c — %c.
* Thus GR is necessary for a correct description.

e Unlike vacuum solutions, we must now deal with mass
distributions and a finite stress—energy tensor.

* We shall, however, simplify by assuming a static, spheri-
cally symmetric configuration for the matter.

* With these assumptions we may assume that

— the solution outside the neutron star corresponds to
the Schwarzschild solution, so the interior solution

— must match Schwarzschild at the surface.

We consider the general solution of the Einstein
equations for the gravitational field produced by

* a static, spherical mass distribution that

e matches the exterior (vacuum) solution at the
surface of the spherical mass distribution.
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* Assume the matter inside the star is a perfect fluid, with
T, = (e + P)u*uy + PS) .
* We assume spherical symmetry, with a line element
ds* = —e°a? + ) ar? + r2de* + r*sin 0d o>,
implying non-vanishing metric components
goo(r) = =) gyy(r) = )

822(7’) = r? g33(r, 9) — r2sin? 0.

* Assume equilibrium, so

— o(r) and A(r) depend on r but not ¢, and

— the 4-velocity has no space components:

ut = (¢79/2,0,0,0) = (gg,"%,0,0,0).

* Inserting these 4-velocity components, the stress—energy
tensor takes the diagonal form

T, = (e + P)utuy + P8 =

S O v o
S v o ©
T O O O

where € = p in ¢ = | units.
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* For the vacuum Einstein equation we need only the Ricci
tensor to construct the Einstein tensor.

* However, in the general non-vacuum case we need both
the Ricci tensor Ryy and the Ricci scalar R.

* It is convenient to express the Einstein equation as
G',=R", —38/R=8xT",.
TVH is diagonal, so only diagonal components of G u
* Because of the Bianchi identity and the Einstein equations
G", =8nT",
the stress—energy tensor obeys
.. =0.

« Thus we can choose to solve the equation T viu = 0 in
place of solving one of the Einstein equations.

We shall employ that strategy here, using two
Einstein equations and the constraint equation
T+ v;u = 0 to obtain a solution.
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The constraint equation has been solved in a Problem, where
you were asked to show that

T™"u=0 — P+iP+p)o’=0.

(primes denoting partial derivatives with respect to r) for a line
element and stress—energy tensor

ds*> = —ed(r)dt2 + e),(r)dr2 + r2de* + r2 sin? qu)27
¢ 0 0 0 |
0O —-P O 0
0 0O —P O
0 0 0O -P

T+, =

We require two additional equations, the simplest choices are
the Einstein equations

GOO - SET% Gll — 87[T11

* The Einstein tensors Ggg and G; were derived for this
metric in a Problem.

» Using contraction with the metric tensor to raise an index
we obtain from those results

1 A 1
0—8 Loo e 00 =¢€ o 3
_ B 1 o’ 1
G'=g"G1=e"G1=¢ z(_2+_)__2.
r r r
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Collecting the preceding equations, we find that we must solve
the set of equations

_ 1A |
—el(ﬁ——>%7§:&wh)

r
1 o’ 1
-2 T
¢ (ﬁ_T)_ﬁ SP(r)

P'+4(P+p)o’ =0.

To proceed we note that the first equation above may be rewrit-
ten as

1 d 2 dm
0 -1 _ _
Go—ﬁa[”(l—e ﬂ—ﬁﬁ—g’w’

where we have defined a new parameter
2m(r) =r(1—e ).

At this point m(r) is only a reparameterization of the metric
coefficient ¢? since, upon multiplying by et

el:T};n(r): (1—2mr(r))_l,

but m(r) will be interpreted below as the total mass—energy
enclosed within the radius r.
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From the first Einstein equation

2d
G = —zd—m —8ne — dm=4nr’edr,
r r

and thus

r

m(r) :471'/0 e(r)rdr,

with an integration constant m(0) = 0 chosen on physical
grounds. Now consider the second Einstein equation

/

1 (0} 1
-2
e (ﬁ—7)—ﬁ—87tp(r)

Solving it for 6’ = do /dr gives

do A 1 1
i P B I
yriak (87rr (r)+r> s
and substitution of
A o r
© = r—2m(r)

leads to
do  8wrP(r)+2m(r)

dr r(r—2m(r))

Therefore the preceding equations define the met-
ric coefficients e© and e in terms of the parameter
m(r) and the pressure P(r).
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Finally, we may combine the two equations

do 8ar3P(r) +2m(r)
dr r(r—2m(r))

P'+3(P+p)o'=0

to give

dp _ (P(r) +€(r))(4mr*P(r) +m(r))
dr r(r—2m(r)) '

Collecting our results, we have obtained the Oppenheimer—
Volkov equations for the structure of a static, spherical, gravi-
tating perfect fluid

dP  (P(r) +&(r) (m(r) +4xrP(r))

m(r) = 47r/0r£(r)r2dr

where m(r) is the total mass contained within a radius r
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Oppenheimer—Volkov equations:

dP  (P(r) +&(r)) (m(r) +4nrP(r))

r

m(r) :47r/0 e(r)r*dr

* Solution of these equations requires specification of an
equation of state that relates the density to the pressure.

* They may then be integrated from the origin outward
— with initial conditions m(r = 0) = 0 and
— an arbitrary choice for the central density €(r = 0)
until the pressure P(r) becomes zero.

e This defines the surface of the star r = R, with the mass of
the star given by m(R).

* For a given equation of state each choice of £(0) will give
a unique R and m(R) when the equations are integrated.

* This defines a family of stars characterized by

— a specific equation of state and

— the value of a single parameter (the central density, or
a quantity related to it like central pressure).
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These equations represent the general relativistic (covariant)
description of hydrostatic equilibrium for a spherical, gravitat-
ing perfect fluid.

* The condition of hydrostatic equilibrium was built into the
solution through the assumption

ut = (¢°/2,0,0,0) = (gg,"%,0,0,0).

 This implies that the fluid is static since the 4-velocity has
NO NON-zero space components.

* They reduce to the Newtonian description of hydrostatic
equilibrium in the limit of weak gravitational fields

However, the Oppenheimer—Volkov equations im-
ply significant deviations from the Newtonian de-
scription in strong gravitational fields.

* To see this clearly, a little algebra allows us to rewrite them
in the form (Problem)

—m(r)dm(r)
72

(189 () (-

dm(r) = 4nr*e(r)dr.

47rr2dP(r) =

These equations may be interpreted in the following way:
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— d
4rr?dP(r) = m(r)2 m(r)
N r 7
Force acting on shell Newtonian
~1
P 47r3P 2
x 1+8((r; 1+ r( )(r) - 2ml)
r m(r r
~—~— N—— S——
GR GR GR

dM(r)=  4mrle(r)dr
——
Mass—energy of shell

* The second equation gives the mass—energy of a shell ly-
ing between radii r and r + dr.

* The left side of the first equation is the net force acting
outward on this shell.

* The first factor on the right side of the first equation is the
attractive Newtonian gravity acting on the shell because
of the mass interior to it.

* The last three factors on the right side of the first
equation—the factors on the second line—represent GR
effects causing deviation from Newtonian gravitation.

* Since all three factors on the second line of the first equa-
tion exceed unity as the star becomes relativistic, in GR
gravity is consistently stronger than in Newtonian gravity.

Note: Gravity is enhanced by coupling to pressure
in the GR description, unlike Newtonian gravity.
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10.3 Interpretation of the Mass Parameter

The parameter m(r) entering the Oppenheimer—Volkov equa-
tions was interpreted provisionally as the fotal mass—energy en-
closed within a radius r. Let’s now justify this interpretation.

* Outside a star of radius R, the mass function m(r) becomes
equal to m(R), which is

* the mass that would be detected through Kepler’s laws for
the orbital motion of a well-separated binary system.

e In the Newtonian limit 1t is clear from

r

m(r) = 471'/ e(r)r*dr,
0
that m(r) is the mass contained within the radius .

* For relativistic stars m(r) may be consistently split into

— contributions from a rest mass my(r),
— an internal energy U(r), and

— a gravitational energy Q(r):
m(r) =mo(r)+U(r) + Q(r).

* Formally we can split the energy density € into a contri-
bution from the rest mass and one from internal energy,

€ = ton+ (€ — Hon),

where the first term is the total rest mass of n particles of
mass U, and the second term is the internal energy.
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* The proper volume for a spherical shell of thickness dr is
dv = 47rr2\/detg11 dr = 4nr’\ et dr
— 4nr*(1—2m/r)"ar.

Thus the rotal rest mass inside the radius r 1s

r

mo(r) :/O ,u,ondV:47r/0 r2(1=2m/r)"" 2 ugnadr,

the total internal energy inside r is
r
U(r) = / (€ — ton) dv
0

= 47t/rr2(1 — 2m/r)_1/2(8 — Uon)dr,
0

and the total mass—energy inside r is

r

m(r) :47r/0 e(r)rtdr.
e Thus, the difference
Q(r) = m(r) ~mo(r) ~U ()
= —47:/0 r’e (1 —(1 —2m/r)_1/2) dr

must be the total gravitational energy inside r.

This gives us some confidence that m(r) is indeed
the total mass—energy inside the coordinate r.
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10.3.1 Gravitational Mass and Baryonic Mass

The integral

r

m(r) :471'/0 e(r)r*dr

is of the same form as that for Newtonian gravity if the mass
distribution is given by p(r) = &(r)/c>.

» However, in general relativity €(r) is not an arbitrary dis-
tribution but rather corresponds to a solution P of

dP  (P(r)+&(r)) (m(r) +47r°P(r))

dr 2 (1 ) 2mr<r>> |

with an equation of state € = €(P). Despite the form of

r

m(r) :47r/ e(r)r*dr,

0

 m(r) is the sum of the mass and the gravitational energy,

* and the mass of the star has no well-defined meaning in
isolation from the gravitational energy.

* The mass—energy m is termed the gravitational mass.

* The total mass of the nucleons if they were dispersed to
infinity is termed the baryonic mass of the star.

* The gravitational mass and the baryonic mass are not the
same (they differ by the gravitational binding energy).

Gravitational mass ~ 20% smaller than baryonic mass.
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10.4 Pulsars and Tests of General Relativity

Pulsars are rapidly-spinning neutron stars that sweep beamed
radiation over the Earth periodically, giving the illusion of pul-
sation.

» This apparent pulsation occurs with atomic-clock preci-
sion.

* Thus, pulsars offer possibilities for precise timing mea-
surements, particularly when they are found as a compo-
nent of a binary star system.

* The structure and evolution of pulsars is of considerable
intrinsic interest.

* However, they also are of great practical importance for
general relativity because of their superb timing charac-
teristics.

* These provide some of the most precise tests available for
the theory.

In the remainder of this chapter examples will be
given of the stringent tests of general relativity af-
forded by pulsars in close binary systems.
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10.4.1 The Binary Pulsar

The Binary Pulsar PSR 1913+16 (also known as the Hulse—
Taylor pulsar) was discovered using the Arecibo 305 meter ra-
dio antenna.

* [t is about 5 kpc away, near the boundary of the constella-
tions Aquila and Sagitta.

* This pulsar rotates 17 times a second, giving a pulsation
period of 59 milliseconds.

It is in a binary system with another neutron star (not a
pulsar), with a 7.75 hour period.

» The precise repetition frequency of the pulsar means that
it is basically a very high quality clock

— orbiting in a binary system that

— feels very strong, time-varying gravitational effects.

— Precision tests of general relativity
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Figure 10.1: Pulse rate and inferred radial velocity as a function of time for
the Binary Pulsar.

10.4.2 Periodic Variations

The repetition period for a pulsar is associated with the spin of
the pulsar and is atomic-clock-like in its precision. Thus

* Variations in that period as observed from Earth must be
associated with orbital motion in the binary.

* These variations can be used to give very precise informa-
tion about the orbit.

* When the pulsar is moving toward us, the repetition rate
of the pulses as observed from Earth will be higher than
when the pulsar is moving away (Doppler effect).

* This can be used to measure the radial velocity (Fig. 10.1).
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The pulse arrival times vary as the pulsar moves through its
orbit

* [t takes three seconds longer for the pulses to arrive from
the far side of the orbit than from the near side.

* From this, the Binary Pulsar orbit can be inferred to be
about a million kilometers (three light seconds) further
away from Earth when on the far side of its orbit than
when on the near side.
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Figure 10.2: Binary Pulsar orbits.

10.4.3 Orbital Characteristics

405

* Each neutron star has a mass of about 1.4M,.

* The orbits are very eccentric (e ~ 0.6.).

* The orbital plane is inclined by about 45 degrees.

The orbits determined for the binary are shown in Fig. 10.2.

* The minimum separation (periastron) is about 1.1R.

* The maximum separation (apastron) is about 4.8R,
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Center Orbit 3
of mass

Orbit 1

P3

Figure 10.3: Precession of the periastron.

* By Kepler’s laws, the radial velocity of the pulsar varies
substantially as it moves around its elliptical orbit.

» These orbits are not quite closed ellipses because of pre-
cession effects associated with general relativity.

— This causes the location of the periastron to shift a
small amount for each revolution (Fig. 10.3).

— The points P1, P2, and P3 are periastrons on three
successive orbits (with the amount of precession
greatly exaggerated for clarity
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10.5 Precision Tests of General Relativity

The discovery and study of the Binary Pulsar was of such fun-
damental importance that Taylor and Hulse were awarded the
1993 Nobel Prize in Physics for their work

* This was the only Nobel ever given for relativity before
the 2017 prize for discovery of gravitational waves.

* Chief among the reasons for this importance is that the Bi-
nary Pulsar provided the most stringent tests of GR avail-
able before

— the discovery of the Double Pulsar and

— the direct observation of gravitational waves.
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Center
of mass

Precession of Orbits

Because spacetime is warped by the gravitational field in the
vicinity of the pulsar, the orbit will precess with time.

* This is the same effect as the precession of the perihelion
of Mercury, but it is much larger for the present case.

* The Binary Pulsar’s periastron advances by 4.2 degrees
per year, in accord with the predictions of GR.

* In a single day the orbit of the Binary Pulsar advances by

as much as the orbit of Mercury advances in a century!

Time Dilation

* When near periastron, gravity is stronger and its velocity
is higher, so time should run slower.

* Conversely, near apastron the field is weaker and the ve-
locity lower, so time should run faster.

* It does both, in the amount predicted by GR.
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Figure 10.4: Shrinkage of the orbit of the Binary Pulsar because of gravita-
tional wave emission.

10.5.1 Emission of Gravitational Waves

The revolving pair of masses is predicted by general relativ-
ity to radiate gravitational waves, causing the orbit to shrink
(Fig. 10.4).

* The time of periastron can be measured very precisely and
is found to be shifting.

* This shift corresponds to a decrease in the orbital period
by 76 millionths of a second per year.

* The corresponding decrease in the size of the orbit by
about 3.3 millimeters per revolution.
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The quantitative decrease in periastron time is illustrated by the
data points in the above figure.

* Because the orbital period is short, the shift in periastron
arrival time has accumulated to more than 30 seconds (ear-
lier) since discovery.

 This decay of the size of the orbit is in agreement with the
amount of energy that general relativity predicts should
be leaving the system in the form of gravitational waves
(dashed line in figure)

* Precision measurements on the Binary Pulsar gave strong
indirect evidence for the correctness of this key prediction
of general relavity even before gravitational waves were
detected directly.
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10.5.2 Origin and Fate of the Binary Pulsar

Formation of a neutron star binary is not easy. One of two
things must happen

* A binary must form with two stars massive enough to be-
come supernovae and produce neutron stars, and the neu-
tron stars thus formed must remain bound to each other
through the two supernova explosions.

* The neutron star binary must result from gravitational cap-
ture of one neutron star by another.

These are improbable events, but not impossible, and the exis-
tence of the Binary Pulsar (and several similar systems) demon-
strates empirically that mechanisms exist for it to happen.
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Once a neutron star binary is formed its orbital motion radi-
ates energy as gravitational waves, the orbits must shrink, and
eventually the two neutron stars must merge.

* Because of the gravitational wave radiation and the cor-
responding shrinkage of the Binary Pulsar orbit (3.3 mil-
limeters per revolution), merger is predicted in about 300
million years.

* The sum of the masses of the two neutron stars is likely
above the critical mass to form a black hole. Therefore,the
probable fate of the Binary Pulsar is merger and collapse
to a rotating (Kerr) black hole.

* As two neutron stars in a binary approach each other they
will revolve faster (Kepler’s third law).

* This will cause them to emit gravitational radiation more
rapidly, which will in turn cause the orbit to shrink even
faster.

e Thus, near merger of two neutron stars will proceed
rapidly in a positive-feedback runaway and will emit very
strong gravitational waves that may be detectable with
current-generation gravitational wave detectors.

These considerations are valid for any binary, not
just the Binary Pulsar, but the gravitational wave
effects are much more pronounced for binaries in-
volving highly compact objects.
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Figure 10.5: Orbital configuration of the Double Pulsar.

10.5.3 The Double Pulsar

In 2003 a binary neutron star system (the Double Pulsar) was
discovered in which both neutron stars were observed as pul-
sars in a very tight, partially eclipsing orbit (Fig. 10.5).

* The two neutron stars have masses of 1.3381 +0.0007M,
(component A), and 1.2489 +0.0007M, (component B).

* They have spin periods of 22.7ms and 2.77 s.
* The orbit is slightly eccentric (e = 0.088).
* The orbit has a mean radius of about 1.25R.

* Thus the orbital period is only 147 minutes, with a mean
orbital velocity of about 106 kmhr~!.

* The fast orbital period and the exquisite timing from the
pulsar clocks has allowed the Double Pulsar to give the
most precise tests of general relativity to date.
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Figure 10.6: (a) (Highly-exaggerated) distortion of spacetime by the
pulsar—white dwarf binary PSR J0348+0432. The large, compact mass
of the neutron star distorts spacetime much more than the smaller, less-
compact mass of the white dwarf. (b) Gravitational wave emission from
PSR _J0348+0432. (c) Binary system PSR J0348+0432. Orbits to scale but
object sizes are schematic.

10.5.4 The Pulsar-White Dwarf Binary PSR J0348+0432

The binary system PSR J0348+0432

* is about 2.1 kpc away and

e contains a 39 ms pulsar of mass 2.01 M, and a white
dwarf of mass 0.172 M, with orbital period 2.46 hours.

* An artist’s impression of the distorted spacetime produced
by PSR J0348+0432 is shown in Fig. 10.6(a),

* Emission of gravitational waves illustrated in Fig. 10.6(b).

* The geometry of the orbit is illustrated in Fig. 10.6(c).
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The very compact orbit illustrated above (comparable in width
to the diameter of the Sun)

* suggests that there should be a rapid loss of orbital energy
to gravitational waves.

* Precise radio timing indicates that the orbital period is de-
creasing by 8.6 sec year—!, in accord with the prediction
of general relativity

This implies a time until merger of ~600 million years.
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The computed rate of decrease in orbital period for PSR
J0348+0432 because of gravitational wave emission is

Pp=—-258x10"Bgs7!

and the measured rate of decrease in the orbital period is

| - 1s lyr
P= —8. !
8.6 usyr (106H5) <3.1557>< 1078)

— —273x10 Bgs !,

Therefore, the ratio of measured to predicted rate of decrease is

.i =1.05+£0.18.

GR

The orbital period of PSR J0348+0432 is de-
creasing at a rate accounted for by the rate of
gravitational-wave emission required by GR.
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The pulsar PSR J0348+0432

e contains one of the most massive neutron stars known
(M ~ 2M), with a gravitational binding energy that is

* 60% larger than that of neutron stars in any other binary
where gravitational-wave damping has been measured.

e Thus, PSR J0348+0432 tests general relativity under
stronger gravity than for other binary pulsar tests.

Strong-field effects in general relativity

* depend nonlinearly on the gravitational bind-
ing energy.

» Thus larger binding energy entails a substan-
tially more stringent test of general relativity.
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Figure 10.7: Orbits of PSR J0337+1715. (a) Orbits of the outer white dwarf
(WD) and the center of mass (CM) for the inner white dwarf and neutron star
pair. (b) As for left side but scaled up by a factor of 30 to show the orbits
for the inner white dwarf and neutron star (NS). Arrows indicate orbital
velocities for the center of mass of the inner binary and the individual white
dwarfs and neutron star. All orbits lie almost in the same plane, are nearly
circular, and have a tilt angle i ~ 39° relative to the line of sight.

10.5.5 The Pulsar-WD-WD Triplet PSR J0337+1715

The triple star system PSR J0337+1715, which contains a mil-
lisecond pulsar and two white dwarfs, 1s illustrated in Fig. 10.7.

e Pulsar timing allows a precise determination of masses
and orbital parameters.

* The neutron star is found to have a mass of 1.4378M,
e the inner white dwarfhas a mass of 0.1975M,, and

e the outer white dwarfhas a mass of 0.4101 M.
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According to the strong equivalence principle,

* objects with different gravitational binding energies
should follow the same orbits in a gravitational field.

* This can be tested by tracking the Earth—Moon system as
it falls gravitationally toward the Sun in its orbit.

In PSR J0337+1715 a similar test is possible as the outer white
dwarf strongly accelerates the inner binary.

* Gravitational binding energies for the neutron star and
white dwarf in the inner binary differ from each other by
4-5 orders of magnitude, and

« the neutron star binding energy is roughly 10° times larger
than that of planets or moons in our Solar System.

Hence violations of the strong equivalence princi-
ple should be greatly amplified in JO337+1715.
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Chapter 11

Spherical Black Holes

One of the most spectacular consequences of general relativity
is the prediction that gravitational fields can become so strong
that they can effectively trap even light.

* Space becomes so curved that there are no paths for light
to follow from an interior to exterior region.

* Such objects are called black holes, and there is extremely
strong circumstantial evidence that they exist.

* In this chapter we apply the Einstein theory of gravity to
the 1dea of black holes using the Schwarzschild solution.

* In the next chapter we shall take a first step in consider-
ing how gravitational physics is altered if the principles
of quantum mechanics come into play (Hawking black
holes),

* In the chapter after that we shall consider how the
Schwarzschild solution is modified if a black hole is as-
sumed to possess angular momentum (Kerr black holes.)

423
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11.1 Schwarzschild Black Holes

We shall now show that

* there is an event horizon in the Schwarzschild spacetime
at rg = 2M,

* which implies that there is a black hole inside the event
horizon,

where the escape velocity exceeds c.
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11.1.1 Event Horizons

425

Imagine an attempt to escape a gravitational field generated by
some spherical object of mass M.

* The condition for escape to a radius r is that the kinetic
energy exceed the gravitational potential energy:
1 2 GMm

~my~ >
- - r

* But the maximal physical velocity for any object is v = c;
substituting ¢ for v and solving for r,

2GMm  2GM
ry = 3 —_= 3

=17Ts,

mc C

where we’ve used rg = 2M with ¢ and G restored.

Therefore, rg is the radius at which the escape ve-
locity equals the velocity of light.

This is just a suggestive result from Newtonian physics

* supplemented by concepts from special relativity and

* dubious assumptions about light in Newtonian gravity.

But a more rigorous analysis comes to the same conclusion:

The gravitational curvature is so strong inside rg
that even light cannot escape.
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Thus, the Schwarzschild radius rg

* may also be termed the event horizon of the
Schwarzschild solution and, since light is

* fundamentally trapped inside this radius,

the region interior to rs 1s termed a black hole.

Before proceeding we clear up a potential source of confusion:

* It has been argued that the Schwarzschild solution is ap-
proximately valid outside the Sun or Earth, and that

e s = 2M defines an event horizon for a black hole.

* So why aren’t the Sun and Earth black holes with corre-
sponding event horizons?

The answer: The Schwarzschild solution is a vac-
uum solution valid only outside the mass distribu-
tion producing the gravitational field.

In the case of the Sun and Earth it may be verified easily that

* the Schwarzschild radius lies deep inside both objects,

¢ where the Schwarzschild solution is not valid.

Thus (you will be happy to know!), the Earth and Sun are not
black holes because they are not nearly compact enough.
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An event horizon and the associated black-hole properties of
the Schwarzschild solution

* manifest themselves physically only if the mass M respon-
sible for the Schwarzschild gravitational field

* is contained entirely within the Schwarzschild radius,

* which implies extremely compact objects of much higher
density than planets or normal stars.

Thus it is important to distinguish

* the Schwarzschild spacetime, which is approximately
valid outside any static spherical mass, and a

e Schwarzschild black hole, which forms in a Schwarzschild
spacetime only if the mass M responsible for the gravita-
tional field is contained entirely within its Schwarzschild
radius.
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The preceding qualitative discussion can be placed on firmer
ground by considering a spacecraft approaching an event hori-
zon in free fall (engines off).

* For simplicity, we assume the trajectory to be radial.
* and consider two points of view:

1. From a point at constant large distance from the black
hole (professors sipping martinis).

2. From a point inside the spacecraft (the students).

* We shall use the Schwarzschild solution (metric) for anal-
ysis.
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11.1.2 Approaching the Event Horizon: Outside View

429

line element

We consider only radial motion. Setting d@ = d@ = 0 in the

oM oM\ !
ds®* = —dt? = — (1 ——> dr® + (1 ——) dr?
r r

-
S (1_r—s>dt2+ (1_r_s> dr.

r r

* As the spacecraft approaches the event horizon its velocity
as viewed from the outside in a fixed frame is v = dr/dt.

* Light signals from spacecraft travel on the light cone
(ds?® = 0) and thus from the line element

_dr_(1 rs>
V_dt_ r/)-

* As viewed from a distance outside rs, the spacecraft ap-
pears to slow as it approaches rs and eventually stops as
r —rs.

The distant observers (professors sipping martinis)
will never see the spacecraft cross rg: its image
will remain frozen at r = rg for all eternity.
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But let’s examine what this means more carefully. Rewrite

ﬂ:(l_r_s) — dt:L.
dt r l—rg/r

* As r — rg, time between successive wave crests for light
coming from the spacecraft tends to infinity and therefore

A — oo v—=0 E — 0.

* The external observer sees the spacecraft slow rapidly as
it nears rg, but the spacecraft image is seen to strongly
redshift at the same time.

 This behavior is just that of the Schwarzschild coordinate
time seen earlier for a test particle in radial free fall:

Schwarzschild

coordinate time t
Proper

Y time 1

rS=2M

-Time/M

e Therefore, the actual external observation is that the
spacecraft rapidly slows and redshifts until the

* image fades from view before the spacecraft reaches rs.
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11.1.3 Approaching the Event Horizon: Spacecraft View

Things are very different as viewed by the (quite doomed) stu-
dents from the interior of the spacecraft.

e The occupants will use their own clocks (measuring
proper time) to gauge the passage of time.

 Starting from a radial position ry outside the event hori-
zon, the spacecraft will reach the origin in a proper time

_ 2R
3(2M)1/2

as indicated by the Schwarzschild proper time in the fol-
lowing plot:

Schwarzschild

coordinate time t
Proper

M time t

I'S=2M

-Time/M

* The spacecraft occupants will generally notice no space-
time singularity at the horizon.
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Schwarzschild

coordinate time t
Proper

M time t

I’S=2M

-Time/M

* Any tidal forces at the horizon may be very large but will
remain finite (Riemann curvature is finite at rs).

* The spacecraft crosses rg and reaches the (real) singular-
ity at r = 0 1n a finite amount of time,

e where it would encounter infinite tidal forces (Riemann
curvature has components that become infinite at r = 0).

 The trip from rg to the singularity is very fast (Problem):

1. ~ 10~% seconds for stellar-mass black holes.

2. ~ 10 minutes for a billion solar mass black hole.

For 10° M, black holes the tidal forces at the hori-
zon are small and quite survivable, but will grow
quickly to infinity as the singularity is approached.
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11.2 Lightcone Description of a Trip to a Black Hole

433

Consider a lightcone description of a trip into a Schwarzschild
black hole.

* Assuming radial light rays,

N
radial light rays

do=dp=0  ds°=0

the line element reduces to

2M oM\ !
ds? = — (1——) dr* + (1——) dr* =0.
r r

* Thus the equation for the lightcone at a local coordinate
r can be read directly from the metric

dt VAN
—=+|1-— .
dr ( r)

- The plus sign corresponds to outgoing photons (r in-
creasing with time for r > 2M)

- The minus sign to ingoing photons (r decreasing with
time for r > 2M)

* For large r

becomes equal to *-1, as for flat spacetime.

* However as r — rg the forward lightcone opening angle
tends to zero as dt /dr — oo.
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0]
£
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r/2M
Figure 11.1: Lightcone structure of Schwarzschild spacetime.
Integrating
—1
dt 2M
=41 ===
dr r
gives

—r—2MIn|r/2M — 1|+ constant ~ (Ingoing)
[ =
r+2Mln|r/2M — 1| + constant (Outgoing)

* Null geodesics defined by this are plotted in Fig. 11.1.

» Tangents at the intersections of the dashed and solid lines
define local lightcones corresponding to dt /dr, which are
sketched at some spacetime points.




11.2. LIGHTCONE DESCRIPTION OF A TRIP TO A BLACK HOLE 435

Singularity Observer
worldline worldline

A A

Exterior
universe

ta
B

=
> o
= N
© . o
3 Interior of < Spa(iglgraﬂ
£ black hole 5 woridiine
n >

w

t= to
0 rs r Tobs

Figure 11.2: Light cone description of a trip into a black hole.

* The worldline of a spacecraft is illustrated in Fig. 11.2,
starting well exterior to the black hole. Gravity is weak
there and the light cone has the usual appearance.

* As illustrated by the dotted line from A, a light signal
emitted from the spacecraft can intersect the worldline of
an observer at constant distance rypg 1n a finite time 75 > 1.

* As the spacecraft falls toward the black hole on its world-
line the forward light cone narrows, since

dt oM\ !
—=4(1-— )
dr ( r)
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* Now, at B a light signal can intersect the external observer
worldline only at a distant point in the future (arrow on
light cone B).

* As the spacecraft approaches rg,

— the opening angle of the forward light cone tends to
zero and

— a signal emitted from the spacecraft tends toward in-
finite time to reach the external observer’s worldline
at ropg (arrow on light cone C).

— The external observer sees infinite redshift.
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Figure 11.3: Spacelike and timelike regions for goo and g;.

Now consider light cones interior to the event horizon.

* From the radial and time parts of the Schwarzschild metric
illustrated in Fig. 11.3, we observe that dr and dt reverse
their character at the horizon (r = 2M).

1. This is because the metric coefficients gog and g1
switch signs at that point.

2. Outside the event horizon the ¢ direction, d/dt, is
timelike (goo < 0) and the r direction, d/dr, is space-
like (g11 > 0).

3. Inside the event horizon, d/dt is spacelike (goo > 0)
and d/dr is timelike (g1 < 0).

* Thus inside the event horizon the lightcones get rotated by
% relative to outside (space <+ time coordinates).
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* The worldline of the spacecraft descends inside rg because
the coordinate time decreases (it is now behaving like r)
and the decrease in r represents the passage of time, but
the proper time is continuously increasing in this region.

* Qutside the horizon r is spacelike and sufficient rocket
power can reverse the infall and make r increase.

e Inside the horizon r is timelike and no application of
rocket power can reverse the direction of time.

* The radial coordinate of the spacecraft must decrease in-
side the horizon, for the same reason that time flows into
the future in normal experience (whatever that reason is!).
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* Inside the horizon there are no paths in the forward light-
cone of the spacecraft that can reach the external observer
at rg (the right vertical axis)—see lightcones D and E.

All timelike and null paths are bounded by the
horizon and must encounter the r = 0 singularity.

» Here is the real reason that nothing can escape. Dynamics
(building a better rocket) are irrelevant: once inside rg

— the geometry of spacetime permits no forward light
cones that intersect exterior regions, and

— no forward light cones that don’t contain the origin.
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Thus, there is no escape from the classical Schwarzschild black
hole once inside the event horizon because

1. There are literally no paths in spacetime that go from the
interior to the exterior.

2. All timelike or null paths within the horizon lead to the
singularity at r = 0.

But notice the adjective “classical” ... More later.
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11.3 Eddington—Finkelstein Coordinates

The preceding discussion is illuminating but the interpretation
of the results is complicated by the behavior near the coordi-
nate singularity at r = 2M.

¢ In this section and the next we discuss two alternative co-
ordinate systems that remove the coordinate singularity at
the horizon.

— Eddington—Finkelstein coordinates

— Kruskal-Szekeres coordinates

* These coordinate systems have advantages for interpreting
the interior behavior of the Schwarzschild geometry.

* However, the standard coordinates remain useful for de-
scribing the exterior behavior because of their simple
asymptotic behavior.
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In the Eddington—Finkelstein coordinate system a new variable
v 1s introduced through

f= v —r—len(L—l

)
new

where the variables

* r,t,and M have their usual meanings in the Schwarzschild
metric, and

* 0 and @ are unchanged by the transformation.

For either r > 2M or r < 2M, insertion into the standard
Schwarzschild line element gives the equivalent line element

oM
ds? = — (1 — —) dv? + 2dvdr + r*d6* + r? sin? 0d .

r

This is still Schwarzschild geometry, but now ex-
pressed in new coordinates.

* The Schwarzschild metric expressed in these new coordi-
nates is manifestly non-singular at r = 2M

* The singularity at r = 0 remains; it is physical.

The singularity at rg is a coordinate singularity
that can be removed by choosing appropriate new
coordinates.
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Figure 11.4: (a) Eddington—Finkelstein coordinates for the Schwarzschild
black hole with r on the horizontal axis and v — r on the vertical axis. Only
two coordinates are plotted, so each point corresponds to a 2-sphere of an-
gular coordinates. (b) Light cones in Eddington—Finkelstein coordinates.

Consider the behavior of radial light rays in these coordinates.
* Setdf =dp =0 (radial motion)
» Setds>=0 (light rays).

Then the Eddington—Finkelstein line element leads to

oM
- (1 - —) dv? + 2dvdr = 0.

r
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This equation

r

oM
- (1 - —) dv? + 2dvdr = 0.

has two general solutions and one special solution [see Fig. (a)
above]:

* General Solution 1: dv =0, so v = constant. — Ingoing
light rays on trajectories of constant v (short-dashed line
in Fig. 11.4(a)) .
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o General Solution 2: If dv # 0, then divide by dv? to give

M oM\ !
—<1——>dv2—|—2dvdr=O — @:2<1——> :
r dr

which yields upon integration

v—2<r—|—2Mln ﬁ— ID — constant.

This solution changes behavior at r = 2M:

1. Outgoing for r > 2M.

2. Ingoing for r < 2M (r decreases as v increases).

Long-dashed curves in Fig. (a) above illustrate ingoing
and outgoing worldlines corresponding to this solution.
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* Special Solution: In the special case that r = 2M, the dif-
ferential equation reduces to

2M
— (1 — —) dv?+2dvdr=0 — dvdr=0,
r

which corresponds to light trapped at the Schwarzschild
radius. The vertical solid line at »r = 2M in Fig. (a) above
represents this solution.
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For every spacetime point in Fig. (a) there are two solutions:
* For the points labeled 1 and 2 these correspond to

— one ingoing solution and

— one outgoing solution.

* For point 3

— one solution is ingoing and

— one corresponds to light trapped at r = rs.

 For point 4 both solutions are ingoing.
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The two solutions passing through a point determine the light
cone structure at that point [Fig. (b) above].

* The light cones at various points are bounded by the two
solutions, so they tilt “inward” as r decreases.

* The radial light ray that defines the left side of the light
cone is ingoing (general solution 1).

o If r £ 2M, the radial light ray defining the right side of the
light cone corresponds to general solution 2.

1. These propagate outward if r > 2M.
2. For r < 2M they propagate inward.
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* For r < 2M the light cone is tilted sufficiently that no light
ray can escape the singularity at r = 0.

* At r =2M, one light ray moves inward; one is trapped at
r=2M.

The horizon may be viewed as a null surface gen-
erated by the radial light rays that can neither es-
cape to infinity nor fall in to the singularity.
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11.4 Kruskal-Szekeres Coordinates

There is another set of coordinates exhibiting no singularity at
r = 2M: Kruskal-Szekeres coordinates.

e Introduce variables (v,u, 0, @), where 6 and ¢ have their
usual meaning and new variables u and v are defined by

U= (L—1>1/zer/4Mcosh<L> (r>2M)

2M 4
- (1 - ﬁ) V2 g4 Gioh (4L) (r < 2M)
V= (ﬁ— )1/2er/4Ms1nh<4L> (r>2M)
= (1—%) /zer/4Mcosh (4L (r<2M)
* The corresponding line element is
ds* = &fﬁWSe_r/ZM(—dv2 +du®) + r*d6? + r*sin® 0d o>,

where r = r(u,v) is defined through

(L_ 1) JIM 22

2M '

* This metric is manifestly non-singular at r = 2M, but sin-
gular at r =0.

This is still Schwarzschild spacetime, but now ex-
pressed in a new set of coordinates.
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Figure 11.5: (a) Schwarzschild spacetime in Kruskal-Szekeres coordinates.
Only the two coordinates u and v are displayed, so each point is really a
2-sphere corresponding to the variables 8 and ¢. Spacetime singularities
are indicated by jagged curves. The hatched regions above and below the
r = 0 singularities are not a part of the spacetime. Curves of constant r are
hyperbolas and the dashed straight lines are lines of constant 7. (b) Worldline
of a particle falling into a Schwarzschild black hole in Kruskal-Szekeres
coordinates.

Kruskal diagram: lines of constant r and ¢ plotted on a u and v
grid. Figure 11.5 illustrates.
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¢ From the form of
(ﬁ— 1) M — 2 2

lines of constant r are hyperbolae of constant u* — v2.

¢ From the definitions of u and v

v = utanh (ﬁ) (r>2M)
= ann(jany M)

Thus, lines of constant t are straight lines with slope

- tanh(¢/4M) for r > 2M
- 1/tanh(z/4M) for r < 2M.
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* For radial light rays in Kruskal-Szekeres coordinates
(d6 = do = ds*> = 0), and the line element

o 32MP oy o a2 2p 2
ds” = ——e (—dv” +du”) +r°d6- + r-sin”“ 0d¢
r

yields dv = £ du:

Lightcones in the Kruskal-Szekeres coordi-
nates always open at 45-degree angles, like in
Minkowski space.
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* Over the full range of coordinates (v,u, 8, @),

— the metric component gog = gy, remains negative and

= 811 = 8uu> 822 = 806, and 833 = gog remain positive.

e Therefore, in Kruskal-Szekeres coordinates

— the v directi