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Chapter 1

Some Properties of Stars

There are no lecture notes for this chapter because

I don’t cover it in class. Instead I assign it (with

some homework problems) for students to read as

a concise review of introductory astronomy.
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Chapter 2

The Hertzsprung–Russell Diagram

There are no lecture notes for this chapter because

I don’t cover it in class. Instead I assign it (with

some homework problems) for students to read as

a concise review of introductory astronomy.
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Chapter 3

Stellar Equations of State

Our fundamental initial task in astrophysics is to understand the

structure of stars. At a minimum, this will require

• A set of equations describing the behavior of stellar mat-

ter in gravitational fields.

• A set of equations governing

– energy production by thermonuclear reactions and

– the associated compositional changes.

• A set of equations describing energy transport from the

energy-producing regions deep in the star to the surface.

• Equations of state that

– carry information about the microscopic physics of

the star and that

– relate thermodynamic variables to each other.

7



8 CHAPTER 3. STELLAR EQUATIONS OF STATE

These equations may be coupled in highly non-trivial ways.

Example: Hydrodynamics is influenced by ther-

monuclear energy production and thermonuclear

processes are in turn strongly dependent on vari-

ables like temperature and density controlled by

the hydrodynamical evolution.

• The full problem will correspond to a set of

– coupled,

– non-linear,

partial differential equations that can only be solved by

large-scale numerical computation.

• In many cases assumptions are justified that allow simpler

solutions illustrating many basic stellar features.

• We begin the discussion by considering equations of state.

Equation of State: A relationship among thermo-

dynamic variables for a system that

• contains information beyond what is known

from thermodynamics alone, and is

• often based on microscopic structure input

from nuclear, atomic, or particle physics.
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A general equation of state is of the form

P = P(T,ρ ,Xi, . . .),

where

• P is the pressure,

• T is the temperature,

• ρ is the density,

• the Xi are concentrations variables for species i,

and so on.

The preceding equation is intended to be highly schematic at

this point: an equation of state

• can take many forms, and

• it need not even be specified analytically.

Example: Equations of state for large-scale astro-

physics simulations may be specified by interpola-

tion in tables constructed numerically.

• Fortunately, relatively simple equations of state suffice for

many (not all!) applications in astrophysics.
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3.1 The Pressure Integral

Except possibly at extremely high densities, we are primarily

concerned with equations of states for gases in astrophysics.

If quantum effects can be neglected the pressure in

a gas may be expressed in terms of the pressure

integral:

P =
1

3

∫ ∞

0
vpn(p)dp,

where

• v is the velocity,

• p is the momentum,

• n(p) is the number density of particles with

momentum in the interval p to p+dp.

This formula represents a very general result that

is valid for gas particles with any velocity, up to

and including v = c.
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3.2 Ideal Gases

If the particles in a gas

• interact weakly enough,

• the gas obeys the ideal gas equation of state,

which may be expressed in a variety of equivalent forms:

P = nkT =
N

V
kT = ρ

kT

µ
︸ ︷︷ ︸

Forms we will use

=
NMu

V
RT,

where

• P is the pressure,

• n is the number density of gas particles,

• V is the volume,

• N = nV is the number of particles contained in volume V ,

• the Boltzmann constant is k and the temperature is T ,

• the number of moles in the gas volume V is NMu,

• the universal gas constant is R = kNA (where Avogadro’s

number is NA = M−1
u , with Mu the atomic mass unit),

• µ = ρ/nMu is the mass for a gas particle and the mass

density is ρ .
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Figure 3.1: Maxwell velocity distribution for hydrogen gas at various tem-

peratures.

The ideal gas equation follows from the more general pressure

integral

P =
1

3

∫ ∞

0
vpn(p)dp,

evaluated specifically for a Maxwellian velocity distribution,

n(p)dp =
4πnp2d p

(2πmkT )3/2
e−p2/2mkT .

The Maxwell velocity distribution for hydrogen gas at various

temperatures is illustrated in Fig. 3.1.
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For an ideal gas the internal energy U is given by

U =
∫ T

0
CV (T )dT,

where the heat capacity at constant volume CV (T ) is

CV (T )≡
(

∂U

∂T

)

V

= T

(
∂S

∂T

)

V

,

S is the entropy, and the first law of thermodynamics,

dU = δQ−PdV = T dS−PdV,

has been used. The energy density u is given by

u =
U

V
=

1

V

∫ T

0
CV dT,

and the specific energy (energy density per unit mass) is

ε =
u

ρ
=

U

ρV
=

1

ρV

∫ T

0
CV dT.

For the special case of a monatomic, nonrelativis-

tic, ideal gas,

CV =
3

2
Nk U =CV T =

3

2
NkT.
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Expressing the internal energy in differential form,

U =

∫ T

0
CV (T )dT −→ dU =CV (T )dT,

introducing the heat capacity at constant pressure CP,

CP ≡
(

∂U

∂T

)

P

= T

(
∂S

∂T

)

P

,

and using the first law (of thermodynamics)

dU = T dS−PdV,

we have for an ideal gas

CP =CV +Nk.
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The adiabatic index γ is defined by

γ ≡ CP

CV
,

• For an ideal gas the heat capacities are independent of

temperature and if the gas is monatomic,

γ =
CP

CV
=

CV +Nk

CV
=

3
2Nk+Nk

3
2
Nk

=
5

3
.

Later we will see that γ for an ideal gas is related

to the number of degrees of freedom per particle.

• The relationship between the pressure P and energy den-

sity u for an ideal gas may be expressed in terms of γ:

P = (γ−1)u.

• This equation may be used to define an effective adiabatic

index γ for the general case, but only in the ideal gas limit

is γ =CP/CV .

• The adiabatic speed of sound in an ideal gas is given by

vs =
√

γ P/ρ,

where ρ is density and P is pressure.
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3.3 Average Molecular Weights in the Gas

We are concerned with gases consisting of more than one

atomic species that may be partially or totally ionized.

• For example, the gas in a star may contain

– hydrogen atoms and ions,

– helium atoms and ions,

– various heavier elements as atoms or ions, and

– the electrons produced by the ionization.

• In many cases we can treat these mixtures as a single gas

with an effective molecular weight.

Example: If density is low enough, a mixture of

– hydrogen ions,

– fully-ionized helium ions, and

– electrons produced by the ionization

will behave as three ideal gases, each contribut-

ing a partial pressure to the total pressure (Dalton’s

law of partial pressures).

Then we can treat the system as a single gas with an effec-

tive molecular weight representing the relative contributions of

each individual gas to the system properties.
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3.3.1 Concentration Variables

The mass density ρi of a species i is given by

ρi = niAiMu = ni
Ai

NA

,

where

• Ai is the atomic mass number of species i,

• Mu is the atomic mass unit,

• ni is the number density of species i,

• NA = 1/Mu is Avogadro’s number.

Let’s introduce the mass fraction Xi of species i by

Xi ≡
ρi

ρ
=

niAiMu

ρ
=

niAi

ρNA
,

where

• ρ is the total mass density.

• The label i may refer to ions, atoms, or molecules.

• The mass fractions sum to unity: ∑Xi = 1.

We also will use the abundance Yi,

Yi ≡
Xi

Ai
=

ni

ρNA
.

(NOTE: Generally, the sum of the Yi will not be unity.)
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3.3.2 Total Mean Molecular Weight

As shown in book Appendices, if radiation is ignored the aver-

age mass of a gas particle (atoms, ions, electrons) is

µ =

(

∑
i

(1+ yiZi)Yi

)−1

,

where in this equation

• The sum is over isotopic species i.

• yi is the fractional ionization of the species i, with

– yi = 0 for no ionization and

– yi = 1 for complete ionization.

• Zi is the atomic number for isotopic species i.

• Yi is the abundance of isotopic species i.

In very hot stars the momentum and energy density carried by

photons is non-trivial and we will see later that this further

modifies the mean molecular weight of the gas.

We have replaced the actual gas (a mixture of

electrons and different atomic, possibly molecular,

and ionic species) with a gas containing a single

kind of fictitious particle having an effective mass

µ (often termed the mean molecular weight).
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Example

1. For a completely ionized gas of atomic hydrogen there is a single

ionic species and yi = Zi = Yi = 1. Thus

µ =
1

∑i(1+ yiZi)Yi
=

1

(1+1)×1
=

1

2
amu.

This is just the average mass of a particle in a gas having equal

numbers of protons and electrons, if we neglect the mass of the

electrons relative to the protons.

2. The composition of many white dwarfs may be approximated

by a completely ionized gas consisting of equal parts 12C and
16O by mass. The mass fractions are X12C = X16O = 0.5, so the

abundances are

Y12C =
X12C

12
=

0.5

12
= 0.04167 Y16O =

X16O

16
=

0.5

16
= 0.03125.

Therefore,

µ =
1

(1+1×6)×0.04167+(1+1×8)×0.03125
= 1.745 amu,

if we assume complete ionization (yi = 1).
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3.3.3 Common Notation

A common shorthand notation:

X ≡ Xhydrogen Y ≡ Xhelium Z ≡ Xmetals

where “metals” refers to the sum of all elements heavier than

helium and X +Y +Z = 1.

Example: For a typical Pop I star just entering the

main sequence (termed a Zero-Age Main Sequence

or ZAMS star) we find

X ≃ 0.7 Y ≃ 0.3 Z ≃ 0.02.

The metal concentration Z will be less than this in

Pop II stars.
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3.4 Polytropic Equations of State

An ideal gas equation of state (with an effective mean molecu-

lar weight µ) is a realistic approximation for many astrophysi-

cal environments.

• But there are other possible equations of state that can

play an important role.

• One example is a polytropic equation of state.

• A polytropic process is defined by the requirement

δQ

δT
= c,

where

– δQ is the change in heat,

– δT is the change in temperature, and

– c is a constant (don’t confuse with the speed of light).
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Polytropes have some very useful properties. For example,

• From the first law of thermodynamics and the definition

of a polytropic process

δQ

δT
= c,

polytropic processes in ideal gases obey

dT

T
= (1− γ)

dV

V
,

where the polytropic γ is defined by

γ ≡ CP− c

CV − c
.

The polytropic γ reduces to the ideal gas adiabatic

parameter γ only if the constant c = 0.

• You may verify by substitution that the differential equa-

tion
dT

T
= (1− γ)

dV

V

has three classes of solutions

PV γ =C1 P1−γT γ =C2 TV γ−1 =C3,

that define polytropic equations of state, with Cn being

constants.
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In astrophysics, the most common form of a polytropic equation

of state is is

P(r) = Kργ(r) = Kρ1+1/n(r),

(Note: ρ ∝ 1/V , so this is of the form PV γ = constant) where

the polytropic index n is parameterized by

n =
1

γ−1
,

in terms of the polytropic parameter γ .

1. A polytropic approximation implies physically that the

pressure is independent of temperature, depending only

on density and composition.

2. A polytropic equation of state approximation often simpli-

fies finding solutions for the equations of stellar structure:

• It decouples the differential equations describing hy-

drostatic equilibrium from those governing energy

transfer and the temperature gradients.

• The decoupled set of equations is generally easier to

solve than the original coupled set.
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Examples where polytropes are appropriate:

1. For a completely ionized star, fully mixed by convection

with negligible radiation pressure,

P = Kρ5/3,

which corresponds to a polytrope with γ = 5
3 and n =

3
2 . The phenomenological parameter K is constant for a

given star, but can differ from star to star.

2. For a completely degenerate gas of nonrelativistic

fermions (defined below)

P = Kρ5/3,

again corresponding to a polytrope with γ = 5
3 and n = 3

2 ,

but now K is fixed by fundamental constants.

3. For a degenerate gas of ultrarelativistic fermions (defined

below)

P = Kρ4/3,

corresponding to a polytrope with γ = 4
3

and n = 3, with

K again fixed by fundamental constants.

These three polytropic equations of state will be

relevant for homogenous stars that are completely

mixed by convection, white dwarfs, and neutron

stars, respectively.
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3.5 Adiabatic Processes

In terms of the heat Q and the entropy S, adiabatic processes

are defined by the condition that

δQ = TdS = 0.

• From the first law,

dU = δQ−PdV = TdS−PdV,

we see that in an adiabatic process the change in internal

energy comes only from PdV work:

dU =−PdV (since δQ≡ 0).

• Because they do not exchange heat with their environ-

ment, adiabatic processes are fully reversible (dS = 0).

Realistic phenomena in astrophysics are not adia-

batic, but many are at least approximately so.



26 CHAPTER 3. STELLAR EQUATIONS OF STATE

It is standard practice to introduce three adiabatic exponents

Γ1, Γ2, and Γ3 through

Γ1≡
(

∂ lnP

∂ lnρ

)

S

Γ2

Γ2−1
≡
(

∂ lnP

∂ lnT

)

S

Γ3−1≡
(

∂ lnT

∂ lnρ

)

S

,

where the subscripts S remind us that adiabatic processes occur

at constant entropy, and where the logarithmic derivatives are

equivalent to

∂ lnA =
∂A

A
.

This implies equations of state having one of the three forms

PV Γ1 = c1 P1−Γ2T Γ2 = c2 TV Γ3−1 = c3,

where the cn are constants.

Note: From the above definitions,

Γ1(Γ2−1) = Γ2(Γ3−1),

so only two of the three Γi are independent.
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For the special case of ideal gases

Γ1≡
(

∂ lnP

∂ lnρ

)

S

Γ2

Γ2−1
≡
(

∂ lnP

∂ lnT

)

S

Γ3−1≡
(

∂ lnT

∂ lnρ

)

S

are equal and equivalent to the ideal gas γ ,

Γ1 = Γ2 = Γ3 = γ (ideal gas).

But for more general equations of state Γ1, Γ2, and Γ3 are dis-

tinct and carry information emphasizing different aspects of the

gas thermodynamics:

1. Because it relates ∆P to ∆ρ , Γ1 enters into dynamical

properties of the gas like sound speed.

2. Γ2 is important for convective gas motion, because it re-

lates ∆P to ∆T .

3. Γ3 influences the response of the gas to compression, since

it depends on the relationship of ∆T to ∆ρ .

An example of these differences is given below for

a mixture of ideal gas and photons in the adiabatic

limit.
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3.6 Quantum Mechanics and Equations of State

Stellar equations of state reflect microscopic prop-

erties of the gas in stars.

• A low-density gas behaves classically,

• A high-density gas behaves quantum me-

chanically.

The quantum physics required at high density can

be understood in terms of four basic ideas.

1. deBroglie Wavelength: The foundation of a quantum de-

scription of matter is particle–wave duality:

• Microscopically, particles take on wave properties

characterized by a deBroglie wavelength λ = h/p,

where p is the momentum and h is Planck’s constant.

• Thus the particle location becomes fuzzy, spread out

over an interval comparable to λ = h/p.

2. Uncertainty Principle: The Heisenberg uncertainty prin-

ciple quantifies the fuzziness of particle–wave duality:

• ∆p·∆x≥ h̄, where ∆p is the uncertainty in momentum,

∆x is the uncertainty in position, and h̄≡ h/2π .

• ∆E·∆t ≥ h̄, where ∆E is the energy uncertainty and ∆t

is the time uncertainty for the energy measurement.
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3. Quantum Statistics: All elementary particles may be clas-

sified as either fermion or bosons. These classifications

indicate how aggregates of elementary particles behave.

• Fermions (such as electrons, or neutrons and protons

if we neglect their internal quark and gluon structure)

obey Fermi–Dirac statistics.

– The most notable consequence is the Pauli exclu-

sion principle: no two fermions can have an iden-

tical set of quantum numbers.

– Elementary particles of half-integer spin are

fermions.

• Bosons (photons are the most important example for

our purposes) obey Bose–Einstein statistics.

– Unlike for fermions, there is no restriction on how

many bosons can occupy the same quantum state.

– Elementary particles of integer spin are bosons.

• Matter is made from fermions (electrons, protons,

neutrons, . . . ).

• Forces are mediated by exchange of bosons.

Example: Electromagnetic forces result from ex-

change of photons (which are bosons) between

charged particles (which can be fermions or

bosons).
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4. Degeneracy: The exclusion principle implies that in a

many-fermion system each fermion must be in a different

quantum state.

• Thus the lowest-energy state results from filling en-

ergy levels from the bottom up.

• Degenerate matter corresponds to a many-fermion

state in which

– all the lowest energy levels are filled and

– all the higher-energy states are empty.

• Degenerate matter

– occurs frequently at high densities and

– has a very unusual equation of state.

The equation of state for degenerate matter has

a number of consequential implications for astro-

physics.
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3.7 Equations of State for Degenerate Gases

Degenerate equations of state play an important role in a variety

of astrophysical applications. For example,

• In white dwarf stars the electrons are highly degenerate.

• In neutron stars the neutrons are highly degenerate.

Let us look at this in a little more detail for the case of degen-

erate electrons.

• We first demonstrate that (as a consequence of quantum

mechanics)

– most stars are completely ionized over much of their

volume because

– ionization can be induced by sufficiently high pres-

sure, even at low temperature.

This implies the possibility of producing a (rela-

tively) cold gas of electrons, which is the neces-

sary condition for a degenerate electron equation

of state.
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Figure 3.2: Schematic illustration of average atomic spacing in dense stellar

matter. These are slices of 3-dimensional spherical volumes

3.7.1 Pressure Ionization

Consider the schematic diagram shown in Fig. 3.2, where

• Atoms occupy the darker spheres of radius r.

• The average spacing between atoms is represented in

terms of the lighter spheres with radius d.

• To illustrate simply, we assume for that the stellar material

consists only of

– ions of a single species and

– electrons produced by ionizing that species.
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• Electrons in the atoms obey Heisenberg uncertainty rela-

tions of the form

p ·∆x≥ h̄,

where we’ve made the usual rough estimate ∆p∼ p.

• Taking an average volume per electron of V0 ≃ (∆x)3, the

uncertainty relation becomes

p≥ h̄/V
1/3

0 .

The uncertainty principle produces ionization

when the effective volume of the atoms becomes

too small to confine the electrons.

• The volume per electron V0 and volume per ion Vi are re-

lated by ZV0 =Vi, since there are Z electrons per ion. Thus

p≥ h̄/V
1/3
0 −→ p≥ h̄Z1/3/V

1/3
i .
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• From atomic physics the radius of an atom may be ap-

proximated by r ≃ a0Z−1/3, where a0 = 5.3×10−9 cm is

the Bohr radius.

• If the star is composed entirely of an element with atomic

number Z and mass number A, there are Z electrons in

each sphere of radius d and the average number density of

electrons is

ne =
Z

4
3πd3

,

which may be solved to give the average spacing of elec-

trons d,

d ≃
(

3Z

4πne

)1/3

.
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• Provided that

d =

(
3Z

4πne

)1/3

< r,

we may expect pressure ionization, as illustrated below:

One bound
 state

Increasing density

Multiple bound

states

No bound 
states

With increasing density fewer locally bound states are possible

until none remain and electrons are all ionized.

Thus, high density can cause complete ionization,

even at zero temperature.
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• Since there are A nucleons in each volume of radius d in

the above figure, the mass density ρ is

ρ =
Amu

4
3πd3

,

and requiring that d ≃ r ≃ a0Z−1/3 defines a critical den-

sity

ρcrit ≃
ZAmu

4
3πa3

0

.

For densities greater than this there will be com-

plete pressure ionization, irrespective of the tem-

perature.
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Table 3.1: Critical pressure-ionization densities

Element (Z,A) Density (g cm−3)

Hydrogen (1,1) 3.2

Helium (2,4) 26

Carbon (6,12) 230

Oxygen (8,16) 410

Iron (26,56) 4660

• The density condition for ionization

ρcrit ≃
ZAmu

4
3
πa3

0

is satisfied rather easily.

• Consider hydrogen gas: Z = A = 1 gives a critical density

of 3.2 g cm−3, only a factor of ∼ 3 larger than for water.

• Critical pressure ionization densities for some representa-

tive gases are summarized in Table 3.1.

• These may be compared with actual densities of

∼ 150 g cm−3 for the center of the Sun,

∼ 104–106 g cm−3 for a C–O white dwarf,

∼ 109 g cm−3 for the iron core of a massive star.

The Saha equations (describing thermal ioniza-

tion) are not reliable inside stars, where atoms are

ionized by both temperature and pressure.
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By the Saha equations ∼ 24% of the hydrogen in the core of

the Sun should be neutral.

• However, comparison of the preceding table with proper-

ties of the solar interior indicates that the density is suf-

ficiently high to pressure ionize hydrogen over the inner

40% of the Sun.

• Note that increased pressure favors pressure ionization

but disfavors thermal ionization because of increased ion–

electron recombination.

Between thermal and pressure effects, much of

the solar interior is entirely ionized, in contrast

to what we would expect from the Saha equations

alone.



3.7. EQUATIONS OF STATE FOR DEGENERATE GASES 39

3.7.2 Classical and Quantum Gases

Let us now consider the distinction between a classical gas and

a quantum gas, and the corresponding implications for stellar

structure.
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(1) Identical fermions are described statistically in quantum

mechanics by the Fermi–Dirac distribution

f (εp) =
1

exp[(εp−µ)/kT ]+1
(Fermi–Dirac),

where εp is given by

εp = mc2 +
p2

2m
(nonrelativistic),

ε2
p = p2c2+m2c4 (relativistic),

and the chemical potential µ is introduced by adding to the first

law of thermodynamics a term accounting for a possible change

in the particle number N:

dU = T dS−PdV +µdN,

where T , P, and µ are taken as the macroscopic thermodynam-

ical variables for the gas and S is the entropy.

(2) Identical bosons are described by the Bose–Einstein distri-

bution

f (εp) =
1

exp[(εp−µ)/kT ]−1
(Bose–Einstein).
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We shall consider a gas to be a quantum gas if it is described

by one of the distributions

f (εp) =
1

exp[(εp−µ)/kT ]+1
(Fermi–Dirac),

f (εp) =
1

exp[(εp−µ)/kT ]−1
(Bose–Einstein).

and a classical gas if the condition

e(mc2−µ)/kT ≫ 1

is fulfilled. If the gas is classical,

• The states of lowest energy have εp ∼ mc2.

• For fermions or bosons the distribution function becomes

well approximated by Maxwell–Boltzmann statistics,

f (εp) = e−(εp−µ)/kT (Maxwell–Boltzmann),

where generally f (εp)≪ 1 for the classical gas.

• Thus, in a classical gas

– the lowest energy states are scarcely occupied,

– the Pauli principle plays little role, and

– the gas obeys Maxwell–Boltzmann statistics.
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We now demonstrate that

• the conditions for forming a classical gas are equivalent to

a constraint on the density such that

• the deBroglie wavelength of the particles in the gas is con-

siderably less than the average interparticle spacing in the

gas.
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Non-Relativistic Classical and Quantum Gases:

Let us introduce a critical (number) density nc

nc ≡
(

2πmkT

h2

)3/2

=
(2π)3/2

λ 3
,

where the deBroglie wavelength λ for non-relativistic particles

is given by

λ =
h

p
≃
(

h2

mkT

)1/2

(assuming p= (2mE)1/2 ∼ (mkT )1/2). The number of gas par-

ticles is

N =

∫ ∞

0
f (εp)g(p)dp,

where the integration measure is (See Box 3.7 in book)

g(p)dp = gs
V

h3
4π p2dp,

with p the momentum and gs = 2 j+1 = 2 the spin degeneracy

factor for electrons. Substituting the Maxwell–Boltzmann dis-

tribution (classical limit of Fermi–Dirac) with a nonrelativistic

energy for f (εp),

f (εp) = e−(εp−µ)/kT εp = mc2 +
p2

2m

integrating, and rearranging yields

mc2−µ = kT ln
(gsnc

n

)

,

where the number density n is given by n = N/V .
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Therefore, the classical gas condition

e(mc2−µ)/kT ≫ 1

is, by virtue of

mc2−µ = kT ln
(gsnc

n

)

,

equivalent to

e
ln

(gsnc

n

)

≫ 1,

implying that
gsnc

n
≫ 1,

which means that at a given temperature n≪ nc for a classical

gas, since gs is of order one.

In a classical gas, the actual number density n is

small on a scale set by the critical density nc.
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The preceding result has an alternative interpretation.

• The average separation between particles in the gas is

d ∼ n−1/3 → 1/n∼ d3.

• The condition n≪ nc defining a classical gas implies that

1/n≫ 1/nc.

• Because

nc =
(2π)3/2

λ 3
→ nc ∼ λ−3 → 1/nc ∼ λ 3

the condition n≪ nc is equivalent to requiring that

1

n
≫ 1

nc
→ d3≫ λ 3 → d≫ λ .

For a classical gas, the average separation between

particles must be be much larger than the average

deBroglie wavelength λ for particles in the gas.

• This makes sense conceptually:

– The “quantum fuzziness” of a particle extends over a

distance ∼ λ .

– If particles are separated on average by distances

larger than λ , quantum effects are minimized.
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Classical gas Quantum gas

λ

d

Figure 3.3: Schematic illustration of classical and quantum gases. The

width of each fuzzy ball represents the quantum uncertainty in position (not

the size) of the particle. In the classical gas (left) the average spacing r be-

tween gas particles is much larger than their deBroglie wavelengths λ . In

the quantum gas (right) d is comparable to or less than λ . The gas particles

have a range of deBroglie wavelengths because they are assumed to have a

velocity distribution.

The schematic relationship between a classical and quantum

gas is illustrated in Fig. 3.3, where

• the size of the spheres represents the quantum uncertainty

in position of a particle, NOT ITS PHYSICAL SIZE, and

• the spheres have a distribution of sizes because the de-

Broglie wavelength depends on velocity and the gas has a

distribution of particle velocities.
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Ultrarelativistic Classical and Quantum Gases:

Proceeding in a manner similar to that for the non-relativistic

case, for ultrarelativistic particles (v ∼ c) the rest mass of the

particle may be neglected and from

εp ≃ kT =
√

m2c4+ p2c2 ≃
√

p2c2

and

f (εp) = e−(εp−µ)/kT ,

we obtain

µ =−kT ln

(
gsn
′
c

n

)

,

where the relativistic quantum critical density variable is de-

fined by

n′c = 8π

(
kT

hc

)3

.

Hence in the ultrarelativistic case

• The condition that the gas be classical is equivalent to a

requirement that n≪ n′c.

• This again is equivalent to requiring that the deBroglie

wavelength,

λ =
h

p
≃ hc

kT
,

be small compared with the average separation of particles

in the gas.
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3.7.3 Transition from Classical to Quantum Gas Behavior

We conclude from the preceding results that

At high enough density a gas behaves as a quan-

tum rather than classical gas.

Notice from

nc ≡
(

2πmkT

h2

)3/2

=
(2π)3/2

λ 3

that with increasing gas density:

• The least massive particles in the gas will be most prone

to a deviation from classical behavior because the critical

density is proportional to nc ∝ m3/2.

• Thus photons, neutrinos, and electrons are most suscepti-

ble to such effects.

• The massless photons never behave as a classical gas and

• the neutrinos (nearly massless) interact so weakly with

matter that they leave the star unimpeded when they are

produced.

• It follows that in normal stellar environments the electrons

are most susceptible to a transition from classical to quan-

tum gas behavior.
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Presently in the core of the Sun,

• The average electron number density is about 6 ×
1025 cm−3.

• The nonrelativistic critical quantum density is nc ∼ 1.4×
1026 cm−3.

• Thus, electrons in the Sun are well approximated by a di-

lute classical gas.

However, the core of the Sun, as for all stars, will contract late

in its life as its nuclear fuel is exhausted.

• The approximate relationship between a star’s tempera-

ture T and radius R is kT ≃ 1/R, which implies that

nc ≡
(

2πmkT

h2

)3/2

≃
(

2πm

h2R

)3/2

≃ R−3/2

and, because the actual number density behaves as n ∼
R−3, that

n

nc
≃ R−3

R−3/2
≃ R−3/2.

As the core of the Sun contracts, eventually the

electrons in it will begin to behave as a quantum

gas.



50 CHAPTER 3. STELLAR EQUATIONS OF STATE

3.7.4 The Degenerate Electron Gas

From the definition

nc ≡
(

2πmkT

h2

)3/2

the quantum gas condition n≫ nc is equivalent to

n≫
(

2πmkT

h2

)3/2

and thus, solving for kT , we see that n≫ nc is equivalent to a

temperature constraint,

kT ≪ h2n2/3

2πm
.

A quantum gas is a cold gas, but cold on a temperature scale

set by the right side of the preceding equation.

If the density is high enough, a gas could be “cold”

while having a temperature of billions of degrees!

• The precise meaning of a cold electron gas is that the elec-

trons are all concentrated in the lowest available quantum

states consistent with the Pauli principle.

• We say that such a gas is degenerate.

• Degenerate gases have much in common with the metallic

state in condensed matter.
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Figure 3.4: The Fermi–Dirac distribution as a function of temperature.

Curves with successively shorter dashes represent successively lower tem-

peratures. The solid line defines a step function corresponding to the limit

T → 0. This degenerate-gas limit is illustrated further in Fig. 3.5.

As illustrated in Figs. 3.4 and 3.5, in the limit T → 0 the Fermi–

Dirac distribution becomes a step function in energy space,

ff(εp) =
1

e(εp−µ)/kT +1
−→
T→0

{

f (εp) = 1 εp ≤ εf

f (εp) = 0 εp > εf

• The chemical potential µ at zero temperature is denoted

by εf and is termed the fermi energy.

• The corresponding value of the momentum is denoted by

pf and is termed the fermi momentum.

• Thus, the fermi energy gives the energy of the highest oc-

cupied state in the degenerate fermi gas.
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Figure 3.5: The degenerate Fermi gas with its sharp Fermi surface in energy

and momentum. In general in condensed matter the Fermi surface may have

a more complex shape but it is assumed to be isotropic in momentum for our

basic discussion of degenerate gases in stars.
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The density of states as a function of momentum p is given by

g(p) in

g(p)dp = gs
V

h3
4π p2dp,

and the number of electrons in the degenerate gas at zero tem-

perature is just the number of states with momentum less than

the fermi momentum pf,

N =

∫ pf

0
g(p)dp

= 4πV
gs

h3

∫ pf

0
p2 dp

=
8πV

3h3
p3

f ,

where gs = 2 has been used for electrons. Solving for the fermi

momentum pf and introducing the number density n = N/V ,

we find that the fermi momentum is determined completely by

the electron number density

pf =

(
3h3

8π
· N
V

)1/3

=

(
3n

8π

)1/3

h.

For a number density n the interparticle spacing is

∼ n−1/3, implying that the deBroglie wavelength

of an electron at the fermi surface, λ = h/pf ∼
n−1/3, is comparable to the average spacing be-

tween electrons.
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We may construct the equation of state for the degenerate elec-

tron gas by evaluating the internal energy of the gas.

Let us first do this in the nonrelativistic and then in the ultrarel-

ativistic limits for degenerate electrons.
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Nonrelativistic Degenerate Electrons:

In the nonrelativistic limit pf≪ mc, which implies that

n≪
(

1

λc

)3

=
(mc

h̄

)3

,

where λc ≡ h̄/mc is the Compton wavelength for an electron.

In this limit the internal energy for a degenerate electron gas is

U =
∫ ∞

0
εp f (εp)g(p)dp≃ Nmc2

︸ ︷︷ ︸

potential

+
3N

10m
p2

f

︸ ︷︷ ︸

kinetic

,

where

εp = mc2 +
p2

2m
g(p) = gs

V

h3
4π p2 N =

8πV

3h3
p3

f

and gs = 2 have been used. For a nonrelativistic gas the pres-

sure is given by 2
3

of the kinetic energy density; identifying the

second term of

U = Nmc2+
3N

10m
p2

f ,

divided by the volume V as the kinetic energy density,

P =
2

3
× (kinetic energy density) =

2

3

(
N

V

3p2
f

10m

)

= n
p2

f

5m
=

h2

5m

(
3

8π

)2/3

n5/3 (γ = 5
3 polytrope),

where n = N/V and pf = (3n/8π)1/3
h have been used.
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Example: For a low-mass white dwarf with ρ <∼ 106 g cm−3

• the electrons are nonrelativistic and

• the electron pressure is given by the γ = 5
3 polytrope im-

plied by the preceding equation,

Pe =
h2

5m

(
3

8π

)2/3( ρ

mpµe

)5/3

,

with the mean molecular weight µe defined through

ne =
ρ

mpµe
.

As noted earlier, the constant K in the polytropic form

P = Kργ(r)

is fixed by fundamental constants.
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Ultrarelativistic Degenerate Electrons:

For ultrarelativistic electrons, n≫ n′c implies that

n≫ (mc/h)3.

Utilizing the ultrarelativistic limit εp = pc and

g(p) = gs
V

h3
4π p2,

the internal energy is

U =
∫ ∞

0
εp f (εp)g(p)dp

≃ 8πVc

h3

∫ pf

0
p3 dp = 3

4Ncpf.

For an ultrarelativistic gas the pressure is 1
3 of the

kinetic energy density.

Identifying the kinetic energy density as U = 3
4 Ncpf divided by

the volume V , for ultrarelativistic particles

P =
1

3
× (kinetic energy density)

=
1

3
×
(

3

4
cnpf

)

=
hc

4

(
3

8π

)1/3

n4/3 (γ = 4
3

polytrope),

where n = N/V and we have used pf = (3n/8π)1/3
h.
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Example: For higher-mass white dwarfs having ρ >∼ 106 g cm−3

• the electrons are highly relativistic and

• the corresponding degenerate equation of state takes the

form implied by the preceding equation,

Pe =
hc

4

(
3

8π

)1/3( ρ

mpµe

)4/3

which is a polytrope with γ = 4
3 .

As in the nonrelativistic case, we see that the constant K multi-

plying ρ4/3 is fixed by fundamental constants.
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3.7.5 Summary: High Gas Density and Stellar Structure

We may identify several important consequences of high den-

sities in stellar environments:

• An increase in the gas density above a critical amount en-

hances the probability for pressure ionization.

• This creates a fully-ionized gas of electrons and ions irre-

spective of possible thermal ionization.

• An increase in the gas density, by uncertainty principle

arguments, increases the average momentum of gas parti-

cles.

• Thus particles become more relativistic at high densities.

• Increased density raises the fermi momentum. This, for

example, influences weak interaction processes in the star.

• Increase in the gas density decreases the interparticle

spacing relative to the average deBroglie wavelength.

• This makes it more likely that the least massive particles

in the system transition from classical to degenerate quan-

tum gas behavior.
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• Increased density enhances the strength of the gravita-

tional field and makes it more difficult to maintain stability

of the star against gravitational collapse.

• Higher density also makes it more likely that general rel-

ativistic corrections to Newtonian gravitation become im-

portant.

• Higher density (often implying higher temperature) tends

to change the rates of thermonuclear reactions and to alter

the opacity of the stellar material to radiation.

– The former changes the rate of energy production;

– the latter changes the efficiency of how that energy is

transported in the star.

Both can have large consequences for stellar structure and

evolution.

These consequences of increased density

• have large implications for stellar structure

and evolution because

• all stars are expected to dramatically increase

their central densities during late evolution-

ary stages.
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From the preceding, a gas can have a pressure that is of purely

quantum-mechanical origin, independent of its temperature.

• Assume pressure dominated by non-relativistic electrons

and drop factors like 1
2 .

• For an ideal gas the average energy of an electron is

E ∼ kT = 1
2mev2, giving an electron velocity

vthermal ≃
(

kT

me

)1/2

,

of purely thermal origin.

• But even at zero temperature electrons have a velocity

vQM implied by the uncertainty principle, since

p∼ ∆p∼ h̄/∆x∼ h̄n
1/3
e → vQM ≃

p

me
≃ h̄n

1/3
e

me
.

• Thus, there are two contributions to the average velocity

of particles in the gas,

1. one from the finite temperature and

2. one from purely quantum effects,

with the thermal contribution vanishing as T → 0.
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This has much in common with the distinction between

• a thermal phase transition (driven by temperature fluctu-

ations that vanish as T → 0), and

• a quantum phase transition (driven by quantum fluctations

that remain as T → 0).

Such concepts are important in fields like condensed matter

physics.
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• The pressure contributed by the thermal motion is

Pthermal = nekT = nemev2
thermal

and the pressure contributed by quantum mechanics is (up

to some constant factors)

PQM ≃
h̄2

me
n

5/3
e = neme

(

h̄n
1/3
e

me

)2

= nemev2
QM

• A degenerate gas is one for which PQM≫ Pthermal.

• Thermal pressure is proportional to T and density, but

quantum pressure is independent of T and proportional

to a power of density:

Pthermal = nekT PQM ≃
h̄2

me
n

5/3
e .

• Therefore, degeneracy is favored in low-temperature,

dense gases, and

• a gas can have a high pressure of purely uncertainty-

principle origin, even at T = 0.

• Furthermore, changing T in a degenerate gas will have

little effect on the pressure (as long as changing T does

not significantly change the degeneracy).

All of these properties have profound consequences for stars

when high densities are encountered.
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3.8 Equation of State for Radiation

We may view electromagnetic radiation in stars as a gas of ul-

trarelativistic massless bosons.

• The equation of state for radiation follows from the en-

ergy density and pressure associated with the Planck fre-

quency distribution

n(ν)dν =
8πν2dν

c3(ehν/kT −1)
.

• This yields for the radiation pressure,

Prad =
1

3
aT 4,

where a is the radiation density constant.

• The corresponding energy density of the radiation field is

urad = aT 4 = 3Prad,

implying that Prad =
1
3urad.
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Gravitational Stability and Adiabatic Exponents for Radiation:

As you are asked to show in an exercise,

• adiabatic exponents Γ1, Γ2, and Γ3 for a pure radiation

field are all equal to 4
3 .

• As we shall see in more detail later, an adiabatic exponent

less than 4
3 generally implies an instability against gravi-

tational collapse.

Therefore, admixtures of radiation contributions

(more generally, of any relativistic component) to

pressure often signal decreased gravitational sta-

bility for a gas.
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3.9 Equation of State for Matter and Radiation

For a simple stellar model, it is often a good starting point to

assume

• an ideal gas equation of state for the matter (provided that

the density is not too high) and

• a blackbody equation of state for the radiation.

In that case we may write for the pressure P and internal energy

U

P =
N

V
kT

︸︷︷︸

Ideal gas

+
aT 4

3
︸︷︷︸

Radiation

U = uV = CV T
︸︷︷︸

Ideal gas

+ aT 4V
︸ ︷︷ ︸

Radiation

,

where the first term in each case is the contribution of the ideal

gas and the second term is that of the radiation.
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3.9.1 Mixtures of Ideal Gases and Radiation

For mixtures of gas and radiation (common in high-

temperature stellar environments),

• it is convenient to define a parameter β that measures

the relative contributions of gas pressure Pg and radiation

pressure Prad to the total pressure P:

β =
Pg

P
1−β =

Prad

P
P = Pg +Prad.

• Therefore

– β = 1 implies that all pressure is generated by the

gas.

– β = 0 implies that all pressure is generated by radia-

tion.

For all values in between β = 0 and β = 1 the pressure receives

contributions from both gas and radiation.
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Example: In a mixture of ideal gas and radiation the pressure

generated by the gas alone is

Pg = nkT = β P.

Solving this equation for the total pressure,

P =
nkT

β
=

ρkT

β µ
=

NkT

βV
,

which is of ideal gas form. Thus, mixing radiation with gas

• gives an ideal gas equation of state but

• particles have an effective mean molecular weight β µ ,

where µ is the mean molecular weight for the gas alone.

Thus mixtures of ideal gases and radiation may be

treated as modified ideal gases, but

• normally the relative contribution of radiation

and gas to the pressure varies through the vol-

ume of a star, so

• β is a local function of position.
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3.9.2 Adiabatic Systems of Gas and Radiation

The preceding discussion of gas and radiation mixtures de-

pends only on the ideal gas assumption and the Planck radi-

ation distribution assumption.

• Now let’s further restrict to adiabatic processes.

• Then from

– the adiabatic condition δQ = 0,

– the first law of thermodynamics, and

– the definition of β ,

at constant entropy (see Problem 3.16 *** in book)

d lnT

d lnV
=
−(γ−1)(4−3β )

β +12(γ−1)(1−β )
.

These logarithmic derivatives may then be used to evaluate the

adiabatic exponents, with the results

Γ1 =
d lnP

d lnρ
= β +

(4−3β )2(γ−1)

β +12(1−β )(γ−1)

Γ2 =

(

1− d lnT

d lnP

)−1

= 1+
(4−3β )(γ−1)

β 2+3(γ−1)(1−β )(4+β )

Γ3 = 1+
d lnT

d lnρ
= 1+

(4−3β )(γ−1)

β +12(1−β )(γ−1)
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Figure 3.6: Adiabatic exponents in a mixture of ideal gas and radiation.

The adiabatic exponents Γ1, Γ2, and Γ3 are plotted in Fig. 3.6

as a function of the parameter β . Notice the expected limiting

behavior:

• Assuming γ = 5
3 for a monatomic ideal gas and β = 1 (no

radiation contribution to pressure) gives

Γ1 = Γ2 = Γ3 =
5

3
(Monatomic ideal gas).

• For β = 0 (all pressure generated by radiation) we find

Γ1 = Γ2 = Γ3 =
4

3
(Pure radiation).

• For other values of β the adiabatic exponents are not

equal and lie between 4
3 and 5

3 .



Chapter 4

Hydrostatic and Thermal

Equilibrium

A fundamental property of main sequence stars like our Sun is

their stability over long periods of time.

• The fossil record indicates that the Sun has been emitting

energy at its present rate for several billion years, with

relatively small variation.

• The key to this stability is that main sequence stars are in

a state of near perfect hydrostatic equilibrium, where

• the forces deriving from pressure gradients produced by

thermonuclear fusion and internal heat almost exactly bal-

ance the gravitational forces.

Thus the starting point for understanding stellar

structure is an understanding of hydrostatic equi-

librium and departures from that equilibrium.

71
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4.1 Newtonian Gravitation

The Newtonian gravitational field is derived from a gravita-

tional potential Φ that obeys the Poisson equation, which for

spherical symmetry is

1

r2

∂

∂ r

(

r2 ∂Φ

∂ r

)

= 4πGρ .

The gravitational acceleration is given by

g =
∂Φ

∂ r
=

Gm

r2
,

where m = m(r) is the mass contained within the radius r.

Hence, for spherical geometry

Φ(r) =

∫ r

0
gdr+ constant =

∫ r

0

Gm(r)

r2
dr+ constant.

The constant is fixed by requiring that Φ→ 0 as r→ ∞.
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Figure 4.1: Spherical mass shells. In (b) the small shaded volume has height

dr and unit area on its inner surface. Therefore its volume is 1×dr = dr and

its mass is ∆m = ρ×1×dr = ρdr.

4.2 Conditions for Hydrostatic Equilibrium

The local gravitational acceleration at a radius r is given by

g =
∂Φ

∂ r
=

Gm

r2
,

where m(r) is the mass contained within a radius r. The mass

contained in a thin spherical shell is (see Fig. 4.1)

dm = m(r+dr)−m(r) = 4πr2ρ(r)dr.

Integrating this from the origin to a radius r yields the mass

function m(r),

m(r) =
∫ r

0
4πr2ρ dr.
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Consider the total gravitational force acting on a volume of unit

area in a concentric spherical shell of radius r and depth dr.

• The magnitude of this force (per unit area) will be

Fg =−ρg(r)dr =−ρ
Gm(r)

r2
dr,

Negative sign→ directed toward the center of the sphere.

• The force per unit area resulting from the pressure differ-

ence between r and r+dr is

P(r)−P(r+dr) =−∂P

∂ r
dr

Negative sign→ directed outward. (∂P/∂ r is negative.)

• The inwardly directed gravitational force is counterbal-

anced by a net outward force arising from the pressure

gradient of the gas and radiation that has a magnitude

Fp = P(r)−P(r+dr) =−∂P

∂ r
dr.
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• The total force acting on this volume of unit surface area

is then

F = Fg+Fp =−
∂P

∂ r
dr− Gm(r)

r2
ρdr,

• by Newton’s 2nd law the equation of motion is

F = ma = ρdr
︸︷︷︸
mass

∂ 2r

∂ t2
︸︷︷︸

acceleration

,

• This leads to

ρ
∂ 2r

∂ t2
=−∂P

∂ r
− Gm(r)

r2
ρ .

• For hydrostatic equilibrium, the left side vanishes because

the acceleration ∂ 2r/∂ t2 = 0 and we obtain

dP

dr
=−Gm(r)

r2
︸ ︷︷ ︸

g

ρ =−gρ ,

where partial derivatives have been replaced with deriva-

tives since we assume no time dependence.
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Hydrostatic Equilibrium and Stellar Interiors:

In the equation

dP

dr
=−Gm(r)

r2
ρ =−gρ ,

both ρ and Gm(r)/r2 are positive.

1. Thus dP/dr ≤ 0 and pressure must decrease outward ev-

erywhere for a gravitating system to be in hydrostatic

equilibrium.

dP/dr is always negative under conditions of hy-

drostatic equilbrium.

2. This will in turn imply that density and temperature must

increase toward the center of a star.

The conditions of hydrostatic equilibrium are suf-

ficient to ensure that stars must be

• much more dense and

• much hotter

near their centers than near their surfaces.



4.2. CONDITIONS FOR HYDROSTATIC EQUILIBRIUM 77

The equations

dP

dr
=−Gm(r)

r2
ρ =−gρ (Hydro equilibrium),

dm = 4πr2ρ(r)dr (Mass equation).

are our first two equations of stellar structure.

• They constitute two equations in three unknowns (P, m,

and ρ as functions of r).

• This system of equations may be closed by specifying an

equation of state relating these quantities.

Before considering that, we explore some consequences that

follow from these equations alone.



78 CHAPTER 4. HYDROSTATIC AND THERMAL EQUILIBRIUM

4.3 Lagrangian and Eulerian Descriptions

In studying fluid motion, there are two basic computational

points of view that we can take.

1. We can fix a grid and watch the fluid flow through the grid;

this is called Eulerian hydrodynamics.

2. Alternatively, we can construct coordinates that are at-

tached to the mass elements and move with them; this is

called Lagrangian hydrodynamics.

Consider determining the temperature of the at-

mosphere over time either from a balloon drifting

with the wind or from a fixed point on the ground.

• The first is a Lagrangian point of view, if we

imagine the balloon to be tied approximately

to the motion of a fixed packet of air.

• The second is Eulerian, since we observe the

air from a fixed point as it flows by.

3. If fluid accelerations can be neglected, Lagrangian and

Eulerian descriptions of hydrodynamics reduce to La-

grangian and Eulerian hydrostatics.
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4.3.1 Lagrangian Formulation of Hydrostatics

Let’s illustrate the Lagrangian approach by writing the previous

equations with m(r) instead of r as the independent variable.

• The general result for a change of variables between Eu-

lerian and Lagrangian representations, (r,t)→ (m,t), is

∂

∂m
=

∂

∂ r
· ∂ r

∂m

(
∂

∂ t

)

m

=
∂

∂ r
·
(

∂ r

∂ t

)

m

+

(
∂

∂ t

)

r

.

where the subscripts denote variables held constant.

• Apply the first of these to the mass parameter m and use

dm = 4πr2ρ(r)dr to obtain

dr

dm
=

1

4πr2ρ
,

In operator form, the transformation between the two rep-

resentations is
∂

∂m
=

1

4πr2ρ

∂

∂ r
.

• Now we use this to convert

dP

dr
=−Gm(r)

r2
ρ (Eulerian form)

to Lagrangian coordinates, giving

dP

dm
=− Gm

4πr4
(Lagrangian form).
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Table 4.1: Equations of hydrostatics

Eulerian coordinates (r,t) Lagrangian coordinates (m,t)

dm

dr
= 4πr2ρ

dr

dm
=

1

4πr2ρ

dP

dr
=−Gmρ

r2

dP

dm
=− Gm

4πr4

Table 4.1 summarizes the equations of spherical hydrostatics in

Eulerian and Lagrangian form.
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4.3.2 Contrasting Lagrangian and Eulerian Descriptions

Eulerian or Lagrangian representations can each appear more

natural in particular contexts.

• Our observational mindset is often Eulerian:

– We tend to think of monitoring a river by

placing a measuring device at a fixed point

on the river.

– It is less common to imagine measuring de-

vices floating down the river with given pack-

ets of water (a Lagrangian point of view).

• The laws of physics are often formulated in a Lagrangian

way:

– For collision of billiard balls, we normally

imagine following each ball.

– It is less common to imagine staking out

points on the table and asking how balls move

past those fixed points (an Eulerian point of

view).
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• The Lagrangian point of view is often more simply tied to

the underlying physical laws.

• Thus the Lagrangian formulation is often preferred when

there are clear symmetries and conservation laws.

Example: Imagine a spherical star that is neither

gaining nor losing mass, but is pulsating radially

in size.

– The radial distance to the surface (Eulerian

coordinate) is changing with time.

– mass contained within the outermost radius

(Lagrangian coordinate) is constant in time.

• On the other hand, if

– spherical symmetry is broken and

– there is convective and turbulent motion of the fluid,

the Eulerian description is often simpler than the La-

grangian description.
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4.4 Dynamical Timescales

A particularly important concept in astrophysics is that of a

dynamical timescale.

A dynamical timescale sets the order of magnitude

for the time required for a system to respond to a

perturbation.

• The dynamical response of stars to perturbations of their

hydrostatic equilibrium is of obvious significance in un-

derstanding stars and their evolution.

• Consider the free-fall timescale tff

tff ≃
√

1

Gρ̄
≃
√

R

g
ρ̄ =

M
4
3πR3

g =
GM

R2

where M is the mass, R is the radius, ρ̄ is the average

density, and g is the gravitational acceleration.

• This defines a timescale for gravitational collapse of a

uniform-density sphere if it suddenly lost all pressure sup-

port.
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• We may introduce a second dynamical timescale by con-

sidering the opposite extreme: if gravity were taken away,

how fast would the star expand by virtue of its pressure?

• This timescale can depend only on R, ρ̄ , and P̄, and the

only combination of these quantities having time units is

texp ≃ R

√

ρ̄

P̄
≃ R

v̄s
,

where vs is the average speed of sound.

This timescale has a simple interpretation:

1. (ρ/P)1/2 is approximately the inverse of the

mean sound speed v̄s for the medium.

2. This implies that texp is approximately the

time for a sound wave to travel from the cen-

ter to the surface of the star.

Makes sense: pressure waves propagate on that

timescale.

• Hydrostatic equilibrium will be precarious unless these

dynamical timescales are comparable; therefore, we de-

fine a hydrodynamical timescale through

τhydro ≃ texp ≃ tff ≃
√

1

Gρ̄
.
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Table 4.2: Hydrodynamical timescales

Object ∼M/M⊙ ∼ R/R⊙ ρ̄/ρ⊙ τhydro

Red Giant 1 100 10−6 36 days

Sun 1 1 1 55 minutes

White Dwarf 1 1/50 105 9 seconds

Example: For the Sun ρ̄ = 1.4 g cm−3 and

τhydro ≃
√

1

Gρ̄
≃ 55 minutes.

• If hydrostatic equilibrium were not satisfied we would ex-

pect to see changes in a matter of hours.

• But the fossil record indicates that the Sun has been ex-

tremely stable for billions of years.

• We conclude that the Sun is in very good hydrostatic equi-

librium.

In Table 4.2 we illustrate the hydrodynamical timescale for sev-

eral kinds of stars calculated using this formula.
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4.5 Virial Theorem

Stars have at their disposal two large sources of energy:

1. Gravitational energy, which can be released by contrac-

tion.

2. Internal energy, which can be produced both by contrac-

tion and by fusion and other internal processes.

We now derive an important relationship between internal

and gravitational energy for objects in hydrostatic equilibrium

called the virial theorem.
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Multiply both sides of the Lagrangian hydrostatic equation

dP

dm
=− Gm

4πr4
.

by 4πr3 and integrate over dm from 0 to M ≡ m(R) to give

∫ M

0

Gm

r
dm =−4π

∫ M

0
r3 ∂P

∂m
dm

︸ ︷︷ ︸

Integrate by parts

=− 4πr3P

∣
∣
∣
∣

m=M

m=0
︸ ︷︷ ︸

identically zero

+12π
∫ M

0
r2P

∂ r

∂m
dm

= 12π

∫ M

0
r2P

1

4πr2ρ
dm =

∫ M

0

3P

ρ
dm,

• ρ , r, and P are functions of independent variable m.

• An integration by parts was used to obtain line 2:
∫

udv = uv−
∫

vdu

u = 4πr3 v = P du = 12πr2dr dv = dP

• In the first term of line 2

1. r vanishes when m = 0 (center of star), and

2. P vanishes when m = M (surface of star).

Thus this term is identically zero.

•
dr

dm
=

1

4πr2ρ
was used in going from line 2 to line 3.
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The equation just obtained,

∫ M

0

Gm

r
dm =

∫ M

0

3P

ρ
dm,

has a simple interpretation. First consider the right side:

• P/ρ = kT/µ for an ideal monatomic gas

• Thus the right side is twice the internal energy U because

∫ M

0

3P

ρ
dm =

3kT

µ

∫ M

0
dm =

3MkT

µ

= 3

(
M

µ

)

︸ ︷︷ ︸

N

kT = 3NkT = 2U,

since for an ideal monatomic gas U = 3
2
NkT .

Hence we have for the right side

∫ M

0

Gm

r
dm =

∫ M

0

3P

ρ
dm −→

∫ M

0

Gm

r
dm = 2U.

The integral on the left side may be interpreted by asking the

question

What is the total gravitational energy released in

forming a star?
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r

m(r)

∆m = 4π r 2ρdrs = ∞

Figure 4.2: Gravitational assembly of a star by the accretion of concentric

shells, each of mass ∆m = 4πr2ρdr.

Consider Fig. 4.2, where a shell of mass ∆m falls from infinity

onto the surface of a spherical mass of radius r and enclosed

mass m(r). The gravitational energy released is

dΩ =

∫ r

∞
Fg ds =

∫ r

∞
g(s)∆mds

=
∫ r

∞

Gm(r)

s2
︸ ︷︷ ︸

g(s)

4πr2ρdr
︸ ︷︷ ︸

∆m

ds

= −Gm(r)

s

∣
∣
∣
∣

r

∞

×4πr2ρdr =−4πr2ρdr
Gm(r)

r
,

and the total energy released in assembling a star of radius R

and mass M from such mass shells is

Ω =
∫

dΩ =−4π
∫ R

0
r2ρ

Gm(r)

r
dr =−

∫ M

0

Gm(r)

r
dm,

where dm/dr = 4πr2ρ was used and M ≡ m(R).
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Thus, for the left side of the virial theorem equation

∫ M

0

Gm(r)

r
dm =−Ω (Gravitational energy of star),

and from the previous result for the right side of the virial the-

orem equation,

∫ M

0

Gm

r
dm = 2U,

we see that for an ideal gas

∫ M

0

Gm

r
dm =

∫ M

0

3P

ρ
dm −→ 2U +Ω = 0

This result is called the Virial Theorem (for a

monatomic ideal gas):

2U +Ω = 0,

where U is the internal energy of the star and Ω is

its gravitational energy.



4.5. VIRIAL THEOREM 91

The virial theorem for an ideal, monatomic gas,

2U +Ω = 0 (or in the form U =−1
2Ω )

1. Establishes a general relationship between the internal en-

ergy and gravitational energy of a star in hydrostatic equi-

librium.

2. Is of broad applicability because

• It was derived under very general conditions.

• It relates the two most important energy reserves for

a star:

– gravitational energy and

– internal energy.

We shall often use the virial theorem and concepts

derived from it in discussions of stellar structure

and evolution.
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dV

Figure 4.3: A spherical mass shell of volume dV . Dashed arrows indicate

heat flow out of the star.

4.6 Thermal Equilibrium

Stars are also in approximate thermal equilibrium.

• By the First Law, internal energy can be changed

– by adding or removing heat, or

– by PdV work (expansion or contraction).

• Assume hydrostatic equilibrium and consider a spherical

mass shell, as in Fig. 4.3.

• If the concentric shell is at radius r and of width dr, its

volume is dV = 4πr2dr.

• Let’s work in Lagrangian coordinates, with

dm = ρdV = 4πr2ρdr.
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dV

• Let u be the internal energy per unit mass and

• let δ f denote the change of some quantity f within the

mass shell over a time t.

• The change in heat over a time δ t is then denoted δQ and

• the work done in a time δ t is denoted by δW .

• Then the total change in internal energy over a time δ t is

δ (udm) = (δu)dm = δQ+δW,

where we have used that dm is constant, by mass conser-

vation.
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dV

As you are asked to show in Problem 4.20 ***,

• The change in heat over a time δ t is given by

δQ = qdmδ t− ∂L

∂m
dmδ t,

and the work done in a time δ t is

δW =−Pδ

(
1

ρ

)

dm,

where in these expressions

– L(m) is the luminosity associated with heat flow

across the shell,

– P is the pressure,

– q is the rate of nuclear energy release per unit mass in

the shell,

– and where
dV

dm
= ρ−1 (since dm = ρdV ) was used.
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dV

• Substitute

δQ = qdmδ t− ∂L

∂m
dmδ t δW =−Pδ

(
1

ρ

)

dm,

into the equation

δ (udm) = (δu)dm = δQ+δW,

and take the limit δ t→ 0.

• This gives a differential equation specifying the energy

balance in a mass shell (Problem 4.21 ***),

du

dt
+P

d

dt

(
1

ρ

)

= q− ∂L

∂m
,
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• In thermal equilibrium the temporal derivatives on the left

side of
du

dt
+P

d

dt

(
1

ρ

)

= q− ∂L

∂m

vanish, which implies that

q =
dL

dm
.

• Integrate both sides over m and introduce

L0 ≡
∫ M

0
qdm L≡

∫ M

0

dL

dm
dm,

where

– L is the total luminosity and

– L0 is the luminosity produced by nuclear reactions.

• This leads to

L0 = L.

For a star in thermal and hydrostatic equilibrium,

energy is radiated away at the same rate that it is

produced by nuclear reactions.
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4.7 Total Energy for a Star

Integrating
du

dt
+P

d

dt

(
1

ρ

)

= q− ∂L

∂m
,

over the entire star yields

∫ M

0

du

dt
dm+

∫ M

0
P

d

dt

(
1

ρ

)

dm =

∫ M

0
qdm−

∫ M

0

∂L

∂m
dm.

The Lagrangian form of

ρ
∂ 2r

∂ t2
=−∂P

∂ r
− Gm(r)

r2
ρ .

is given by

1

4πr2

∂ 2r

∂ t2
=−∂P

∂m
− Gm(r)

4πr4
.

Multiplying this by ṙ and integrating over the entire star leads

to ∫ M

0
ṙr̈ dm =−4π

∫ M

0
r2ṙ

∂P

∂m
dm−

∫ M

0

Gmṙ

r2
dm.
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As you are asked to show in Problem 4.22 ***,

∫ M

0

du

dt
dm+

∫ M

0
P

d

dt

(
1

ρ

)

dm =
∫ M

0
qdm−

∫ M

0

∂L

∂m
dm.

together with

∫ M

0
ṙr̈ dm =−4π

∫ M

0
r2ṙ

∂P

∂m
dm−

∫ M

0

Gmṙ

r2
dm.

imply an energy-conservation equation

Ė = U̇ + Ω̇+ K̇ = L0−L,

where

• dots indicate time derivatives,

• the total energy is E =U +K +Ω,

• U is the total internal energy,

• Ω is the total gravitational energy,

• The total kinetic energy is K =
1

2

∫ M

0
ṙ2 dm,

• L is the total luminosity, and

• L0 is the luminosity deriving from nuclear reactions.
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The total energy of a star is

E =U +K+Ω,

and the equation of energy conservation is

Ė = U̇ + Ω̇+ K̇ = L0−L,

• If the star is in thermal equilibrium Ė = 0 and

• if it is in hydrostatic equilibrium K = 0.

In the limit of hydrostatic and thermal equilib-

rium, properties of stars are governed by the virial

theorem relating U to Ω.
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4.8 Stability and Heat Capacity

We have argued above that

• stars are in a hydrostatic equilibrium that balances gravi-

tational forces against pressure-differential forces, and

• a thermal equilibrium that balances energy production

against energy emission.

But how stable is that equilibrium?

• A ball at the bottom of a deep valley and

• a ball balanced on a knife edge

are both in equilibrium, but they have very different stabilities.

• Are stars in a deep valley, or

• are they balanced on a knife edge?

As we shall see, the answer

• depends very much on the equation of state, and

• is the source of both

– the remarkable stability of main sequence stars, and

– some of the most violent explosions observed in our

Universe.

We will address a number of instabilities in later chapters; here

we illustrate for thermal instability.
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4.8.1 Temperature Response to Energy Fluctuations

Consider a star with an ideal gas plus radiation equation of state

P = Pg+Pr = nkT +
1

3
aT 4 =

2

3
ug+

1
3ur,

where we assume for the ideal gas an internal energy density

ug =
3

2
nkT =

3

2
Pg

and for the radiation

ur = aT 4 = 3Pr.

Then the gravitational energy is

Ω =−
∫ M

0

3P

ρ
dm

=−2

∫ M

0

ug

ρ
dm−

∫ M

0

ur

ρ
dm

=−2Ug−Ur,

since the total internal energies are given by

Ug = 4π

∫ R

0
ugr2 dr =

∫ M

0

ug

ρ
dm,

Ur = 4π

∫ R

0
urr

2 dr =

∫ M

0

ur

ρ
dm.

Thus, using Ω =−2Ug−Ur the total energy is

E = Ω+Ur+Ug =−Ug =−
3

2
NkT.
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Letting

• L denote the luminosity of the star and

• L0 the energy generation rate,

their difference may be written as

L0−L =
dE

dt
=−3

2
Nk

dT

dt
,

where the derivative was evaluated using

E = Ω+Ur+Ug =−Ug =−3
2NkT.

At thermal equilibrium L0−L = 0.
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At thermal equilibrium

L0−L =−3

2
Nk

dT

dt
= 0.

Now suppose a small fluctuation away from equilibrium occurs

such that

L0−L = δL =−3

2
Nk

dT

dt
.

Solving for dT/dt gives

dT

dt
=−2

3

δL

Nk
,

which governs how the temperature will respond to small fluc-

tuations in energy production (or energy transport).
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The response of temperature T to an energy fluctuation δ L is

dT

dt
=−2

3

δL

Nk
.

Now consider two situations for δL≡ L0−L:

1. If δL > 0, rate of energy generation exceeds luminosity:

δL > 0 → L0 > L → dT/dt < 0.

Thus the response to an increase in energy generation is

• a decrease in temperature,

• which tends to decrease the energy generation rate.

2. If δL < 0, energy generation rate is less than luminosity:

δL < 0 → L0 < L → dT/dt > 0.

Thus the response to a decrease in energy generation is

• an increase in temperature, which causes

• an increase in the rate of energy generation.

These responses are the essence of a stable system:

• An imbalance causes an automatic restora-

tive action that re-establishes the balance.

• Yet this essential feature of normal stars is

quite counter-intuitive!
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As a gas cloud contracts to form a star, gravitational energy ∆Ω

is released.

• The slowly collapsing protostar goes through a sequence

of stages that are nearly in hydrostatic equilibrium.

• The virial theorem must be satisfied for hydrostatic equi-

librium to hold.

• Thus, as a newly-forming star contracts the virial theorem

must be satisfied approximately, which requires that

• The thermal energy must change by

∆U ≃−1
2
∆Ω,

• and the excess energy must be radiated away

before the star can contract further.

Hence, gravitational contraction has three consequences:

1. The star heats up,

2. Some energy is radiated into space,

3. The star’s total energy decreases and it becomes more

bound.

Stated concisely: the star “heats up while it cools down”.
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How can a star “heat up while it cools down”?

Answer: GRAVITY.

The virial theorem is

2U =−Ω.

Identifying U as the kinetic energy and Ω as the potential en-

ergy, an alternative statement is

Ekin =−1
2Epot,

and if E = Ekin +Epot is the total energy,

Ekin =−E.

But this implies that

• Adding energy decreases the kinetic energy.

• Removing energy increases the kinetic energy.

Thus, identifying average kinetic energy↔ temperature,

• adding energy decreases T ;

• removing energy increases T .

Stars have negative heat capacity since gravity is

long-ranged.

• Counterintuitive: We find almost all local ob-

jects to have positive heat capacities.

• But local objects aren’t bound by gravity!



4.8. STABILITY AND HEAT CAPACITY 107

Another Example (from Astronomy 421): Because of quantum

Hawking radiation, black holes have a temperature

T =
h̄c3

8πkGM
,

where M is the mass, k is Boltzmann’s constant, h̄ is Planck’s

constant divided by 2π , and G is the gravitational constant. As

Hawking radiation is emitted

1. the black hole loses mass (energy), and

2. its temperature rises: T → ∞ as M→ 0.

Time
tH

Mass

Temperature

M
a

s
s
, 
T
e
m

p
e
ra

tu
re

Like a star, a black hole (the ultimate gravitating

system!) becomes hotter as it loses energy: it ex-

hibits a negative heat capacity.
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4.9 Kelvin–Helmholtz Timescale for the Sun

Returning to our contracting protostar, if approximate hydro-

static equilibrium is to be maintained, the virial theorem re-

quires that the thermal energy must change by

∆U ≃−1

2
∆Ω.

1. Thus, at each infinitesimal step of the contraction

the star must wait until half of the released gravi-

tational energy is radiated

before it can continue to contract.

2. This implies that there is a timescale for contraction in

near hydrostatic equilibrium that is set by the time re-

quired to radiate the excess energy.

This contraction timescale is called the Kelvin–

Helmholtz timescale or the thermal adjustment

timescale.
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We may estimate the Kelvin–Helmholtz timescale by assuming

constant density ρ and a corresponding mass contained within

the radius r

m(r) =
4

3
πr3ρ ,

during the collapse. Then the gravitational energy released in

collapsing down to a star of radius R is

Ω =−
∫ R

0
4πr2ρ

Gm

r
dr ( substitute m = 4

3πr3ρ)

=−16

15
π2ρ2GR5 ( substitute ρ =

3M

4πR3
)

=−3

5

GM2

R
,

where the total mass is

M =
4

3
πR3ρ .

Taking M = M⊙ and R = R⊙, we find that Ω⊙ = 2.3×1048 erg

of gravitational energy was released in forming the Sun. By

the virial theorem, half of this must be radiated while the Sun

contracts:

E⊙rad =
1

2
Ω⊙ ≃

GM2
⊙

R⊙
≃ 1048 erg.

The Kelvin–Helmholtz timescale tKH is the charac-

teristic time to radiate this energy.
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We may make a rough estimate of the Kelvin–Helmholtz

timescale for the Sun by assuming that it has had its present

luminosity of L⊙ = 4×1033 erg s−1 for its entire life. Then

tKH ≃
E⊙rad

L⊙
≃ GM2

⊙/R⊙
L⊙

≃ 107 years,

We conclude that the Sun contracted to the main

sequence on a Kelvin–Helmholtz timescale of

about 10 million years.

Generally, we shall define a Kelvin–Helmholtz timescale for a

star by

tKH =
Ω

L
≃ GM2/R

L
,

where R is the radius, M the mass, and L the luminosity.
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4.10 Kelvin–Helmholtz Timescale for Other Stars

The Kelvin–Helmholtz timescale for other stars may be related

to that of the Sun by scaling. Since generally

tKH =
Ω

L
≃ GM2

LR
,

the ratio of the Kelvin–Helmholtz timescale for some star rela-

tive to that of the Sun is given by

tKH

t⊙KH

=

(
R⊙
R

)(
L⊙
L

)(
M

M⊙

)2

,

where a good estimate is t⊙KH = 3×107 yr.

Example: From Table 2.2 in the book, an A0 main

sequence star like Sirius A has

R = 2.5R⊙ M = 3.2M⊙ L = 79.4L⊙.

Inserting these values in the above equation, the

Kelvin–Helmholtz timescale for an A0 star is

tKH ∼ 0.055 t⊙KH ∼ 1.55×106 yr.

More massive stars evolve more rapidly through

all phases of their lives, including periods of grav-

itational contraction.
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Chapter 5

Thermonuclear Reactions in Stars

Stars have three primary sources of energy:

1. heat left over from earlier processes,

2. gravitational energy, and

3. energy released by thermonuclear reactions.

We shall see that

• Gravitational energy is important in star birth, star death,

and various transitional stages.

• White dwarfs shine because of heat left over from earlier

energy generation.

• But the virial theorem indicates that gravity and left-

over heat can power Sun only on a 107 year (Kelvin–

Helmholtz) timescale.

Thermonuclear reactions are the only viable long-

term stellar energy source.

113
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5.1 Nuclear Energy Sources

The measured luminosity of the Sun is

L⊙ ≃ 3.8×1033 erg s−1

and that of the most luminous stars is about 106L⊙.

• From the Einstein relation E = mc2,

∆m =
∆E

c2
,

and the rate of mass conversion to energy required to sus-

tain the Sun’s luminosity is

∆m =
1

c2
∆E→ ∆m

∆t
=

1

c2

∆E

∆t
=

L⊙
c2

= 4.2×1012 g s−1.

• The most luminous stars require conversion rates a million

times larger.

Let us now discuss how nuclear reactions in stars can account

for mass-to-energy conversion on this scale.
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5.1.1 The Curve of Binding Energy

The binding energy for a nucleus of atomic number Z and neu-

tron number N is

B(Z,N)≡ [ Zmp +Nmn
︸ ︷︷ ︸

free nucleons

− m(Z,N)
︸ ︷︷ ︸

bound system

]c2,

where

• m(Z,N) is the mass of the nucleus

• mp is the mass of a proton

• mn is the mass of a neutron.

The binding energy may be interpreted either as

• the energy released in assembling a nucleus from its con-

stituent nucleons, or

• the energy required to break a nucleus apart into its con-

stituents.

The more relevant quantity is often the binding energy per nu-

cleon, B(Z,N)/A, where A = Z+N is the atomic mass number.



116 CHAPTER 5. THERMONUCLEAR REACTIONS IN STARS

0 50 100 150 200 250
0

4

8

Nucleon number  A

B
in

d
in

g
 e

n
e
rg

y
 /
 n

u
c
le

o
n

 (
M

e
V

)

2

6

10

H
1

He
4

C
12 Fe

56

Figure 5.1: The curve of binding energy. Only the average behavior is

shown; local fluctuations have been suppressed, as has the isotopic depen-

dence on (Z,N) for a given A.

• The average behavior of binding energy per nucleon as a

function of the atomic mass number A is shown in Fig. 5.1.

• The general behavior of the curve of binding energy may

be understood from simple nuclear physics considera-

tions.

• These considerations are elaborated in Chapter 5 of the

book but we won’t go over them here.
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5.1.2 Masses and Mass Excesses

It is convenient to define the mass excess, ∆(A,Z), through

∆(A,Z) ≡ (m(A,Z)−A)Muc2,

• m(A,Z) is measured in atomic mass units (amu),

• A = Z +N is the atomic mass number, and

• the atomic mass unit Mu (which is defined to be 1
12

the

mass of a 12C atom) is given by

Mu =
1

NA

= 1.660420×10−24 g = 931.478 MeV/c2,

with NA = 6.02×1023 mole−1 (Avogadro’s constant).

The mass excess is useful because

• The number of nucleons (neutrons + protons) is constant

in low-energy nuclear reactions,

• so atomic mass numbers cancel on both sides of equations.

• Thus, sums and differences of masses (large numbers)

may be replaced by the corresponding sums and differ-

ences of mass excesses (small numbers).

Modern computers don’t care. But when a theory

of nuclear masses was developed in the 1930s and

1940s, computers were people working by hand.
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Example: Using the definition of the mass excess, the binding

energy equation

B(Z,N)≡ [Zmp +Nmn−m(Z,N)]c2,

may be rewritten as

B(Z,N) = [Zmp +Nmn−m(Z,N)]c2

= [Zmp +(A−Z)mn−m(Z,N)]c2

= [Z∆p +(A−Z)∆n−∆(A,Z)]c2

= [Z∆p +(A−Z)∆n−∆(A,Z)]×931.478 MeV,

where we have

• abbreviated the mass excess of the neutron and proton by

∆(1,0)≡ ∆n and ∆(1,1)≡ ∆p, respectively,

• and in the last line units of amu are assumed.

In many mass tables, the mass excesses rather than

the masses themselves are tabulated.
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Example: Let’s calculate the binding energy of 4He. The rele-

vant mass excesses are

∆p = 7.289 MeV ∆n = 8.071 MeV ∆(4,2) = 2.425 MeV

and the binding energy of 4He is then

B(Z,N) = [Z∆p +(A−Z)∆n−∆(A,Z)]c2

= 2×7.289+2×8.071−2.425= 28.3 MeV.

Thus more that 28 MeV of energy is required to

separate 4He into free neutrons and protons.
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5.1.3 QQQ-Values

The Q-value for a reaction is

• the total mass of the reactants minus the total mass of the

products,

• which is equivalent to the corresponding difference in

mass excesses:

Q = Mass of reactants− Mass of products

= Mass excess of reactants− Mass excess of products.

It is common to specify the Q-value in energy units

rather than mass units (by multiplying masses by

c2).
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Example: For the nuclear reaction

2H + 12C→ 1H + 13C,

the tabulated mass excesses are

∆(2H) = 13.136 MeV ∆(12C) = 0 MeV

∆(1H) = 7.289 MeV ∆(13C) = 3.1246 MeV.

The Q-value for this reaction is then

Q = ∆(2H)+∆(12C)−∆(1H)−∆(13C) = +2.72 MeV.

• The positive value of Q indicates that this is an exothermic

reaction:

– 2.72 MeV is liberated from binding energy in the re-

action.

– This appears as kinetic energy or internal excitation

of the products.

• Conversely, a negative value of Q

– indicates an endothermic reaction.

– This means that additional energy must be supplied

to make the reaction viable.
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5.1.4 Efficiency of Hydrogen Fusion

Examination of the curve of binding energy suggests two po-

tential nuclear sources of energy:

• Fission of heavier elements into lighter elements.

• Fusion of lighter elements into heavier ones.

Since stars are composed mostly of hydrogen and helium,

• Their energy source must be fusion of lighter elements.

• Coulomb repulsion between charged nuclei will inhibit fu-

sion, so hydrogen (Z = 1) will be easier to fuse than he-

lium (Z = 2).

• In particular, main sequence stars are powered by ther-

monuclear processes that convert four 1H into 4He.
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The total rest mass energy in one gram of material is

E = mc2 = 9×1020 erg,

and the energy released in the conversion of one gram of hy-

drogen into 4He is

∆E(fusion H→4He) = 6.3×1018 erg g−1.

Therefore,

• less than 1% of the initial rest mass is converted into en-

ergy in the stellar fusion of hydrogen into helium:

∆E(fusion H→4He)

total rest-mass energy
=

6.3×1018 erg g−1

9×1020 erg g−1
≃ 0.007.

• We see from these considerations that hydrogen fusion is

a rather inefficient source of energy.

• Furthermore, fusion rates in the cores of lower-mass main

sequence stars are quite small.

The Sun’s luminosity is equivalent to several 100-

watt lightbulbs per cubic meter of the core.

• The reason that fusion is able to power stars is not because

of its intrinsic efficiency.

• Rather it is because of the enormous mass of stars, which

implies that they have large reservoirs of hydrogen fuel.
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5.2 Thermonuclear Hydrogen Burning

The primary energy source of main sequence stars derives from

conversion of hydrogen into helium.

Two sets of thermonuclear reactions can accomplish this:

1. the proton–proton chain (PP chain), and

2. the CNO cycle

Generally it is found that

• The proton–proton chain

– produces most of the energy of the Sun and

– generally is dominant in stars of a solar mass or less.

• The CNO cycle quickly surpasses the proton–proton chain

in energy production as soon as the mass exceeds about a

solar mass.

The reason for this rapid switchover is that the PP

chain and the CNO cycle have strong and very dif-

ferent dependence on temperature.



5.2. THERMONUCLEAR HYDROGEN BURNING 125

5.2.1 The Proton–Proton Chains

The proton–proton (PP) chains are summarized below:
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Figure 5.2: The CNO cycle. The main part of the cycle is illustrated

schematically on the left side. On the right side the main part of the cycle

is illustrated with solid arrows and a side branch is illustrated with dashed

arrows. The notation (p, i) means a proton capture followed by emission of

i; for example 12C(p,γ)13N. β+ indicates beta decay by positron emission;

for example, 13N→ 13C + e+ + νe.

5.2.2 The CNO Cycle

The name of the carbon–nitrogen–oxygen or CNO cycle

• derives from the role played by isotopes of

– carbon (C),

– nitrogen (N), and

– oxygen (O)

in the corresponding sequence of reactions.

• The CNO cycle is summarized in Fig. 5.2 above.
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CNO Catalysis

The main part of the CNO cycle is termed the CN cycle.

• Summing net reactants and products around the CN cycle,

12C+4p −→ 12C+ 4He+2β++2ν.

(The γ-rays have been neglected since they do not corre-

spond to a conserved quantity.)

• Therefore, 12C serves as a catalyst for the conversion of

four protons to 4He.

• It is required for the sequence to take place, but

• it is not consumed in the process, because a 12C is returned

in the last step of the cycle.

The Q-value for the main CNO cycle is 23.8 MeV

and it supplies less than 2% of the Sun’s energy.
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We have written the CNO sequence as if the (p,γ) reaction on
12C were the first step,

• but CNO is a closed cycle.

• Hence we may consider any step to be the initial one.

• This implies that any of the C, N, or O isotopes in the

cycle may be viewed as the catalyst that converts protons

into helium.

• The closed nature of the cycle also implies that

1. Any mixture of these isotopes will play the same cat-

alytic role.

2. If any one of the CNO isotopes is present initially a

mixture of the others will inevitably be produced by

the cycle of reactions.
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Figure 5.3: Rate of energy release in the PP chain and in the CNO cycle. T6

denotes the temperature in units of 106 K.

Rates of energy release from hydrogen burning for the PP chain

and CNO cycle are illustrated in Fig. 5.3.

We will see how to calculate these curves later in

this chapter.

• PP chains have a strong temperature dependence (∼ T 4),

• but the CNO cycle has a even stronger dependence (∼
T 17)).

• This temperature dependence implies that

– the star’s mass on the main sequence is the most im-

portant factor governing the PP–CNO competition,

– because mass strongly influences core temperature.
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The PP cycle can occur in any star containing H, but the CNO

cycle requires the presence of C, N, or O as catalysts.

• Therefore, the CNO cycle should be relatively more im-

portant in Pop I stars.

• However, this is generally of secondary importance to

temperature, as long as some CNO isotopes are present.

• This issue is also of importance in understanding the very

first generation of stars (Pop III).

– No CNO isotopes were produced in the big bang.

– Thus the first generation of stars operated by the PP

chain until some of those stars could produce and dis-

tribute carbon.

• These considerations are important for the early Universe

because relatively massive stars formed surprisingly early.

1. CNO is more efficient in massive stars than PP be-

cause of its temperature dependence.

2. Thus the pace of early structure evolution

– depended on when the earliest stars produced

CNO isotopes,

– which then allowed succeeding generations of

stars to switch to the more efficient CNO cycle.
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5.3 Cross Sections and Reaction Rates

A quantitative analysis of energy production in stars requires

the basics of nuclear reaction theory for stellar environments.

• Let’s begin by considering the nuclear reaction

α +X −→ Z∗ −→ Y+β ,

where Z∗ denotes an excited intermediate state called a

compound nucleus.

• Note: we will often write this equation in the nuclear

physics notation as X(α,β )Y.

• A compound nucleus is

– an excited composite that

– quickly decays into the final products of the reaction.

• In the reaction

α +X
︸ ︷︷ ︸

entrance channel

−→ Z∗ −→ Y+β
︸ ︷︷ ︸

exit channel

– the left side (α + X) is called the entrance channel

and

– the right side (Y +β ) is called the exit channel

for the reaction.
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• It is common to classify nuclear reactions according to the

number of (nuclear) species in the entrance channel; thus

α +X −→ Z∗ −→ Y+β ,

is a 2-body reaction.

• We shall often use 2-body reactions to illustrate but

• 1-body reactions of the form A→ B+C and

• 3-body reactions of the form A+B+C→ D

also play a role in stellar energy production.
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Let us first consider a laboratory experiment where

• The reaction is initiated by a beam of projectiles α di-

rected onto a target containing nuclei X.

• The cross section σαβ (v) is defined by

σαβ (v)≡
ραβ

F(v)

=

(
reactions per unit time per target nucleus

incident flux of projectiles

)

.

It is a function of the velocity v, and has units of area.

A common unit of cross section is the barn (b),

which is a cross section of 10−24 cm2.

• The incident particle flux F(v) is given by

F(v) = nαv,

where

– nα is the number density of projectiles α in the beam

and

– v is their velocity.
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• The number of reactions per unit time (reaction rate) per

target nucleus ραβ is

ραβ = Fνσαβ = nαvσαβ ,

and the total reaction rate per unit volume rαβ (v) results

from

– multiplying ραβ by the number density nX of target

nuclei X:

rαβ (v) = ραβ nX = nαnXvσαβ (v)(1+δαX)
−1,

– and has units of cm−3 s
−1

in the CGS system.
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• The factor involving the Kroenecker δab in

rαβ (v) = ραβ nX = nαnXvσαβ (v)(1+δαX)
−1,

(where δab is one if a = b and zero if a 6= b) is introduced

to prevent overcounting when the colliding particles are

identical.

1. The product nαnXvσαβ (v) is the rate per unit volume

for the 2-body reaction

2. nαnX is the number of unique particle pairs (α,X)

contained in the unit volume.

3. But for the collision of identical particles (α = X),
the number of independent particle pairs (α,α) is not

N2
α but 1

2N2
α .

4. Therefore, for identical particles the rate expression

must be multiplied by a factor of 1/(1+δαX) =
1
2 to

avoid double counting.

5. More generally, for N identical particles a factor of

1/N! is required to prevent double counting.

• We will not display the Kroenecker-δ factors unless they

are essential to the discussion.
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• Normally we will work in the center of mass (CM) coor-

dinate system.

• Thus velocities, energies, momenta, and cross sections

will be center of mass quantities, with

E ≡ ECM =

(
mX

mα +mX

)

Elab,

v≡ vCM =

√

2E

µ
,

µ ≡ mαmX

mα +mX
(reduced mass),

unless otherwise noted.
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Figure 5.4: Maxwellian velocity distribution for two temperatures; the

dashed arrows indicate the mean velocities for each distribution.

5.4 Thermally-Averaged Reaction Rates

The preceding equations assume a monoenergetic beam in a

nuclear physics laboratory.

• In a stellar environment we instead have a gas in approxi-

mate thermal equilibrium.

• If the gas can be described classically, at equilibrium it has

a Maxwell–Boltzmann distribution ψ(E) of energies

ψ(E) =
2

π1/2

E1/2

(kT )3/2
exp(−E/kT ).

This distribution is illustrated for two different temperatures in

Fig. 5.4 as a function of v =
√

2E/µ .
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• A thermally-averaged cross section 〈σv〉αβ results from

averaging the cross section over the velocities in the gas,

〈σv〉αβ ≡
∫ ∞

0
ψ(E)σαβ (E)vdE,

=

√

8

πµ
(kT )−3/2

∫ ∞

0
σαβ (E)e

−E/kT E dE,

where the second form follows from v =
√

2E/µ .

• Units of 〈σv〉αβ are cm3 s−1 (cross section × velocity).

• We then introduce a thermally-averaged reaction rate:

rαβ = nαnX

∫ ∞

0
ψ(E)σαβ (E)vdE = nαnX〈σv〉αβ

= ρ2N2
A

XαXX

AαAX
〈σv〉αβ = ρ2N2

A YαYX〈σv〉αβ ,

where in the interest of compact notation

1. We drop explicit display of the δ -function factor nec-

essary when the colliding particles are identical, and

2. In the second line we introduce the mass fractions Xi

and the abundances Yi,

Xi =
niAi

ρNA

Yi ≡
Xi

Ai
=

ni

ρNA

.

• The units of rαβ are cm−3 s−1 (rate per unit volume),
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• The clear physical interpretation of

rαβ = nαnX〈σv〉αβ

is that the total rate for the 2-body reaction

α +X → Y+β ,

is given by

– the (thermally averaged) rate 〈σv〉αβ for a single α

to react with a single X to produce Y +β ,

– multiplied by the number of α per unit volume nα ,

and

– multiplied by the number of X per unit volume nX .



140 CHAPTER 5. THERMONUCLEAR REACTIONS IN STARS

Possible 

intermediate 

state

Compound

nucleus

Exit

channels β
Entrance

channel α

1

2

3

4

N

Figure 5.5: Reaction channels. The reaction might or might not involve an

intermediate compound nucleus.

5.5 Parameterization of Cross Sections

To proceed we need the cross section (in the center of mass

system) to calculate the thermally-averaged rates.

• The cross section may be parameterized in the general

form

σαβ (E) = πgλ-2
ΓαΓβ

Γ2
f (E),

where the energy widths Γi ≡ h̄/τi are expressed in terms

of the corresponding mean life τi for decay of the com-

pound system through channel i, and

• the entrance channel is denoted by α ,

• the exit channel is denoted by β .
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σαβ (E) = πgλ-2
ΓαΓβ

Γ2
f (E),

• the total width is Γ = ∑i Γi, where the sum is over all open

channels i,

• the probability to decay to channel i is Pi = Γi/Γ,

• the reduced deBroglie wavelength is defined through λ-2 =

h̄2/2µE,

• the statistical factor g contains information on the spins

of projectile, target, and compound nucleus (typically of

order 1), and

• the detailed reaction information resides in f (E).
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The parameters Γ appearing in

σαβ (E) = πgλ-2
ΓαΓβ

Γ2
f (E)

have the units of h̄ divided by time, which is energy.

• They are called energy widths because

– states with short lifetimes for decay (large de-

cay rates) correspond to spectral peaks (resonances)

broad in energy, by a

∆E ·∆t ≃ h̄

uncertainty principle argument.

– Conversely, states with long decay lifetimes (small

decay rates) correspond to narrow resonances.

– The limiting case is a completely stable state, with

vanishing decay rate and a sharply-defined energy.

• The factor f (E) is generally either

1. resonant, if it is strongly peaked in energy because of

a narrow (quasibound) compound-nucleus state, or

2. nonresonant, because the reaction energy is far from

a resonance, or there are no resonances (quasibound

states) in the channel of interest.

• The total rates will typically be a sum of contributions for

resonant and nonresonant pieces.
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5.6 Nonresonant Cross Sections

Most reactions in stellar energy production are exothermic,

Q≡ (mass of reactants)− (mass of products)

= mαc2+mXc2−mβ c2−mYc2 > 0.

• Typical Q-values for the reactions of interest are∼ 1 MeV.

This additional energy leads to a marked asymme-

try in the entrance and exit channels for charged

particle reactions.

• In the entrance channel, the thermal energies available are

set by the temperatures through

kT = 8.6174×10−8 T keV,

with the temperature expressed in kelvin (K).

• Hydrogen burning typically occurs in a temperature range

107 K < T < 109 K,

implying a range of kinetic energies in the plasma,

1 keV < kT < 100 keV.

• Thus, for average Q∼ 1 MeV, we often have

E(entrance)≪ E(exit),

for reactions of interest.
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Figure 5.6: The Coulomb barrier for charged-particle reactions.

5.6.1 Coulomb Barriers

Because of low entrance-channel energies, charged-particle re-

actions are strongly influenced by the Coulomb barrier

ECB = 1.44
ZαZX

R(fm)
MeV,

where Zi is the atomic number of particle i, the separation R is

R≃ 1.3(A
1/3
α +A

1/3
X ) fm,

• Ai is the atomic mass number (in amu) of particle i,

• energies are in MeV, and

• distances in fermis (fm):1 fm = 10−13 cm = 10−15 m ).
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Example: Consider a proton scattering from a 28Si nucleus.

From

ECB = 1.44
ZαZX

R(fm)
MeV R≃ 1.3(A

1/3
α +A

1/3
X ) fm

with

Zα = 1 ZX = 14 Aα = 1 AX = 28

we obtain

ECB = 1.44
(1)(14)

1.3(11/3 +281/3)
MeV = 3.8 MeV.
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Table 5.1: Coulomb barriers for p + X

X ZαZβ R (fm) ECB (MeV)

1
1H 1 2.6 0.55

12
6 C 6 4.3 2.0

28
14Si 14 5.2 3.8

56
26Fe 26 6.3 6.0

Some typical Coulomb barriers for proton reactions p + X are

shown in Table 5.1, where we note that

• Entrance channel energies for hydrogen fusion in stars

(10−3 to 10−1 MeV) are typically orders of magnitude

lower than the Coulomb barrier.

As we shall see, this implies a dramatic tempera-

ture dependence for hydrogen fusion reactions.

• On the other hand, exit channel energies (approximately 1

MeV in typical cases) are comparable to the barrier ener-

gies for fusion of protons with lighter ions.
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5.6.2 Barrier Penetration Factors

Energies in a stellar plasma are too small to surmount the

Coulomb barrier for typical charged-particle reactions.

• However, quantum tunneling can occur for energies below

the height of the barrier, albeit with small probability.

• Assuming ECB ≫ E, the barrier penetration probability

for a collision with zero relative orbital angular momen-

tum (s-waves in scattering theory) is

P(E) ∝ e−2πη ,

where the dimensionless Sommerfeld parameter η is

η =
ZαZXe2

h̄v
=

√
µ

2

ZαZXe2

h̄E1/2
.

• Realistically, P(E)<∼ exp(−12).

• Thus, charged-particle reactions in stars are highly-

improbable events.

• The reaction probability will be dominated by the proba-

bility to penetrate the barrier.

• Thus, we take as an entrance channel width for nonreso-

nant reactions

Γα ≃ e−2πη ,

which clearly has a strong energy dependence.
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5.6.3 Astrophysical S-Factors

Exit channel energies are comparable to barrier energies.

• Thus we assume that Γβ is a weakly varying function of

E, as is Γ = Γα +Γβ , and

• we express the nonresonant cross section as

σαβ (E) = πgλ-2
ΓαΓβ

Γ2
f (E)≡ S(E)

E
e−2πη ,

where λ-2 ∝ 1/E and Γα ∝ e−2πη have been used.

• The astrophysical S-factor is defined by

S(E)≡ σαβ (E)Ee2πη .

S(E) varies slowly with E and contains all energy

dependence other than λ-2 or exp(−2πη).

The S-factor for a (p,γ) reaction is illustrated below.
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Because of the low energies ∼ kT for stellar plasmas,

• experimental measurements often must be extrapolated to

lower energy.

• This is usually done by assuming no resonance at the

lower energy and plotting

S(E)≡ σαβ (E)Ee2πη ,

which has smooth behavior and therefore is more easily

extrapolated than the full cross section

Then from

〈σv〉αβ =

√

8

πµ
(kT )−3/2

∫ ∞

0
σαβ (E)e

−E/kT E dE,

σαβ (E) = πgλ-2
ΓαΓβ

Γ2
f (E)≡ S(E)

E
e−2πη ,

the thermally-averaged nonresonant cross section is

〈σv〉αβ =

√

8

πµ
(kT )−3/2

∫ ∞

0
S(E)e−E/kT−2πη dE

=

√

8

πµ
(kT )−3/2

∫ ∞

0
S(E)e−E/kT e−bE−1/2

dE,

where we define

b≡ 2π
(µ

2

)1/2 ZαZXe2

h̄
,

and S(E) is in erg cm2.
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Figure 5.7: The Gamow window.

5.6.4 The Gamow Window

The energy dependence of

〈σv〉αβ =
√

(8/(πµ)(kT )−3/2
∫ ∞

0
S(E)e−E/kT e−bE−1/2

︸ ︷︷ ︸
dE

resides primarily in the factor

FG ≡ e−E/kT e−bE−1/2

,

which is termed the Gamow window.

• The first factor exp(−E/kT ), arising from the thermal ve-

locity distribution, decreases rapidly with energy.

• The second factor exp(−bE−1/2), arising from the barrier

penetration factor, increases rapidly with energy.

• Thus, the product is strongly localized in energy (Fig. 5.7).

Only for energies within the Gamow window are

stellar charged-particle reactions likely to occur.
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The maximum of the Gamow peak (Problem 5.4 ***)

E0 = 1.22(Z2
αZ2

XµT 2
6 )

1/3 keV.

• For many reactions of interest this is only tens of keV.

• Hence laboratory cross sections must be extrapolated to

these low energies to calculate astrophysical processes,

• because it is very difficult to do reliable experiments at

such low energies.

Useful approximate expressions can be obtained by assuming

the Gamow peak to be a Gaussian (Problem 5.5 ***).

• In this approximation the width of the Gamow peak is

∆ =
4

31/2
(E0kT )1/2 = 0.75(Z2

αZ2
X µT 5

6 )
1/6 keV

and the cross section is

〈σv〉αβ ≃
0.72×10−18S(E0)a

2

µZαZXT
2/3

6

exp(−aT
−1/3

6 ),

in units of cm3 s−1, where

a = 42.49(Z2
αZ2

Xµ)1/3,

and S(E0) is evaluated at the energy of the Gamow peak

in units of keV barns.
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Example: From the gaussian approximation we find that for the

interaction of two protons at a temperature of T6 = 20 (that is,

T = 20×106 K),

kT = 1.7 keV E0 = 7.2 keV ∆ = 8.2 keV,

and from the earlier table the corresponding Coulomb barrier is

about 500 keV.
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5.7 Resonant Cross Sections

In the simplest case of an isolated resonance,

• f (E) can be expressed in the Breit–Wigner form

f (E)res =
Γ2

(E−Er)2 +(Γ/2)2
,

• where the resonance energy Er is related to a correspond-

ing excitation energy E∗ for a quasibound state in the

compound nucleus through

Er = (mZ−mα −mX)c
2 +E∗.

The corresponding Breit–Wigner cross section is

σαβ = πgλ-2
ΓαΓβ

(E−Er)2+(Γ/2)2
,

and will generally exhibit a strong peak near E = Er.
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Figure 5.8: Cross section σ(E) in barns for the reaction 12C(p,γ)13N.

Example: Consider the reaction 12C(p,γ)13N illustrated in

Fig. 5.8.

• This reaction has a resonance corresponding to a state in
13N at an excitation energy of 2.37 MeV.

• Thus it is strongly excited at a laboratory proton energy of

0.46 MeV.



5.7. RESONANT CROSS SECTIONS 155

If the Maxwell–Boltzmann distribution ψ(E) and the widths Γi

vary slowly over a resonance, we may assume

ψ(E)→ ψ(Er) Γα → Γα(Er) Γβ → Γβ (Er),

and we obtain he resonant velocity-averaged cross section

〈σv〉αβ =
π h̄2g

2µ

√

8

πµ
(kT )−3/2e−Er/kT

× Γα(Er)Γβ (Er)
∫ ∞

0

1

(E−Er)2+(Γ/2)2
dE.

If the resonance is broad or Er is small, the pre-

ceding assumptions may be invalid and it may be

necessary to integrate over the resonance energy

numerically using the data.

The integrand peaks near Er; extending the lower limit of the

integral to −∞ and assuming the widths to be constant gives

〈σv〉αβ = 2.56×10−13 (ωγ)r

(µT9)3/2
exp(−11.605Er/T9) cm3 s−1,

where Er is in MeV, T9 indicates temperature in units of 109 K,

and

(ωγ)r ≡ g
ΓαΓβ

Γ

has units of MeV and is tabulated for reactions of interest.
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5.8 Libraries of Cross Sections

The Gamow window is not Gaussian.

• By using expansions to characterize the deviation from

Gaussian behavior of the realistic curve,

• correction terms may be derived that give a more accurate

representation of the thermally-averaged cross section.

• One parameterization that incorporates such correction

terms and is often used in reaction rate compilations is

〈σv〉= a( f0+ f1T 1/3+ f2T 2/3+ f3T + f4T 4/3+ f5T 5/3)
e−bT−1/3

T 2/3

where a, b, and fn parameterize the cross section.

• The Caughlan and Fowler compilation used in some prob-

lems in the book is parameterized in this manner.

• Another reaction library used for rates in many of our ex-

amples is ReacLib, which is described in Appendix D.2 of

the book.
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5.9 Total Rate of Energy Production

• The total reaction rate per unit volume rαβ is given by

rαβ = ρ2N2
A

XαXX

AαAX
〈σv〉αβ = ρ2N2

A YαYX〈σv〉αβ .

• The corresponding total rate of energy production per unit

mass is then given by the product of the rate and the Q-

value, divided by the density:

εαβ =
rαβ Q

ρ
,

which has CGS units of erg g−1s−1.

• The Q-value entering this expression is defined by

Q≡ (mass of reactants)− (mass of products)

but with the proviso that

If a reaction produces a neutrino that removes en-

ergy from the star without appreciable interaction,

its energy should be subtracted from the total Q-

value.
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5.10 Temperature and Density Exponents

It is often useful to parameterize the energy production rate of

a star in the power-law form

ε = ε0ρλ T ν .

• Then the behavior of the energy production may be char-

acterized in terms of

– the temperature exponent ν and

– the density exponent λ .

• The energy production is not universally of this form.

• However, this approximation with constant exponents is

usually valid for a limited range of T and ρ .

• Energy production mechanisms for stars are often opera-

tive only in narrow ranges of temperature and density.

• Hence the exponents λ and ν can provide a useful param-

eterization for the regions of physical interest.

We may define temperature and density exponents for an arbi-

trary energy production function ε(ρ ,T ) through

λ =

(
∂ lnε

∂ lnρ

)

T

ν =

(
∂ lnε

∂ lnT

)

ρ

.
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Table 5.2: Density and temperature exponents

Stellar process Density (λ ) Temperature (ν)

PP chain 1 ∼ 4

CNO cycle 1 ∼ 16

Triple-α 2 ∼ 40

Temperature and density exponents are displayed in Table 5.2

for the PP chain and CNO cycle, and for the triple-α process

that burns helium to carbon in red giant stars.

• Notice in Table 5.2 the exquisite temperature dependence

exhibited by these reactions.

• This enormous sensitivity of energy production to temper-

ature is a central feature of stellar structure and stellar evo-

lution.
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5.11 Reaction Selection Rules

Sometimes it is possible to infer the astrophysical significance

of various nuclear reactions based on selection rules and con-

servation laws, without having to calculate any detailed rates.

• Angular momentum is conserved in all reactions.

• Thus the angular momentum JJJ of a compound nucleus

state populated in a two-body reaction must satisfy

jjj1+ jjj2+ lll = JJJ.

where

– jjj1 and jjj2 are the angular momenta associated with

the colliding particles and

– lll is the angular momentum of relative orbital motion

in the entrance channel.

• Likewise, isotopic spin (an abstract approximate symme-

try) is conserved to a high degree in strong interactions.

• Thus the isotopic spins in a two-body reaction must ap-

proximately satisfy

ttt1+ ttt2 = TTT ,
where

– ttt1 and ttt2 are the isotopic spins associated with the

colliding particles and

– TTT is the isotopic spin of the final state populated.
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• Parity (symmetry of the wavefunction under space reflec-

tion)

– is maximally broken in the weak interactions, but

– is conserved in the strong and electromagnetic reac-

tions.

• In a nuclear reaction that does not involve the weak force,

the parities must satisfy

(−1)lπ( j1)π( j2) = π(J).

where

– π =± denotes the parity and

– ji the angular momentum of the states.

Compound nucleus states with angular momen-

tum, isospin, and parity quantum numbers that do

not satisfy these selection rules will generally not

be populated significantly in reactions.
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For nuclei with even numbers of protons and neutrons (even–

even nuclei)

• The ground states always have angular momentum and

parity Jπ = 0+.

• Therefore, if the colliding nuclei are

– even–even nuclei and

– in their ground states,

• the angular momentum and the parity of the state excited

in the compound nucleus are both determined completely

by the orbital angular momentum l of the entrance chan-

nel:

J = l π(J) = (−1)l.

• Resonance states satisfying this condition are said to have

natural parity.
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Example: Consider the reaction α + 16O→ 20Ne
∗

(where the *

on the Ne indicates that it is in an excited state).

• Under normal conditions the α-particle and 16O will be in

their ground states and thus will each have Jπ = 0+.

• Therefore, parity conservation requires that any state ex-

cited in 20Ne by this reaction have parity

π(20Ne) = (−1)l = (−1)J.

• We conclude that

– states in 20Ne having Jπ = 0+,1−,2+,3−, . . . may be

populated (because they are natural parity) but that

– population of states having (say) Jπ = 2− or 3+ is

forbidden, or at least strongly suppressed (not natural

parity).

• In the 20Ne spectrum there is a state at 4.97 MeV of exci-

tation relative to the ground state having Jπ = 2−.

• This state cannot be excited in the capture reaction α +
16O→ 20Ne+ γ because it is not a natural parity state.

As we shall see in the later discussion of helium

burning, if this seemingly obscure state had the op-

posite parity, we would not exist (!).
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Chapter 6

Stellar Burning Processes

The slowest reaction in the PP chain,
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and therefore the one that governs the overall rate at which the

chain produces power, is the initial step

1H+ 1H−→ 2H+ e++νe.

165
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6.1 Reactions of the Proton–Proton Chain

The reaction 1H+ 1H−→ 2H+ e++νe

• is very slow because it proceeds by weak interactions (the

neutrino indicates this).

• It is also non-resonant.

• The reaction rate is found to be

rpp =
1
2n2

p 〈σv〉pp

=
1.15×109

T
2/3

9

X2ρ2 exp(−3.38/T
1/3

9 ) cm−3 s
−1

,

where X is the hydrogen mass fraction.

• The temperature exponent is (Problem)

νpp = 11.3/T
1/3

6 −2/3,

implying that νpp ≃ 4 for T6 = 15.
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• The rate of change for proton number because of this re-

action is given by the usual radioactive decay law,

dn

dt
=−1

τ
n,

where τ is the mean life for the reaction.

• Thus, the mean life for a proton with respect to being con-

verted in the PP chain is

τp =−
np

dnp/dt
=

np

2rpp
,

where a factor of two appears in the denominator because

two protons are destroyed in each reaction.

Example: For typical solar conditions we may take a temper-

ature of T6 = 15, a central density of ρ = 100 g cm−3, and a

central hydrogen mass fraction of X = 0.5.

• Then the preceding equations yield an estimate of

τp ≃ 6×109 years.

• This is remarkably long and sets the scale for the main

sequence life of the Sun.
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The slowness of the initial step in the PP-chain is ultimately

because the diproton (2He) is not a bound system.

• If the diproton were bound,

– the first step of the PP-chain could be a strong inter-

action and

– the lifetime would be much shorter.

• Instead, the first step must wait for a highly improbable

event: a weak decay of a proton from a broad p–p reso-

nance having a very short lifetime.

• In contrast, the mean life for the deuterium produced in

the first step and consumed in the next step

p+d→ 3He+ γ

is about one minute under solar conditions.

• The final fusion of two helium-3 isotopes to form helium-

4 is much slower (τ ∼ 106 years), but is orders of magni-

tude faster than the first step.

Thus, the initial step of the PP chain

– governs the rate of the reaction and in turn

– sets the main sequence lifetime for stars run-

ning on the PP chain.
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The relative importance of PP-I versus PP-II and PP-III de-

pends on the competition between the reactions

3He(3He,2p)4He and 3He(4He,γ)7Be.

• For temperatures where PP is important, the first reaction

is faster than the second by about four orders of magni-

tude, ensuring dominance of PP-I over PP-II and PP-III.

• The branching between PP-II and PP-III depends on com-

petition between electron and proton capture on 7Be.

• At the temperature of the Sun, electron capture dominates

and PP-II is much stronger than PP-III.

• At somewhat higher temperatures, PP-III will make much

larger contributions. (However, at higher temperatures the

CNO process will become more important than PP.)
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Table 6.1: Effective Q-values

Process Qeff (MeV) % Solar energy

PP-I 26.2 83.7

PP-II 25.7 14.7

PP-III 19.1 0.02

CNO 23.8 1.6

Effective Q-values for the PP chain

• depend on which subchain is followed, since

• the energy carried off by neutrinos is different in the 3

cases.

The effective Q-values are listed in Table 6.1.

• Average energy released per PP chain fusion in the Sun is

∆Epp = 0.85

(
26.2

2

)

+(0.15)(25.7) = 15 MeV,

where

– PP-III has been ignored and

– the factor of 2 in the denominator of the first term

results from the first two steps of PP-I needing to run

twice to provide two 3He nuclei.
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• Although PP-III

– has negligible influence on energy production,

– it produces much higher energy neutrinos than PP-I

or PP-II.

• The PP-III chain is highly temperature dependent be-

cause it is initiated by proton capture on a Z = 4 nucleus

(Coulomb barrier).

• Therefore, detection of high-energy neutrinos from PP-III

– can provide a sensitive probe of the central tempera-

ture of the Sun.

– We shall return to this issue when we discuss the solar

neutrino problem.
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6.2 Reactions of the CNO Cycle

Because of the influence of

• Coulomb barriers and

• S-factors,

the slowest reaction in the CNO cycle,
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is typically found to be

p+14N→15O+ γ,

which has S∼ 3.3 keV barns in the energy range of interest.
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• The corresponding mean life for 14N against this reaction

in the core of the Sun is approximately

τ14-N ∼ 5×108 years.

• The number density of 14N at the core of the Sun is

n14-N ∼ 2.6×1022 cm−3,

corresponding to an abundance Y ∼ 0.006.

• The hydrogen number density is nH ∼ 3×1025 cm−3 and

• earlier the mean life for consumption of a proton by the

PP chain was estimated to be τpp ∼ 6×109 years.

• These numbers imply that the ratio of PP chain to CNO

cycle reactions in the core of the Sun is approximately

(
rate for PP

rate for 14N+p

)

≃
(

τ14-N

τpp

)(
3×1025

2.6×1022

)

≃ 100,

• We conclude that for conditions prevailing in the Sun the

PP chain dominates the CNO cycle.

Detailed calculations indicate that

• the Sun is producing 98.4% of its energy from

the PP chain and

• only 1.6% from the CNO cycle.
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Figure 6.1: CNO cycle run to completion with only hydrogen and a small

amount of 12C initially. Mass fractions are shown as solid lines (the mass

fractions for 13N and 15O are of order 10−14 or smaller and are offscale on

this plot). The dashed line is the integrated energy release on an arbitrary

log scale. The temperature and density were assumed constant at T6 = 20

and ρ = 100 g cm−3, respectively.

Fig. 6.1 implements a numerical calculation of CNO abun-

dances carried to hydrogen depletion for a star with a constant

temperature of T6 = 20 and constant density of 100 g cm−3.

• An initial mixture of only two isotopes: 1H (XH = 0.995)

and 12C (X12-C = 0.005) was assumed.

• Even though we start with only a trace amount of one

CNO isotope (12C),

– the cycle eventually generates an equilibrium abun-

dance of all CNO isotopes and

– steadily releases energy by converting all the H to He.
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• Once the cycle is in equilibrium,

– the mass fractions of the CNO isotopes remain con-

stant, so

– they may be viewed as catalyzing the conversion of

hydrogen to helium.

• Notice also the result (a quite general one) that

– the CNO cycle run to equilibrium produces 14N as the

dominant CNO isotope,

– even though there was no initial abundance of 14N in

this particular simulation.

It is thought that most of the 14N in the Universe

has been produced by the CNO cycle.
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• The effective Q-value for the CNO cycle is 23.8 MeV.

• The rate of energy production is

εCNO =
4.4×1025ρXZ

T
2/3

9

exp(−15.228/T
1/3

9 ) erg g−1 s
−1

,

• and the corresponding temperature exponent is

νCNO = 50.8/T
1/3

6 −2/3,

which gives

νCNO ≃ 18 for T6 = 20.

• This remarkably strong temperature dependence implies

that

If the Sun were only slightly hotter, the CNO cy-

cle instead of the PP chain would be the dominant

energy production mechanism.
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6.3 The Triple-Alpha Process

Main sequence stars produce power by hydrogen fusion. This

builds up a thermonuclear ash of helium in the core of the star.

• The star continues to fuse hydrogen to helium in a shell

surrounding the central core of helium that is built up.

• This hydrogen shell burning adds gradually to the accu-

mulating core of helium and

• The star remains on the main sequence until about 10% of

its initial hydrogen has been consumed.

• Fusion of the helium to heavier elements is difficult be-

cause

– There is a large Coulomb barrier,

– There are no stable mass-5 and mass-8 isotopes to

serve as intermediaries in producing heavier species.

• Thus, helium fusion requires very high temperatures and

densities:

– temperatures in excess of about 108 K and

– densities of 102−105 g cm−3.

Such conditions can result when stars exhaust their

hydrogen fuel and their cores begin to contract.
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• Because there are no stable mass-8 isotopes, the resulting

fusion of helium must involve a two-step process in which

– two helium ions (alpha-particles) combine to form

highly unstable 8Be, and

– this in turn combines with another helium ion to form

carbon.

• The resulting sequence,

– which is crucial to the power generated by red giant

stars and

– to the production of most of the carbon and oxygen in

the Universe,

is called the triple-α process.

Our bodies are composed of about

• 65% oxygen and

• 18% carbon.

We owe our very existence to the triple-α process,

as we discuss further below!
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The burning of helium to carbon by the triple-α process may

be viewed as taking place in three basic steps:

1. A small transient population of 8Be is built up by He +

He fusion,
4He+ 4He↔ 8Be.

2. A small transient population of 12C∗ in an excited state is

built up by the reaction

4He+ 8Be↔ 12C∗.

To produce enough 12C∗ this reaction must be res-

onant, to compete with 8Be→ 4He+ 4He.

3. A small fraction of the 12C∗ excited states decay electro-

magnetically by

12C∗→ 12C+2γ

to the ground state of carbon-12.

This (highly improbable) sequence of reactions

converts three helium ions to 12C,

3α → 12C,

with an energy release Q = +7.275 MeV. Let’s

consider each of these steps in more detail.
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6.3.1 Equilibrium Population of Beryllium-8

• The mean life for decay of 8Be back into 2α is τ ≃
10−16 seconds, which corresponds to a width of

Γ8-Be = h̄τ−1 = 6.8 eV.

• The capture will be

– too slow to compete with this decay back into 2α

– unless the corresponding resonance peak overlaps the

Gamow peak.

• Thus, we expect this rate-controlling step

– to be significant only if the Gamow energy is compa-

rable to the Q-value of 92 keV.

– This in turn sets the required conditions for triple-α
to proceed.

• The maximum of the Gamow peak is given by

E0 = 1.22(Z2
αZ2

XµT 2
6 )

1/3 keV,

implying a temperature of 1.2×108 K for E0 = 92 keV.

Only for temperatures of order 108 K can the initial

step of the triple-α reaction produce a sufficient

equilibrium concentration of 8Be.
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• The preceding simple estimate

– ignores details such as effects of electron screening,

– but it sets the correct order of magnitude.

• Also note that this temperature estimate raises the ques-

tion of why helium was not consumed in big bang nucle-

osynthesis by the triple-α mechanism. The answer:

– The temperature was high enough but not the density.

– Both high temperatures and high densities, which

awaited the formation of stars, were required to pro-

duce significant amounts of carbon by the triple-α
mechanism.
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We may estimate the equilibrium concentration of 8Be by ap-

plication to nuclei of a suitable modification of the atomic Saha

equations. The required changes are

1. Replace the number densities of ions and electrons with

the number densities of α-particles.

2. Replace the number density of neutral atoms with the

number density of 8Be.

3. Replace the statistical factors g for atoms with corre-

sponding statistical factors associated with nuclei.

This is trivial for the present case: the ground

states of both 8Be and 4He have angular momen-

tum zero and g = 1 in both cases.

4. The ionization potentials entering the atomic Saha equa-

tions are replaced by Q-values in the nuclear case.

In the present example, Q = 91.78 keV for 8Be→
αα (“ionization” of 8Be to two α-particles).

5. The electron mass in the atomic Saha equations is replaced

by the reduced mass mαmα/2mα = 1
2
mα .
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The resulting nuclear Saha equation is

n2
α

n(8Be)
=

(
πkTmα

h2

)3/2

exp(−Q/kT ).

The situation where such equations are applicable is termed nu-

clear statistical equilibrium (NSE).

Example: Helium flashes are explosive helium burning events

that can occur in red giant stars.

• Typical helium flash conditions correspond to

– a temperature of T9 ≃ 0.1 and

– a density of ρ ≃ 106 g cm−3.

• For a triple-α powered helium flash in a pure helium core,

we obtain from

n2
α

n(8Be)
=

(
πkTmα

h2

)3/2

exp(−Q/kT ).

a ratio of number densities

n(8Be)

nα
= 7×10−9.

This corresponds to an equilibrium 8Be concentration of

n(8Be) = 1021 cm−3

during the flash (see Problem).
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Figure 6.2: Nuclear energy levels in 12C for the final steps of the triple-α
reaction. Levels are labeled by Jπ and energy relative to the ground state.

The 0+ state at 7.65 MeV is the Hoyle resonance.

6.3.2 Formation of the Excited State in Carbon-12

The next step of the triple-α process,

α + 8Be→ 12C+ γ

• has Q = 7.367 MeV and

• proceeds through an angular momentum J = 0 resonance

in 12C at an excitation energy relative to the 12C ground-

state of 7.654 MeV, as illustrated in Fig. 6.2.

Hoyle resonance: The existence of this Hoyle res-

onance was predicted by Hoyle to explain the en-

ergy production in red giant stars.
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Ground
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Resonance

State
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Q

Γ
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Jπ
E r  = Q + Ep

0

Figure 6.3: Relationship of Q-value, resonance energy Er, and center of

mass energy Ep when an isolated resonance is maximally excited.

• Population of the Hoyle state is optimized if the center of

mass energy plus the Q-value equals the resonance energy

relative to the ground state of 12C (Fig. 6.3).

• Once this excited state is formed, the dominant reaction is

a rapid decay back to α + 8Be.

• However, a small fraction of the time the ground state of
12C may instead be formed by two γ-ray decays (Fig. 6.2).

• If nuclear statistical equilibrium is assumed,

n
(

12C∗
)

n3
α

= 33/2

(
h2

2πmαkT

)3

exp[(3mα −m∗12)c
2/kT ],

where m∗12 is the 12C mass in the excited state (Problem).
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6.3.3 Formation of the Ground State in Carbon-12

• Preceding considerations imply a dynamical equilibrium

4He+ 4He+ 4He ←→ 4He+ 8Be ←→ 12C∗.

• This produces an equilibrium population of 12C∗, almost

all of which decays back to 4He+ 8Be.

• However, the excited state of 12C can decay electromag-

netically to its ground state with a mean life of

τ
(

12C∗→ 12C(gs)
)

= 1.8×10−16 s,

• This implies that one in about every 2500 excited carbon

nuclei that are produced decay to the stable ground state.

• This decay probability is very small.

• Thus it does not influence the equilibrium appreciably and

we may represent the triple-α process schematically as

4He+ 4He+ 4He ↔ 4He+ 8Be ↔ 12C∗ −→ 12C(gs).

– where left-right arrows indicate nuclear statistical

equilibrium and

– the one-way arrow indicates a leakage from the equi-

librium that is a small perturbation;

– since it is small, it does not disturb the equilibrium

significantly.
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• Thus in the approximate equilibrium

4He+ 4He+ 4He ↔ 4He+ 8Be ↔ 12C∗ −→ 12C(gs),

the production rate for 12C in its ground state is the prod-

uct of

– the equilibrium 12C∗ population and

– the decay rate to the ground state:

dn
(

12C
)

dt
= n(12C∗)× (Decay rate 12C∗→ 12C(gs))

=
n
(

12C∗
)

τ (12C∗→ 12C(gs))

=
n3

α

τ (12C∗→ 12C(gs))
33/2

(
h2

2πmαkT

)3

× exp[−(m∗12−3mα)c
2/kT ],

where we have used

n
(

12C∗
)

n3
α

= 33/2

(
h2

2πmαkT

)3

exp[(3mα −m∗12)c
2/kT ].
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From the result

dn
(

12C
)

dt
=

n3
α

τ (12C∗→ 12C(gs))
33/2

(
h2

2πmαkT

)3

× exp[−(m∗12−3mα)c
2/kT ],

we see that the rate of carbon production depends on

1. The number density of α-particles nα and temperature T .

2. An activation energy given by

(m∗12−3mα)c2 = 0.3795 MeV

that must be borrowed to create the 12C∗ intermediate

state.

3. The mean life for the decay 12C∗→ 12C(gs), which is

τ
(

12C∗→ 12C(gs)
)

= 1.8×10−16 s.
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Table 6.2: Parameters for the triple-α reaction∗

T (K) kT (keV) q/kT exp(−q/kT )

5×107 4.309 88.08 5.6×10−39

1×108 8.617 44.04 7.5×10−20

2×108 17.234 22.02 2.7×10−10

∗The activation energy is q≡ (m∗12−3mα)c2

The strong temperature dependence for the triple-α reaction

results primarily from the exponential Boltzmann factor in

dn
(

12C
)

dt
=

n3
α

τ (12C∗→ 12C(gs))
33/2

(
h2

2πmαkT

)3

× exp[−(m∗12−3mα)c
2/kT ],

because at helium burning temperatures

• the average thermal energy kT is typically much less than

the activation energy of Q =−379.5 keV.

• This is illustrated in Table 6.2.

From Table 6.2 we see that

• doubling the temperature near 108 K

• changes the Boltzmann factor by 10–20 or-

ders of magnitude.
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6.3.4 Energy Production in the Triple-ααα Reaction

The total energy released in the triple-α reaction is

Q = 7.275 MeV

and the energy production rate is given by

ε3α =
5.1×108ρ2Y 3

T 3
9

exp(−4.4027/T9) erg g−1s−1,

where Y is the helium abundance. From

λ =

(
∂ lnε

∂ lnρ

)

T

ν =

(
∂ lnε

∂ lnT

)

ρ

• This implies density and temperature exponents

λ3α = 2 ν3α =
4.4

T9
−3,

• The quadratic dependence on the density occurs because

the reaction is effectively 3-body.

• For T8 = 1, we obtain a temperature exponent

ν3α ≃ 40

→ a helium core is a very explosive fuel.

If a fuel has a large temperature exponent, the rate

of burning can increase enormously if the temper-

ature increases only a little. This greatly increases

the probability that burning becomes explosive.
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Figure 6.4: Triple-α and radiative α-capture rates important in helium burn-

ing. Vertical gray band indicates the temperature range for helium burning.

6.4 Burning of Carbon to Oxygen and Neon

• Once carbon has been formed by triple-α , oxygen can be

produced by

4He+ 12C→ 16O+ γ.

• which has no resonances near the Gamow window.

• The rate is

– slow and is

– experimentally rather uncertain.

The currently accepted rate is shown in Fig. 6.4.

• The uncertainty has consequences because this rate deter-

mines the ratio of C to O production in stars.
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• The rate for

4He+ 12C→ 16O+ γ.

impacts the abundance of C and O in the Universe, but

also

• the carbon–oxygen ratio in stellar cores can have large

influence on late stellar evolution.

For example,

– the composition of white dwarfs and

– the composition of cores of massive stars late

in their lives

depend critically on this rate, so it can have a large

impact on

– how stars die and

– what is left behind when they do.



6.4. BURNING OF CARBON TO OXYGEN AND NEON 193

10

R
a

te
 (

c
m

3
 m

o
le

-1
 s

-1
)

Temperature (K)

7
10

8
10

9

Helium

burning

12C + α        16O + γ

20Ne + α        24Mg + γ

 12C 3α        

16O + α        20Ne + γ

10-24

10-20

10-16

10-12

10-8

10-4

100

• Once oxygen is produced by

4He+ 12C→ 16O+ γ,

neon can be formed by (rate plotted in figure above)

4He+ 16O→ 20Ne+ γ.

• The reaction is slow because

– it is nonresonant and

– it has a large Coulomb barrier.

• Thus, little neon is produced during helium burning and

• The primary residue of helium burning is a C–O core:

– The carbon is produced by the triple-α sequence and

– the oxygen by radiative capture on the carbon,

with the C–O ratio depending on an uncertain rate.
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Figure 6.5: Overview of helium burning.

6.5 The Outcome of Helium Burning

The outcome of helium burning is summarized in Fig. 6.5. This

outcome is a remarkable example of how fundamentally differ-

ent our Universe would be if just a few seemingly boring details

of nuclear physics were slightly different.
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• The ratio of C to O is determined by competition between

– the C-producing triple-α reaction and

– the C-depleting, O-producing capture reaction

4He+ 12C→ 16O+ γ.

• Further, that much C or O exists at all is dependent on the

slowness of the Ne-producing reaction

4He+ 16O→ 20Ne+ γ.
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• If, contrary to fact, a resonance existed near the fusion

window for
4He+ 12C→ 16O+ γ,

– the corresponding rate would be large and

– almost all carbon produced by triple-α would be con-

verted rapidly to oxygen,

leaving little carbon in the Universe.
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• A similar fate would follow if the Hoyle resonance at 7.65

MeV were a little higher in energy, greatly slowing triple-

α by virtue of the Boltzmann factor in

dn
(

12C∗
)

dt
=

n3
α

τ (12C∗→ 12C(gs))
33/2

(
h2

2πmαkT

)3

× exp[−(m∗12−3mα)c
2/kT ],

and any C produced would be converted rapidly to O by

4He+ 12C→ 16O+ γ.
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• On the other hand, if the resonance at 7.65 MeV in 12C

did not exist,

– Triple-α would not work at all in red giant stars and

– there would be little carbon or oxygen in the Uni-

verse.
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• Finally, if
4He+ 16O→ 20Ne+ γ

were resonant—which it would be if the parity of a single

excited state in neon were positive instead of negative

– Most of the C and O produced by helium burning

would be transformed by this reaction to Ne.

– Neon is a noble gas and therefore chemically inert,

– This contrasts with the rich chemistry of carbon that

makes biology possible in the actual Universe.
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Thus, our very existence appears to depends on the parity of

obscure nuclear states in atoms that have nothing whatsoever

to do with the chemistry of life!
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The Anthropic Principle and Helium Burning:

Many would argue, based on the

• observed diversity of life on Earth and

• how quickly it arose after formation of the planet,

that life in the Universe is inevitable.

• But this point of view assumes the existence of the chem-

icals on which life (as we know it) is built.

• Our discussion suggests that the existence of the building

blocks of life depends on arcane facts on the MeV scale

(nuclear physics)

• that have nothing to do with the physics of eV scales

(chemistry) that governs life.

• The very possibility of biochemistry may be an accident

of physical parameter values in our Universe.

• Such considerations lie at the basis of the (simplest) an-

thropic principle:

The Universe has just the right value of constants

and just the right detailed physics required for life

because, if it didn’t, there would be no life in the

Universe and thus no one to ask the question.

• Is this line of thinking is even scientific (is it testable)?
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6.6 Advanced Burning Stages

If a star is massive enough,

• more advanced burnings are possible by virtue of the

• high temperatures and high densities that result as the core

contracts after exhausting its fuel.

Typical burning stages in massive stars and their characteristics

are illustrated in the following table and figure.
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Table 6.3: Burning stages in massive stars (Woosley)

Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

Center of 25 solar
mass star

25 M

T = 4 ×109  K

ρ = 10
7
 gcm

-3

T = 2 ×107  K

ρ = 10
2
 gcm

-3 Hydrogen

Carbon

Silicon

Iron

Oxygen

Helium
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Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

Carbon burning: Carbon burns at a temperature of

T ∼ 5×108 K

and a density of

ρ ∼ 3×106 g cm−3,

primarily through the reactions

12C+ 12C−→ 20Ne+α

12C+ 12C−→ 23Na+ p

12C+ 12C−→ 23Mg+ p

As indicated in the Table above, such reactions are possible for

stars having masses larger than about 4M⊙.

• Burning stages beyond that of carbon require conditions

that are realized only for stars having M >∼ 8M⊙ or so.

• At the required temperatures, a new feature comes into

play because the most energetic photons can disrupt the

nuclei produced in preceding burning stages.
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Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

Neon burning: At T ∼ 109 K, neon can burn by a two-step

sequence.

• First, a neon nucleus is photodisintegrated by a high-

energy photon

γ + 20Ne−→ 16O+α,

which become more plentiful at high temperature since

the average photon energy is ∼ kT .

• Then the alpha-particle produced in this step can initiate a

radiative capture reaction

α + 20Ne→ 24Mg+ γ.

This burning sequence produces a core of 16O and 24Mg.
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Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

Oxygen burning: At a temperature of 2×109 K,

• Oxygen can fuse through the reaction

16O+ 16O−→ 28Si+α

• The silicon thus produced can react only at temperatures

where photodissociation reactions begin to play a domi-

nating role.



6.6. ADVANCED BURNING STAGES 207

Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

Silicon burning: At T ∼ 3× 109 K, silicon may be burned to

heavier elements.

• At these temperatures the photons are quite energetic and

• those in the high-energy tail of the Maxwell–Boltzmann

distribution can readily photodissociate nuclei.

• A network of photodisintegration and capture reactions in

approximate nuclear statistical equilibrium develops and

• the population in this network evolves preferentially to

those isotopes that have the largest binding energies.

• From the binding energy curve the most stable nuclei are

in the iron group.

Silicon burning carried to completion under equi-

librium conditions produces iron-group nuclei.
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Figure 6.6: Temperature dependence of the highly-endothermic, rate-

controlling initial step in silicon burning. For reference, the typical range

of temperatures corresponding to helium burning and for carbon and oxy-

gen ignition are indicated. Silicon burning requires temperatures more than

an order of magnitude larger than for helium burning, and exhibits an ex-

tremely strong temperature dependence.

• The initial step in Si burning is a photodisintegration like

γ + 28Si−→ 24Mg+α,

which requires a photon energy of 9.98 MeV or greater.

• The temperature dependence is illustrated in Fig. 6.6.

• From this plot we infer that

– silicon burning depends strongly on temperature, and

– it requires temperatures more than an order of magni-

tude larger than for helium burning.
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• The α particles thus liberated can now initiate radiative

capture reactions on seed isotopes in the gas.

• A representative sequence is

α + 28Si←→ 32S+ γ

α + 32S←→ 36Ar+ γ

...

α + 52Fe←→ 56Ni+ γ

• The reactions in this series are typically in equilibrium or

quasiequilibrium, and

• they are much faster than the initial photodisintegration.

Thus the photodisintegration of silicon is the rate-

controlling step in silicon burning.
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Figure 6.7: Some rates for competing capture reactions A(α,γ)B and pho-

todisintegration reactions A(γ,α)B that are important for silicon burning.

Photodisintegration rates are in units of s−1 and α-capture rates are in units

of cm3 mol−1 s−1.

• The rates for some competing capture and photodisinte-

gration reactions in Si burning are illustrated in Fig. 6.7.

• Note the steep T dependence of the photodisintegrations.

For high T and α-particle abundance, many pho-

todisintegration rates become comparable to the

rates for their inverse capture reactions somewhere

in the range T ∼ 109−1010 K.
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• The iron group nuclei are the most stable in the Universe.

• Thus silicon burning represents the last stage by which

fusion and radiative capture reactions can build heavier

elements under equilibrium conditions.

• One might think that we could make still heavier elements

by increasing the temperature.

• Then the required extra energy for fusion presented by

higher Coulomb barriers could be provided by the kinetic

energy of the gas.

• But this becomes self-defeating in equilibrium:

1. the higher temperatures will also lead to increased

photodissociation.

2. Thus iron-group nuclides are still the equilibrium

product.

In subsequent chapters we will address the issue of

other mechanisms by which stars can produce the

elements heavier than iron.
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Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

6.7 Timescales for Advanced Burning

As is apparent from the table above,

• the timescales for advanced burning are greatly com-

pressed relative to earlier burning stages.

• These differences are particularly striking for massive

stars, which rush through all stages at breakneck speed.

For example, the 25M⊙ example used for the above table

• Takes about 10 million years to advance through its hy-

drogen and helium burning phases,

• completes its burning of oxygen in only six months, and

• transforms its newly-minted silicon into iron group nuclei

in a single day.
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Nuclear Nuclear Ignition Minimum main Period in

fuel products temperature sequence mass 25M⊙ star

H He 4×106 K 0.1M⊙ 7×106 years

He C, O 1.2×108 K 0.4M⊙ 5×105 years

C Ne, Na, Mg, O 6×108 K 4M⊙ 600 years

Ne O, Mg 1.2×109 K ∼ 8M⊙ 1 years

O Si, S, P 1.5×109 K ∼ 8M⊙ ∼ 0.5 years

Si Ni–Fe 2.7×109 K ∼ 8M⊙ ∼ 1 day

These timescales are set by

• the amount of fuel available,

• the energy per reaction derived from burning the fuel, and

• the rate of energy loss from the star, which ultimately gov-

erns the burning rate.

• This last factor is particularly important because

• energy losses are large when the reaction must run at high

temperature.

Each factor separately shortens the timescale for

advanced burning; taken together they make the

timescales for the most advanced burning almost

instantaneous on the scale set by the hydrogen

burning.
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An Analogy: To get a perspective on how short the advanced

burning timescape is, imagine the lifetime of the 25M⊙ star to

be compressed into a single year. Then

• the hydrogen fuel would be gone by about December 7 of

that year,

• the helium would burn over the next 24 days,

• the carbon would burn in the 42 minutes before midnight,

• the neon and oxygen would burn in the last seconds before

midnight, and

• the silicon would be converted to iron in the last 1/100

second of the year ,

• (with a quite impressive New Year’s Eve fireworks display

in the offing—see the later discussion of core-collapse su-

pernovae).



Chapter 7

Energy Transport in Stars

• Most energy production in stars takes place in the deep

interior where density and temperatures are high, but

• most electromagnetic energy that we see coming from

stars is radiated from the photosphere, which is a very thin

layer at the surface.

Thus, a fundamental issue in stellar astrophysics is

how energy is transported from the interior to the

surface.

215
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7.1 Modes of Energy Transport

Energy transport in stars results from four general mechanisms:

1. Conduction because of thermal motion of electrons and

ions,

2. Radiative transport by photons,

3. Convection of macroscopic packets of gas,

4. Neutrino emission from the core.
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We may make a number of general statements about these

modes of energy transport:

• Both

– conduction and

– radiative transport

result from random thermal motion of constituent parti-

cles (electrons in the first case and photons in the second),

• Convection is a macroscopic or collective phenomenon.

• In normal stars conduction is negligible.

• However, conduction can be important in star containing

degenerate matter (e.g., white dwarfs).

• Radiative transport usually dominates

– unless the temperature gradient in the gravitational

field exceeds a critical value.

– If the temperature gradient becomes too steep, con-

vection quickly becomes the most efficient means of

energy transport.

• Neutrino emission is important for core cooling late in the

life of more massive stars.
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Neutrino emission differs from the other energy transport

mechanisms in that

• it can operate only at extremely high temperatures and

densities, and

• the neutrinos have little interaction with the star as they

carry energy out of the core at essentially light speed.

• As a result, the first three modes of energy transport:

– conduction,

– radiation,

– convection

typically lead to thermalization of the energy (sharing of

the energy among many particles).

• This thermalized energy is then eventually emitted as light

of various wavelengths from the photosphere of the star.

• But the energy of the neutrinos almost always is carried

away by the emitted neutrinos.
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Figure 7.1: Diffusion of energy.

7.2 Diffusion of Energy

We begin with a discussion of how energy can be transported

by random thermal motion (diffusion).

• Consider the volume enclosed by a small cube illustrated

in Fig. 7.1.

• Introduce a random velocity distribution with a small tem-

perature gradient in the x direction.

• On average, we may assume that at any instant approxi-

mately 1
6 of the particles move in the positive x direction

with mean velocity 〈v〉 and mean free path λ .

• Let u(x) be the thermal energy density.

• Because of the temperature gradient, particles crossing a

plane at x from left to right have a different thermal energy

than those crossing from right to left (Fig. 7.1).

• Therefore, energy is transported across the surface by

virtue of the temperature gradient.



220 CHAPTER 7. ENERGY TRANSPORT IN STARS

x

z

y
xx − λ x + λ

dT/dx
dT/dx

• The rate of this transport is given by the current j(x),

j(x)≃ 1

6
〈v〉u(x−λ )− 1

6
〈v〉u(x+λ )

≃−1

3
〈v〉λ du

dx
=−1

3
〈v〉λ du

dT

dT

dx

≃−1

3
〈v〉λ C

dT

dx
,

where the heat capacity per unit volume is C = du/dT .

• Therefore, the current across the surface may be written

j(x) =− 1

3
〈v〉λC
︸ ︷︷ ︸

≡K

dT

dx
=−K

dT

dx
(Ficke’s Law),

where K is termed the coefficient of thermal conductivity:

K ≡ 1

3
〈v〉λC.

• This equation for the current is sometimes termed Ficke’s

Law; it is characteristic of diffusive processes.
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Although we have obtained Ficke’s law for diffusion,

j(x) =−K
dT

dx
K ≡ 1

3
〈v〉λC,

in a carelessly heuristic way, a more careful derivation gives

essentially the same result.
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7.3 Energy Transport by Conduction

Let’s first consider heat transport by random motion of elec-

trons and ions.

• For a nonrelativistic ideal gas of electrons the

– internal energy density ue,

– heat capacity Ce, and

– average velocity 〈ve〉

are given by

ue =
3

2
nekT Ce =

3

2
nek 〈ve〉=

√

3kT/me.

• The electron–electron collisions are much less effective

than electron–ion collisions in transferring energy.

• Thus the relevant mean free path λ = 1/nσ is

λei =
1

niσei
,

where

– ni is the number density of ions and

– σei is the cross section for electron–ion collisions.
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7.3.1 Coefficient of Thermal Conduction

As a first crude estimate of the electron–ion cross section we

may assume

σei ≃ πR2,

where R is the separation between electron and ion where the

potential energy is equal to the average kinetic energy in the

gas (kT ),

Ze2/R≃ kT → R≃ kT

Ze2
.

Thus, the cross section is approximately

σei = πR2 = π

(
Ze2

kT

)2

,

and substitution of λ = 1/nσ in

K ≡ 1

3
〈v〉λC

yields

Ke =
k

2π

(
ne

ni

)(
kT

Ze2

)2
√

3kT

me
.

The corresponding expression for ionic conduction is obtained

by the exchanges ne↔ ni and me↔ mi, and we obtain

Ke

Ki

=
n2

e

n2
i

√
mi

me
.
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As an estimate we may assume the gas to be completely ionized,

so that ne = Zni and

Ke

Ki
= Z2

√
mi

me
.

But generally

• Z ≥ 1 and mi >> me;

• Therefore, Ke >> Ki and conduction by electrons is much

more important than conduction by the ions.

• This is just a mathematical statement that

– there are more electrons and

– they move faster relative to the ions.

• Thus, electrons are more efficient than ions at transporting

heat.

In summary, the current produced by conduction

is given approximately by

j(x) = Kc
dT

dx
,

where Kc ≃ Ke is dominated by the electronic con-

tribution.
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7.4 Radiative Energy Transport by Photons

Assuming stars to radiate as blackbodies,

• the photons may be viewed as constituting a relativistic,

bosonic gas with

〈v〉= c u = aT 4 C =
du

dT
= 4aT 3.

• Thus, by analogy with earlier equations, for radiative dif-

fusion we may write

j(x) =−Kr
dT

dx

• where the coefficient of radiative diffusion is

Kr ≡
1

3
〈v〉λC =

4

3
cλ aT 3.

– All quantities are assumed known except the mean

free path λ .

– We must now consider various contributions to the

scattering of photons that are responsible for their ef-

fective mean free path in stellar environments.
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7.4.1 Thomson Scattering

At high T and low density, Thomson electron scattering (scat-

tering of EM radiation by charged particles) dominates

• The cross section is independent of frequency and T ,

σT =
8π

3

(
e2

mec2

)2

= 6.652×10−25 cm2,

• which is valid if kT << mec2 → T << 6×109 K.

• The corresponding mean free path is

λT =
1

neσT
.

• Inserting this in Kr =
4
3
cλ aT 3, we obtain for the coefficient

of radiative diffusion for Thomson scattering

Kr ≃ KT ≡
acT 3

2πne

(
mec2

e2

)2

.

• Assuming Thomson scattering to dominate, the ratio of co-

efficients for radiative and conductive transport is

Kr

Ke
≃ KT

Ke
=
√

3Z
Pr

Pe

(
mec2

kT

)5/2

,

where the radiation and ideal gas electron pressures are

Pr =
1
3aT 4 Pe = nekT,

with ne the electron number density.
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Example: The equation

Kr

Ke
≃ KT

Ke
=
√

3Z
Pr

Pe

(
mec2

kT

)5/2

yields Kr/Ke ≃ 2×105 for the Sun.

• This supports our earlier assertion that radiative transport

dominates over conduction in normal stars.

• This conclusion is based on the assumption of pure Thom-

son scattering,

• but will not be altered significantly by additional photon

absorption processes that we consider below.

• However, it is no longer true if the matter in a star has a

degenerate equation of state.
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7.4.2 Conduction in Degenerate Matter

Electronic conduction in degenerate matter is altered in several

important ways relative to that for an ideal gas:

1. Degeneracy typically increases the electron speed by a

factor (εF/kT )1/2, and

2. decreases the heat capacity by a factor of roughly kT/εF,

where εF is the fermi energy.

3. The mean free path λ is increased.

4. This is because the exclusion principle allows an electron

to scatter to a state only if that state is not already occu-

pied.

The net effect of these changes is that

• degenerate matter behaves much like a metal

and

• transport of energy by conduction becomes

important.

We shall return to the issue of conduction in de-

generate matter when we consider the structure of

white dwarf stars in later chapters.
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7.4.3 Absorption of Photons

In addition to simple Thomson scattering of photons, they may

be absorbed.

1. Simultaneous conservation of energy and momentum pro-

hibits such absorptions on free electrons.

2. However, they are permissible for electrons in the vicinity

of ions.

3. Thus, absorption will generally become more important at

higher densities and lower temperatures.

The two most important absorptive processes in stars are

1. bound–free absorption, where

• The electron that the photon interacts with is initially

bound to an ion and is ejected by the interaction.

• This process is also called photo-ionization.

2. free–free absorption, where

• The electron is unbound before and after the interac-

tion.

• This process is also called inverse bremsstrahlung.
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Unlike the case for Thomson scattering, both classes of absorp-

tive processes (free–free and bound–free) imply a frequency-

dependent mean free path.

• In the frequency range ν to ν + dν , the photon energy

density and heat capacity are given by

uνdν =
8π

c3

(
hν3

ehν/kT −1

)

dν Cνdν =
∂uν

∂T
dν.

• Let λν be the mean free path for photons at frequency ν .

• Then the total coefficient of radiative transport is obtained

by integration:

Kr =
1

3

∫ ∞

0
〈v〉λνCν dν =

c

3

∫ ∞

0
λνCν dν.

• Introducing the Rosseland mean,

λRoss ≡
1

4aT 3

∫ ∞

0
λνCν dν,

allows the above expression for Kr to be written as

Kr =
4

3
caT 3λRoss.

This is the same form as the previous expressions

for frequency-independent photon mean free paths

with the replacement λ → λRoss.
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7.4.4 Stellar Opacities

The total probability of photon interaction is a sum of contribu-

tions from electron and ion scattering.

• Since λ ∼ (nσ)−1, where n is a number density and σ is

a cross section, we may write that generally

λ =
1

neσe +niσi
.

• Both the electron number density ne and the ion number

density ni are proportional to the matter density.

• Thus we may parameterize the preceding equation in the

form

λ =
1

ρκ
,

where κ is termed the opacity, which has units of area

divided by mass.

Thus, we may use λ = 1/ρκ to rewrite our previous formulas

in terms of the opacity κ instead of the mean free path λ .

Mean free path and opacity convey the same infor-

mation, but in the literature opacity is typically the

preferred quantitity.
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7.4.5 General Discussion of Contributions to Opacity

We may make the following qualitative remarks concerning

ionization and the various components of the stellar opacity.

1. Bound–free absorption is important at low temperatures

where atoms are only partially ionized.

2. Free–free absorption is dominant at higher temperature

where atoms become fully ionized, producing many free

electrons with which to interact.

3. Thomson scattering contributes a constant background

that is independent of temperature.
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• An approximate expression for the frequency-averaged

opacity deriving from the free–free and bound–free mech-

anisms is given by Kramer’s Law:

κab = κ0ρT−3.5,

where “ab” denotes an absorption-dominated opacity.

• Approximate formulas for the free–free and bound–

free frequency-averaged absorption opacities above T ∼
104 K may be given in the Kramer’s form

κff≃ 4×1022(X +Y )(1+X)ρT−3.5 cm2 g
−1

κbf≃ 4×1025Z(1+X)ρT−3.5 cm2 g
−1

.

• Thomson scattering gives a constant background opacity

κT =
1

λTρ
=

neσT

ρ
.

Introducing for a fully ionized gas

ne ≃
(1+X)ρ

2mH
ni ≃

(2X + 1
2
Y )ρ

2mH
,

we may approximate the Thomson scattering opacity as

κT ≃
(1+X)σT

2mH
= 0.20(1+X) cm2 g

−1
.
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Table 7.1: Solar opacities and mean free paths

R/R⊙ T (K) ρ( g cm−3) κ( cm2 g
−1

) λ (cm)

0 1.6×107 157 1 0.006

0.3 6.8×106 12.0 2 0.042

0.6 3.1×106 0.50 8 0.25

0.9 6.0×105 0.026 100 0.39

Summarizing, the absorptive and Thomson opacities may be

estimated by

κff≃ 4×1022(X +Y )(1+X)ρT−3.5 cm2 g
−1

(free–free),

κbf≃ 4×1025Z(1+X)ρT−3.5 cm2 g
−1

(bound–free),

κT≃
(1+X)σT

2mH
= 0.20(1+X) cm2 g

−1
. (Thomson)

• Some realistic opacities calculated for the Sun are given

in Table 7.1.

• These opacities indicate that the interior of the Sun is ex-

tremely opaque to electromagnetic radiation.
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Figure 7.2: Dominant contributions to stellar opacity.

Dominant contributions to the opacity as a function of T and ρ
follow from the preceding equations, as illustrated in Fig. 7.2.

• The boundaries between regions are defined by lines

where the corresponding opacities are equal.

• At high temperature and low density Thomson scattering

dominates.

• At low temperature and high density electrons are degen-

erate and matter becomes a good conductor.

• In between, the opacity is dominated by bound–free and

free–free transitions.
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7.5 Energy Transport by Convection

In some cases the energy to be transported is too large to be

carried efficiently by radiative transport or conduction.

• Then the system can become unstable to macroscopic

overturn in a process called convection.

• Convection moves entire blobs of material up and down in

the gravitational field.

• Thus it can transport energy very efficiently when it oper-

ates.

• Let us first make a conceptual distinction between two cat-

egories of convection.

1. Microconvection applies when the convective blobs

are small relative to the region that is unstable.

2. Macroconvection corresponds to convection in which

the blobs are a substantial fraction of the size of the

convective region.

• This distinction has an important practical implication.

– Microconvection→ spherical symmetry.

– Macroconvection → spherical symmetry strongly

broken (multidimensional hydrodynamics)
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• Our initial discussion of convection will be somewhat

more general than is normally required for the structure

of ordinary stars.

• We do so in order to lay the groundwork for later discus-

sions of events like supernovae in which

– rapid and complex convective processes may play a

significant role, and for which

– the convection cannot be modeled adequately by the-

ories like the simple mixing-length theory described

below.
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Figure 7.3: (a) Schematic illustration of convective motion. (b) Convec-

tively stable situation: a blob displaced vertically a small amount oscillates

around a stable equilibrium with a frequency called the Brunt–Väisälä fre-

quency. (c) Convectively unstable situation: a blob displaced vertically con-

tinues to rise as time goes on.

7.6 Conditions for Convective Instability

Imagine a blob of matter in a gravitating fluid displaced upward

from position 1 to position 2, as illustrated in Fig. 7.3(a).

• If the region is convectively stable the displaced blob ex-

periences a restoring force that tends to return it to its orig-

inal position, as illustrated in Fig. 7.3(b).

• Because of overshooting, the blob executes a stable os-

cillation around an equilibrium height with a frequency

termed the Brunt–Väisälä frequency.

• However, if the blob of material at position 2 is less dense

than the surrounding material it will be driven continu-

ously upward by buoyancy forces.

• The region is then said to be convectively unstable, as il-

lustrated in Fig. 7.3(c).
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We may choose to impose particular physical conditions on

how the blob of matter is moved, and these lead to three sepa-

rate criteria for convective instability:

• The Schwarzschild criterion.

• The Ledoux criterion.

• The double-diffusive criterion.

We shall now discuss each of these in turn.



240 CHAPTER 7. ENERGY TRANSPORT IN STARS
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Figure 7.4: Convective instability by the Schwarzschild criterion.

7.6.1 Schwarzschild Instability

Suppose the blob to move adiabatically (constant entropy), but

in pressure and composition equilibrium with its surroundings.

• Denote the pressure, entropy, and composition of the

medium at position 1 by P, S, and C, respectively, and

at position 2 by P′, S′, and C′, as illustrated in Fig. 7.4.

• The condition for convective instability is that the blob is

less dense than the surrounding medium at point 2:

ρ(P′,S′,C′)
︸ ︷︷ ︸

Medium ρ

−ρ(P′,S,C′)
︸ ︷︷ ︸

Blob ρ

≥ 0.

Expanding the density difference in a Taylor series gives

ρ(P′,S′,C′)−ρ(P′,S,C′) =
∂ρ

∂S

∣
∣
∣
∣
P,C

λ
dS

dr
.
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Figure 7.5: A Schwarzschild-unstable region.

• By using

CP = T

(
∂S

∂T

)

P

−→ ∂ρ

∂S
=

∂ρ

∂T

∂T

∂S
=

∂ρ

∂T

T

CP

to introduce the heat capacity at constant pressure Cp, we

may exchange the entropy S for the temperature T as a

variable and the Schwarzschild condition becomes

ρ(P′,S′,C′)
︸ ︷︷ ︸

Medium ρ

−ρ(P′,S,C′)
︸ ︷︷ ︸

Blob ρ

≥ 0 −→
(

T

Cp

∂ρ

∂T

∣
∣
∣
∣
P,C

λ

)

︸ ︷︷ ︸

negative

dS

dr
≥ 0.

• Typically ∂ρ/∂T is negative, giving the Schwarzschild

condition for convective instability in the form

dS

dr
≤ 0 (Schwarzschild condition).

• We conclude that a region is unstable against

Schwarzschild convection if there is a negative en-

tropy gradient, as illustrated schematically in Fig. 7.5.



242 CHAPTER 7. ENERGY TRANSPORT IN STARS

Ledoux Instability
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Figure 7.6: Convective instability according to the Ledoux criterion.

7.6.2 Ledoux Instability

Now suppose that the blob moves adiabatically with no com-

position change, but in pressure equilibrium, as in Fig. 7.6.

• The condition for convective instability is now

(

T

Cp

∂ρ

∂T

∣
∣
∣
∣
P,C

λ

)

dS

dr
︸ ︷︷ ︸

Schwarzschild

+

(

∂ρ

∂C

∣
∣
∣
∣
P,S

λ

)

dC

dr
︸ ︷︷ ︸

concentration

≥ 0

• The first term is as for Schwarzschild; the second arises

because of the assumption of no composition change.

• Usually both partial derivatives are negative and the

Ledoux condition for instability takes the form

dS

dr
+b

dC

dr
≤ 0 (Ledoux condition)

where b is positive.
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Figure 7.7: A Ledoux-unstable region.

• Therefore, a region is unstable against Ledoux convection

if both the entropy and the concentration variables have

negative gradients, as illustrated schematically in Fig. 7.7.

• If the entropy gradient and concentration gradient have

opposite signs, the stability of the region is dependent on

the relative sizes of the two terms in

dS

dr
+b

dC

dr
≤ 0 (Ledoux condition)

• For example, a region could be Schwarzschild-stable but

Ledoux-unstable.
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Salt-finger Instability
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Figure 7.8: Convective instability according to the salt-finger criterion.

7.6.3 Salt-Finger (Doubly-Diffusive) Instability

Finally, let us consider a situation where

• the blob is in temperature and pressure equilibrium with

the surrounding medium, but

• not in composition equilibrium, as illustrated in Fig. 7.8.

• The condition for convective instability now takes the

form,

ρ(P′,T ′,C′)−ρ(P′,T ′,C) =

(

∂ρ

∂C

∣
∣
∣
∣
P,T

λ

)

dC

dr
≥ 0.
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Figure 7.9: Example of salt-finger instability.

We may imagine the following thought experiment in which

such an instability could occur.

• Consider a layer of hot salt water that lies over a layer of

cold fresh water.

• Now imagine a blob of the hot salt water that begins to

sink into the underlying cold fresh water (Fig. 7.9).

• This blob of sinking material will be able to come into

heat equilibrium with its surroundings faster than it will

be able to come into composition equilibrium.

• This is because transfer of heat by molecular collisions

generally is faster than the motion of the sodium and chlo-

rine ions that causes the composition to equilibrate.

• Such a blob may be in approximate temperature equilib-

rium but remain out of composition equilibrium.

• The heat diffusion will cool the blob of salt water.

• Since salt water is more dense than fresh water at the same

temperature, the blob continues to sink.
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Cold Fresh

Water

Hot Salt Water

Figure 7.10: Formation of salt fingers.

• As this motion continues, the medium develops “fingers”

of salt water reaching down into the fresh water, as illus-

trated in Fig. 7.10.

This salt-finger instability is an example of a class of instabil-

ities that are termed doubly-diffusive instabilities. They may

occur when

1. Two diffusing substances are present (heat and salt in our

example).

2. One of the substances diffuses more rapidly than the other

(heat, in our example).

3. The substance diffusing more rapidly has a stabilizing gra-

dient and the slowly diffusing substance has a destabiliz-

ing gradient (cold salt water is more dense than cold fresh

water).

It is unclear whether such doubly-diffusive insta-

bilities are important in astrophysics. Evidence is

not conclusive.
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7.7 Critical Temperature Gradient for Convection

• For stars, the most important convective instability is typ-

ically that set by the Schwarzschild condition

dS

dr
≤ 0 (Schwarzschild condition).

and driven by entropy gradients.

• The instability criterion for Schwarzschild convection

may also be expressed in terms of a critical temperature

gradient
dT

dr
<

(
dT

dr

)

ad

,

where the adiabatic temperature gradient is defined by

(
dT

dr

)

ad

=

(

1− 1

γ

)
T

P

dP

dr
=− g

cP
,

and where generally both derivatives are negative in the

inequality dT/dr < (dT/dr)ad

Thus, a region is convectively unstable if its actual

temperature gradient is steeper than the adiabatic

temperature gradient.
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Figure 7.11: Schematic illustration (solid line) of the critical temperature

gradient for convection. In this example the actual temperature gradient

(dashed line) is steeper than the adiabatic gradient, so the region is convec-

tively unstable.

A schematic illustration of the relationship between the actual

temperature gradient and the adiabatic gradient implied by the

criterion
dT

dr
<

(
dT

dr

)

ad

,

for a Schwarzschild-unstable region is displayed in Fig. 7.11.
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• The difference between the actual temperature gradient

dT/dr and adiabatic gradient is termed the superadiabatic

gradient δ (dT/dr),

δ

(
dT

dr

)

≡ dT

dr
−
(

dT

dr

)

ad

.

• Conditions for which this quantity is negative (so that

|dT/dt| > |(dT/dr)ad|, since both derivatives are nega-

tive) are said to be superadiabatic.

• If we divide both sides of

dT

dr
<

(
dT

dr

)

ad

→ dT

dr
<

(

1− 1

γ

)
T

P

dP

dr

by dT/dr (which is negative), we may express the insta-

bility condition in the alternative form

d lnP

d lnT
<

γ

γ−1
.

• Thus, (Schwarzschild) convective instability requires the

temperature to fall off sufficiently fast with height that the

actual temperature gradient satisfies

dT

dr
<

(
dT

dr

)

ad

or
d lnP

d lnT
<

γ

γ−1
.

• Equivalently, convective instability implies a negative su-

peradiabatic gradient.

dT

dr
−
(

dT

dr

)

ad

< 0.
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On the right side of

(
dT

dr

)

ad

=

(

1− 1

γ

)
T

P

dP

dr

at given T and P the two most important factors are

1. the adiabatic index γ and

2. the pressure gradient dP/dr.

Let us now examine in more depth how these fac-

tors influence the critical temperature gradient that

marks the boundary of convective instability.
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7.7.1 Role of the Adiabatic Index in Convection

• For an ideal gas the adiabatic index may be expressed as

γ =
CP

CV
=

1+ s/2

s/2
,

where

– s is the number of classical degrees of freedom per

particle,

– each carrying average thermal energy E = 1
2
kT .

• Therefore, for a monatomic gas with only three transla-

tional degrees of freedom the adiabatic index is

γ =
1+3/2

3/2
=

5

3
,

and the condition for convective instability is that

d lnP

d lnT
<

γ

γ−1
→ d lnP

d lnT
<

5
3

5
3−1

→ d lnP

d lnT
< 2.5.

• But if the gas has additional degrees of freedom,

– the adiabatic index will decrease and

– for many degrees of freedom it will approach unity:

lim
s→∞

γ = lim
s→∞

(
1+ s/2

s/2

)

= 1.
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Notice that as γ → 1 the factor (γ− 1)/γ tends to zero and the

critical temperature gradient

(
dT

dr

)

ad

=

(

1− 1

γ

)
T

P

dP

dr

entering the condition

dT

dr
<

(
dT

dr

)

ad

,

becomes less steep, since

lim
γ→1

(
dT

dr

)

ad

= lim
γ→1

(

1− 1

γ

)
T

P

dP

dr
= 0

Thus, an increase in the degrees of freedom for a

gas will generally cause

γ −→ 1

(
dT

dr

)

ad

−→ 0

thereby enhancing convective instability.
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Three processes illustrate how an increase in the number of de-

grees of freedom may occur:

1. Energy may be absorbed by exciting internal vibrations

and rotations of molecules and emitted by the deexcita-

tion.

2. Energy may be absorbed by the dissociation of molecules

and emitted in their recombination.

3. Energy may be absorbed by ionization of atoms or

molecules and emitted in their recombination.

The associated physical process can contribute to convective

instability by increasing the effective number of degrees of free-

dom in the gas.

• This decreases the adiabatic index toward unity, thereby

making the condition

d lnP

d lnT
<

γ

γ−1

easier to fulfill, since

lim
γ→1

(
γ

γ−1

)

= ∞.

• In later examples we shall see that the physical reason for

this decreased convective stability typically is that these

processes permit rising blobs of gas to remain buoyant

longer, thereby enhancing convection.
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7.7.2 Role of the Pressure Gradient in Convection

• In hydrostatic equilibrium, the pressure gradient is given

by
dP

dr
=−Gm(r)

r2
ρ(r) =−g(r)ρ(r),

where g(r) is the local gravitational acceleration.

• Thus, pressure falls off more gradually where g(r) is small

and a smaller value of dP/dr make the condition

dT

dr
<

(
dT

dr

)

ad

→ dT

dr
<

(

1− 1

γ

)
T

P

dP

dr

easier to satisfy, thereby favoring convective instability

(Recall: both derivatives are negative).

We conclude that regions in which the local grav-

ity is weak will be more susceptible to convective

instabilities than those with stronger gravity.



7.7. CRITICAL TEMPERATURE GRADIENT FOR CONVECTION 255

Example: In close binary star systems a star may be tidally

distorted by its companion. The decreased gravity in tidally

distended regions (which occurs because a gas particle there

feels a gravitational attraction from one star that is partially

canceled by the gravitational attraction of the other star) may

initiate convective instability.
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7.8 Stellar Temperature Gradients

The condition

dT

dr
<

(
dT

dr

)

ad

→ dT

dr
<

(

1− 1

γ

)
T

P

dP

dr

defines a critical temperature gradient for convective instabil-

ity in terms of the adiabatic temperature gradient

(
dT

dr

)

ad

=

(

1− 1

γ

)
T

P

dP

dr

Therefore, we must investigate the actual temperature gradients

dT/dr of stars in order to assess their stability against convec-

tion.
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How do we determine the actual temperature gradient in a star?

• Stars will choose the mode of energy transport leading to

the smallest temperature gradient and largest luminosity.

• The temperature gradients of normal stars that are not

convective are determined by the rate of radiative energy

transport.

This suggests the following approach for determining the mode

of energy transport in nondegenerate stars:

1. Calculate the temperature gradient for radiative transport

according to a prescription to be given below.

2. If this gradient is sub-critical, assume no convection and

that radiation is the dominant means of energy transport

out of the star.

3. If the resulting gradient is critical or supercritical, assume

that convection (because it is very efficient in transporting

energy) prevails as the means of energy transport as long

as the temperature gradient remains critical.

Notice that these considerations could lead to different conclu-

sions in different regions of a star; thus, we expect that

Stars may be convective in some regions and ra-

diative in others.
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7.8.1 Radiative Gradients

• Let L(r) denote the rate of energy flow through a shell of

thickness dr at a radius r, and

• let ε(r) denote the nuclear power per unit volume gener-

ated at radius r.

• Then the power generated in the shell of thickness dr at

radius r is given by 4πr2ε(r)dr.

• This is added to the outward power flow from interior

shells and
dL

dr
= 4πr2ε(r).

• Outside the central power-generating regions for a star we

may expect that L(r) approaches a constant equal to the

surface luminosity of the star.

• If we assume the energy flow to be radiative,

L(r) = 4πr2 j(r),

where for radiative transport (earlier result rewritten in

terms of the opacity κ)

j(r) =−4acT 3

3ρκ

dT

dr
.
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Combining the equations,

L(r) = 4πr2 j(r) j(r) =−4acT 3

3ρκ

dT

dr

we may solve for the temperature gradient associated with ra-

diative diffusion,

(
dT

dr

)

rad

≡
(

dT

dr

)

=−3ρ(r)κ(r)

4acT 3(r)

L(r)

4πr2
.

If this radiative gradient becomes steeper than the

critical gradient, the system will become convec-

tively unstable.
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Example: Use the preceding results to estimate the tempera-

ture gradients in the Sun.

• At R = 0.3R⊙ assume that the luminosity becomes equal

to the surface luminosity of 4×1033 erg s−1.

• At this radius we have from the Standard Solar Model and

opacity tables

T ∼ 6.8×106 K ρ ∼ 12 g cm−3 κ ∼ 2 cm2 g
−1

.

• Then the average solar temperature gradient is

dT

dr
≃−1×10−4 K cm−1,

• The average mean free path is

λ =
1

ρκ
≃ 0.04 cm

• The fractional change in temperature over a distance of

one mean free path is of order 10−12.

Thus, we find that

• the solar interior is extremely opaque,

• temperature changes very slowly over a char-

acteristic diffusion distance,

validating the radiative diffusion assumption.
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7.9 Mixing-Length Treatment of Convection

A proper treatment of convection is stars is a difficult subject

because it requires the solution of 3-dimensional hydrodynam-

ics for a turbulent, compressible fluid.

• Although modern computing power is making headway

on this issue, historically much of our understanding of

convection has derived from simple models based on

mixing-length approximations.

• These models have rather murky theoretical foundation

but they appear to work well as phenomenological de-

scriptions of the most important aspects of convection in

normal stars.

Part of that success is because of the empirical nature of

mixing-length models. Part is because

1. Convection is such an efficient source of energy transport

that it often dominates all other modes (so we don’t have

to think too deeply about partitioning energy transport be-

tween radiation and convection).

2. Convection can often operate with convective velocities

that are well below sound speed (so that no shock waves

are produced)

3. Convection can often operate on a timescale that is well

separated from other relevant timescales (such as the hy-

drodynamic response time) in the star.
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However, one should not forget that

• Mixing-length models are basically empirical, with the

most essential parameter (the mixing-length) not specified

by any fundamental theory.

• As a consequence, they break down in a variety of impor-

tant cases.

For example, mixing-length models are generally not very ap-

propriate for situations where

1. Radiative transport is competing strongly with convection,

such as in the surface of a convective star.

2. Convective transport is supersonic and thus produces

shock waves (such mechanisms may operate in the sur-

face of the Sun and contribute to heating of the corona).

3. Convection violates spherical symmetry strongly, as is

thought to happen in supernova explosions.

4. The timescales for convection are comparable to other dy-

namical timescales in the system, as is thought to happen

for pulsating variable stars and for supernova explosions.

With this as introduction, and taking due note of the caveats,

we now develop a basic mixing-length model of convection.
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7.9.1 Pressure Scale Height

Introduce the pressure scale height Hp, defined by

Hp ≡−
dr

d lnP
=−P

dr

dP
.

• If Hp is assumed to be constant, the solution of this differ-

ential equation is

P = P0e−r/Hp.

• The scale height has length dimensions.

• It is the characteristic vertical scale for variation of the

pressure in an atmosphere since Hp is the vertical distance

over which the pressure changes by a factor of e.

• Using the equation for hydrodynamic equilibrium to re-

place dr/dP and using the ideal gas law, we may express

the scale height for a gravitating ideal gas as

Hp =
P

gρ
=

kT

gµmH
,

where g is the local gravitational acceleration, k is Boltz-

mann’s constant, µ is the mean molecular weight, and

mH = 1/NA is the atomic mass unit.
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r
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Figure 7.12: Schematic illustration of the mixing-length approximation to

convective motion. The mixing length ℓ determines the vertical distance

scale over which rising and falling blobs move before merging with the

surrounding medium.

7.9.2 The Mixing-Length Philosophy

A mixing-length model assumes that the stellar fluid is com-

posed of blobs that can move vertically in the gravitational field

between regions of higher and lower heat content (Fig. 7.12).

• Blobs may move toward the surface because of buoyancy

forces, carrying warmer fluid outward.

• Meanwhile blobs moving inward because of negative

buoyancy carry cooler fluid inward.

• There is no net mass flow but there is a outward transport

of energy.

• The characteristic distance over which blobs rise before

dissipating is termed the mixing length, ℓ.
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Mixing-length approaches then analyze the motion of these

blobs over a characteristic scale defined by the mixing length

with the following general assumptions.

1. Blobs have dimensions of the same order as the mixing

length ℓ.

2. The mixing length ℓ is much shorter than any other length

scale of physical significance in the star.

3. The blobs differ only slightly from the surrounding

medium in temperatures, densities, pressure, and compo-

sition.

4. The requirement that the internal pressure of blobs re-

mains approximately the same as the surrounding fluid

means that the timescales associated with any processes

important in the convection are long enough that pressure

equilibrium is maintained.

5. This implies that the vertical speeds of the blobs are small

compared with the local speed of sound in the medium.

6. Thus acoustic and shock phenomena are negligible for the

convection.

Let us now use these assumptions and guidelines to construct a

mixing-length model of convection.
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7.9.3 A Mixing-Length Model

• Consider a rising blob in a convective region described

by an ideal gas equation of state. In accordance with the

preceding discussion, we assume pressure equilibrium.

• By differentiating both sides of the ideal gas law P =
ρkT/µ we may show that

dP

P
=

dρ

ρ
+

dT

T
.

• But pressure equilibrium implies that the left side vanishes

and

∆ρ ≃−ρ
∆T

T
.

• The buoyancy force per unit volume f acting on the blob

is

f =−g∆ρ = gρ
∆T

T
.

• But initially ∆T is zero since the blob begins with the same

temperature as its surroundings. Thus, the force averaged

over the motion of the blob may be approximated by

f̄ ≃ 1
2gρ

∆Tf

T
,

where ∆Tf is the final temperature difference between the

blob and surroundings.
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• The work W done by the buoyancy force goes into kinetic

energy Ekin of the blob (we neglect any viscous forces in

this discussion).

• These quantities are given by

Ekin =
1
2ρ v̄2 W = f̄ ℓ,

where ℓ is the mixing length and v̄ is the average velocity

of the blob.

• Therefore, equating the kinetic energy and the work gives

1
2ρ v̄2 = f̄ ℓ,

which we solve for the average velocity:

v̄ =

√

2 f̄ ℓ

ρ
=

√

gℓ
∆Tf

T
.
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The mixing length ℓ is critical but is not specified yet.

• We expect the pressure scale height Hp to set the most

relevant length scale for the problem:

– It determines the distance over which there is a sub-

stantial change in gas pressure.

– Our assumption of minimal difference in proper-

ties between convective blobs and the surrounding

medium would likely not be justified if the mixing

length were large measured on this scale.

• Therefore, we parameterize the mixing length in units of

the scale height,

ℓ= αHp.

• The quantity α is termed the mixing-length parameter. It

is assumed adjustable and expected to be of order unity or

smaller.

• We shall have to justify, after the fact, whether this choice

implies violation of our other assumptions.

• Combining the preceding equations, the average convec-

tive velocity may then be expressed as

v̄ =
αk

µmH

√

T

g
δ

(
dT

dr

)

.
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• The convective flux Fc is given by a product of

– Temperature difference of blob and surroundings δT ,

– The specific heat at constant pressure cp (because of

our pressure equilibrium assumptions),

– The density ρ , and

– The average convective velocity v̄:

Fc =
1
2ρ v̄cpδT.

• Substituting

v̄ =
αk

µmH

√

T

g
δ

(
dT

dr

)

.

gives

Fc =
ρcpkα

2µmH

√

T

g
δ

(
dT

dr

)

δT.

But from

ℓ= αHp Hp =
kT

gµmH
,

we can write

δT = δ

(
dT

dr

)

ℓ= δ

(
dT

dr

)

αHp =
αkT

µgmH
δ

(
dT

dr

)

,

and the convective flux is

Fc =
1
2ρα2cp

(
k

µmH

)2[
T

g
δ

(
dT

dr

)]3/2

.
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• The result

Fc =
1
2
ρα2cp

(
k

µmH

)2[
T

g
δ

(
dT

dr

)]3/2

gives us an approximate expression for the convective

flux.

• To use it we must

1. Choose a value of the phenomenological parameter

α .

2. Determine the difference between the temperature

gradient of the blob and its surroundings δ (dT/dr).

• Solving the preceding equation for this difference gives

δ

(
dT

dr

)

=
g

T

[

2
(µmH

k

)2 Fc

ρcpα2

]2/3

.

• In general, if the critical temperature gradient is exceeded

the energy transport through a region may involve a com-

bination of radiative and convective transport.

• Therefore, to proceed we must determine the relative con-

tribution of radiative and convective energy fluxes in con-

vective regions.
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• Assume all flux is being carried by convection. Then

Fc =
L(r)

4πr2
,

where L(r) is the luminosity evaluated at the radius r.

• For this special case of pure convection,

δ

(
dT

dr

)

=
g

T

[(µmH

k

)2 L(r)

2πr2ρcpα2

]2/3

.

• How superadiabatic does the temperature gradient have to

be in order for the preceding equation to be correct (all

flux carried by convection)?

• The ratio of the superadiabatic gradient to adiabatic gra-

dient is obtained by dividing the preceding expression by

the earlier expression for the adiabatic gradient,

(
dT

dr

)

ad

=

(

1− 1

γ

)
T

P

dP

dr
=− g

cP
(Adiabatic gradient).

The result is

δ (dT/dr)

|(dT/dr)ad|
=

c1/3
p

T

[(µmH

k

)2 L(r)

2πr2ρα2

]2/3

Let us now use the preceding equations to make

some quantitative estimates for the case of subsur-

face convection in the Sun.
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Example: With the assumption α = 1, we find that for the Sun

(
dT

dr

)

ad

≃ 1.6×10−4 K cm−1,

δ

(
dT

dr

)

= 1.8×10−10 K cm−1,

δ (dT/dr)

|(dT/dr)ad|
= 1.1×10−6,

v̄ = 1×104 cm s−1 = 0.1 km s−1,

This velocity is much less than the local speed of sound, vs =

2.1×107 cm s−1. The corresponding mixing length is

ℓ= αHp = Hp = 4.7×104 km,

and the timescale for the blob to travel the mixing-length dis-

tance αHp = Hp is

t =
Hp

v̄
= 4.7×105 s≃ 5.4 days.

Observations and calculations suggest that

• the convection zone is ∼200,000 km thick,

• with characteristic convection cell size ∼ 104

km at the base and ∼ 103 km at the top.
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The results of the preceding example support our earlier asser-

tion:

Convection is often such an efficient process that a

temperature gradient only slightly steeper than the

adiabatic one is sufficient to carry all flux convec-

tively.

• Certainly for the Sun the above analysis suggests that the

temperature gradient in convective regions can be well ap-

proximated by the adiabatic gradient.

• The earlier reservations should be kept in mind, however.

Example: Very near the surface of a star tem-

perature gradients in convective regions may dif-

fer substantially from the adiabatic gradient and

a slightly superadiabatic gradient may be a very

poor approximation for the actual temperature gra-

dient.
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Photosphere
Convection

Radiation

1 Solar-mass star

Massive star

0.1 Solar-mass star

Figure 7.13: Characteristic regions of convection in stars of different mass.

7.10 Examples of Stellar Convective Regions

We expect convection to dominate radiative transport as soon

as the critical temperature gradient is reached in a region of a

star. Generally, it is believed that (see Figure 7.13)

• The most massive stars are centrally convective and radia-

tive in their outer envelopes.

• Stars of a solar mass or so have subsurface convection

zones but the central region is not convective.

• The least-massive stars are entirely convective.

Let’s examine two such regions in more detail:

1. Stellar cores for massive main sequence stars.

2. Ionization zones in the surface layers of stars.
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7.10.1 Convection in Stellar Cores

Convection in the cores of stars is favored if the power is gen-

erated in a compact central region:

• There is a large energy flow through a region with small

gravitational acceleration.

• gravity is weak (little enclosed mass at small radii), so

– Pressure falls off gradually in this region.

– Thus rising gas tends to remain buoyant because it

need not expand much to pressure-equilibrate.

Let us set

(
dT

dr

)

rad

=

(
dT

dr

)

ad

→ −3ρ(r)κ(r)

4acT 3(r)

L(r)

4πr2
=

(

1− 1

γ

)
T

P

dP

dr

utilize hydrostatic equilibrium to substitute

dP

dr
=−Gm(r)

r2
ρ(r),

and rearrange the resulting expression to obtain

L(r)

m(r)
=

16πaGc

3κ

(
γ−1

γ

)(
T 4

P

)

.
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Figure 7.14: Schematic illustration of the competition between radiative and

convective energy transport for three qualitatively different situations. The

critical luminosity as a function of the radius r is illustrated by the dashed

lines and the actual luminosities by the solid lines. For each case, the star is

convectively unstable in the shaded regions.

The result

L(r)

m(r)
=

16πaGc

3κ

(
γ−1

γ

)(
T 4

P

)

defines a critical value of L(r)/m(r) favoring convection over

radiative diffusion.

• Generally, we expect convection to develop for any re-

gions of a star in which the luminosity reaches the critical

value (which depends on location in the star).

• Some possibilities are indicated schematically in

Fig. 7.14.
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Figure 7.15: Radial extent of convective zones in main sequence stars as a

function of stellar mass. The vertical axis is in Lagrangian units of enclosed

mass. The position of the Sun is indicated. Figure adapted from Kippenhahn

and Wiegert.

A realistic simulation of convective regions as a function of

total stellar mass is displayed in Fig. 7.15
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Of immediate interest is the suggestion that convective cores

of radius r and enclosed mass m(r) can develop in stars if the

critical value of L(r)/m(r) defined by

L(r)

m(r)
=

16πaGc

3κ

(
γ−1

γ

)(
T 4

P

)

is exceeded inside the radius r.

• Such convective cores tend to develop in main sequence

stars that are more massive than the Sun.

• In these stars the CNO cycle dominates the energy produc-

tion mechanism and the strong temperature dependence

(power varying as ∼ T 17) confines power production to a

small central region.

• For less massive stars like the Sun where the PP chain is

the dominant energy production mechanism, the tempera-

ture dependence is much weaker (power varying as∼ T 4).

• In these stars the energy production is spread over a larger

central region and core convection is less likely.
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Example: In the case of the Sun inside its 10% radius, data

taken from the Standard Solar Model and standard opacity ta-

bles allow us to estimate a critical value (Exercise)

L(r)

m(r)
≃ 21 erg g−1 s

−1
.

Calculations within the Standard Solar Model indicate that the

Sun’s core produces about 11.3 erg g−1 s
−1

within its 10% ra-

dius.

• This is near but still below the critical value.

• Therefore, we conclude that the core of the Sun is not con-

vective.

• However, the centers of main sequence stars more massive

than the Sun are likely to be convective.
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7.10.2 Surface Ionization Zones

Convection is favored in surface layers, where constant ioniza-

tion and recombination is taking place, for two reasons

• Opacity is large, making (dT/dr)rad steep:

(
dT

dr

)

rad

=−3ρ(r)κ(r)

4acT 3(r)

L(r)

4πr2
.

• The critical temperature gradient for convection

(
dT

dr

)

ad

=

(

1− 1

γ

)
T

P

dP

dr
,

is not steep because there are many degrees of freedom s

associated with the ionization–recombination and

γ =
1+ s/2

s/2

is decreased toward unity.

• More physically, electron recombination supplies energy

to expand the rising gas packets.

• Thus, packets don’t cool much and remain buoyant.

In the Sun, the convective layer from about 0.7R⊙
to 0.9R⊙ is associated with such ionization zones.

This subsurface convection gives rise to the gran-

ules observed on the solar surface.
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7.11 Energy Transport by Neutrino Emission

The cores of massive stars late in their lives become extremely

dense and hot.

• These conditions make it difficult to transport their large

energy production that is concentrated in a very small re-

gion by radiative or even convective processes.

• On the other hand, this very dense, very hot environment

is favorable to the production of neutrinos, which by virtue

of their weak interactions with matter can leave the core

relatively unimpeded.

As a result, neutrino emission generally is the dominant mecha-

nism for cooling stellar cores that proceed beyond carbon burn-

ing.
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In normal stars, as we have noted above,

• The neutrino emission is not related to the temperature

gradient.

• Thus the energy outflow from neutrino cooling is directly

proportional to the rate at which the neutrinos are pro-

duced in the core of the star.

• As Clayton has stated succinctly,

As far as stellar structure and evolution are con-

cerned, neutrinos mostly play the role of a local

refrigerator.

As a rough estimate, the interaction of electron neutrinos with

matter has a cross section approximately given by

σν ≃ 10−44

(
Eν

mec2

)2

cm2,

where Eν is the neutrino energy and mec2 = 511 keV is the elec-

tron rest mass energy.
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Example: For most processes of importance in stars Eν/mec2

differs by less than a factor of 10 from unity.

• Thus as a very crude approximation

σν ≃ 10−44

(
Eν

mec2

)2

cm2 → σν ≃ 10−44 cm2.

• Assuming the average density of matter in a representative

star to be

ρ ≃ 1 g cm−3 → n≃ 1024 cm−3

the mean free path for an electron neutrino in average stel-

lar matter is

λ =
1

σνn

≃ 1

(10−44 cm2)× (1024 cm−3)

≃ 1020 cm

= 1.4×109 R⊙.

• Obviously there is little chance that the neutrino scatters

from the matter on its way out of a normal star.
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7.11.1 Neutrino Production Mechanisms

There are several neutrino production mechanisms that influ-

ence the evolution of massive stars. I won’t cover them here

but they are summarized in the book Chapter. We shall concen-

trate on the three most important:

• Pair annihilation,

• Photoneutrinos,

• Plasma neutrinos.

Pair production: Neutrino–antineutrino pairs can be produced

by the reaction

e−+ e+→ νe + ν̄e.

The positrons can be produced in abundance by

γ + γ→ e++ e−,

if kT ∼ mec2, implying T ∼ 6×109 K or greater.

Photoneutrinos: When the energy is too low to produce signif-

icant numbers of neutrinos by pair production, neutrinos may

still be produced by the reaction

e−+ γ→ e−+νe + ν̄e.

Such neutrinos are called photoneutrinos. Photoneutrino pro-

duction generally increases with temperature at all densities.
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Plasma neutrinos: At large stellar densities a photon can in-

teract with the plasma to form a collective excitation called a

plasmon.

• Direct free-space decay of a photon to a neutrino–

antineutrino pair is forbidden by energy and momentum

conservation.

• A plasmon is a kind of “heavy photon” that acquires an

effective mass ω0 through interaction with the medium.

The plasmon dispersion relation (for nondegenerate gas)

is

ω2 = k2c2 +ω2
0 ω2

0 =
4πnee2

me
,

where ω0 is the characteristic plasma frequency and k the

wavenumber and ω the frequency for the electromagnetic

wave.

• A plasmon (“heavy photon”) γpl can decay directly to

neutrino–antineutrino pairs:

γpl→ νe + ν̄e.

• Plasmon neutrino production is important when h̄ωp≥ kT.
Therefore, plasma neutrino emission is enhanced by high

temperature and high density.
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Table 7.2: Photon and neutrino luminosities for a 20 solar mass star

Fuel ρc( g cm−3)† Tc(109 K)† Duration (y) Lγ( erg s−1) Lν( erg s−1)

Hydrogen 5.6 0.040 1.0×107 2.7×1038 —

Helium 9.4×102 0.19 9.5×105 5.3×1038 < 1.0×1036

Carbon 2.7×105 0.81 300 4.3×1038 7.4×1039

Neon 4.0×106 1.7 0.38 4.4×1038 1.2×1043

Oxygen 6.0×106 2.1 0.50 4.4×1038 7.4×1043

Silicon 4.9×107 3.7 0.0055 4.4×1038 3.1×1045

†The columns ρc and Tc give the critical density and critical temperature to ignite a fuel, respectively.
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Figure 7.16: Neutrino energy emission rates at four different temperatures.
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Figure 7.17: Total energy production rates by neutrino processes.

Example: Typical conditions for silicon burning are

T = 3−5×109 K ρ = 105−107 g cm−3.

From Fig. 7.17 the total neutrino energy production rates under

these conditions are

εν ≃ 1012−1015 erg g−1 s
−1

,

which is comparable to the Si-burning energy generation rate.

The primary source of core cooling in these late

stages of stellar evolution is from neutrino emis-

sion.
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7.11.2 Coherent Neutrino Scattering

The Standard Electroweak Theory of elementary particle

physics predicts that

• neutral weak currents (those mediated by the Z0 gauge

boson) can scatter coherently off the A nucleons of a com-

posite nucleus rather than off individual nucleons.

• The usual neutrino–nucleon scattering cross section is

σnucleon ∝ E2
ν ,

where Eν is the neutrino energy.

• But the coherent cross section on a nucleus of nucleon

number A is

σcoherent ∝ A2E2
ν .

• For massive stars, Si burning produces iron-group nuclei

and the coherent cross section is enhanced by a factor

σcoherent

σnucleon

∼ A2 ∼ (56)2 ∼ 3000

relative to normal nucleonic weak interactions (taking a

mass of 56 amu as representative of iron-group isotopes).

• This enhancement, coupled with the large increase in the

normal weak interactions strength because of the enor-

mous temperature and density of the core, implies very

large neutrino interactions.
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• Because of the large mass difference between neutrinos

and heavy nuclei, coherent scattering transfers momentum

but little energy, so it is nearly elastic.

• We shall see in later chapters that coherent elastic scatter-

ing of neutrinos from composite nuclei through the neu-

tral weak current can have a large influence on the core

collapse in a core collapse supernova.
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Chapter 8

Summary of Stellar Equations

Two equations governing hydrostatic equilibrium,

dm

dr
= 4πr2ρ(r) Mass conservation

dP

dr
=−Gm(r)

r2
ρ Hydrostatic equilibrium,

three equations for luminosity and temperature gradients,

dL

dr
= 4πr2ε(r) Luminosity

dT

dr
=−3ρ(r)κ(r)

4acT 3(r)

L(r)

4πr2
Radiative T gradient

dT

dr
=

(
γ−1

γ

)
T

P

dP

dr
Convective T gradient,

equations governing nucleosynthesis,

dn

dt
=−1

τ
n Nucleosynthesis,

and an equation of state,

P = P(T,ρ ,Xi, . . .) Equation of state.

291



292 CHAPTER 8. SUMMARY OF STELLAR EQUATIONS

The two temperature-gradient equations are to be employed as

follows:

• The radiative gradient

(
dT

dr

)

rad

=−3ρ(r)κ(r)

4acT 3(r)

L(r)

4πr2

should be used unless the condition
(

dT

dr

)

rad

<

(

1− 1

γ

)
T

P

dP

dr

for convective instability is satisfied, in which case the adi-

abatic gradient should be used:

(
dT

dr

)

ad

=

(
γ−1

γ

)
T

P

dP

dr

• Some equations in this set, like the last two,

dn

dt
=−1

τ
n Nucleosynthesis,

P = P(T,ρ ,Xi, . . .) Equation of state,

are to be understood schematically.

– Nucleosynthesis will in general involve a complex

coupled network of differential equations

– The equation of state will depend on the physics of

the problem and may take a variety of forms.
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These equations represent a considerably simplified description

of a star.

• Even in this simplified form their solution for realistic

cases presents formidable numerical problems.

• Relatively specialized techniques must be used for some

aspects of the solution

1. because of the boundary conditions required for a

star, and

2. because these equations couple processes having

characteristic time and length scales that may differ

by many orders of magnitude.
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Let us now consider solution of the stellar equations. We shall

address three aspects

• Using timescale analysis to avoid solving the equations

directly.

• Obtaining solutions by approximating the stellar equa-

tions.

• Full numerical solution of the stellar equations.
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Table 8.1: Some important stellar timescales

Timescale Characteristic value Value for Sun

Dynamical τdyn ∼
√

R3

2GM
55 min

Thermal adjustment τtherm ∼
GM2

RL
3×107 yr

Nuclear burning τnuc ∼ ε
Mc2

L
1010 yr

8.1 Summary of Important Stellar Timescales

A timescale τs characteristic of some important physical pro-

cess represented by a quantity s may be defined as τs = s/ṡ.

This is just a generalization of the standard exam-

ple from introductory physics of estimating a time

to travel some distance x as t = x/ẋ = x/v, where

v is the average velocity.

At several points in the preceding discussion, three important

timescales have been discussed. These are summarized in Ta-

ble 8.1 and discussed further below.
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1. Dynamical timescale: A dynamical timescale is defined

by a characteristic time to restore hydrostatic equilibrium:

τdyn =
R

vesc
=

√

R3

2GM
∼
√

1

Gρ̄
where

vesc = (2GM/R)1/2 ρ̄ = 3M/4πR3

were used. For the Sun τdyn ∼ 55 minutes.

2. Thermal adjustment timescale: The thermal adjustment

(or Kelvin–Helmholtz) timescale is associated with time

for a star to shed thermal energy, so

τtherm =
U

L
=

GM2

LR
,

where U is the internal energy and L the luminosity, and

U ∼GM2/R by the virial theorem. The Sun has a thermal

adjustment timescale of about 3×107 yr.

3. Nuclear burning timescale: The time to burn the star’s

nuclear fuel may be approximated by

τnuc =
εM0c2

L
,

where ε ∼ 0.007 is the efficiency for conversion of mass

into energy in hydrogen fusion, M0 is the mass of hydro-

gen available to burn in the star. For the Sun this gives

τnuc ∼ 1010 yr.
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8.2 An Approximate Solution: The Lane–Emden Equations

The equations of hydrostatic equilibrium may be combined to

give the differential equation

dm = 4πr2ρ(r)dr

dP

dr
=−Gm(r)

r2
ρ







→ 1

r2

d

dr

(
r2

ρ

dP

dr

)

=−4πGρ .

We then approximate the equation of state in polytropic form,

P = Kργ = Kρ1+1/n γ ≡ 1+
1

n
.

Introducing dimensionless variables ξ and θ through

ρ = ρcθ n r = aξ a =

√

(n+1)Kρ
(1−n)/n
c

4πG
,

where ρc≡ ρ(r = 0) is the central density, the differential equa-

tion embodying hydrostatic equilibrium for a polytropic equa-

tion of state may be expressed in terms of the new dependent

variable θ(ξ ) and independent variable ξ as,

1

ξ 2

d

dξ

(

ξ 2 dθ

dξ

)

=−θ n.
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In terms of these new variables the boundary conditions are

θ(0) = 1 θ ′(0)≡ dθ

dξ

∣
∣
∣
∣
ξ=0

= 0,

• The first follows from the requirement that the correct cen-

tral density ρc = ρ(0) be reproduced.

• The second follows from requiring that the pressure gra-

dient dP/dr vanish at the origin (necessary condition for

hydrostatic equilibrium).

Then we may integrate

1

ξ 2

d

dξ

(

ξ 2 dθ

dξ

)

=−θ n.

outward from the origin (ξ = 0) until the point ξ = ξ1 where

θ first vanishes, to define the surface of the star, since at this

point ρ = P = 0 because

ρ = ρcθ n P = Kργ .

Solutions having this property generally exist for n < 5.
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Table 8.2: Lane–Emden constants

n γ ξ1 ξ 2
1 |θ ′(ξ1)|

0 ∞ 2.4494 4.8988

0.5 3 2.7528 3.7871

1.0 2 3.14159 3.14159

1.5 5/3 3.65375 2.71406

2.0 3/2 4.35287 2.41105

2.5 1.4 5.35528 2.18720

3.0 4/3 6.89685 2.01824

4.0 5/4 14.97155 1.79723

4.5 1.22 31.83646 1.73780

5.0 1.2 ∞ 1.73205

• The equation

1

ξ 2

d

dξ

(

ξ 2 dθ

dξ

)

=−θ n.

has analytical solutions for the special cases n =

0,1, and 5, but

• In the physically most interesting cases the equations must

be integrated numerically to define the Lane–Emden con-

stants ξ1 and ξ 2
1 |θ ′(ξ1)| for given n.

These are tabulated for various values of n and γ in Table 8.2.
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Corresponding solutions are plotted in the following figure
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Solutions of the 

Lane-Emden 

equation

and pressure profiles computed for polytropic equations of state

with several values of n are shown in the following figure.
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The n = 3 polytrope approximates relatively well the actual

pressure profile of the Sun (Standard Solar Model).
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The transformation equations

ρ = ρcθ n r = aξ a =

√

(n+1)Kρ
(1−n)/n
c

4πG
,

may then be used to express quantities of physical interest in

terms of these constants for definite values of the polytropic

index n. For example, the radius R is

R = aξ1 =

√

(n+1)K

4πG
ρ
(1−n)/2n
c ξ1,

and the mass M is given by (Exercise)

M ≡ 4πa3ρc

[

−ξ 2 dθ

dξ

]

ξ=ξ1

= 4π

[
(n+1)K

4πG

]3/2

ρ
(3−n)/2n
c ξ 2

1 |θ ′(ξ1)|,

Eliminating ρc between these two equations gives a general re-

lationship between the mass and the radius,

M = 4πR(3−n)/(1−n)

(
(n+1)K

4πG

)n/(n−1)

ξ
(3−n)/(n−1)
1 ξ 2

1 |θ ′(ξ1)|.

for a solution with polytropic index n.
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8.2.1 Limitations of the Lane–Emden Approximation

The Lane–Emden equation has elegant solutions with a direct

physical interpretation, but it has serious limitations:

• It reflects only the property of hydrostatic equilibrium,

and then only for a polytropic equation of state.

• Thus it describes only the mechanical part of stellar struc-

ture.

• It has nothing to say about temperature gradients and en-

ergy transport, and their coupling to the full problem.

There are two general situations where a polytropic equation of

state may be reasonable.

• The realistic equation of state depends on T as well as ρ ,

but additional physical constraints between T and P lead

to a polytropic equation of state.

Example: The adiabatic constraint applied to an

ideal gas leads to a polytropic equation of state

PV Γ1 ∝ Pρ−Γ1 = constant. Then the temperature

is effectively fixed by a constraint T = T (P) and

not by coupling to the full set of equations.

• The realistic equation of state actually is approximately

polytropic. Often true in very dense matter such as white

dwarfs and neutron stars.



8.3. NUMERICAL SOLUTION OF THE STELLAR EQUATIONS 303

8.3 Numerical Solution of the Stellar Equations

The stellar structure and evolution problem has some specific

features that complicate obtaining numerical solutions. These

issues fall primarily into two categories:

• Boundary conditions.

Some boundary conditions must be imposed at the

center and some at the surface. This requires spe-

cialized techniques to ensure compatibility of the

solutions.

• Extreme space and time scale differences.

Example: Equations governing isotopic composi-

tion and energy release for the PP chains involve

timescales that can differ by 10–20 orders of mag-

nitude. They can be solved only with custom nu-

merical methods.

Numerical solution of the full set of equations describing stellar

structure and stellar evolution is a specialized topic that would

take us too far afield for the present discussion.



304 CHAPTER 8. SUMMARY OF STELLAR EQUATIONS



Part II

Stellar Evolution
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Chapter 9

The Formation of Stars

Substantial direct and indirect information indicates that stars

are born in nebulae.

• Basics are well understood, many details are not.

• We shall have to gloss over various sticky points with as-

sumptions that will be justified by the observation that

stars exist and, therefore, something like our assumption

must be correct.

• Much of this gloss is associated with the general observa-

tion that clouds that collapse to form stars have

– too much kinetic energy and

– too much angular momentum

to produce directly the stars that we see.

Since nature makes stars in abundance, this indicates that there

exist mechanisms for nascent stars to shed these excess quanti-

ties. It is the details of how this happens that we shall circum-

vent with appeals to observations.

307
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9.1 O and B Associations and T-Tauri Stars

• Observation of many hot O and B spectral class stars in

and near nebulae is a rather strong indicator that stars are

being born there.

• These stars are so luminous that they must consume their

nuclear fuel at a prodigious rate.

• Their time on the main sequence is probably only a mil-

lion years or so, therefore they cannot be far from their

place of birth.

• We also see, usually in association with stellar O and B

complexes in dust clouds, T-Tauri variables.

• These are red irregular variables (spectral class F–M),

with a number of unusual characteristics. They exhibit

emission lines of hydrogen, Ca+, and some other metals.
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Figure 9.1: Origin of P Cygni profiles in Doppler shifts associated with

expanding gas shells.

• The spectral lines for T-Tauri stars often exhibit P Cygni

profiles, as illustrated in Fig. 9.1, which indicate the pres-

ence of expanding shells of low-density gas around the

stars.

• They are more luminous than corresponding main-

sequence stars, implying that they are larger.

• They exhibit strong winds (T-Tauri winds), often with

bipolar jet outflows having velocities of 300–400 km s−1.
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jet
jet

Hidden young star

Figure 9.2: Jets and Herbig–Haro objects associated with outflow from

young stars near the Orion Nebula. In the top image, the star responsible

for the jets is hidden in the dark dust cloud lying in the center of the image.

The entire width of this image is about one light year. The Herbig–Haro

objects are designated HH-1 and HH-2, and correspond to the nebulosity at

the ends of the jets. In the bottom image, a complex jet about a half light

year long emerges from a star hidden in a dust cloud near the left edge of

the image. The twisted nature of the jet suggests that the star emitting it is

wobbling on its rotation axis, perhaps because of interaction with another

star. The Herbig-Haro object HH-47 is the nebulosity on the right of the im-

age. It is about 1500 light years away, lying at the edge of the Gum Nebula,

which may be an ancient supernova remnant.

• Herbig–Haro Objects are often found in the directions of

these jets.

• Two examples of outflow from young stars and associated

Herbig–Haro objects are shown in Fig. 9.2.
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Figure 9.3: HR diagram for the young open cluster NGC2264. Horizontal

bars denote stars with Hα line emission; vertical bars denote variable stars.

These considerations indicate that T-Tauri stars are still in the

process of contracting to the main sequence.

• They are less massive than the O and B stars that often

accompany them.

• Hence they will have contracted more slowly and many

will not yet have had time to reach the main sequence.

• The HR diagram for a young cluster is illustrated in

Fig. 9.3, where we see many young stars that have not

yet reached the main sequence.

• Stars marked with horizontal and vertical bars in this fig-

ure have observational properties of T-Tauri stars.
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• The bipolar outflows could in principle be explained by an

accretion disk around the young T-Tauri stars.

• These would form as a result of conservation of angular

momentum for the infalling matter.

• Then, if there are strong winds emanating from the star,

they would tend to be directed in bipolar flows perpendic-

ular to the plane of the accretion disk.

• However, it is difficult to explain

– the tight collimation of the jets (as good as 10% over

one parsec) by such a mechanism, and

– the energy driving the winds

in such a simple model.

• The Herbig–Haro objects are likely the result of

– shocks formed when gas flowing out of the T-Tauri

star interacts with clumps of matter, or when

– clumps of matter ejected from the star interact with

low density gas clouds.

• These observations suggest that

– we must look to the nebulae to produce the stars and

– the life of protostars contracting to the main sequence

may be more complex than simple considerations

would leave us to believe.
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9.2 Conditions for Gravitational Collapse

Let’s investigate the general question of gravitational collapse

to form stars by considering a spherical cloud that

• is composed primarily of hydrogen,

• has a

– radius R,

– mass M, and

– uniform temperature T , and

• consists of N particles of average mass µ , so that

M = NµMu.

We shall assume that the question of stability is

one of competition between

• gravitation, which would collapse the cloud,

and

• gas pressure, which would expand the cloud.
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9.2.1 The Jeans Mass and Jeans Length

• The gravitational energy is of the form

Ω =− f
GM2

R
,

where the factor f

– is of order one and

– equal to 3
5 if the cloud is spherical and of uniform

density,

– larger if the density increases toward the center.

• We take the thermal energy to be that of an ideal gas,

U =
3

2
NkT.

• From the virial theorem, the static condition for gravita-

tional instability is

2U < |Ω|,
implying that the system is unstable if the mass M satisfies

M > MJ ≡
3kT

f GµMu
R =

(
3kT

f GµMu

)3/2(
3

4πρ

)1/2

,

where

N =
M

µMu
R =

(
3M

4πρ

)1/3

have been employed.
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• The Jeans mass

MJ =
3kT

f GµMu
R =

(
3kT

f GµmH

)3/2(
3

4πρ

)1/2

appearing in the instability condition

M > MJ,

defines a critical mass for gravitational instability.

• Since the Jeans mass

– is proportional to T 3/2ρ−1/2,

– it will be smaller for colder, denser clouds.

This makes physical sense: it is easier to collapse

a cloud of a given mass gravitationally if the cloud

is cold and dense than if it warm and diffuse.

• We may also solve for the Jeans length,

RJ =
f GµmH

3kT
MJ.

• The Jeans length RJ

– defines the characteristic length scale associated with

the Jeans mass and

– characterizes the minimum size of gravitationally un-

stable regions.
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9.2.2 The Jeans Density

• It is often more useful to express the Jeans criterion in

terms of a critical density (the Jeans density)

ρJ =
3

4πM2

(
3kT

f µmHG

)3

.

• The critical density is lowest (thus easier to achieve) if

– the mass is large and

– the temperature low,

as we would expect on intuitive grounds.

Example: Consider a cold cloud of molecular hy-

drogen, with

– T = 20 K

– M = 1000M⊙.

The associated Jeans density is only

ρJ = 10−22 g cm−3.

But a molecular hydrogen cloud at the same tem-

perature with M = 1M⊙ has a Jeans density that is

6 orders of magnitude larger.
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• The Jeans criterion is simple because

– it is a static condition that says nothing about gas dy-

namics and

– it neglects important factors influencing stability such

as

* magnetic fields,

* dust formation and vaporization, and

* radiation transport.

• Nevertheless, the Jeans criterion is a useful starting point

for understanding how stars form from clouds of gas and

dust.
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Figure 9.4: Fragmentation into gravitationally unstable subclouds.

9.3 Fragmentation of Collapsing Clouds

From the foregoing, collapse of more massive clouds is fa-

vored, but most stars contain less than 1M⊙ of material.

• The solution to this dilemma is thought to lie in fragmen-

tation, as illustrated in Fig. 9.4.

• As we shall see, the initial collapse is expected to occur at

almost constant temperature. Therefore, from

MJ =

(
3kT

f GµmH

)3/2(
3

4πρ

)1/2

the Jeans mass decreases with collapse (ρ increases).

• We speak loosely: The Jeans criterion assumes a cloud

near equilibrium, not one already collapsing.

• As a large cloud (small Jeans density) begins to collapse,

– its average density increases with the collapse and

– at some point subregions of the original cloud may

exceed the critical density and become unstable in

their own right toward collapse.
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• If there are sufficient perturbations present in the cloud,

these subregions may separate and pursue independent

collapse.

• Within these subclouds the same sequence may be re-

peated: as the density increases, subregions may them-

selves become gravitationally unstable and begin an in-

dependent collapse.

• By such a hierarchy of fragmentations, it is plausible that

clusters of protostars might be formed that have individual

masses comparable to that of observed stars
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9.4 Stability in Adiabatic Approximation

To understand further the behavior of gravitationally unstable

clouds, let us consider the adiabatic contraction (or expansion)

of a homogenous cloud.

• Real clouds will exchange energy with their surroundings

and so are not completely adiabatic.

• However the results obtained in this limit will often be

instructive in understanding more realistic situations.
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Figure 9.5: Gravitational equilibrium in temperature–density space.

• From

ρJ =
3

4πM2

(
3kT

f µMuG

)3

.

equilibration of gravity and pressure requires the temper-

ature T and density ρ be related by T ∝ ρ1/3.

• In Fig. 9.5, this divides the T –ρ plane into

– A region above the line T ∼ ρ1/3 where the system is

unstable toward expansion, and

– a region below the line where the system is unstable

toward contraction.
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• For points above the stability line (in the unshaded area),

pressure forces are larger than the corresponding gravita-

tional forces and the system is unstable to expansion.

• For points below the stability line (in the shaded area),

pressure forces are weaker than the corresponding gravi-

tational forces and the system is unstable with respect to

contraction.
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9.4.1 Dependence of Stability on Adiabatic Exponents

• First consider a monatomic ideal gas, for which the adia-

batic exponent is γ = 5
3 .

• Since ρ ∝ V−1 and an adiabatic equation of state is

TV γ−1 = constant, for adiabats (paths followed in ρ −T

plane by adiabatic processes),

T ∝ ργ−1 → T

(

γ =
5

3

)

= ρ2/3.

• This corresponds to the dashed line in the left figure

above, which is steeper than the equilibrium line and

therefore crosses it.
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• A cloud unstable to contraction corresponds to a point on

the dashed line in the shaded area of the left figure.

• It will follow the dashed line to the right as it collapses, as

indicated by the arrow (right is increasing density).

• The collapse will halt when the dashed line reaches the

stability line (point labeled “Collapse halts”).

• Likewise, a cloud unstable to expansion corresponds to a

point on the dashed line lying in the unshaded area of the

left figure.

• It will follow the dashed line to the left as it expands (left

is decreasing density).

• This expansion halts at the stability line.

Thus, γ = 5
3 is gravitationally stable.
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• Now consider the right figure above, where we assume

that the cloud has an adiabatic exponent γ = 4
3
.

• In this case, the contraction (or expansion) follows an adi-

abat for which T ∝ ργ−1 ∝ ρ1/3.

• Since this adiabat is parallel to the stability line,

– the two lines never cross and

– a system lying on the dashed line collapses and con-

tinues to collapse adiabatically.

• This will also be the case if γ < 4
3
.

• Likewise, a system with γ = 4
3

that is above the stability

line expands adiabatically as long as γ = 4
3
.

Thus, γ ≤ 4
3

is gravitationally unstable.
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9.4.2 Physical Interpretation

Physical meaning of the preceding discussion:

• A gas is less able to generate the pressure differences re-

quired to resist gravity if the energy released by gravita-

tional contraction can be absorbed into internal degrees of

freedom.

• This energy is not available to increase the kinetic energy

of the gas particles.

• The parameter γ is relevant because it is related to the heat

capacities for the gas (γ = CP/CV for ideal gas), which

depends on the number of degrees of freedom for particles

in the gas.

• Typical sinks of energy that can siphon off energy inter-

nally are

1. rotations of molecules,

2. vibrations of molecules,

3. ionization, and

4. molecular dissociation.

Such internal degrees of freedom are energy sinks

that lower the resistance of the gas to gravitational

compression.
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• In large clouds γ can be reduced to 4
3 = 1.33 or less by

1. Polyatomic gases with s > 5,

γ =
1+ s/2

s/2
→ γ(s = 5) =

1+5/2

5/2
=

7

5
= 1.4,

2. Ionization of hydrogen around 10,000 K.

3. Dissociation of hydrogen molecules around 4,000 K.

• The large molecules required for the first situation are rel-

atively rare in the interstellar medium but very effective.

• In hydrogen ionization or molecular dissociation zones,

– Typically γ ≤ 4
3

and this causes an instability until the

ionization or dissociation is complete.

– Then γ will return to normal values (γ ≃ 5
3) and col-

lapse on the corresponding adiabat will reach the

equilibrium line and stabilize the collapse.

log ρ

lo
g
 T

(b)

Contraction

Expansion

 
T =

ρ
1/3

T ~ ρ2/3  (γ = 5/3)

log ρ

Contraction

Expansion

T =
 ρ

1/3

  T ~ ρ1/3 (γ = 4/3)

(a)

C
ol
la

ps
e

Collapse

halts

Contin
uous colla

pse



328 CHAPTER 9. THE FORMATION OF STARS

9.5 The Collapse of a Protostar

The preceding introduction sweeps much under the rug.

• But we shall assume that the existence of stars implies

that protostars form by some mechanism similar to the one

outlined above.

• Let us consider the collapse of a one solar mass protostar.

• From the Jeans criterion for T = 20 K and M = 1M⊙,

ρJ ≃ 3×10−16 g cm−3.

• Thus, we expect that a 1M⊙ cloud can collapse if this av-

erage density is exceeded.

• The size of this initial cloud may be estimated by assum-

ing the density to be

– constant and

– distributed spherically

implying that R∼ 3×1016 cm∼ 2000 AU.

• Thus, the initial protostar has a radius approximately 50

times that of the present Solar System.



9.5. THE COLLAPSE OF A PROTOSTAR 329

9.5.1 Initial Free-Fall Collapse

• The initial collapse is free-fall and isothermal, as long as

the gravitational energy released is not converted into ther-

mal motion of the gas and thereby into pressure.

• This will be the case as long as the energy not radiated

away is largely taken up by

1. dissociation of hydrogen molecules into hydrogen

atoms

2. ionization of the hydrogen atoms.

• The dissociation energy for hydrogen molecules is εd =
4.5 eV

• The ionization energy for hydrogen atoms is εion =
13.6 eV.

• The energy required to dissociate and ionize all the hydro-

gen in the original cloud is then

E = N(H2)εd +N(H)εion

=
M

2mH
εd+

M

mH
εion,

where N denotes the number of the corresponding species

and mH is the mass of a hydrogen atom.

• For the case of a protostar of one solar mass, the requisite

energy is approximately 3×1046 erg.
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• If the dissociation and ionization energy

E =
M

2mH
εd +

M

mH
εion,

is supplied by contraction from radius R1 to R2,

GM2

R2
− GM2

R1︸ ︷︷ ︸

gravity

=
M

2mH
εd +

M

mH
εion

︸ ︷︷ ︸

dissociation and ionization

.

• Solve for R2 with M = 1M⊙ and R1 = 3×1016 cm to give

R2 = 9×1012 cm≃ 130R⊙ ≃ 0.6 AU.

• The corresponding dynamical timescale is

tff =

√

3π

32Gρ
≃ 13,000 yr.

Thus a 1M⊙ protostar collapses in near free-fall

• from about 50 times the radius of the Solar

System

• to about half the radius of the Earth’s orbit

in ∼ 104 years.
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• The collapse then slows because

1. All the hydrogen has been dissociated and ionized,

2. the photon mean free path becomes short and the

cloud becomes opaque to its own radiation,

3. temperature increases as heat is trapped, and

4. pressure gradients counteract gravity and bring the

system into near hydrostatic equilibrium.

Thus, we may apply the virial theorem in near adi-

abatic conditions from this point onward.
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9.5.2 Homology

From the expressions for free-fall collapse we see that the char-

acteristic timescale for free fall is independent of the radius of

the collapsing mass distribution.

• This behavior is termed homologous collapse.

• One consequence of homologous collapse is that if the ini-

tial density is uniform it remains uniform for the entire

collapse.

• Because successive configurations in homologous pro-

cesses are self-similar (related by a scale transformation),

homologous systems are particularly simple to deal with

mathematically.

• Therefore, reasonably good approximate treatments of the

initial phases of gravitational collapse are often possible

by making homology assumptions.
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Figure 9.6: Schematic track for the collapse of a gas cloud to form a star.

9.5.3 A More Realistic Picture

The preceding picture is oversimplified. A more realistic varia-

tion of temperature and density for star formation is illustrated

in Fig. 9.6.

• In this more realistic picture the cloud begins to heat and

deviate from free-fall once it traps significant heat.

• When the temperature is sufficient to dissociate and then

ionize hydrogen, the cloud again collapses∼ isothermally

for a time.

• Once all hydrogen has been dissociated and ionized, the

collapse returns to one governed by approximately adia-

batic conditions in near hydrostatic equilibrium.
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9.6 Onset of Hydrostatic Equilibrium

The temperature at which hydrostatic equilibrium sets in may

be estimated as follows.

• From the virial theorem we have that 2U +Ω = 0.

• The gravitational energy Ω is

Ω≡Ω(R2) =−
GM2

R2
=−

(
M

2mH
εd+

M

mH
εion

)

,

where Ω(R1) has been neglected compared with Ω(R2).

• From U = 3
2NkT , the internal energy for the hydrogen ions

and electrons in the fully ionized gas is approximately

U ≃ 3

2
(NH +Ne)kT = 3NHkT =

3M

mH
kT,

where NH is the number of hydrogen ions and Ne ∼ NH is

the number of free electrons.

• Therefore, the virial theorem requires that

2U +Ω =
6M

mH
kT − M

2mH
εd−

M

mH
εion = 0,

and solving this for T gives

T =
1

k

( εd

12
+

εion

6

)

≃ 2.6 eV

k
≃ 30,000 K

for the onset of hydrostatic equilibrium.
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Figure 9.7: Evolutionary tracks for collapse to the main sequence. Numbers

on tracks are times in years.

• Subsequent contraction of the protostar is

– in near hydrostatic equilibrium and

– is controlled by the opacities,

which govern how fast energy can be brought to the sur-

face and radiated.

• This too is a consequence of the virial theorem and leads

to the Kelvin–Helmholtz timescale of about 107 years for

a star of one solar mass.

• The evolutionary tracks for protostars of various masses

to collapse to the main sequence are shown in Fig. 9.7.
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9.7 Termination of Fragmentation

• Earlier we indicated that collapse of large clouds is likely

to fragment into a hierarchy of sub-collapses, explaining

why we observe many low-mass stars.

• However, this argument is incomplete: we must ask what

stops the fragmentation in the vicinity of 0.1−1M⊙.

• The likely answer is that the transition from isothermal

to adiabatic collapse implies a modification of the Jeans

criterion and that this dictates a lower limit for the mass

of the fragments produced by a hierarchical collapse.

• Substitution of the condition T ∝ ργ−1 for adiabats in

MJ =

(
3kT

f GµmH

)3/2(
3

4πρ

)1/2

,

implies that for adiabatic clouds

MJ ≃ ρ(3γ−4)/2.

For γ = 5/3 then, the Jeans mass is proportional to ρ1/2

and in adiabatic collapse the Jeans mass increases.

• This implies that the transition from isothermal to adi-

abatic collapse sets a lower bound on possible Jeans

masses.
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• More realistic calculations do suggest a lower bound to

masses that can collapse gravitationally that is controlled

by cloud opacities.

• However, this bound is often lower than the M ∼ 0.1M⊙
found for the lightest stars.

• However, we shall see later that the lightest fragments

with mass less than M ∼ 0.1M⊙ can collapse to brown

dwarfs, which

– form by gravitational collapse but

– are not stars.
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Figure 9.8: Evolution of protostars to the main sequence.

9.8 Hayashi Tracks

A deeper understanding of the collapse to the main sequence

follows from a fundamental result first obtained by Hayashi:

A star generally cannot reach hydrostatic equilib-

rium if its surface is too cool.

• This implies a region in the HR diagram that is forbidden

to a given star if it is in hydrostatic equilibrium.

• This region is called the Hayashi forbidden zone; it is il-

lustrated in Fig. 9.8 for a star of mass M and composition

c.
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9.8.1 Fully Convective Stars

Stars contracting to the main sequence

• Must have large surface areas and (relatively) high surface

temperatures, so they have large luminosities.

• Once hydrogen is ionized they have high opacities.

• The combination of

– high opacity with

– large luminosity

ensures that the temperature gradients exceed the adia-

batic one.

• Thus such forming stars are almost completely convective.

• Recall that completely convective stars are approximately

described by a γ = 5
3 polytrope:

For a completely ionized star, fully mixed by con-

vection with negligible radiation pressure, if γ = 5
3
,

P = Kργ(r) = Kρ1+1/n(r) = Kρ5/3,

– where n = 1/(γ−1),

– and where K is constant for a given star.
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By examining fully convective stars with a thin radiative enve-

lope, Hayashi showed that

• Contracting protostars follow an almost vertical HR tra-

jectory called the Hayashi track for the star.

• If the star is fully convective, the Hayashi track is essen-

tially defined by the left boundary of the Hayashi forbid-

den zone, as illustrated in the above figure.

• Numerical simulations and simplified models indicate that

objects to the right of the Hayashi track cannot achieve

hydrostatic equilibrium.

• Thus no stable protostars can exist the the forbidden re-

gion.



9.8. HAYASHI TRACKS 341

9.8.2 Development of a Radiative Core

As the collapsing star descends the Hayashi track its central

temperature is increased by the gravitational contraction.

• This decreases the central opacity (recall that for the rep-

resentative Kramers opacity, κ ∼ ρT−3.5).

• Eventually this lowers the temperature gradient in the cen-

tral region sufficiently that it drops below the critical value

for convective stability.

• A radiative core develops.

• As contraction proceeds the radiative core begins to grow

at the expense of the convective regions, which are even-

tually pushed out to the final subsurface regions character-

istic of stars like the Sun.

• (In more massive stars the subsurface convective zones are

eliminated completely but the core may become convec-

tive if the power generation is sufficiently large after the

star enters the main sequence.)
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• For the fully convective star on the Hayashi track, lumi-

nosity decreases rapidly (shrinking surface area).

• However, as the protostar shrinks in size,

– opacity decreases over more and more of the interior

because of the increasing temperature,

– luminosity begins to rise again because more energy

can flow out radiantly.

• Since at this point the star is shrinking as its luminosity

increases, its surface temperature must increase.

• The star begins to follow a track to the left and somewhat

upward in the HR diagram (above figure).

• Finally, onset of hydrogen fusion causes the track to bend

over and enter the main sequence.
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Thus, the contraction to the vicinity of the main sequence is

composed of two basic periods:

1. A vertical descent in the HR diagram for fully convective

stars, followed by

2. a drift up and to the left as the interior of the star becomes

increasingly radiative at the expense of the convective en-

velope.
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Figure 9.9: Dependence of Hayashi tracks on (a) composition and (b) mass.

The solid portions of each curve in (c) represent the descent on the Hayashi

track.

9.8.3 Dependence of Track on Composition and Mass

Hayashi tracks depend weakly on the mass and composition, as

illustrated in Fig. 9.9.

• For more massive stars of fixed composition

– the Hayashi tracks are almost parallel to each other,

but

– are increasingly shifted to the left in the HR diagram

(see Fig. 9.9b).

• The Hayashi tracks also depend on stellar composition,

because this can influence the opacity.

• For example, a metal-poor star of a given mass will gen-

erally have a Hayashi track to the left of an equivalent

metal-rich star because of lower opacity (Fig. 9.9a).
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• The transition from convective to radiative interiors, and

the corresponding transition from downward to more hori-

zontal leftward HR motion, is faster in more massive stars

because of more rapid interior heating.

• As illustrated in Fig. (c) above and the following figure,

massive stars leave the Hayashi track quickly and ap-

proach the main sequence almost horizontally.
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• Conversely, the least massive stars never leave the

Hayashi track and are thought to remain completely con-

vective, even after entering the main sequence.
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9.9 Limiting Lower Mass for Stars

A contracting protostar will become a star only if the tempera-

ture increases sufficiently in the core to initiate thermonuclear

reactions.

• For an idealized star composed of a monatomic ideal gas

having uniform temperature and density, the temperature

varies with the cube root of the density:

T = 4.09×106µ

(
M

M⊙

)2/3

ρ1/3.

• However, this behavior assumes an ideal classical gas; the

temperature will no longer increase with contraction if the

equation of state becomes that of a degenerate gas.

• The critical temperature and density for onset of electron

degeneracy can be estimated by setting kT equal to the

fermi energy, which gives a critical density

ρ ≃ 6×10−9µeT 3/2 g cm−3.

• Inserting this into the preceding equation gives for the

temperature at which the critical density is reached in the

contracting protostar,

T ≃ 5.6×107µµ1/3
e

(
M

M⊙

)2/3

.
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• For M ∼M⊙ and µµ1/3
e ∼ 1, we obtain T ∼ 107 K from

T ≃ 5.6×107µµ1/3
e

(
M

M⊙

)2/3

.

• Thus, a solar mass protostar can produce an average tem-

perature of 10 million K by contraction.

• This is more than enough to ignite hydrogen fusion before

the electrons in the core become degenerate .

• On the other hand, as the mass of the protostar is de-

creased we will eventually reach a mass where the core

will become degenerate before the temperature rises to the

hydrogen fusion temperature.

• Detailed calculations indicate that this limiting mass is ap-

proximately 0.08M⊙−0.10M⊙.

• What of collapsing clouds with less than this critical mass

required to form stars?

• For them the growth in temperature is halted by electron

degeneracy pressure before fusion reactions can begin and

no star is formed.

• It is speculated that many such objects may exist,

– supported hydrostatically by electron degeneracy

– radiating energy left over from earlier contraction.

Such objects are called brown dwarfs.
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9.10 Brown Dwarfs

Brown dwarfs collapse out of hydrogen clouds, not out of pro-

toplanetary disks (like stars).

• But they radiate energy only by gravitational contraction,

not from hydrogen fusion (like planets).

• Their masses are expected to range from several times the

mass of Jupiter to a few percent of the Sun’s mass.

• The cooler brown dwarfs may resemble gas giant planets

in chemical composition,

• Hotter ones may begin to look chemically more like stars.

• They are difficult to detect since they are small and of very

low luminosity.
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9.10.1 Spectroscopic Signatures

The first brown dwarf discovered was Gliese 229B.

• Gliese 229B appears to be

– too hot and massive to be a planet, but

– too small and cool to be a star.

• The IR spectrum of GL229B looks like the spectrum of a

gas giant planet.

• Most telling is evidence of methane gas,

– which is common in gas giants but

– is not found in stars

because methane molecules can survive only in atmo-

spheres having temperatures lower than about 1500 K.
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In addition to searching for gases like methane that should not

be present in stars, searches for brown dwarfs have also looked

for evidence of the element lithium.

• Hydrogen fusion destroys lithium in stars.

• At temperatures above about 2×106 K, a proton encoun-

tering a lithium nucleus has a high probability to react

with it, converting the lithium to helium.

• The amount of lithium that can survive is a function of

how strongly the material of the star is mixed down to the

core fusion region by convection.

• Protostars are convective, so stars start off with a strongly

mixed interior, but the initial core temperature in the pro-

tostar is not high enough to burn lithium.

• The lightest stars (red dwarfs) remain convective once on

the main sequence, so lithium is mixed down to the fusion

region and destroyed in red dwarfs.

• Because these stars are cool, it takes some time to burn the

lithium.

• Calculations indicate that lithium could survive no longer

than about 2×108 years in the lightest true star.
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Figure 9.10: Contrasting interiors of a red dwarf, a brown dwarf, and a

gas giant planet. Generally stars initiate thermonuclear reactions but brown

dwarfs and planets do not. Thus, lithium is destroyed in stars. The presence

of methane is also an indication that the temperatures are too low for the

object to be a star. Gas giant planets can also contain lithium and methane,

but their upper interiors tend to be dominated by molecular hydrogen and

helium.

The basic interior structures expected for stars, brown dwarfs,

and gas giant planets are summarized schematically in

Fig. 9.10.
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Figure 9.11: Size and surface temperature trends for stars, brown dwarfs,

and gas giant planets.

9.10.2 Stars, Brown Dwarfs, and Planets

Figure 9.11 summarizes size and surface temperature trends

from stars like the Sun, through the lowest mass stars (red

dwarfs), brown dwarfs, and finally to planets.

• Brown dwarfs can have surface temperatures comparable

to that of the lowest mass stars, but atmospheric composi-

tions similar to large planets.

• The challenge is to distinguish brown dwarfs from stars

and gas giants at interstellar distances.

• Many of brown dwarf candidates have been identified.

• However, in many cases there is uncertainty about whether

they are brown dwarf companions of stars, or giant planets

orbiting stars.
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Why are Stars Hot?

Let us tie together threads involving hydrostatic equilibrium,

the virial theorem, stellar energy production, and gravitational

collapse by asking: “Why are stars hot?”



354 CHAPTER 9. THE FORMATION OF STARS

• The popular perception is that stellar cores are hot because

they correspond to enormous thermonuclear furnaces.

• But the core of the Sun is in fact a very low density power

source (a few hundred watts per cubic meter in the core).

• As we have seen, it is

– release of gravitational energy by contraction and

– partial trapping of that energy by high stellar opacity

that raises the protostar interior to fusion temperature.

• The role of hydrogen burning is not to heat stars (gravity

and the virial theorem can do that); it is to sustain the lu-

minosity over much longer periods than would be possible

otherwise.

• Triggering thermonuclear reactions replaces the Kelvin–

Helmholtz timescale for sustained luminosity with the

much longer nuclear burning timescale.

• This enables the Sun to radiate its present power for bil-

lions of years rather than millions of years.

• So the source of sustained luminosity and sustained high

interior temperatures for main sequence stars is indeed fu-

sion, but the cores of those stars were heated by gravita-

tional contraction, to their present temperatures.

• They maintain those temperatures and luminosities by

slow fusion reactions in hydrostatic equilibrium.
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9.11 Limiting Upper Mass for Stars

• A limiting lower mass for stars is set by the requirement

that sufficient temperature be generated by gravitational

collapse to commence the burning of hydrogen to helium

in the core.

• An upper limiting mass for stars is thought to exist be-

cause of the opposite extreme:

If a star is too massive, the intensity of the energy

production makes the star unstable to disruption

by the radiation pressure.

• The pressure associated with the radiation grows as T 4

and thus will be most important for very hot stars.

• It is instructive to ask what photon luminosity is required

such that the magnitude of the radiation force is equivalent

to the magnitude of the gravitational force.

• This critical luminosity, which defines limiting configu-

rations that are stable gravitationally with respect to the

pressure of the photon flux, is termed the Eddington lumi-

nosity.
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9.11.1 Eddington Luminosity

• The force per unit volume associated with a photon gas is

given by the gradient of the radiation pressure,

1

V
Fr =−

dPr

dr
=

4

3
aT 3 dT

dr
.

• Equating the magnitudes of this force and the gravitational

force gives an expression for the Eddington luminosity

LEdd =
4πcGM

κ
.

• We may expect that stars exceeding this luminosity can

blow off surface layers by radiation pressure.

• The ejection of material

– may also be aided by stellar pulsations that result

from pressure instabilities at high luminosity, and

– may be influenced by rotation and magnetic fields.

• Force from radiation pressure and from gravity are pro-

portional to ρ/r2, so the dependence on r and ρ cancels

from the Eddington luminosity and

1. the mass of the star and

2. opacities for regions near the surface.

determine completely the critical luminosity.
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9.11.2 Estimate of Limiting Mass

The Eddington luminosity may be expressed as

LEdd

L⊙
≃ 3.5×104

(
M

M⊙

)

,

if we estimate the opacity κ by the Thomson formula.

• We may use this equation to estimate a radiation-pressure

mass limit by

– assuming that the most luminous stars observed (L∼
several×106L⊙) are at the Eddington limit, and

– approximating the relevant opacity by the Thomson

formula.

• This suggests a maximum stable mass of order 100M⊙.

This is a very crude estimate but calculations, and

observations, suggest that the most massive stars

indeed have masses of this order.
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9.12 The Initial Mass Function

Mass is destiny for stars. The distribution in initial mass for a

population of stars is called the initial mass function (IMF) for

that population.

• The initial mass function ξ (M) is defined by requiring that

the mass bound up in stars in the interval M to M+dM in

a volume of space be given by

MdN = ξ (M)dM,

where N is the number of stars in the volume.

• Determining the IMF requires an indirect, semiempirical

chain of reasoning since

– Observations give apparent magnitudes, not masses.

– Stellar populations evolve, so the present mass distri-

bution differs from the initial one.

• Edwin Salpeter first estimated ξ (M) in 1955 by

– Examining the luminosities of main sequence stars in

the neighborhood of the Sun.

– Relating the luminosity to the mass by empirical

mass–luminosity relations.

– Assuming that stars evolve away from the main se-

quence when about 10% of their initial hydrogen has

been burned.
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Figure 9.12: Initial mass function (IMF). Points are for stars near the Sun

and the line represents a Saltpeter power law, logξ (M)=−1.35logM+1.2.

Salpeter found a simple power law,

ξ (M) = ξ0M−1.35.

The IMF for stars near the Sun from more recent work is shown

in Fig. 9.12, along with Salpeter’s estimate.

• Salpeter’s power law continues to work well for stellar

masses in the ∼ 0.2−80M⊙ range.

• Deviation at large M likely is the mass limit on stars. At

small M there are complexities not in the Salpeter model.

• Clearly massive stars are rare, and the vast majority of

stars are produced with masses well below 1M⊙.

• The most likely result of star formation is a main sequence

star with a mass of a few tenths of a M⊙.
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Figure 9.13: Schematic model of an accretion disk and bipolar outflow.

9.13 Protoplanetary Disks

• In the final stages of protostar collapse, matter will con-

tinue to accrete from an equatorial accretion disk.

• Young stars produce very strong stellar winds that are fo-

cused perpendicular to the equatorial accretion disk.

• Accretion disks and bipolar outflow may common for stars

collapsing to the main sequence. (Fig. 9.13).

• The strong wind blowing from young stars is not well un-

derstood. One possible cause is matter drawing a mag-

netic field inward as it falls into the accretion disk.

• The outward flowing wind is partially blocked by the ac-

cretion disk and so escapes along the polar axis, producing

bipolar outflows from the young star.

• However, this simple picture cannot explain the narrow

width of the outflow observed in some cases. Presumably

the full mechanism is more complex, perhaps involving

the effect of magnetic fields to focus the ejected material.
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9.14 Stars, Disks, and Angular Momentum

The preceding discussion of collapsing protostars has men-

tioned the role of angular momentum only in passing.

• The interstellar clouds from which protostars collapse will

in general be rotating slowly.

• Doppler shifts of radio waves from opposite sides of these

clouds suggest line-of-sight velocities of order 0.1 km s−1.

If such a cloud collapses decoupled from the rest of the Uni-

verse its angular momentum must be preserved so v0r0 = vfrf,

• where v0 and r0 denote an initial tangential velocity and

radius, respectively, and

• vf and rf denote the corresponding quantities after the col-

lapse.



362 CHAPTER 9. THE FORMATION OF STARS

Earlier it was estimated that a 1 M⊙ cloud collapses to a star

from an initial radius of order 1016 cm.

• Taking the Sun as representative, this corresponds to a de-

crease in radius by 5–6 orders of magnitude.

• Invoking conservation of angular momentum, if the 1 M⊙
cloud collapsed directly to the Sun from

– an initial radius of 1016 cm and

– tangential velocity 0.1 km s−1,

• the surface of the Sun should have been spun up to a ve-

locity

v =

(
r0

R⊙

)

v0 ≃ 14,000 km s−1.

• No normal star is spinning at anywhere near this rate!
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A basic fallacy in the preceding argument is that for finite an-

gular momentum

• The collapse will not proceed directly to a star.

• Instead it will terminate when the rotating cloud forms a

stable disk for which the gravitational acceleration exactly

keeps the particles in a circular orbit

• This requires that

v2
f

rf

=
GM

r2
f

,

which may be combined with

v =

(
r0

R⊙

)

v0

to give a disk radius

rdisk = rf ≃
v2

0r2
0

GM
.

These disk radii typically are of order 100 AU.



364 CHAPTER 9. THE FORMATION OF STARS

Thus, the initial collapse is likely to a rotating disk much larger

than a star, and

• the final star is produced by an object that condenses at

the center of this disk

– having much of the disk’s mass but

– only a fraction of its angular momentum.

• The mechanism by which this takes place is not well un-

derstood but involves transfer of angular momentum out-

ward in the disk.

Thus, for example, in our Solar System the outer

planets like Jupiter carry much more angular mo-

mentum in their orbital motion than the Sun carries

in its rotation.
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9.15 Exoplanets

The dust disks observed around a number of young stars sug-

gests that planetary formation may be taking place in these sys-

tems.

• Indeed, over the past few years impressive evidence has

accumulated for thousands of extrasolar planets or exo-

planets.

• These planets are difficult to observe directly at their great

distance.

• They are detected primarily through their gravitational in-

fluence on the parent star.

• In principle they could be detected by the wobble in angu-

lar position on the celestial sphere of the parent star caused

by the gravitational tug of the planet as it moves about its

orbit.

• In practice, it has proven easier to instead

– detect the wobble corresponding to the small periodic

Doppler shifts for the radial motion of the parent star

induced by this motion, and (in favorable cases)

– by small variations in light output caused by planetary

transits of the parent star.
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Figure 9.14: Doppler spectroscopy method for detecting extrasolar planets.

9.15.1 The Doppler Spectroscopy Method

The Doppler spectroscopy method is illustrated in Fig. 9.14.

• he semiamplitude K of the radial velocity is

K =

(
2πG

P

)1/3
mp sin i

(M∗+mp)2/3(1− e2)1/2
,

– where i is the tilt angle,

– mp is the mass of the unseen companion,

– M∗ is the mass of the observed star,

– the orbital eccentricity is e,

and the orbital period P is given by Kepler’s third law,

P2 =
4π2a3

G(M∗+mp)
,

where a is the semimajor axis of the relative orbit.
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• Generally, the tilt angle i is unknown, so masses are uncer-

tain by a factor sin i in the absence of further information.

• The method requires that changes in radial velocity for the

parent star of order 10 m s−1 be detected.
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9.15.2 Transits of Extrasolar Planets

In cases where the geometry is favorable for an eclipse,

• it is possible to detect the transit of extrasolar planets

across the face of their parent star through the periodic

reduction in light output for the system, and

• in favorable cases the secondary eclipse of the exoplanet

by the parent star can be seen.

• Such data allow the tilt angle i of the orbit to be con-

strained to near π
2 , and

• from eclipse timing the planetary radius can be estimated.

• The IR flux from the planet can be deduced from the total

flux decrease in the secondary eclipse, and

• by fitting such data to models, properties of the planet’s

atmosphere may be inferred.

• Transit information, coupled with the information from

Doppler analysis of the system, allows a rather full pic-

ture to be constructed:

– a detailed orbit of the planet,

– its mass,

– its size,

– its density,

– information about the atmosphere of the planet.



Chapter 10

Life and Times on the Main Sequence

In the preceding chapter we considered the collapse of a pro-

tostar to the main sequence. In this chapter we examine the

nature of life on the main sequence for such a star.

• The essence of life on the main sequence is stable burning

of H into He in hydrostatic equilibrium, by

– PP chains for stars of a solar mass or less, and

– the CNO cycle for more massive main-sequence stars.

• Since we have examined in some detail hydrostatic equi-

librium, energy production by the PP chains and the CNO

cycle, we already understand the essence of life on the

main sequence.

It is appropriate that we begin by examining this main sequence

star that we know the best: the Sun.

369
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10.1 The Standard Solar Model

The Sun is by far the most studied star. This has allowed the

construction of a Standard Solar Model:

Standard Solar Model: a mathematical model of

the Sun that uses

1. fundamental knowledge from fields such as

nuclear and atomic physics,

2. measured key quantities, and

3. a few assumptions

to describe all solar observations.

Standard Solar Models are important because

• they fix

– the Sun’s helium abundance and

– the convection length scale in the solar sub-surface.

• They provide a benchmark for measuring improved so-

lar modeling and a starting point for more general stellar

modeling.
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The essence of the Standard Solar Model is that a 1 M⊙ ZAMS

star is evolved to the present age of the Sun subject to the fol-

lowing assumptions:

1. The Sun was formed from a homogeneous mixture of

gases.

2. The Sun is powered by nuclear reactions in its core.

3. The Sun is approximately in hydrostatic equilibrium, with

the gravitational forces that attempt to compress it almost

exactly compensated by forces arising from gradients in

internal gas and radiation pressure.

4. Some deviation from equilibrium is permitted as the Sun

evolves, but any deviations are assumed to be small and

slow.

5. Energy is transported from the core, where it is produced,

to the surface, where it is radiated into space

• by photons (radiative transport)

• by large-scale vertical motion of packets of hot gas

(convection).

6. Any heat transport by conduction is ignored.

Let us now discuss each of these assumptions that enter the

Standard Solar Model in a little more depth.
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10.1.1 Composition of the Sun

• The assumption that the Sun was formed from a homoge-

nous mixture of gases is motivated by the strong convec-

tion expected in the protostar during collapse to the main

sequence.

• The surface abundances are then assumed to have been

undisturbed in the subsequent evolution, so that

Present surface abundances indicate the composi-

tion of the original solar core.

• The abundance of most elements in the surface can be in-

ferred by spectroscopy. Exceptions are the noble gases

He, Ne, and Ar. They are not excited significantly by the

blackbody emission spectrum of the photosphere, so their

abundance cannot be determined well from the spectrum.

• Because evolution of the Sun’s luminosity depends on the

mean molecular weight raised to the power 7.5 (see Ex-

ercise 10.1), which is strongly influenced by the helium

abundance, the H/He ratio is normally taken as an ad-

justable parameter in solar models.

• The H/He ratio is determined by requiring that the lumi-

nosity of the Sun at the present age of the Solar System

(4.6 billion years, as determined by dating meteorites) be

accurately reproduced by the model.
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10.1.2 Nuclear Energy Generation and Composition Changes

The Sun is assumed to derive its power and associated com-

position changes from the proton–proton chains PP-1, PP-2,

and PP-III, and the CNO cycle. The nuclear reaction networks

describing this energy and element production are solved by

• dividing the Sun into concentric shells,

• calculating the nuclear reactions in each shell as a function

of the current temperature and density there, and

• using the updated composition and the energy production

as constant input to the partial differential equations de-

scribing the solar equilibrium structure.
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10.1.3 Hydrostatic Equilibrium

Since the dynamical timescale of the Sun is less than an hour,

τhydro ≃ (Gρ̄)1/2 ≃ 55 minutes,

the Sun may be expected to have reached hydrostatic equilib-

rium quickly.

• However, a Standard Solar Model allows small expansions

and contractions in response to time evolution of the star.

• Re-equilibration is assumed to be very fast compared with

the timescale for evolution.

• The pressure is

– composed of both gas pressure and radiation pres-

sure, but

– the radiation pressure even at the center is only about

0.05% of the total pressure.

• A Standard Solar Model typically ignores the effects of

– rotation,

– magnetic-field pressure, and

– stellar pulsations

on hydrostatic equilibrium.
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10.1.4 Energy Transport

It is assumed that (1) energy transport in the Sun by acoustic or

gravitational waves is negligible, and that (2) the energy pro-

duced internally in the Sun is transported by radiative diffusion

and convection to the surface.

• In the interior, transport is assumed to be by

– radiative diffusion unless the critical gradient for con-

vective instability is exceeded, in which case

– the Sun transports energy in that region convectively

with an adiabatic temperature gradient.

• In the sub-surface, the actual gradient is steeper than the

adiabatic gradient and the resulting convection is modeled

by mixing length theory.

• Because convection in the sub-surface is difficult to calcu-

late reliably, the mixing length in units of the scale height

is taken as an adjustable parameter, fixed by requiring the

model to yield the observed radius of the Sun.

• The opacities required for radiative diffusion of energy are

Rosseland mean opacities, calculated numerically.

Opacities are among the least well-determined

quantities entering the Standard Solar Model, with

typical uncertainties in the 10–20% range.
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Optical Depth and the Solar Surface

The optical depth τ at radius r is defined in terms of the radia-

tive opacity κ by

τ =
∫ ∞

r
κρdr.

It measures the probability that photons interact with solar ma-

terial before being radiated into space.

• The radius of the Sun is defined to be that distance from

the center where the optical depth is 2
3 .

• The diffusion approximation for radiative transport fails

when τ is lower than about 1–10 because the mean free

path for photons then becomes very long

• (In the solar surface, the mean free path for photons is of

order 107 cm or longer, compared with fractions of a cm

in the interior).

• The region of the solar surface where optical depth is less

than about 1 is called the solar atmosphere.

• Methods used to deal with radiative transport in the solar

atmosphere are much more complicated that those ade-

quate for the solar interior because one can no longer make

a diffusion approximation.

• It is essential to model the atmosphere adequately because

– it defines outer boundary conditions and

– this is where the solar spectrum is produced.
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10.1.5 Constraints and Solution

Solution of the Standard Solar Model problem corresponds to

• evolving in time four partial differential equations in five

unknowns (P, T , r, m(r), and L),

• supplemented by an equation of state and equations gov-

erning composition change (one for each species),

• subject to constraints that calculated radius, luminosity,

and mass are equal to the corresponding observed values.
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Two equations governing hydrostatic equilibrium,

dm

dr
= 4πr2 ρ(r) Mass conservation

dP

dr
=−Gm(r)

r2
ρ Hydrostatic equilibrium,

three equations for luminosity and temperature gradients,

dL

dr
= 4πr2ε(r) Luminosity

dT

dr
=−3ρ(r)κ(r)

4acT 3(r)

L(r)

4πr2
(If radiative)

dT

dr
=

(
γ−1

γ

)
T

P

dP

dr
(If convective),

equations governing composition changes,

dn

dt
=−1

τ
n Nucleosynthesis,

and an equation of state,

P = P(T,ρ ,Xi, . . .) Equation of state.
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The network of equations required to describe nuclear energy

and element production is solved separately for each timestep

in each zone.

• The equation of state is

– assumed to be given by the ideal gas law for regions

that are completely ionized.

– Otherwise, a numerical equation of state is typically

used.

• The Standard Solar Model solution is constructed itera-

tively.

– Starting values for the helium abundance and the mix-

ing length parameter are used to evolve an initial zero-

age model to the current age of the Sun.

– The model’s luminosity and radius are then compared

with observations, the helium abundance and mix-

ing length parameters adjusted accordingly, and the

model is evolved again.

– This cycle is repeated until convergence is obtained.

Table 10.1 gives the temperature, density, pressure, and lumi-

nosity of a Standard Solar Model as a function of radius and

enclosed mass at that radius.
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Table 10.1: A Standard Solar Model

M/M⊙ R/R⊙ T (K) ρ (g cm−3) P (dyn cm−2) L/L⊙

0.0000298 0.00650 1.568E+07 1.524E+02 2.336E+17 0.00027

0.0008590 0.02005 1.556E+07 1.483E+02 2.280E+17 0.00753

0.0065163 0.04010 1.516E+07 1.359E+02 2.111E+17 0.05389

0.0207399 0.06061 1.456E+07 1.193E+02 1.868E+17 0.15638

0.0439908 0.08041 1.386E+07 1.027E+02 1.606E+17 0.29634

0.0762478 0.10006 1.310E+07 8.729E+01 1.349E+17 0.45135

0.1173929 0.12000 1.231E+07 7.350E+01 1.108E+17 0.60142

0.1672004 0.14056 1.150E+07 6.123E+01 8.892E+16 0.73152

0.2203236 0.16027 1.076E+07 5.114E+01 7.094E+16 0.82657

0.2800107 0.18104 1.002E+07 4.205E+01 5.517E+16 0.89658

0.3393826 0.20107 9.353E+06 3.459E+01 4.279E+16 0.94011

0.3966733 0.22038 8.762E+06 2.847E+01 3.319E+16 0.96616

0.4559683 0.24084 8.188E+06 2.301E+01 2.516E+16 0.98259

0.5114049 0.26085 7.676E+06 1.857E+01 1.907E+16 0.99183

0.5627338 0.28058 7.214E+06 1.496E+01 1.446E+16 0.99669

0.6099028 0.30016 6.794E+06 1.203E+01 1.096E+16 0.99860

0.6564038 0.32132 6.379E+06 9.484E+00 8.119E+15 0.99941

0.6952616 0.34091 6.028E+06 7.605E+00 6.156E+15 0.99976

0.7304369 0.36063 5.703E+06 6.092E+00 4.667E+15 0.99993

0.7621708 0.38053 5.400E+06 4.876E+00 3.539E+15 1.00002

0.7907148 0.40067 5.117E+06 3.900E+00 2.683E+15 1.00005

0.8163208 0.42109 4.851E+06 3.118E+00 2.034E+15 1.00007

0.8374222 0.44008 4.621E+06 2.539E+00 1.578E+15 1.00007

0.8580756 0.46112 4.383E+06 2.029E+00 1.197E+15 1.00006

0.8750244 0.48072 4.176E+06 1.651E+00 9.287E+14 1.00006

0.8902432 0.50063 3.978E+06 1.345E+00 7.206E+14 1.00005

0.9038831 0.52086 3.789E+06 1.095E+00 5.591E+14 1.00004

0.9160850 0.54139 3.606E+06 8.924E-01 4.339E+14 1.00004

0.9260393 0.56033 3.445E+06 7.413E-01 3.445E+14 1.00003

0.9358483 0.58142 3.273E+06 6.052E-01 2.673E+14 1.00003
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Table 10.1: (Continued) Standard Solar Model

M/M⊙ R/R⊙ T (K) ρ (g cm−3) P (dyn cm−2) L/L⊙

0.9438189 0.60081 3.120E+06 5.040E-01 2.123E+14 1.00002

0.9509668 0.62036 2.969E+06 4.205E-01 1.686E+14 1.00002

0.9573622 0.64001 2.818E+06 3.517E-01 1.339E+14 1.00002

0.9636045 0.66168 2.648E+06 2.900E-01 1.039E+14 1.00001

0.9686223 0.68129 2.485E+06 2.445E-01 8.249E+13 1.00001

0.9730081 0.70042 2.315E+06 2.081E-01 6.572E+13 1.00001

0.9771199 0.72033 2.115E+06 1.780E-01 5.161E+13 1.00001

0.9811002 0.74162 1.899E+06 1.513E-01 3.936E+13 1.00000

0.9842836 0.76050 1.718E+06 1.299E-01 3.055E+13 1.00000

0.9874435 0.78148 1.526E+06 1.085E-01 2.264E+13 1.00000

0.9900343 0.80103 1.355E+06 9.066E-02 1.678E+13 1.00000

0.9922832 0.82051 1.193E+06 7.470E-02 1.215E+13 1.00000

0.9942853 0.84082 1.031E+06 5.987E-02 8.406E+12 1.00000

0.9958822 0.86022 8.826E+05 4.733E-02 5.682E+12 1.00000

0.9972278 0.88035 7.356E+05 3.590E-02 3.585E+12 1.00000

0.9982619 0.90020 5.966E+05 2.613E-02 2.110E+12 1.00000

0.9990296 0.92017 4.627E+05 1.775E-02 1.107E+12 1.00000

0.9995498 0.94015 3.343E+05 1.080E-02 4.833E+11 1.00000

M⊙ = 1.989×1033 g R⊙ = 6.96×1010 cm L⊙ = 3.827×1033 erg s−1
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Figure 10.1 illustrates graphically some of the parameters of

this model plotted versus the radius and Fig. 10.2 plots the same

quantities versus the enclosed mass coordinate.
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Figure 10.1: Parameters from a Standard Solar Model (Table 10.1) plotted

versus the radial coordinate.
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Figure 10.2: Parameters from a Standard Solar Model (Table 10.1) plotted

versus the enclosed mass.
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The Standard Solar Model may be tested by comparing its pre-

dictions with observations.

• These tests range from general ones, such as accounting

for the existence, age, and energy output of the Sun, to

specific ones such as the accounting for the results of solar

seismology.

• The Standard Solar Model has passed these tests very

well.

We now discuss two examples of how the Standard Solar Model

description of the solar interior can be tested:

• The subsurface structure as inferred from helioseismology

and

• The spectrum and overall flux of neutrinos emitted from

the solar core.
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10.2 Helioseismology

One way to study the Sun’s interior is to study the propagation

of waves in its body.

• This is similar to the way geologists learn about the inte-

rior of the Earth by studying seismic waves or how we

may infer the composition of a bell by striking it and

studying the sound frequencies that it produces.

• The corresponding field of study is called helioseismol-

ogy.
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10.2.1 p-Modes

Solar oscillations were discovered by studying Doppler shifts

of surface absorption lines.

• It was found that the solar surface consists of patches os-

cillating on a timescale of five minutes with a velocity am-

plitude of 0.5 km s−1.

• These 5-minute oscillations represent pressure waves (p-

modes) trapped between the surface and the lower bound-

ary of the convective zone.

• They are reflected from the solar surface by density gradi-

ents.

• They are refracted near the bottom of the convection zone

because of changing soundspeed in that region.
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10.2.2 g-Modes

In addition to p-modes associated with acoustical waves

trapped near the solar surface, the Sun may also exhibit g-

modes:

• These correspond to oscillations in which the restoring

force is gravity.

• If g-modes can be observed, they carry information about

much deeper regions of the Sun than that carried by the

p-modes.
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The Sun vibrates at a complex set of frequencies, with the dom-

inant frequency corresponding to the 5-minute oscillation de-

scribed above.

• By decomposing the observed vibration of the Sun into a

superposition of standing acoustic waves, it is possible to

learn about the interior.

• Such decompositions indicate that the observed motion of

the surface is a superposition of several million resonant

modes with different frequencies and horizontal wave-

lengths.

• Individual modes in this decomposition may have velocity

amplitudes as large as 20 cm s−1 and 1–2 meter vertical

displacements.

Presently, helioseismology is placing strong constraints on our

theories of the solar interior.

• The analysis is complex but the basic idea is simple:

changes in the properties of the solar interior (for exam-

ple, the amount of helium in some region) affects the way

sound waves travel through the interior.

• This will in turn influence the way the surface vibrates.
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Two important pieces of information obtained from early he-

lioseismology are that

• the abundance of helium in the interior (but outside the

core) is about the same as at the surface, and that

• convection extends about 30 percent of the way to the cen-

ter.

However, more recently it has been found that stellar evolution

models applied to the Sun

• are compatible with helioseismology if they adopt older

solar composition models, but

• are incompatible with helioseismology if they adopt the

solar composition obtained by the newest spectroscopic

models.

This unresolved anomaly is called the solar abundance prob-

lem.
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10.3 Solar Neutrino Production

Helioseismology allows us to probe the interior of the Sun. A

second way in which we can study the (deep) interior of the

Sun is by detecting the neutrinos that are produced there.

• The energy powering the surface photon luminosity must

make its way on a 100,000-year or greater timescale to

the surface before being radiated.

• Neutrinos emitted from the core are largely unimpeded in

their exit from the Sun, reaching the Earth 8.5 minutes

after they were produced.

Therefore, neutrinos carry immediate and more di-

rect information about the current conditions in the

solar core than do the photons emitted from the so-

lar photosphere.
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Eight reactions or decays of some significance in solar energy

production produce neutrinos:

pp p+p→ 2H+ e++νe Q≤ 0.420 MeV

pep p+ e−+p→ 2H+νe Q = 1.442 MeV

hep 3He+p→ 4He+νe Q≤ 18.773 MeV

7Be 7Be+ e−→ 7Li+νe Q = 0.862 MeV (89.7%)

Q = 0.384 MeV (10.3%)

8B 8B→ 8Be∗+ e++νe Q≤ 15 MeV

CNO 13N→ 13C+ e++νe Q≤ 1.199 MeV

CNO 15O→ 15N+ e++νe Q≤ 1.732 MeV

CNO 17F→ 17O+ e++νe Q≤ 1.740 MeV

• Six of the reactions produce spectra with a range of Q-

values.

• Two are line sources (produce sharp energies).

• CNO neutrinos are difficult to detect because

– intensities are weak (less than 2% of Sun’s energy)

– the energies are low.

• Therefore, our primary concern will be with the first five

reactions, which correspond to steps of the PP chains.
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Figure 10.3: The solar neutrino spectrum. The sensitive region of various

experiments is indicated above the graph.

The solar neutrino spectrum predicted by the Standard Solar

Model is shown in Fig. 10.3.
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Figure 10.4: Differential neutrino production dQ/dR as a function of solar

radius. The shaded area indicates the differential photon luminosity.

Fig. 10.4 illustrates the radial regions of the Sun responsible for

producing neutrinos from each of the PP reactions.
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• The 8B and 7Be neutrinos probe smaller radii than the

neutrinos produced in PP-I (labeled pp).

• Since they are produced at smaller R they are produced at

higher T .

• Attempts to understand the rate of observed neutrino

emission from the Sun yielded initially surprising results.

• These results suggested that our fundamental understand-

ing of either (or both)

– elementary particle physics or

– how the Sun works

were incomplete.

• Resolution of this issue led to profound new understand-

ing in astrophysics and elementary particle physics.
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10.4 The Solar Electron-Neutrino Deficit

By counting the number of neutrinos produced and the average

energy released for each 4H→ 4He in the PP chains, we may

estimate that

• The Sun should be emitting approximately 1038 electron

neutrinos per second if it is powered by the PP chains.

• However, detectors on Earth see only a fraction of the cor-

responding number of electron neutrinos that should reach

Earth.

• This has historically been termed the solar neutrino prob-

lem.

Let’s now describe the solar neutrino detection experiments

that led to this conclusion.
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10.4.1 The Davis Chlorine Experiment

The pioneering solar neutrino detection experiment was started

by Raymond Davis in the early 1960s.

• It uses the reaction

ν + 37Cl→ 37Ar+ e−

initiated in 600 tons of cleaning fluid (C2Cl4).

• To shield against cosmic rays, the tank containing the

cleaning fluid was placed 1500 meters below the surface

in the abandoned Homestake gold mine in South Dakota.

• The small number of argon atoms produced by the above

reaction are radioactive.

• Their radioactive decays can be counted after separation

of the argon from the cleaning fluid by chemical means.
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• The reaction ν + 37Cl→ 37Ar+ e− has a threshold (mini-

mum energy for the reaction to occur) of 0.8 MeV.

• This is higher than the maximum energy of 0.42 MeV for

neutrinos in the PP-I chain:
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• Therefore, the Davis experiment was sensitive primarily

to the 8B neutrinos (and weakly to the 7Be neutrinos).

The Davis rate was 2–3 times smaller than the rate

predicted by the Standard Solar Model.

• This detection method had no directional sensitivity.
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10.4.2 The Gallium Experiments

The Davis experiment was mostly sensitive to the 8B neutrinos.
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which is not very closely related to the Sun’s photon luminosity.
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Because of the threshold for ν + 37Cl→ 37Ar+ e−, neutrinos

from PP-I (primary solar energy source) are not detected at all.
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Another chemistry-based detector can be constructed using

ν + 71Ga→ 71Ge+ e−.

The 71Ge produced is radioactive.

• Thus the Ge can be separated chemically from the Ga and

the decay of 71Ge counts the number of neutrino reactions.

• The reaction ν + 71Ga→ 71Ge+ e− has a threshold of

only 0.23 MeV.

• Thus it can detect neutrinos coming from the PP-I chain

that produces most of the solar energy.
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Two large experiments,

• SAGE (operated by a Russian–American collaboration un-

derground in the Caucasus) and

• GALLEX (operated by a largely European collaboration in

the Gran Sasso underground laboratory in Italy),

were implemented based on the gallium reaction

ν + 71Ga→ 71Ge+ e−.

• For these experiments more than half of the neutrinos

came from the pp reaction in PP-I.

• These experiments also measured a neutrino deficit com-

pared with the Standard Solar Model.

– However, the deficit is not as large as in the Davis

chlorine experiment.

– They found that the electron neutrino flux is reduced

by a factor of about two relative to that expected from

the Standard Solar Model (SSM).

• Like the chlorine experiment, the gallium experiments

were chemistry-based and had no directional sensitivity.
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10.4.3 Super Kamiokande

The neutrino detector Super Kamiokande (commonly referred

to as Super-K) uses a different approach.

• A large tank containing 50,000 cubic meters of ultrapure

water is monitored by photodetectors.

• When the elastic scattering reaction ν + e−→ ν + e− oc-

curs in the water, recoiling electrons

• may exceed the speed of light in the medium and produce

Čerenkov radiation that is detected by the phototubes.

• This detector is sensitive only to the more energetic 8B

neutrinos produced in PP-III.
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Figure 10.5: (a) Shockwaves produced by exceeding the speed of sound in a

medium. (b) Production of Cerenkov radiation by neutrinos. (c) Detection of

Cerenkov radiation.

• Super-K has directional sensitivity.

• Thus it is able to demonstrate that the neutrinos being de-

tected come from the direction of the Sun.
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Figure 10.6: (a) (top) Workers inspecting Super-K with the tank partially filled.

The bulbs are the photomultiplier tubes. (bottom) Schematic of detecting neutrinos.
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• The Super Kamiokande results again indicated a solar

neutrino deficit:

• The detector sees fewer than 40% of the electron neutrinos

expected based on fluxes predicted by the Standard Solar

Model.
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Table 10.2: Solar neutrino fluxes from various experiments compared with a Stan-

dard Solar Model (SSM). All fluxes are in solar neutrino units (SNU), except the

result from Super Kamiokande. Experimental uncertainties include systematic and

statistical contributions.

Experiment Observed flux SSM Observed/SSM

Homestake 2.54±0.14±0.14 SNU 9.3 +1.2
−1.4 0.273±0.021

SAGE 72 +12 +5
−10 −7 SNU 137 +8

−7 0.526±0.089

GALLEX 69.7±6.7 +3.9
−4.5 SNU 137 +8

−7 0.509±0.089

Super-Kamiokande 2.51 +0.14
−0.13 (106 cm−2s−1) 6.62 +0.93

−1.12 0.379±0.034

The experiments described above were not all sensitive to the

same neutrinos from the Sun and found somewhat different

magnitudes for the solar neutrino deficit.

• However, the chlorine experiment, two gallium experi-

ments, and water Čerenkov detectors all find reproducibly

that significantly fewer neutrinos are being detected com-

ing from the Sun than the Standard Solar Model predicts.

• Table 10.2 summarizes and compares with the predictions

of a Standard Solar Model (SSM).

• These results indicate

– a deficit of solar neutrinos in the detectors, and that

– the deficit depends on which neutrinos are detected.

Example: suppression of 8B neutrinos appears to

be larger than for the PP-I neutrinos.
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10.4.4 Astrophysics Versus Particle Physics Explanations

Confirmation in more recent experiments of the solar neutrino

problem discovered by Davis implies two alternatives:

• We do not understand how the Sun works (failure of the

Standard Solar Model).

• We do not understand the neutrino (failure of the Standard

Model of elementary particle physics).

Thus, a debate ensued over whether the solution to the solar

neutrino problem lay in a modification of our astrophysics un-

derstanding or of our particle physics understanding.

• Experiments and observations have shown rather conclu-

sively that the “solar neutrino problem” is now resolved,

and that

• the resolution lies in new properties for neutrinos that im-

ply physics beyond the Standard Model of elementary par-

ticle physics.

• Specifically, we now have strong evidence that

– at least some neutrinos have a non-zero mass, and

– this permits neutrinos to change their types (“fla-

vors”) from electron neutrinos (to which the above

detectors are sensitive) into other flavors that the de-

tectors described above cannot see.
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To understand these neutrino flavor oscillations, we must first

understand

• weak interactions in the Standard Model of elementary

particle physics and

• their properties in conjectured extensions of that model.

That will be the subject of following chapters.
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10.5 Evolutionary Timescales

A question of basic importance is how long a star will remain

on the main sequence.

• Evolution prior to the main sequence (protostar stage) is

governed by two primary timescales:

1. The hydrodynamical timescale (free-fall timescale)

2. The Kelvin–Helmholtz timescale (thermal adjustment

timescale).

Evolution on the main sequence and beyond entails a third

timescale, the nuclear burning timescale. For most stars:

– The hydrodynamical timescale is hours to days.

– The Kelvin–Helmholtz timescale is hundreds of thou-

sands to hundreds of millions of years.

– The nuclear burning timescale depends on the stellar

fuel and mass, but is much longer than the hydrody-

namic and Kelvin–Helmholtz timescales.

• Thus, stars spend much more time on the main sequence

than in formation because

Time spent on the main sequence is governed by

the hydrogen burning timescale.

This timescale is much longer than the hydrodynamical

and Kelvin–Helmholtz timescales.



410 CHAPTER 10. LIFE AND TIMES ON THE MAIN SEQUENCE

For the Sun

• the hydrodynamical timescale is about an hour,

• the Kelvin–Helmholtz timescale is about 10 million years,

and

• the time to burn the core hydrogen fuel on the main se-

quence (nuclear burning timescale) is about 10 billion

years.
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Once stars exhaust their core hydrogen and leave the main se-

quence, they can undergo successive burnings of heavier fuels,

which introduce new nuclear burning timescales.

• In the periods between exhaustion of one fuel and ignition

of another, thermal adjustment timescales will also be im-

portant.

• In certain cases (such as gravitational core collapse) hy-

drodynamical timescales will be relevant.

• Nuclear burning timescales after the main sequence are

longer than the corresponding Kelvin–Helmholtz and hy-

drodynamical timescales, just as for the main sequence.

• But post main-sequence burning timescales are much

shorter than main-sequence hydrogen burning because

they occur at much higher temperature and density.

• Thus, a star generally spends more time on the main se-

quence than in its post main-sequence evolution.

• We conclude that

The nuclear burning timescale on the main se-

quence is longer than any other timescale in a

star’s life.

• Thus at any one time in a population of stars we expect to

see the majority on the main sequence

• (Unless the age is sufficiently large that most stars have

had time to evolve off the main sequence).
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10.6 Evolution of Stars on the Main Sequence

The main sequence is the longest and most stable period of a

star’s life, but

• stars do evolve on the main sequence, primarily in re-

sponse to core concentration changes as they burn hydro-

gen to helium in hydrostatic equilibrium.

• This lowers the pressure in the core because it increases

the mean molecular weight µ :

P = ρ
kT

µ

• This in turn

– increases the core density and

– releases gravitational energy,

half of which is radiated away and half of which raises the

core temperature (virial theorem).

• The energy outflow resulting from higher core tempera-

tures causes the outer layers to expand slightly and the

star becomes more luminous.

• Dependence of luminosity on the mean molecular weight

µ is strong, varying as approximately µ7.5 (Exercise).
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• The surface temperature during evolution on the main se-

quence may either increase or decrease.

– For stars below about 1.25M⊙ the surface tempera-

ture tends to increase.

– For more massive stars it tends to decrease as the star

evolves on the main sequence.

• Therefore, the primary external effect of a star’s evolution

on the main sequence is to cause a small drift from the

ZAMS position in the HR diagram:

– Slightly upward and to the left for lighter stars.

– Slightly upward and to the right for heavier stars.

• Internally the changes are more substantial, but their ef-

fects are often not very visible externally while the star

continues to burn core hydrogen.

• Significant modification of elemental abundances is tak-

ing place as a result of the core fusion, but these changes

are limited initially to the central regions.



414 CHAPTER 10. LIFE AND TIMES ON THE MAIN SEQUENCE

The Standard Solar Model indicates that over the 4.6 billion

year time that the Sun has spent on the main sequence

• The radius has increased by about 12%,

• The core temperature has increased by about 16%,

• The luminosity has increased by about 40%,

• The effective surface temperature has increased by about

3%, and the flux of 8B neutrinos has increased by more

than a factor of 40.

• Near the center the mass fraction of hydrogen has de-

creased and the mass fraction of helium has increased by

about a factor of 2 from their initial values,

• Outside of about 20% of the solar radius hydrogen and

helium retain their ZAMS abundances.

• The mass fraction of hydrogen fuel has decreased substan-

tially in the solar core over its lifetime, but the rate of en-

ergy production by the PP chain is

dε

dt
≃ ρ2X2T 4,

where ρ is the density, X the hydrogen mass fraction, and

T the temperature.

– Increasing ρ and T more than offset decreasing X as

the Sun evolves on the main sequence.

– This explains why the Sun’s luminosity is rising even

as its hydrogen fuel is being depleted.
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Although the internal changes discussed in the preceding ex-

ample lead to only small visible external modification of the

star on the main sequence, they set the stage for rapid evolution

away from the main sequence that will be the topic of subse-

quent chapters.
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10.7 Timescale for Main Sequence Lifetimes

The rate of hydrogen fusion determines a timescale for life on

the main sequence.

• Comparison of stellar evolution simulations with obser-

vations suggest that stars leave the main sequence when

about 10% of their original hydrogen has been burned.

• Let us define a timescale τnuc for main sequence lifetimes

by forming the ratio of

– the energy released from burning 10% of the hydro-

gen and

– the luminosity.

• The energy available from the burning of one gram of hy-

drogen to helium is ∼ 6×1018 ergs. Therefore,

τnuc =
EH/10

L
= 6×1017XM

L
s,

– EH is the energy available from fusing all the hydro-

gen in the star,

– L is the present luminosity in erg s−1,

– X is the original hydrogen mass fraction,

– M is the mass of the star in grams.
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Example: Inserting values characteristic of the Sun, we find

for the Sun’s main sequence timescale

τ⊙nuc =
EH/10

L
∼ 2.2×1017 s∼ 1010 yr.

Expressing this timescale in solar units, we may write for any

star

τnuc = 1010

(
M

M⊙

)(
L⊙
L

)

yr,

and utilizing the mass–luminosity relation (Ch. 2)

L

L⊙
≃
(

M

M⊙

)3.5

,

the main sequence timescale may be expressed for M ≥M⊙ as

τnuc ≃ 1010

(
M

M⊙

)−2.5

yr.
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Figure 10.7: Main sequence lifetimes, temperatures, and luminosities.

Some main sequence lifetimes are illustrated in Fig. 10.7

• The Sun has a main sequence lifetime of about 10 billion

years, but

• a 20 M⊙ star stays on the main sequence for about 5.5

million years and

• a 100 M⊙ star lives on the main sequence for only about

100,000 years.

• Conversely, for main sequence stars with M << M⊙, we

may estimate that the main sequence lifetime greatly ex-

ceeds the present age of the Universe.
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Figure 10.8: Categories of stellar evolution after the main sequence.

Depending on the mass of the star, evolution off the main se-

quence can lead to the three qualitatively different scenarios

that are illustrated in Fig. 10.8.

• M < 0.5M⊙: Core temperatures never rise high enough to

ignite the He produced by PP-chain proton burning and

the star evolves to a He white dwarf.

• 0.5 < M < 8M⊙: A red giant that eventually sheds much

of its outer envelope as a planetary nebula and becomes a

C–O or Ne–Mg white dwarf.

• M > 8M⊙: A sequence of burning episodes involving suc-

cessively heavier fuels until the core of the star collapses,

producing in most cases a supernova with a remnant neu-

tron star or a black hole.
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Figure 10.9: Simulated evolution of a 1 M⊙ star from the final stages of

protostar collapse through main-sequence core hydrogen burning and on to

hydrogen shell burning. See text for explanation of symbols and number

labels. Initial composition was Y = 0.275 and Z = 0.015. .

10.7.1 Examples of Post Main-Sequence Evolution

Figure 10.9 summarizes (1) the final stages of collapse to

the main sequence, (2) evolution on the main sequence, and

(3) evolution off the main sequence with the development of a

shell hydrogen source for a 1M⊙ star.

• Numbers beside open circles indicate times in 109 yr.

• Numbers beside solid circles indicate the mass coordinate

for the hydrogen shell source.
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Figure 10.10: Evolution off the main sequence for stars of different initial

main-sequence mass. Dashed lines are theoretical estimates.

• Evolution after the main sequence for other stars is quali-

tatively similar to the preceding examples, but the details

depend very much on the mass of the star.

• An overview of initial evolution after leaving the main

sequence for a range of initial main-sequence masses is

given in the above figure.



422 CHAPTER 10. LIFE AND TIMES ON THE MAIN SEQUENCE



Chapter 11

Flavor Oscillations of Solar

Neutrinos

Recall from the previous chapter the solar neutrino problem:

Solar neutrino fluxes from various experiments compared with a Standard Solar

Model (SSM). All fluxes are in solar neutrino units (SNU), except the result from

Super Kamiokande.

Experiment Observed flux SSM Observed/SSM

Homestake 2.54±0.14±0.14 SNU 9.3 +1.2
−1.4 0.273±0.021

SAGE 72 +12 +5
−10 −7 SNU 137 +8

−7 0.526±0.089

GALLEX 69.7±6.7 +3.9
−4.5 SNU 137 +8

−7 0.509±0.089

Super-Kamiokande 2.51 +0.14
−0.13 (106 cm−2s−1) 6.62 +0.93

−1.12 0.379±0.034

423
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In the preceding chapter we discussed the internal structure of

the Sun and suggested that

• neutrinos emitted by thermonuclear processes in the cen-

tral region of the Sun carry direct information about the

state of the core.

• In this chapter we elaborate on the physics of solar neutri-

nos.

• Reconciliation of solar neutrino observations with our un-

derstanding of elementary particle physics has had funda-

mental implications both for astrophysics and for elemen-

tary particle physics.

Our discussion will involve directly only the Sun

because it is the only normal star near enough to al-

low its neutrinos to be detected with present tech-

nology. However, presumably the processes de-

scribed in this chapter operate also in a similar

way for other stars.
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Figure 11.1: Particles of the Standard Model and characteristic mass scales

in the quark and lepton sectors for each generation. Photons are labeled by

γ and gluons by G.

11.1 Weak Interactions and Neutrino Physics

The Standard Model of elementary particle physics assumes

that the electromagnetic and weak interactions are unified in a

local gauge or Yang–Mills theory in which

• The leptons (electrons, neutrinos, . . . ) and quarks are

grouped into generations or families and

• They interact through the exchange of gauge bosons: the

photon, W+, W−, and Z0.

The particles of the Standard Model are listed in Fig. 11.1,

along with their spins, charges, and masses (or experimental

mass limits).
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• In the Standard Model, the matter fields are divided into

three “generations” or “families”, as illustrated in the fig-

ure above.

• An important ingredient of the Standard Model is that the

matter fields do not interact across family lines.

• For the leptons this is implemented formally by assigning

a lepton family number to each particle and requiring that

interactions conserve this number.
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Example: In Generation I

• Assign an electron family number of

(a) +1 to the electron and electron neutrino,

(b) −1 to the antielectron and the electron antineutrino,

(c) zero for all other particles.

• Then the reaction νe +n→ p+ e− conserves electron

family number (because 1 + 0 = 0+ 1) and is observed

to occur.

• But the reaction νe + p→ n+ e+ violates electron family

number (because 1+ 0 6= 0+ (−1)) and has never been

observed.
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• Also illustrated in the above table are characteristic mass

scales for quarks and neutrinos within each generation.

• Neutrino masses are quoted as upper limits, since no neu-

trino mass has been measured directly thus far.

• The limits imply that neutrino masses are either zero or

tiny on a mass scale set by the quarks of a generation.

• The explanation of this is a major unresolved issue in the

theory of elementary particles.

In the Standard Model of elementary particle

physics, it is assumed that the mass of all neu-

trinos (and antineutrinos) is identically zero, but

some conjectured extensions allow a finite neu-

trino mass.
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• The detailed explanation of this assumption requires quan-

tum field theory beyond the scope of the present discus-

sion.

• The central point is that there are potentially two kinds of

neutrino mass terms that could appear in the theory:

1. Dirac masses and

2. Majorana masses.

• The first is appropriate if the neutrino and antineutrino

are separate particles.

• The second is appropriate if the neutrino is its own an-

tiparticle (which is not ruled out by present data).

• Both types of mass terms must vanish for Standard Model

neutrinos, but at least one could be non-zero in various

extensions of the Standard Model.
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11.1.1 Charged and Neutral Weak Currents

The Standard Model permits two basic classes of weak interac-

tions.

• In charged weak currents electrical charge is transferred

in the interaction

– The total charge is conserved, of course.

– Because charge is transferred, the boson mediating

the force must be charged.

– Thus, charged weak currents involve the W+ and W−

weak gauge bosons.

• The uncharged weak gauge boson Z0 can mediate neutral

weak currents in which there is no transfer of charge in

the weak interaction matrix elements.
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A νe can interact with an electron through the charged weak

current or the neutral weak current. However,

• A νµ or ντ cannot interact with an electron through ex-

change of a charged gauge boson without violating lepton

family number conservation.

• Therefore, only νe can undergo charged-current interac-

tions with electrons.

In contrast, neutral current interactions can take place with any

flavor of neutrino without violating lepton family number con-

servation.

• Thus, electron neutrinos can interact with the electrons in

normal matter through both the charged and neutral weak

currents.

• All other flavors of neutrinos can interact with electrons

only through the neutral weak current.
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11.1.2 Mixing in the Quark Sector

The term flavor is used to distinguish the quarks and leptons of

one generation from another.

• We shall often refer to νe, νµ , and ντ as different neutrino

flavors, and to u, d, s, . . . as different quark flavors.

• In the Standard Model, observations require that quark

mass eigenstates and weak eigenstates are not equivalent:.

Quark states entering the weak interactions are lin-

ear combinations of mass eigenstates.

• Example: The d and s quarks enter the weak interactions

in the “rotated” linear combinations dc and sc defined by

(

dc

sc

)

︸ ︷︷ ︸

weak eigenstates

=

(

cosθc sinθc

−sinθc cosθc

)

︸ ︷︷ ︸

flavor mixing matrix

(

d

s

)

︸ ︷︷ ︸

mass eigenstates

where in this matrix equation

– d ≡ |d〉 and s≡ |s〉 are mass-eigenstate quark fields,

– θc is termed the mixing angle or the Cabibbo angle.

– |x〉 is the quantum wavefunction of quark field x.

This matrix equation is a compact way to write two equations:

|dc〉= cosθc |d〉+ sinθc |s〉 ,
|sc〉=−sinθc |d〉+ cosθc |s〉 .
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• Comparison with data reveals that the Cabbibo mixing an-

gle is small:

sinθc ≃ 0.230 cosθc ≃ 0.973.

• In the realistic case of three generations of quarks, weak

eigenstates are described by a 3× 3 mixing matrix called

the Cabibbo–Kobayashi–Maskawa or CKM matrix that is

parameterized by

– three real mixing angles

– one phase.

There is little fundamental understanding of this

quark flavor mixing but the data require it.
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11.1.3 Mixing in the Leptonic Sector

In the Standard Model the quarks entering the weak interactions

are mixtures of different mass eigenstates.

• Hence we might expect that the corresponding leptons in

these generations could also enter the weak interactions as

mixed mass eigenstates.

• If all flavors of neutrinos are identically massless (as is

assumed in the Standard Model), flavor mixing has no ob-

servable consequences.

• However, if at least one neutrino has a non-zero mass, neu-

trino flavor mixing could have observable consequences.

• Conversely, observation of neutrino flavor mixing is a di-

rect indication that at least one neutrino has a finite mass.

Thus either the

• observation of neutrino flavor oscillations, or

• direct measurement of a finite neutrino mass

would imply the existence of physics beyond the

Standard Model.
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11.2 Beyond the Standard Model: Finite Neutrino Masses

As noted above, a finite neutrino mass implies possible flavor

mixing.

• This is of fundamental importance for elementary particle

physics because it would imply new physics beyond the

Standard Model.

• But it could be of equal importance for astrophysics be-

cause it provides a possible solution of the solar neutrino

problem:

– As we shall show below, if neutrino flavor eigenstates

are mixtures of mass eigenstates, neutrinos propagat-

ing in time will oscillate in flavor.

– Then it is possible that when some of the electron

neutrinos emitted by the Sun reach Earth they would

have oscillated into another flavor.

– Since the experiments described earlier are sensitive

only to electron neutrinos, they would miss any neu-

trinos that had oscillated into other flavors.

– This could (possibly) explain the observed neutrino

deficit.
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Standard Model neutrinos must be massless.

• However, there are many reasons to believe that the Stan-

dard Model—despite its remarkable success—is incom-

plete and represents a low-energy approximation to a more

complete theory.

– There are ∼20 adjustable parameters that have no

convincing fundamental constraint.

– The origin of mass through the Higgs mechanism is

purely phenomenological.

– The generational (family) structure is based entirely

on phenomenology.

– Violations of symmetries such as parity are put by

hand, . . .

• Various extensions such as Grand Unified Theories

(GUTs) have been proposed that go beyond the Standard

Model.

• For these theories often the reasons that mass terms are

forbidden in the Standard Model are not operative and

neutrino mass terms may occur naturally.

We must entertain the possibility of physics be-

yond the Standard Model and thus of finite neu-

trino masses.
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11.3 Neutrino Vacuum Oscillations

The preceding discussion suggests that neither

• direct experimental measurement,

• nor fundamental principle,

• nor our present understanding of the Standard Model ex-

tended to Grand Unified Theories

preclude a small mass for neutrinos.

Therefore, let us pursue the possibility that finite-

mass neutrinos undergo flavor oscillations, and

that these oscillations could account for the solar

neutrino deficit.



438 CHAPTER 11. FLAVOR OSCILLATIONS OF SOLAR NEUTRINOS

11.3.1 Mixing for Two Neutrino Flavors

Consider neutrino oscillations in a two-flavor model, in the ab-

sence of matter. (Note: h̄ = c = 1 units)

• We shall term these vacuum oscillations, as opposed to

oscillations that occur in matter.

• Generally, we shall use θ to denote neutrino vacuum oscil-

lation angles and θm to denote oscillation angles in matter.

• The flavor (weak) eigenstates |νe〉 and
∣
∣νµ

〉
may be ex-

pressed in terms of the mass eigenstates |ν1〉 and |ν2〉
through the matrix transformation

(

νe

νµ

)

︸ ︷︷ ︸

flavor eigenstates

=

(

cosθ sinθ

−sinθ cosθ

)

︸ ︷︷ ︸

flavor mixing matrix

(

ν1

ν2

)

︸ ︷︷ ︸

mass eigenstates

,

where θ is the vacuum mixing angle. Thus,

|νe〉= cosθv |ν1〉+sinθv |ν2〉
∣
∣νµ

〉
=−sinθv |ν1〉+cosθv |ν2〉 .

• By inverting this expression, mass eigenstates may in turn

be expressed as a linear combination of flavor eigenstates:

(

ν1

ν2

)

︸ ︷︷ ︸

mass eigenstates

=

(

cosθ −sinθ

sinθ cosθ

)

︸ ︷︷ ︸

flavor mixing matrix

(

νe

νµ

)

︸ ︷︷ ︸

flavor eigenstates

.
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• Assuming that at least one of the neutrino masses is non-

zero, the different mass eigenstates will move with slightly

different speeds as neutrinos propagate in time.

• Thus, the expansion coefficients in the above equation will

vary with time and

• the probability of detecting a particular flavor of neutrino

will oscillate with time, or equivalently, with the distance

traveled.

• From basic quantum field theory the mass eigenstates for

neutrinos evolve with time t according to

|νi(t)〉= e−iEit |νi(0)〉 ,

where the index i labels mass eigenstates of energy Ei.

• Thus the time evolution of the νe = cosθv |ν1〉+sinθv |ν2〉
state will be given by

|ν(t)〉= cosθv |ν1(t)〉+ sinθv |ν2(t)〉
= cosθe−iE1t |ν1(0)〉+ sinθe−iE2t |ν2(0)〉 ,

and this may be expressed as the mixed-flavor state

|ν(t)〉= (cos2 θe−iE1t + sin2 θe−iE2t) |νe〉
+sinθ cosθ(−e−iE1t + e−iE2t)

∣
∣νµ

〉
.



440 CHAPTER 11. FLAVOR OSCILLATIONS OF SOLAR NEUTRINOS

• We see that the mixed flavor state

|ν(t)〉= (cos2 θe−iE1t + sin2 θe−iE2t) |νe〉
+sinθ cosθ(−e−iE1t + e−iE2t)

∣
∣νµ

〉
.

starts out as pure νe at t = 0,

|ν(0)〉=(cos2 θ + sin2 θ)
︸ ︷︷ ︸

=1

|νe〉+sinθ cosθ(−1+1)
︸ ︷︷ ︸

=0

∣
∣νµ

〉
= |νe〉 ,

• but will be mixed νe and νµ after a finite time.

• Taking the overlap 〈νi|ν(t)〉 of the time-evolving mixed-

flavor state

|ν(t)〉= (cos2 θe−iE1t + sin2 θe−iE2t) |νe〉
+sinθ cosθ(−e−iE1t + e−iE2t)

∣
∣νµ

〉
.

with the flavor eigenstates |νi〉, we find that the probabili-

ties for an initial electron neutrino state to remain an elec-

tron neutrino, or be converted to a muon neutrino after a

time t, are given by

P(νe→ νe,t) = | 〈νe|ν(t)〉|2

= 1− 1
2 sin2(2θ)[1− cos(E2−E1)t] (remain νe)

P(νe→ νµ ,t) = |
〈
νµ

∣
∣ν(t)〉|2

= 1
2

sin2(2θ)[1− cos(E2−E1)t] (become νµ).

with the sum of probabilities equal to one.
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11.3.2 The Vacuum Oscillation Length

• Assuming the energies E1 and E2 to be approximately

equal and much larger than mc2 for the neutrino masses,

Ei = (p2 + m2
i

︸︷︷︸

small

)1/2 ≃ p+
m2

i

2p
︸ ︷︷ ︸

binomial exp.

−→ E2−E1 ≃
∆m2

2E

where E1 ∼ E2 ≡ E and ∆m2 ≡ m2
2−m2

1.

• Probabilities for flavor survival and conversion as a func-

tion of distance traveled r ∼ ct may then be expressed as

P(νe→ νe,r) = 1− sin2(2θ)sin2
(πr

L

)

,

P(νe→ νµ ,r) = sin2(2θ)sin2
(πr

L

)

,

where the oscillation length L is defined by

L≡ 4πE

∆m2
.

Physically L is the distance required for one one complete

flavor oscillation (for example, νe→ νµ → νe).

• Restoring the factors of h̄ and c in the preceding equation

L =
4πEh̄

∆m2c3
= 2.48

(
E

MeV

)(
eV2

∆m2

)

,

where L is in meters, the neutrino energy E is in MeV, and

the mass squared difference ∆m2 is in eV2.
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Figure 11.2: Neutrino vacuum oscillations in a 2-flavor model as a func-

tion of distance traveled r in units of the vacuum oscillation length L. The

probability as a function of r to be an electron neutrino is denoted by Pνe
and that to be a muon neutrino by Pνµ . The period of the oscillation is L

and its amplitude is sin2 2θ , where θ is the vacuum mixing angle. In this

calculation θ = 33.5◦, the neutrino energy is E = 5 MeV, the difference

in squared masses for the two flavors is ∆m2c4 = 7.5× 10−5 eV2, and the

corresponding oscillation length L is 165.3 km.

Neutrino oscillations for a 2-flavor model using these formulas

are illustrated in Fig. 11.2.
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11.3.3 Time-Averaged or Classical Probabilities

The oscillation wavelength may be smaller than the uncertain-

ties in position for emission and detection of neutrinos.

• There are thousands of kilometers variation in the distance

between production and detection of solar neutrinos due to

– varying production location in the Sun,

– varying detection location since the Earth is rotating,

– and varying Earth–Sun separation.

• If the oscillation length is less than the averaging intro-

duced by the preceding considerations, the detectors will

see a distance (or time) average.

• Denoting the averaged detection probability by a bar gives

P̄(νe→νe) = 1− 1
2 sin2 2θ P̄(νe→νµ) =

1
2 sin2 2θ .

• The average survival probability has a lower limit of 1
2 for

two flavors.

• For n flavors the lower limit is n−1, but that limit can be

realized only for a precisely-tuned flavor mixture.

• The above results are equivalent to the result obtained if

the interference terms resulting from squaring amplitudes

in quantum mechanics are discarded.

• Thus the average probability may also be viewed as the

classical probability.
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For later use we note that the classical flavor-conversion prob-

ability can be written as a matrix equation:

• Letting the row vector (1 0) and its corresponding column

vector denote pure νe flavor states,

P̄(νe→ νe) =
2

∑
i=1

P(νe→ νi)P(νi→ νe) =

(1 0)

(

cos2 θ sin2 θ

sin2 θ cos2 θ

)(

1 0

0 1

)(

cos2 θ sin2 θ

sin2 θ cos2 θ

)(

1

0

)

,

• which you can verify by matrix multiplication and

trigonometric identities is equivalent to the earlier result

P̄(νe→ νe) = 1− 1
2 sin2 2θ

for the classical probability to remain a νe.
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11.4 Neutrino Oscillations with Three Flavors

We will demonstrate in the next chapter that solar neutrinos

may be understood well in the simple 2-flavor formalism de-

veloped above. Thus at fixed energy a single vacuum mixing

angle and one mass-squared difference characterizes the theory.

However, in the general case there are three known flavors of

neutrinos (and their corresponding antineutrinos), so the cor-

rect treatment of neutrino oscillations requires additional pa-

rameters associated with a 3×3 mixing matrix. We refer to the

book for the resulting mixing matrix.
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Figure 11.3: Neutrino mass hierarchy in a three-flavor model. Mass-square

differences inferred from atmospheric neutrino and solar neutrino data are

indicated. Since only values of ∆m2 and not absolute masses are known, two

orderings of the known mass square differences are consistent with data: the

normal hierarchy and the inverted hierarchy. Shading indicates the relative

contribution of the three neutrino flavors to each mass eigenstate in the two

possible orderings.

11.4.1 The Neutrino Mass Hierarchy

Direct mass measurements place only upper limits on neutrino

masses for the three flavors. Oscillation measurements indicate

• that at least some neutrinos flavors have finite mass, and

• constrain the mixing angle and the mass squared differ-

ence between flavors, but cannot give the actual masses.

This leads to the hierarchy ambiguity displayed in Fig. 11.3.
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In principle the correct hierarchy can be inferred from matter

oscillations but evidence for these has been seen thus far

• only for solar neutrinos and

• not for atmospheric neutrinos (described in the next chap-

ter).

Thus only mass differences are known presently

for neutrinos.
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Chapter 12

Solar Neutrinos and the MSW Effect

The vacuum neutrino oscillations described in the previous sec-

tion could in principle account for the depressed flux of solar

neutrinos detected on Earth.

• But this solution requires a large mixing angle to suppress

the electron neutrino flux sufficiently.

• Quark-sector mixing angles are relatively small, so theo-

retical prejudice (but no evidence) initially favored a small

mixing angle in the neutrino sector.

• However, there is another issue: the neutrinos also have

to transit out of the Sun.

• Electron neutrinos couple more strongly to normal matter

than do other neutrinos (because electron neutrinos and

the particles of normal matter all reside in the first gener-

ation of the Standard Model).

• Thus we must also ask how interaction with solar material

will influence neutrino oscillations.

449
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12.1 The Mass Matrix

Let’s first introduce an alternative formulation for 2 flavors.

• A neutrino propagating in vacuum can be written as a

time-dependent linear combination of flavor eigenstates

|ν(t)〉= νe(t) |νe〉+νµ(t)
∣
∣νµ

〉
,

where νe(t) and νµ(t) obey the matrix equation

i
d

dt

(

νe(t)

νµ(t)

)

= M0

(

νe(t)

νµ(t)

)

.

• The mass matrix in vacuum, M0, is given by

M0 =

(

E1 cos2 θ +E2 sin2 θ (E2−E1)sinθ cosθ

(E1−E2)sinθ cosθ E1 sin2 θ +E2 cos2 θ

)

,

where θ is the mixing angle and

Ei = (p2+m2
i )

1/2 ≃ p+
m2

i

2p
,

assuming that Ei >> mic
2.

• After subtracting a multiple of the unit matrix (no influ-

ence on flavor probabilities), the vacuum mass matrix is

M0 =
π

L

(

cos2θ −sin2θ

−sin2θ −cos2θ

)

,

where L is the vacuum oscillation length.
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12.2 Propagation of Neutrinos in Matter

So far, this is just a reformulation of our previous equations for

vacuum oscillation.

• Now, following the insight of Mikheyev, Smirnov, and

Wolfenstein (MSW), we consider the additional influence

that interaction with matter may have on the neutrino os-

cillation.

• When electron neutrinos scatter elastically from electrons

in the Sun, they may do so through either

– the charged weak current or

– the neutral weak current.
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Feynman Diagrams

In quantum field theory we use a pictorial representation of in-

teraction matrix elements called Feynman diagrams.

• They are highly intuitive: given a Feynman diagram one

can write the corresponding matrix element and given the

matrix element one can sketch the Feynman diagram.

• Here are some weak-interaction Feynman diagrams:

W
+

e−

νee−

νe (b)

e ν

e ν

Z
0

(c)

n,p,A

ν

Z
0

n,p,A

ν

(d)

W
− e−

νe(a)n

p

• The solid lines represent (fermion) matter fields and the

wiggly lines represent exchanged virtual gauge bosons.

• Each diagram can represent several related processes.

• For example, diagram (a) read from the bottom:

1. A neutron (n) exchanges a virtual W− intermediate

vector boson with an electron neutrino (νe).

2. This converts n→ p and νe→ e−.

• Absence of flavor indices on neutrinos in diagrams (c) and

(d) indicates that the neutral current is flavor blind. The

symbol A in diagram (d) stands for a composite nucleus.
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νee−
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e−

νee
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Z
0

e−

νµe−

νµ

(a) Diagrams contributing to νe

scattering from electrons

(b) Diagram contributing to νµ

scattering from electrons

Charged 

current

Neutral 

current

Neutral 

current

Figure 12.1: Feynman diagrams responsible for neutrino–electron scattering

in the MSW effect.

Figure 12.1 illustrates Feynman diagrams relevant to neutrino

scattering in the Sun.

• Both the neutral and charged current contribute to electron

neutrino interactions (left two diagrams).

• Only the neutral current contributes to the muon neutrino

interactions.

• Neutral current contributes to both νe and νµ scattering,

so neglect this common contribution for this discussion.

• Vacuum neutrino oscillations will be modified in matter

because of the charged-current (W+) diagram in Fig. 12.1

contributing to νe scattering but not to νµ .
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The situation is similar to two coupled oscillators where the

frequency of one oscillator is modified more by coupling to its

surroundings than the other. Such a modification will influence

the nature of the coupling between the two oscillators.
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• The charged-current Feynman diagram contributes an ad-

ditional term to the vacuum-scattering mass matrix that

may be expressed as

V =
√

2GFne,

where GF is the weak coupling constant, ne is the local

electron number density, and

• The potential V is seen only by electron neutrinos.

• With this additional contribution, the mass matrix in the

presence of matter becomes

M =
π

L

(

cos2θ +L/ℓm −sin2θ

−sin2θ −cos2θ −L/ℓm

)

.

• The additional matter contribution to the oscillation length

ℓm is given by

ℓm =

√
2π

GFne
.
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12.2.1 The Effective Neutrino Mass in Medium

For the electron neutrino subject to the additional potential V

we have

E−V = (p2+m2)1/2

and hence

p2+m2 = (E−V )2 = E2

(

1−V

E

)2

≃ E2−2EV,

where the last step is justified by the assumption that V ≪ E.

Thus the energy of the electron neutrino propagating in the

medium is

E2 ∼ p2+ m̃2 m̃≡ (m2 +2EV )1/2

where

• m̃ may be interpreted as an effective mass that has been

modified from its value in vacuum by interaction with the

medium.

• Since V is positive, an electron neutrino behaves effec-

tively as if it is slightly heavier when propagating through

matter than in vacuum,

• with the amount of mass increase governed by the electron

number density of the matter.

• Fig. 12.2 on the following page illustrates.
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Figure 12.2: Effective mass-squared of electron neutrinos and muon neutri-

nos as a function of electron number density ne, neglecting flavor mixing.

Because the νµ does not couple to the charged weak current its m2 does not

depend on ne but the effective m2 of νe increases linearly with the electron

density. The order of states in the m2 spectrum in vacuum (left side) can

become inverted in matter (right side).

Fig. 12.2 shows that the charged-current changes the effective

mass of an electron neutrino in medium.

• An electron neutrino less massive than a muon neutrino in

vacuum will become effectively more massive in matter if

the electron density is high enough: the m2 spectrum can

become inverted.

• Gaining an effective mass through interaction with a

medium is common for particles in many contexts.

Example: A superconductor expels a magnetic

field because a photon gains an effective mass in-

side it (Meissner effect).
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12.2.2 Propagation of Left-Handed Neutrinos

Only the left-handed component of a neutrino couples to the

weak interactions.

• Thus for E ≫ m only the propagation of left-handed neu-

trinos is relevant.

The Schrödinger equation of ordinary quantum mechanics is

not relativistically invariant.

• For relativistic fermions the wave equation must be gen-

eralized to the Dirac equation, while

• for spinless particles the corresponding relativistic wave

equation is the Klein–Gordon equation.

Neutrinos are ultrarelativistic fermions but

• the propagation of just the left-handed component of the

free neutrino may be described by the simple free-particle

Klein–Gordon equation,

(✷+m2) |ν〉= 0 ✷≡− ∂ 2

∂ t2
+

∂ 2

∂x2
+

∂ 2

∂y2
+

∂ 2

∂ z2
,

• where ✷ is termed the d’Alembertian operator and

• for n neutrino flavors |ν〉 is an n-component column vector

in the mass-eigenstate basis and

• m2 is an n×n matrix.
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Because of oscillations, the solutions of interest correspond to

the propagation of a linear combination of mass eigenstates.

• For ultrarelativistic neutrinos we make only small errors

by assuming neutrinos of

– tiny mass and

– slightly different energies

to propagate with the same 3-momentum p.

• In that approximation a solution of the Klein–Gordon

equation for definite momentum is given by

|νi〉= e−iEit · e−ip·x Ei =
√

p2+m2
i .

For ultrarelativistic particles this may be approximated as

|νi(t)〉 ≃ e−i(m2
i /2E)t .

Differentiating with respect to time gives an equation of motion

for a single mass eigenstate

i
d

dt
|νi(t)〉=

m2
i

2E
|νi(t)〉 ,

which may be generalized for a 2-flavor model to the matrix

equation

i
d

dt

(

ν1

ν2

)

= M

(

ν1

ν2

)

=

(

m2
1/2E 0

0 m2
2/2E

)(

ν1

ν2

)

,

where M is termed the mass matrix.
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12.2.3 Evolution in the Flavor Basis

Neutrinos propagate in mass eigenstates but they are produced

and detected in flavor eigenstates,

• so it is useful to express the preceding in the flavor basis.

• The required transformations are given by

(

νe

νµ

)

=U

(

ν1

ν2

)

U =

(

cosθ sinθ

−sinθ cosθ

)

U† =

(

cosθ −sinθ

sinθ cosθ

)

.

permitting the evolution equation to be written in the form

i
d

dt

(

ν1

ν2

)

= i
d

dt
U†

(

νe

νµ

)

=

(

m2
1/2E 0

0 m2
2/2E

)

U†

(

νe

νµ

)

.

Multiplying from the left by U and using unitarity, UU† = 1,

i
d

dt

(

νe

νµ

)

=U

(

m2
1/2E 0

0 m2
2/2E

)

U†

(

νe

νµ

)

.

As is clear by substitution, this equation has a solution

(

νe(t)

νµ(t)

)

=U

(

e−i(m2
1/2E)t 0

0 e−i(m2
2/2E)t

)

U†

(

νe(0)

νµ(0)

)

.
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Since the masses m1 and m2 are presently unknown it is conve-

nient to rewrite the equation of motion

i
d

dt

(

νe

νµ

)

=U

(

m2
1/2E 0

0 m2
2/2E

)

U†

(

νe

νµ

)

.

in terms of ∆m2, which is measurable.

• Adding a multiple of the unit matrix to the matrix will not

modify observables (a trick that will be employed several

times in what follows),

• so we may subtract m2
1/2E times the unit 2×2 matrix and

use

(

0 0

0 ∆m2/2E

)

=

(

m2
1/2E 0

0 m2
2/2E

)

−
(

m2
1/2E 0

0 m2
1/2E

)

to replace the equation of motion by the equivalent form

i
d

dt

(

νe

νµ

)

=U

(

0 0

0 ∆m2/2E

)

U†

(

νe

νµ

)

,

where ∆m2 ≡ m2
2−m2

1.
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12.2.4 Propagation in Matter

The evolution equation

i
d

dt

(

νe

νµ

)

=U

(

0 0

0 ∆m2/2E

)

U†

(

νe

νµ

)

,

is just a reformulation of our previous treatment of neutrinos

propagating in vacuum.

• Let us now add a charged-current interaction with matter.

• By previous arguments the charged current couples

– only elastically and

– only to electron neutrinos.

• so we add to the evolution equation an interaction poten-

tial given by

V (t) =
√

2GF ne(t),

which modifies the equation of motion to

i
d

dt

(

νe

νµ

)

=

[

U

(

0 0

0 ∆m2/2E

)

U†+

(

V (t) 0

0 0

)](

νe

νµ

)
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As shown in a Problem, the equation of motion may be ex-

pressed as

i
d

dt

(

νe

νµ

)

=

[

U

(

0 0

0 ∆m2/2E

)

U†+

(

V (t) 0

0 0

)](

νe

νµ

)

=







V
∆m2

4E
sin2θ

∆m2

4E
sin2θ

∆m2

2E
cos2θ







(

νe

νµ

)

≡M

(

νe

νµ

)

.

This is the required equation of motion in matter but it is con-

ventional to write the mass matrix

M ≡







V
∆m2

4E
sin2θ

∆m2

4E
sin2θ

∆m2

2E
cos2θ







appearing in it in a more symmetric form by using that

A multiple of the unit matrix may be subtracted

from M without affecting the values of quantum

observables.
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First define

A≡ 2EV = 2
√

2EGFne,

(which has units of mass squared) and then subtract

A

4E
+

(
∆m2

4E

)

cos2θ

multiplied by the unit matrix (this has no effect on observ-

ables!) to give the mass matrix in traceless form

M =
π

L

(

χ− cos2θ sin2θ

sin2θ cos2θ − χ

)

,

where the dimensionless charged-current coupling strength χ
is defined by

χ ≡ L

ℓm
=

2EV

∆m2
ℓm ≡

√
2π

GFne
L≡ 4πE

∆m2
,

with

• L the vacuum oscillation length and

• ℓm an additional contribution to the oscillation length

caused by the matter interaction called the refraction

length.
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Electron neutrinos in the Sun interact only through elastic for-

ward scattering.

• Thus the effect of the medium on νe propagation can be

described as a refraction.

• The refraction is characterized by an index of refraction

nref = 1+
V

p
,

where

V =
√

2GF ne p = |p|

• This is analogous to refraction of light in a medium, ex-

cept that the ν index of refraction depends on flavor.

• The quantity ℓm is termed the refraction length.

• It is the distance over which an additional phase of 2π is

acquired through refraction in the matter.

Notice that in vacuum

• ne→ 0 so that ℓm→ ∞ and

• the coupling term χ ≡ L/ℓm vanishes,

• so we recover a mass matrix characteristic of vacuum os-

cillations.
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Figure 12.3: Solar density gradient. Neutrinos are produced near the center

at high density and propagate out through regions of decreasing density. In

a given concentric layer, the density may be assumed constant.

12.3 Solutions in Matter

For a fixed density the mass eigenstates in matter generally will

• differ from the mass eigenstates in vacuum because of V .

• They may be found by diagonalizing (finding the eigen-

values) of the mass matrix M at that density.

• However, the interaction V depends on the density.

• Thus in the Sun mass eigenstates in matter at one position

will generally not be eigenstates at another position.

We may

• divide the Sun up into concentric layers, with

• density assumed to be constant in a layer, as

illustrated in Fig. 12.3.
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Our strategy will be to

• calculate the mass eigenstates within a single layer assum-

ing it to have a constant density, and then

• consider how to determine the evolution of neutrino states

as they propagate through successive layers of decreasing

density on the way out of the Sun.
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12.3.1 Mass Eigenvalues for Constant Density

At constant density, the problem resembles vacuum oscillations

but with a different potential.

• The time-evolved mass states in matter, |νm
1 〉 and |νm

2 〉,
may be obtained by

• diagonalizing the mass matrix at the current time.

• This gives two eigenvalues λ± at the current density,

λ± =

(
m2

1+m2
2

2
+

∆m2

2
χ

)

± ∆m2

2

√

(cos2θ − χ)2+ sin2 2θ .

• The splitting between the two eigenstates is given by the

second term.

• It reaches a minimum at the density where χ = cos2θ .

• As for the vacuum case, the mass eigenstates in matter,

|νm
1 〉 and |νm

2 〉 at fixed time t, are assumed to be related to

the flavor eigenstates by a unitary transformation

(

νe

νµ

)

=Um(t)

(

νm
1

νm
2

)

,

where Um(t) is a unitary matrix that

– Differs from the vacuum transformation matrix U ,

– depends on time, and

– is yet to be determined.
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12.3.2 The Matter Mixing Angle θθθ m

The matrix Um(t)

• depends on time and

• can be parameterized as for the vacuum mixing, but in

terms of a time-dependent matter mixing angle θm(t):

Um =

(

cosθm sinθm

−sinθm cosθm

)

U†
m =

(

cosθm −sinθm

sinθm cosθm

)

.

The relationship of the matter mixing angle θm and the vacuum

mixing angle θ at time t

• can be established by requiring that a similarity transform

by Um(t) diagonalize the mass matrix at that density,

• with the diagonal elements being the time-dependent

eigenvalues in matter E1(t) and E2(t),

U†
m(t)MUm(t) =

(

E1(t) 0

0 E2(t)

)

.

Inserting explicit forms of U , U†, and M gives a matrix equa-

tion satisfied only if θm and θ are related by

tan2θm =
sin2θ

cos2θ ± χ
=

tan2θ

1± χ/cos2θ
,

• where the plus sign is for m1 > m2 and

• the negative sign is for m1 < m2.
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From the equation

tan2θm =
sin2θ

cos2θ ± χ
=

tan2θ

1± χ/cos2θ
,

• in vacuum θm = θ because for vanishing electron density

ℓm→ ∞ and χ = L/ℓm→ 0, but

• in matter the mixing angle will be modified from its vac-

uum value by an amount that depends on density.
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12.3.3 The Matter Oscillation Length LLLm

The oscillation length in vacuum

L =
4πE

∆m2

• is proportional to the inverse of the mass-squared differ-

ence ∆m2 between the states participating in the oscilla-

tion.

• In matter the neutrino effective mass is altered by interac-

tion with the medium and the vacuum mass-squared dif-

ference is rescaled,

∆m2→ f (χ)∆m2,

where from the splitting of the two eigenvalues in

λ± =

(
m2

1+m2
2

2
+

∆m2

2
χ

)

± ∆m2

2

√

(cos2θ − χ)2+ sin2 2θ .

we deduce that

f (χ) =

√

(cos2θ − χ)2+ sin2 2θ =
√

1−2χ cos2θ + χ2.
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Figure 12.4: (a) Mixing angle in matter θm(χ), (b) oscillation length in mat-

ter Lm(χ), and (c) scaling factor f (χ) as a function of the matter coupling

χ . All calculations assumed E = 10 MeV and ∆m2 = 7.6× 10−5 eV2, and

curves are marked with the assumed vacuum mixing angle θ .

Hence the oscillation length in matter Lm is given by

Lm =
4πE

f (χ)∆m2
=

L

f (χ)
=

L
√

(cos2θ − χ)2+ sin2 2θ
,

where

f (χ) =

√

(cos2θ − χ)2+ sin2 2θ ,

which reduces to the vacuum oscillation length L if the interac-

tion χ vanishes.

The variations of θm, Lm, and f with the dimen-

sionless coupling χ are illustrated in Fig. 12.4 for

several values of the vacuum mixing angle θ .
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From (a) in the above figure,

• the matter mixing angle θm reduces to the vacuum mixing

angle θ for vanishing coupling, but

• θm→ π
2 at large coupling for any θ .

From (b) in the figure above

• the matter oscillation length is equal to the vacuum oscil-

lation length at zero coupling, but

• increases to a maximum at the coupling strength where

θm = π
4 , and then decreases again.

The coupling strength at which Lm is maximal

• coincides with highest rate of change in θm, suggesting

• something special about the density where θm = π
4

.

We will address the implications of this observation shortly.
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12.3.4 Flavor Conversion in Constant-Density Matter

In matter of constant density

• the electron neutrino state after a time t becomes

|ν(t)〉= (cos2 θme−iE1t + sin2 θme−iE2t) |νe〉
+sinθm cosθm(−e−iE1t + e−iE2t)

∣
∣νµ

〉
,

• This is analogous to the corresponding vacuum equations

but with the vacuum mixing angle θ replaced by the mat-

ter mixing angle θm.

• Hence for a constant density ne the flavor conservation and

flavor retention probabilities are given by the correspond-

ing vacuum equations with the replacements θ → θm and

L→ Lm,

P(νe→νe, r) = 1− sin2 2θm sin2

(
πr

Lm

)

,

P(νe→νµ , r) = 1−P(νe→νe, r)

• The corresponding classical averages are

P̄(νe→νe) = 1− 1
2 sin2 2θm P̄(νe→νµ) =

1
2 sin2 2θm,

which are valid when the uncertainty in distance between

source and detection exceeds the oscillation length.
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12.4 The MSW Resonance Condition

From

P(νe→νe, r) = 1− sin2 2θm sin2

(
πr

Lm

)

,

optimal flavor mixing occurs

• whenever sin2 2θm achieves its maximum value of unity,

• which occurs when |θm|= π
4 .

The most significant property of

tan2θm =
sin2θ

cos2θ ± χ
=

tan2θ

1± χ/cos2θ
,

is that

• if ∆m2 and L are positive (which requires that m1 < m2),

• then tan2θm →±∞ and θm → π
4 whenever the coupling

strength satisfies

χ =
L

ℓm
= cos2θ ,

which occurs when the electron density satisfies

ne =
cos2θ∆m2

2
√

2GFE
≡ nR

e.

This is a resonance condition.
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Figure 12.5: The MSW resonance condition for two values of the vacuum

mixing angle θ . When L/ℓm→ cos2θ the denominator of Eq. (12.4) goes

to zero, tan2θm goes to ±∞ so that |θm| → π
4

, and the flavor conversion

probability sin2 2θm attains its maximum value. Thus, at the resonance Eq.

(12.4) indicates that large flavor conversion can be obtained for any non-

vanishing vacuum oscillation angle θ .

The resonance condition

χ =
L

ℓm
= cos2θ tan2θm→±∞ θm→

π

4

is shown in Fig. 12.5. It leads to maximal mixing between elec-

tron neutrinos and muon neutrinos, with a νe survival

P(νe→νe, r) = 1− sin2

(
πr

Lm

)

(at resonance),

and an oscillation length at resonance LR
m given by

LR

m = Lm(χ=cos2θ) =
L

sin2θ
.
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Figure 12.6: Resonance parameters versus the electron number density ne

in units of the central solar value n0
e ∼ 6.3× 1025 cm−3 for θ = 33.5◦ and

5◦, with ∆m2 = 7.6× 10−5 eV2 and E = 10 MeV. The coupling strength

χ = L/ℓm is linear in the density. Intersection of the dashed lines specifies

the electron density giving the resonance condition.

The condition

χ =
L

ℓm
= cos2θ tan2θm→±∞ θm→

π

4

defines the Mikheyev–Smirnov–Wolfenstein or MSW resonance.

• No matter how small the vacuum mixing angle θ , if it

is not zero there is some critical value nR
e of the electron

density where the resonance condition is satisfied and

• at the resonance, maximal flavor mixing ensues.

The important resonance parameters are plotted in Fig. 12.6 as

a function of electron density for two values of θ .
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Figure 12.7: The matter mixing angle θm as a function of the dimensionless

coupling strength χ ≡ L/ℓm for vacuum mixing angles of (a) θ = 33.5◦ and

(b) θ = 5◦. Also shown is the oscillation length in matter Lm, which has

a maximum at the position of the MSW resonance (see §12.4), marked by

the dashed vertical line. The oscillation length was computed assuming E =
10 MeV and ∆m2 = 7.6×10−5 eV2. Case (a) is realistic for solar neutrinos

and the density at the center of the Sun corresponds to χ ∼ 2.13. Hence the

shaded region on the left side of (a) indicates the range of coupling strengths

available to electron neutrinos in the interior of the Sun.

The effect of the MSW resonance on variation of the matter

mixing angle θm and the oscillation length in matter Lm are

illustrated for a small and large angle solution in Fig. 12.7.

• The values of θm and Lm will vary with the solar depth

since they depend on the number density ne through χ .

• θm→ θ as the electron density tends to zero, while

• in the opposite limit of very large electron density θm→ π
2

.
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Figure (a) above corresponds to parameters valid for solar neu-

trinos.

• At the solar center (χ ∼ 2.13) the matter mixing angle is

θm ∼ 76◦,

• compared with a vacuum mixing angle 33.5◦ at the solar

surface.

Conversely, for Figure (b) above

• the matter mixing angle at a density corresponding to the

solar center is θ ∼ 86◦,

• with θ = 5◦ at the solar surface.
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We have assumed m1 < m2 in deriving the MSW resonance. If

instead m1 > m2

• there is no resonance for νe.

• In that case there is a resonance instead for the electron

antineutrino ν̄e.

• The Sun emits primarily neutrinos and not antineutrinos.

• Thus a discussion of antineutrinos will be omitted in the

present context.

However, antineutrino oscillations could occur in

core collapse supernovae or neutron star mergers,

where all flavors of ν and ν̄ are produced in abun-

dance.
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12.5 Resonant Flavor Conversion

• If, for example,

– m1 < m2 and θ is small so that |νe〉 ≃
∣
∣νm

1

〉
, and

– the electron density in the central part of the Sun

where the neutrino is produced satisfies ne > nR
e ,

• a neutrino leaving the Sun will inevitably encounter the

MSW resonance while on its way out of the Sun.

• If the change in density is sufficiently slow (the adiabatic

condition discussed below),

• the νe flux produced in the core can be almost entirely

converted to νµ by the MSW resonance near the radius

where the resonance condition is satisfied.
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The MSW resonance conversion of flavors can be viewed as an

adiabatic level crossing

m2

ne

νe

νµ νµ

νe

MSW

resonance

Center

of Sun

Surface

of Sun

ne
R

vac
∆m2

m2
1

m2
2

∆m
2

(ne)

• If the level crossing is adiabatic,

– a neutrino that starts out as a νe near the center (high

density on the right side of the figure)

– changes adiabatically into a νµ by the time it exits

the Sun (low density in the left side of the figure).

• That is, the neutrino follows the upper curved trajectory

though the resonance in the level-crossing region, as indi-

cated by the arrows.

Therefore, the neutrino can emerge from the Sun in

a completely different flavor state than the one in

which it was created.
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Figure 12.8: Solutions λ± of the MSW eigenvalue problem as a function of

mass density. Each case corresponds to the choices ∆m2 = 7.6×10−5 eV2

and E = 10 MeV, but to different values of the vacuum mixing angle θ .

The individual neutrino masses are presently unknown but for purposes

of illustration m2
1 = 5× 10−5 eV2 has been assumed in vacuum, so that

m2
2 =m2

1+∆m2 = 1.26×10−4 eV2. The critical density leading to the MSW

resonance (corresponding to minimum splitting between the eigenvalues)

and the value of the adiabaticity parameter ξ = δ rR/LR
m are indicated for

each case. Realistic conditions in the Sun are expected to imply the very

adiabatic crossing exhibited in case (d).

Figure 12.8 illustrates solutions of the MSW eigenvalue prob-

lem for different choices of θ as a function of mass density.

• Small θ implies sharp level crossings and larger θ implies

adiabatic (strongly-avoided) crossings.

• The strongly-avoided level crossing in Fig. (d) above is

expected to apply for the Sun.
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Figure 12.9: (a) Electron number density as a function of fractional solar

radius from the Standard Solar Model. The dashed line is an exponential

approximation that will be employed in discussing the MSW effect. Re-

gions of primary neutrino production in the PP chains are indicated. (b) Ra-

dius where the MSW critical density for a 2-flavor model is realized (dots

at intersection of dashed lines with the curve for ne) for neutrinos of en-

ergies ranging from 2 to 18 MeV. A vacuum mixing angle θ = 35◦ and

∆m2c4 = 7.5× 10−5 eV2 have been assumed. The minimum energy of an

electron neutrino Emin ∼ 1.6 MeV that could be produced in the Sun and

still encounter the MSW resonance is indicated.

The number density of electrons in the Sun is illustrated in

Fig. 12.9(a), along with an exponential approximation.

• In Fig. 12.9(b) the locations where electron neutrinos of

various energies would encounter the MSW resonance

condition are illustrated.

• Only neutrinos with energy larger than some minimum en-

ergy Emin ∼ 1.6 MeV can experience the resonance.

• Thus the MSW effect should be more efficient at convert-

ing higher-energy neutrinos.

• We shall see that this agrees with data.
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12.6 Propagation in Matter of Varying Density

We are ready to consider realistic solar neutrino propagation.

• A neutrino produced in the center will encounter decreas-

ing density as it travels toward the solar surface, as illus-

trated in the figure above.

• The neutrino flavor evolution will be governed by the ana-

log of the differential equations for vacuum propagation,

• but with U →Um(t) since the flavor–mass basis transfor-

mation now depends on time.

i
d

dt

[

Um(t)

(

ν1(t)

ν2(t)

)]

=
1

2E
Um(t)

(

m2
1 0

0 m2
2

)(

ν1(t)

ν2(t)

)

,

where both the wavefunctions and the transformation ma-

trix Um are indicated explicitly to depend on the time.
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Taking the derivative of the product in brackets on the left side

in the equation

i
d

dt

[

Um(t)

(

ν1(t)

ν2(t)

)]

=
1

2E
Um(t)

(

m2
1 0

0 m2
2

)(

ν1(t)

ν2(t)

)

,

and multiplying the equation from the left by U
†
m gives

i
d

dt

(

ν1

ν2

)

=

(

−∆m2/4E −i θ̇m

i θ̇m ∆m2/4E

)(

ν1

ν2

)

,

• where θ̇m ≡
dθm

dt
, and

• the constant
(m2

1 +m2
2)

4E

times the unit matrix has been subtracted from the matrix

on the right side.

• (This subtraction does not affect observables).
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The earlier statement that mass eigenstates at some density will

not be eigenstates at another density may now be quantified.

• If the mass matrix

M =

(

−∆m2/4E −i θ̇m

i θ̇m ∆m2/4E

)

in the equation of motion

i
d

dt

(

ν1

ν2

)

=

(

−∆m2/4E −i θ̇m

i θ̇m ∆m2/4E

)(

ν1

ν2

)

,

were diagonal,

• the neutrino would remain in its original mass eigenstate.

• Thus it is the off-diagonal terms∼ θ̇m = dθm/dt that alter

the mass eigenstates as the neutrino propagates.

• Generally the equation of motion must be solved numeri-

cally.

• However, if the off-diagonal terms are small relative to the

diagonal terms, the mass matrix M may be approximated

M =

(

−∆m2/4E −i θ̇m

i θ̇m ∆m2/4E

)

≃
(

−∆m2/4E 0

0 ∆m2/4E

)

,

• This is called the adiabatic approximation.
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The adiabatic approximation

i
d

dt

(

ν1

ν2

)

≃
(

−∆m2/4E 0

0 ∆m2/4E

)(

ν1

ν2

)

,

affords an analytical solution for neutrino flavor conversion in

the Sun.

• It corresponds physically to the assumption that the matter

mixing angle θm changes only slowly over a characteristic

time for motion of the neutrino.

• A neutrino travels at nearly the speed of light.

• Therefore, r ∼ ct and the adiabatic condition also may be

interpreted as a limit on the spatial gradient of θm.

These observations may be used to quantify the conditions ap-

propriate for the adiabatic approximation.
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12.7 The Adiabatic Criterion

The adiabatic condition for resonant flavor conversion can be

expressed as a requirement that

• the spatial width of the resonance layer δ rR (defined by

the radial distance over which the resonance condition is

approximately satisfied)

• be much greater than the oscillation wavelength in matter

evaluated at the resonance, LR
m.

• This can be characterized by an adiabaticity parameter ξ
defined by

ξ ≡ δ rR

LR
m

δ rR =
nR

e

(dne/dr)R

tan2θ LR

m =
L

sin2θ
,

where

– the label R denotes quantities evaluated at the reso-

nance,

– L is the vacuum oscillation length, and

– θ is the vacuum oscillation angle.

• The adiabatic condition corresponds to requiring that ξ ≫
1.

• This implyies physically that if many oscillation lengths

(in matter) fit within the resonance layer the adiabatic ap-

proximation is valid.
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Values of ξ computed from

ξ ≡ δ rR

LR
m

δ rR =
nR

e

(dne/dr)R

tan2θ LR

m =
L

sin2θ
,

are indicated in the figure above.

• Sharp level crossings as in (a) are non-adiabatic, while

• avoided level crossings as in (d) are highly adiabatic.

• The MSW resonance can occur approximately adiabati-

cally, even for relatively small θ [Example: case (b)].

• The actual Sun corresponds to (d), for which δ rR≫ LR
m.

The MSW resonance is expected to be encoun-

tered adiabatically in the Sun, optimizing the

chance of resonant flavor conversion.
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12.8 MSW Neutrino Flavor Conversion

The MSW resonance has been likened to the interaction of two

tuning forks, one of which has a variable length.

• Suppose a vibrating tuning fork with variable length to be

– brought close to another tuning fork and then

– the length of the first is varied to match the second.

• Then the vibration of the first fork can be almost com-

pletely resonantly transferred to the second.

• However, this occurs only if the frequency of the variable

fork is changed slowly enough (adiabatic condition).

Likewise, because the neutrino–matter interaction affects only

the electron neutrino and it depends on density,

• a νe matter wave in the Sun has a variable frequency while

• a νµ matter wave has roughly a constant frequency.

• As the νe frequency varies with density it can become

equal to that of the νµ at some depth in the Sun.

• This will lead to a resonance between the two matter

waves and

• resonant flavor conversion at that depth.

As for tuning forks, large flavor conversion can oc-

cur only if the adiabatic condition is satisfied.
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Figure 12.10: Schematic illustration of adiabatic flavor conversion by the

MSW mechanism in the Sun. An electron neutrino is produced at Point 1,

where the density lies above that of the MSW resonance, and propagates

radially outward to Point 2, where the density lies below that of the reso-

nance. The width of the resonance layer is assumed to be much larger than

the matter oscillation length in the resonance layer, justifying the adiabatic

approximation of Eq. (12.6). The widths of resonance and production layers

are not meant to be to scale in this diagram.

12.8.1 Flavor Conversion in Adiabatic Approximation

Adiabatic flavor conversion is illustrated in Fig. 12.10.

• An electron neutrino is

– produced at Point 1 near the center of the Sun and

– propagates radially outward to Point 2.

• Detection is assumed to average over many oscillation

lengths.

• Thus interference terms are washed out and our concern

is with the classical (time-averaged) probability.



12.8. MSW NEUTRINO FLAVOR CONVERSION 493

ρ

M
a
s
s
2

 (
e
V

2
) λ+

λ−
MSW

resonance L
o
g
 e

le
c
tr

o
n
 d

e
n
s
it
y
 n

e

R/R0

ν

CenterCenter SurfaceSurface

1

2

1

2
Production

layer

Resonance

layer

The classical probability in adiabatic approximation to be de-

tected at Point 2 in the |νe〉 flavor eigenstate is then given by

• generalizing the earlier result in vacuum (see Ch. 11)

P̄(νe→νe) = (1 0)

(

cos2 θ(2) sin2 θ(2)

sin2 θ(2) cos2 θ(2)

)

×
(

1 0

0 1

)(

cos2 θ(1) sin2 θ(1)

sin2 θ(1) cos2 θ(1)

)(

1

0

)

,

to the classical adiabatic result in matter

P̄(νe→νe) = (1 0)

(

cos2 θm(2) sin2 θm(2)

sin2 θm(2) cos2 θm(2)

)

×
(

1 0

0 1

)(

cos2 θm(1) sin2 θm(1)

sin2 θm(1) cos2 θm(1)

)(

1

0

)

,

• where θm(i)≡ θm(ti) and

• (1 0) and

(
1

0

)

denote pure νe flavor states.
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Evaluating the matrix products and using standard trigonomet-

ric identities gives for the probability to remain a νe,

P̄(νe→νe) =
1
2 [1+ cos2θm(t1)cos2θm(t2)] .

• This result is valid (if the adiabatic condition is satisfied)

for Point 2 anywhere outside Point 1, but

• in the specific case that Point 2 lies at the solar surface

θm(t2)→ θ and

• the classical probability to detect the neutrino as an elec-

tron neutrino when it exits the Sun is

P̄(νe→νe) =
1
2 (1+ cos2θ cos2θ 0

m) (at solar surface),

• where θ is the vacuum mixing angle and

• θ 0
m ≡ θm(t1) is the matter mixing angle at the point of neu-

trino production.
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12.8.2 Adiabatic Conversion and the Mixing Angle

The remarkably concise result

P̄(νe→νe) =
1
2 (1+ cos2θ cos2θ 0

m) (at solar surface),

has a simple physical interpretation.

• Because of the adiabatic assumption the mass matrix is

diagonal for a neutrino propagating down the solar density

gradient.

• Thus a neutrino produced in the λ+ eigenstate remains in

that eigenstate until it reaches the solar surface,

• with the flavor conversion resulting only from the change

of mixing angle between production point and surface.

• Thus, the classical adiabatic probability P̄(νe→νe)

– is independent of the details of neutrino propagation

and

– depends only on the mixing angles at the point of pro-

duction and point of detection.
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Example: From Fig. (a) above left,

• At the Sun’s center the matter mixing angle is θ 0
m ∼ 76◦.

• Thus an electron neutrino produced at the center of the

Sun has a probability to be a νe when it exits the Sun of

P̄(νe→νe) =
1
2 (1+ cos2θ cos2θ 0

m)

= 1
2
[1+ cos(2×33.5◦)cos(2×76◦)]

= 0.33,

and a probability to be a νµ of

P̄(νe→ νµ) = 1− P̄(νe→νe) = 0.67

Because of MSW, only ∼ 1
3 of 10-MeV solar neu-

trinos will still be νe when they exit the Sun.
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Figure 12.11: MSW flavor conversion vs. fraction of solar radius for four

values of the vacuum mixing angle θ . Calculations are classical averages

over local oscillations in adiabatic approximation using Eq. (12.8.2), assum-

ing ∆m2 = 7.6×10−5 eV2 and E = 10 MeV. Neutrinos were assumed to be

produced in a νe flavor state at the center of the Sun (right side of diagram

at R/R⊙ = 0). Solid curves show the classical electron-neutrino probability

and dashed curves show the corresponding classical muon-neutrino proba-

bility.

Flavor conversion by the MSW mechanism for a 2-flavor model

in adiabatic approximation is illustrated for four different val-

ues of the vacuum mixing angle θ in Fig. 12.11.

• The MSW resonance occurs at the radius corresponding

to the intersection of the solid and dashed curves.

• Figure 12.11(d) approximates the situation expected for

the Sun.
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Table 12.1: Energy dependence of solar ν flavor conversion for θ = 35◦

E (MeV) 14 10 6 2 1 0.70

Pνe (surface) 0.33 0.33 0.34 0.40 0.47 0.50

RR/R⊙ 0.28 0.25 0.20 0.10 0.03 0.0

The table above gives the dependence on neutrino energy of

flavor conversion in the Sun, assuming a vacuum mixing angle

of θ = 35◦.



12.9. RESOLUTION OF THE SOLAR NEUTRINO PROBLEM 499

12.9 Resolution of the Solar Neutrino Problem

A series of experiments have resolved the solar neutrino prob-

lem.

• These experiments demonstrate rather directly that neutri-

nos undergo flavor oscillations.

• This, in turn then implies that at least some neutrinos have

mass.

• Detailed comparison of these experiments indicates that

solar electron neutrinos are being converted to muon neu-

trinos by neutrino oscillations,

• If all flavors of neutrinos coming from the Sun are de-

tected the solar neutrino deficit relative to the Standard

Solar Model disappears.

• The favored oscillation scenario is

– MSW resonance conversion in the Sun,

– but for a large vacuum mixing angle solution.

Let’s now describe briefly the experiments that have led to these

rather remarkable conclusions.
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12.9.1 Super Kamiokande Observation of Flavor Oscillation

The Super Kamiokande detector has been used to observe neu-

trinos produced in atmospheric cosmic ray showers.

• When high-energy cosmic rays hit the atmosphere, they

generate showers of mesons that decay to muons, elec-

trons, positrons, and neutrinos.

• Theory assuming no physics beyond the Standard Model

indicates that the ratio of muon neutrinos plus antineutri-

nos to electron neutrinos plus antineutrinos should be 2,

R≡ νµ + ν̄µ

νe + ν̄e
= 2 (Standard Model).

• Instead, Super Kamiokande confirmed that the ratio R is

only 64% of what is expected.

This result could be explained by neutrino flavor

oscillations: if the muon neutrinos oscillate into

another flavor, the observed ratio would be re-

duced below the expected value.
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Detailed analysis suggests that the oscillation partner of the

muon neutrino is not the electron neutrino.

• Hence the super-K results are not directly applicable to

the solar neutrino problem.

• νµ is oscillating either with the tau neutrino or some other

flavor of neutrino that does not undergo normal weak

interactions but does participate in neutrino oscillations

(“sterile neutrinos”).

• The best fit to the data suggests a mixing angle close to

maximal (a large mixing angle solution) and

∆m2 ≃ 5×10−4−6×10−3 eV2.

• The large mixing angle indicates that the mass eigenstates

are approximately equal mixtures of the two weak flavor

eigenstates.
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12.9.2 SNO Observation of Neutral Current Interactions

The Super Kamiokande results cited above indicate conclu-

sively the existence of neutrino oscillations and thus of physics

beyond the Standard Model.

• However, the oscillations do not appear to involve the

electron neutrino.

• Thus the Super Kamiokande results cannot be applied di-

rectly to the solar neutrino problem.

However, a water Cherenkov detector in Canada

has yielded information about neutrino oscillations

that is directly applicable to the solar neutrino

problem.
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The Sudbury Neutrino Observatory (SNO) could detect neutri-

nos in the usual way by the Cherenkov light emitted from

ν + e−→ ν + e− (elastic scattering),

but it differed from Super-K in containing heavy water.

• Heavy water is important because it contains deuterium.

• In regular water, to produce sufficient Cherenkov light the

ν energy has to be greater than about 5–7 MeV.

• Because deuterium (d) contains a weakly-bound neutron,

it can undergo a breakup reaction:

– Any flavor neutrino can initiate the reaction

ν +d→ ν + p+n (Neutral current) ,

– but only electron neutrinos can initiate

νe +d→ e−+ p+ p (Charged current).

• Both of these reactions have much larger cross sections

than elastic neutrino–electron scattering, so SNO could

gather events at relatively high rates.

• The energy threshold could be lowered to 2.2 MeV, the

binding energy of the deuteron.

• Because the neutral currents are flavor blind, ν + d →
ν + p+ n gives SNO the ability to see the total neutrino

flux of all flavors coming from the Sun.
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Table 12.2: Comparison of SNO results and Standard Solar Model predictions for

solar neutrino fluxes. All fluxes are in units of 106 cm2 s−1.

SSM νe Flux SNO νe Flux SNO νe/SSM SNO all flavors SNO All/ SSM

5.05±0.91 1.76±0.11 0.348 5.09±0.62 1.01

Because of its energy threshold, SNO sees primarily 8B solar

neutrinos.

• The initial SNO results confirmed results from the pio-

neering solar neutrino experiments:

• a strong suppression of electron neutrino flux is observed

relative to that expected in the Standard Solar Model.

• Specifically, SNO found that only about 1
3 of the expected

νe were being detected.

However, SNO went further.

• By analyzing the flavor-blind weak neutral current events,

it was possible to show that

The total flux of all neutrinos in the detector was

almost exactly that expected from the Standard So-

lar Model.

• Table 12.2 summarizes.
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Figure 12.12: (a) Flux of solar neutrinos from 8B detected for various fla-

vors by SNO. The band widths represent one standard deviation. Bands in-

tersect at the point indicated by the star, implying that about 2
3

of the Sun’s
8B neutrinos have changed flavor between being produced in the Sun and

being detected on Earth. The Standard Solar Model band is the prediction

for the 8B flux, irrespective of flavor changes. It tracks the neutral current

band, which represents detection of all flavors of neutrino coming from the

Sun. (b) 2-flavor neutrino oscillation parameters. The 99%, 95% and 90%

confidence-level contours are shown, with the star indicating the most likely

values. The best fit corresponds to the large-angle solution.

The SNO case for neutrino oscillation was strengthened by

analysis of neutrino–electron elastic scattering data combined

with SNO data from

νe +d→ e−+ p+ p (Charged current).

• Figure 12.12 illustrates.

• Best fit indicates that 2
3

of the Sun’s electron neutrinos

have changed flavor when they reach the Earth.
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Assuming a two-flavor mixing model, it is common to plot con-

fidence level contours in a two dimensional plane with ∆m2 on

one axis and tan2 θ on the other.

• The figure above right shows the best-fit confidence-level

contours for parameters based on SNO data.

• The SNO results suggest that the solar neutrino problem is

solved by neutrino oscillations between νe and νµ flavors,

with parameters

∆m2 = 6.5+4.4
−2.3×10−5 eV2 θ = 33.9+2.4◦

−2.2◦.

• This is again a large-mixing-angle solution, implying that

– a νe is actually almost a strong superposition of two

mass eigenstates,

– probably separated by no more than a few hundredths

of an eV.
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12.9.3 KamLAND Constraints on Mixing Angles

KamLAND is housed in the same Japanese mine cavern that

housed Kamiokande, predecessor to Super-K.

• It uses phototubes to monitor a large container of liquid

scintillator.

• It looks specifically for electron antineutrinos produced

during nuclear power generation in a set of 22 Japanese

and Korean reactors that are located within a few hundred

kilometers of the detector.

• The antineutrinos are detected from the inverse β -decay

in the scintillator:

ν̄e + p→ e++n.

• From power levels in the reactors, the expected antineu-

trino flux at KamLAND could be modeled.

• The experiment detected a shortfall of antineutrinos, con-

sistent with a large-angle neutrino oscillation solution,

∆m2 = 7.58+0.14
−0.13×10−5 eV2 tan2 θ = 0.56+0.10

−0.07,

corresponding to θ ∼ 36.8◦ for the vacuum mixing angle.
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Combining the solar neutrino and KamLAND results leads to a

solution

∆m2 = 7.59±0.21×10−5 eV2 tan2 θ = 0.47+0.06
−0.05,

• This implyies a vacuum mixing angle θ ∼ 34.4◦,

• which is again a large mixing angle solution.

• (Recall that θ has been defined so that its largest possible

value is 45◦.)
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SNO and KamLAND results together greatly shrink the param-

eter space for solar neutrino oscillation parameters.

• Large mixing angle solutions were found by SNO and

KamLAND for the νe–νµ mixing.

• This indicates that the vacuum oscillations of solar neutri-

nos are of secondary importance to the MSW matter os-

cillations in the body of the Sun itself.

• The inferred vacuum oscillation lengths for the large-

angle solutions are much less than the Earth–Sun distance.

• Thus they would largely wash out any energy dependence

of the neutrino shortfall.

• Since the detectors indicate that such an energy depen-

dence exists, the MSW resonance is strongly implicated

as the source of the neutrino flavor conversion responsi-

ble for the “solar neutrino problem”.

Ironically, the MSW effect

• was proposed to justify a small mixing angle

solution but instead

• resolves the solar neutrino anomaly through a

large mixing angle solution.
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Chapter 13

Evolution of Lower-Mass Stars

Life on the main sequence is characterized by the stable burn-

ing of hydrogen to helium under conditions of hydrostatic equi-

librium.

• While the star is on the main sequence the inner composi-

tion is changing, but there is little outward evidence until

about 10% of the hydrogen is exhausted.

• Then the star experiences a (relatively) rapid series of

changes that take it away from the main sequence.

• Stellar evolution after the main sequence is of short dura-

tion relative to the main sequence.

• However, post main-sequence evolution is generally more

complex than main-sequence evolution.

Accordingly, let us now turn to a discussion of post main-

sequence evolution.

511
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Figure 13.1: Conditions for hydrogen shell burning.

13.1 Shell Burning

An important aspect of post main-sequence evolution is the es-

tablishment of shell burning sources (Fig. 13.1).

• As the initial core hydrogen is depleted, a thermonuclear

ash of helium builds up in its place.

• This ash is inert at hydrogen fusion temperatures because

much higher temperatures and densities are necessary to

initiate helium fusion.

• However, as the core becomes depleted in hydrogen there

remains a concentric shell in which the hydrogen concen-

tration and the temperature are both sufficiently high to

support hydrogen fusion (Fig. 13.1).

This is termed a hydrogen shell source.
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Figure 13.2: Schematic illustration of successive shell burnings.

As the core contracts after exhausting its hydrogen, the temper-

ature and density rise and ignite helium in the core.

• As helium burns in the core a central ash of carbon is left

behind that is inert because much higher temperatures are

needed to fuse it to heavier elements.

• This is termed core helium burning.

• Just as for hydrogen, once sufficient carbon ash has accu-

mulated in the core, helium burning will be confined to a

concentric shell around the inert core.

• this is termed a helium shell source.

If the star is massive, this scenario may be repeated

for heavier core and shell sources (Fig. 13.2).
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The shell and core sources described above are not necessarily

mutually exclusive.

• For more massive stars there may exist at any particular

time

– only a core source,

– only a shell source,

– multiple shell sources, or

– a core source and one or more shell sources

burning simultaneously.

• These sources can have complicated instabilities and in-

teractions.

An important concept for understanding the action

of shell sources is the mirror principle, which we

now describe.
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Mirror Response of Mass Shells: An important aspect of shell

energy sources is termed the mirror principle.

• Experience with simulations indicates that shell sources

tend to produce “mirror” motion of mass shells above and

below them, as illustrated in the figure below.

(a) Shell source (b) Two shell sources (c) Mass shells, shell source.
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• If there is a single shell source the mass layers below the

shell source tend to contract and the mass layers above the

shell source tend to expand, as illustrated in (a) and (c).

• For two shell sources, each tends to mirror the mass shells

above and below, as illustrated in (b).

• In the absence of core burning, with two shell sources the

core tends to contract, so by the mirror principle the layers

above the inner shell source tend to expand (moving the

second shell source further outward).

• Applying the mirror principle to the outer shell source,

the layers outside the outer shell source (surface layers,

for example) will tend to contract.

Motion in the HR diagram in late stellar evolution simulations

often can be predicted by this principle of mirrored motion.
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13.2 Stages of Red Giant Evolution

Globular clusters have HR diagrams differing substantially

from those for stars near the Sun or for open clusters.

• We have interpreted this provisionally as evidence that

globular clusters are old and that

• these differences are connected with the time evolution of

star populations.

• We are now in a position to place those qualitative remarks

on a much firmer footing.

• The most distinctive features of the HR diagrams for old

clusters are

1. The absence of main-sequence stars above a certain

luminosity, and

2. Loci of enhanced populations in the giant region

termed the

– red giant branch (RGB),

– the horizontal branch (HB), and

– the asymptotic giant branch (AGB),

respectively.

These are illustrated schematically in Fig. 13.3 and for an actual

cluster in Fig. 13.4 (see next page).
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Figure 13.3: Schematic giant branches in an evolved cluster.
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• Regions of enhanced population in the HR diagram are

a signal that individual stars spend significant portions of

their lives in these regions.

• As we now discuss, the

– red giant branch,

– horizontal branch, and

– asymptotic branch

can be identified with distinct stages of post main-

sequence evolution for intermediate mass stars.

• These stages

– are of short duration compared with main-sequence

evolution, but

– are long compared with stages in between.
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Figure 13.5: Evolution away from the main sequence for a 5 solar mass star.

As representative, we consider the calculated evolution of a 5

solar mass star, as illustrated in Figs. 13.5 and 13.6.

• Beginning at ZAMS the star converts hydrogen to helium.

• This causes a very small upward drift on the HR diagram.

• As core hydrogen is depleted the core contracts and even-

tually a hydrogen shell source is established.

These events signal the advent of a rapid departure from the

main sequence that we will now follow in some detail.
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13.3 The Red Giant Branch

The hydrogen shell source established when the core hydrogen

is depleted burns outward, leaving behind a helium-rich ash.

• The sole energy source is in a concentric shell, so

– the core cannot maintain a thermal gradient and

– it equilibrates in temperature.

Such isothermal cores are characteristic of stars

that have only shell energy sources.

• As the core increases in size because of the shell burning

it is supported primarily by the pressure of the helium gas,

which is typically still nondegenerate and nonrelativistic.

• But there is a limit to the mass of an isothermal helium

core that can be supported by the gas pressure.

• This Schönberg–Chandrasekhar limit is given by

Mc ≃ 0.37

(
µenv

µc

)2

M,

for an isothermal core of ideal helium gas, where

– M is the total mass of the star, Mc is the mass of the

isothermal core,

– µc is the mean molecular weight in the core, and µenv

is the mean molecular weight in the envelope.
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Growth of an isothermal helium core to this size

• typically requires that about 10% of the original hydrogen

be burned,

• which is one basis for the earlier statement that significant

evolution from the main sequence commences when 10%

of hydrogen has been consumed.
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When the Schönberg–Chandrasekhar limit is reached the core

can no longer support itself, or the layers above, against gravity.

• It begins to contract on a Kelvin–Helmholtz timescale,

– which is slow compared to the dynamical timescale

– but rapid compared to the nuclear burning timescale

governing the time spent on the main sequence.

• The contraction continues until

– ignition of core helium burning provides stabilizing

pressure, or

– until interior densities are reached where the electron

gas becomes degenerate.

• Provided that the core mass does not exceed about 1.4 M⊙,

– degeneracy pressure stops the contraction,

– but only after the core has become much hotter and

denser, and

– substantial gravitational energy has been released.

• Much of the energy released in the contraction is de-

posited in the envelope, which expands and cools, enlarg-

ing and reddening the photosphere.

• Thus the star evolves rapidly upward and to the right rel-

ative to the main sequence into the red giant region of the

HR diagram.
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• The region between the main sequence and the RGB (be-

tween points 5 and 6) has few stars (Hertzsprung gap).

• The star evolves so rapidly through this region that there

is little chance of observing it (8×105 years; Table 13.1).

• As the envelope temperature decreases

– opacity increases and

– dT/dr becomes steeper than the adiabatic gradient.

Thus the star’s envelope becomes convective.
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• We may then view the evolution to the red giant region as

something like the inverse of the collapse of fully convec-

tive protostars to the main sequence.

• The almost fully convective star climbs the Hayashi track

in reverse to the red giant region.

• The corresponding evolution in the above figure is on the

red giant branch between the points labeled 6 and 7.

• While on the red giant branch the greatly-expanded star

can exhibit significant envelope mass loss, with rates as

large as 10−6M⊙ per year observed for RGB stars.
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13.4 Helium Ignition

• Helium burning by the triple-α reaction will be triggered

when the core temperature reaches about 0.8×108 K.

• The onset of helium burning corresponds to the cusp

shown in the above figure at point number 7, and signals

the end of RGB evolution.

• Ignition of the core helium is qualitatively different for

stars above and below about 3M⊙.
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High mass stars generally have higher core temperatures than

low mass stars at all stages of their evolution.

• Calculations indicate that stars of about 6M⊙ or more have

high enough central temperatures to evolve all the way to

helium burning without their cores becoming degenerate.

• Thus for M >∼ 6M⊙, the initiation of core helium burn-

ing is likely a smooth and orderly process.

• But calculations indicate that for stars of about 3M⊙ or

less the core electrons will have become highly degenerate

before the triple-α sequence ignites.

• The equations of state for ideal gases and degenerate

gases differ fundamentally in the relationship between

temperature and pressure:

– For an ideal gas the pressure is proportional to tem-

perature.

– For a degenerate gas the pressure is essentially inde-

pendent of the temperature.
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13.4.1 Thermonuclear Runaways under Degenerate Conditions

Ignition of thermonuclear reactions under degenerate condi-

tions leads to violent energy releases:

1. Ignition of the fusion reaction releases large amounts of

energy, which quickly raises the local temperature.

2. In a normal explosion (ideal gas), a rise in temperature

causes a corresponding rise in pressure that separates and

cools the reactants, limiting the explosion.

3. Not so in degenerate gases because pressure is not in-

creased initially by the sharp temperature rise.

4. Since charged-particle fusion reactions have very strong

temperature dependence, the rise in temperature causes a

rapid increase in the reaction rates and the fusion reactions

run faster.

5. This in turn raises the temperature further and thus reac-

tion rates, and so on (thermonuclear runaway).

6. The large thermal conductivity of degenerate matter

means a thermonuclear runaway triggered locally spreads

rapidly through the degenerate matter.

7. This runaway continues until enough electrons are excited

to lift the degeneracy of the electron gas.

8. The equation of state then tends to that of an ideal gas and

the resulting increase of pressure with temperature mod-

erates the reactions.
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13.4.2 The Helium Flash

When such a thermonuclear runaway occurs under degenerate

conditions for triple-α it is termed a helium flash.

• Simulations show that stars of less than about 3M⊙ ignite

helium under degenerate conditions.

• Simulations indicate further that the helium flash

– ignites the entire core within seconds,

– that the temperature can rise to more than 2× 108 K

before the runaway begins to moderate, and that

– the energy release during the short flash can approach

1011L⊙ (comparable to the luminosity of a galaxy!).

• However, this extremely violent event probably has little

directly visible external effect because the enormous en-

ergy release is almost entirely absorbed in the envelope.

• In effect, the explosion is so strongly tamped by the ex-

ternal matter in the gravitational potential well of the star

that it does not make it to the exterior.
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• Once the degeneracy of the core is lifted following the he-

lium flash (or following the onset of the triple-α reaction

in heavier nondegenerate cores), the helium burns steadily

to carbon at a temperature of about 1.5×108 K.

• This signals the beginning of the horizontal branch (HB)

portion of red giant evolution.



13.5. HORIZONTAL BRANCH EVOLUTION 531

B - V

Mv

0

-1

-2

-3

1

2

3

4

5

6

7

8

-0.4 0 0.4 0.8 1.2 1.6 2.0

HB

AGB

Cluster M5

RGB

13.5 Horizontal Branch Evolution

• The horizontal branch (HB) of the above figure corre-

sponds to a period of stable core helium burning that is in

many ways analogous to the core hydrogen-burning main

sequence.

• Thus, this period is often termed the helium main se-

quence.
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• The HB corresponds to points 8–10 above.

• This “helium-burning main sequence” is a time of hy-

drostatic equilibrium for the same reasons as for the

hydrogen-burning main sequence.

• The helium-burning main sequence is much shorter than

the hydrogen-burning main sequence, in accord with ear-

lier discussion of burning timescales.

• Initially on the HB the star typically has

– lower luminosity than in the RGB period, but

– higher than when it was on the main sequence.
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H
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Figure 13.7: Mirror principle applied to helium and hydrogen shell sources

in horizontal-branch evolution.

• The star remains on the HB while it has helium core fuel.

• When the core helium is exhausted, the core contracts and

a thick helium burning shell is established.

• The star now has two shell sources (and no core source):

– the broad helium-burning shell and

– the narrow hydrogen-burning shell lying above it.

• Mirror principle (see Fig. 13.7):

– the inert carbon–oxygen core inside the helium

source contracts (no power source),

– the inert helium layer outside the helium shell source

expands, pushing the hydrogen shell source to larger

radius, and

– the outer layers of the star contract.
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• The star moves left on the HR diagram and represents the

evolution between points 11 and 13 in the above figure.

• The helium shell source narrows and strengthens as the

core compresses further.

• Layers above the He shell source expand and cool, which

– turns off the hydrogen shell source above the helium

shell source,

– leaving only a single active (He) shell source.
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• In accordance with the mirror principle, the star contracts

inside the helium source and expands outside it, and

• drifts quickly to the right in the HR diagram until it

reaches the vicinity of the Hayashi track (point 14 above).

• This signals the transition to the asymptotic giant branch

(AGB).
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13.6 Asymptotic Giant Branch Evolution

In many respects the evolution on the AGB now mimics that

following the establishment of the first hydrogen shell source

after core hydrogen was depleted on the main sequence.

• However, the star now has

– an electron-degenerate C–O core and

– two shell sources rather than one.

(The hydrogen source turned off after ignition of the he-

lium shell source but it will re-ignite after early evolution

on the AGB.)

• The star again increases in luminosity and radius and

– moves into the red giant region as earlier, but

– at even higher luminosities on the AGB.

.
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• The corresponding evolution in the above figure is from

point 14 and beyond.

– Roughly: continuation of the ascent on the RGB

along the Hayashi track that was interrupted by ig-

nition of the core helium.

– If the star is massive enough, the growing carbon core

may ignite eventually, but

– if M < 4− 5M⊙ this is not likely and all subsequent

energy production will be from the shell sources.
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A number of important features characterize asymptotic giant

branch evolution:

• The shell sources exhibit instabilities called thermal

pulses.

• Shell sources in AGB stars are thought to be the primary

site for the slow neutron capture or s-process.

• Stars in the giant region often exhibit large surface mass

loss. Particularly true for AGB stars.

• Deep convective envelopes in the AGB phase can dredge

elements synthesized in the interior up to the surface.

• These elements can then be distributed to the interstellar

medium by winds from the surface.

Let’s now discuss each of these important aspects of AGB evo-

lution in more depth.
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13.6.1 Thermal Pulses

The AGB period is characterized by the presence of both hy-

drogen and helium shell sources.

• However, these shell sources exhibit

– instabilities

– a complex interrelationship

such that at any one time often only one of the two shell

sources is burning.

• These instabilities are called thermal pulses or helium

shell flashes.

• It will be shown below on rather general grounds that a

thin shell source is inherently unstable:

– Basically one finds that if shell sources are narrow

enough the temperature increases upon expansion.

– This is strongly destabilizing and sets the stage for a

thermonuclear runaway.

Therefore, in many respects a thin shell source be-

haves like a degenerate gas with regard to thermal

stability, even if the gas in the shell source is non-

degenerate.
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Figure 13.8: Schematic illustration of thermal pulses in an AGB star.

AGB thermal pulses are illustrated in Fig. 13.8.

• Let us assume that we have initially an

• inert C–O core surrounded by an inert He layer,

• with a hydrogen shell source at the base of the hydrogen

layer above adding to the He layer (Fig. 13.8(a)).
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• As the core compresses the base of the helium layer may

ignite, giving an inner He shell source and an outer H

shell source.

• Expansion of layers above the hot He shell source lowers

the temperature enough at the base of the hydrogen enve-

lope to turn off the H shell source, leaving the star with a

single He shell source (Fig. (b)).
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• The hot helium shell source produces a steep temperature

gradient and convection develops that reaches down to the

vicinity of the He shell source, as illustrated in Fig. (c).

• This convection mixes burning products from earlier evo-

lution into the surface layers.

• The He shell source burns outward, leaving a growing C–

O core behind.
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• The He shell source eventually extinguishes because of

insufficient temperature at larger radius, but not before

• the proximity of the hot He source re-ignites the shell

source at the base of the hydrogen layer, leading to the

situation in Fig. (d).

• The hydrogen shell source burns outward, leaving behind

a new layer of helium and the cycle is repeated,

• but now with a larger carbon–oxygen core.
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13.7 Stability of Thin Shell Sources

In the complicated tango between the shell sources that defines

the cycle in the above figure,

• the hydrogen shell source burns in stable fashion but

• the He shell source can be very unstable because of

– strong temperature dependence for He burning, and

– because thin-shell sources are inherently unstable.
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Consider a thin shell source in a star of radius R and mass M.

• The source is assumed to be in thermal equilibrium and to

have

– a mass ∆m,

– a density ρ ,

– a temperature T , and

– a thickness L = r− r0≪ R,

as illustrated in the following figure.

r0

r

∆m, T, ρ

R

L= r - r0

If this is a single energy-producing shell in thermal equilibrium

• the shell is stable, with

• the rate of energy flow out of the shell = rate of energy

generation in the shell.

We now consider the effect of a fluctuation in energy for this

shell.
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R
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If the energy-generation rate is increased by a fluctuation

• the shell will expand, pushing the layers above it outward.

• Using the generic equation of state

dP

P
= α

dρ

ρ
+β

dT

T

with α ≥ 0 and β ≥ 0,

• stability of the shell requires that 4L/r >α (proof in Prob-

lem 13.4).

• But α is positive and finite, so for very thin shells L/r→ 0

and the stability condition cannot be satisfied.

This is called the thin-shell instability; it may be

significant for AGB stars since they often develop

thin shell sources.
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Physically the thin-shell stability requirement

4L

r
> α

implies that

• if a shell source is narrow enough the temperature in-

creases upon expansion,

• which is strongly destabilizing and sets the stage for a

thermonuclear runaway.

• Therefore, in many respects a thin shell source behaves

like a degenerate gas with regard to thermal stability, even

if the gas in the shell source is not degenerate.

Thin He shell sources are particularly unstable be-

cause helium is a very explosive thermonuclear

fuel.
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Simulations indicate that an AGB star can undergo many ther-

mal pulses (tens to hundreds of pulses before the envelope is

eroded away by mass loss).

• The thermal pulse durations typically are only 104–105

years (a tiny fraction of the life of an average star).

• Thus it is very difficult to catch a star undergoing thermal

pulses.

• About a quarter of AGB stars are predicted to undergo one

final helium shell flash after hydrogen burning has ceased.

• This late thermal pulse occurs after the star has ejected

most of its envelope as a planetary nebula and is settling

into the white dwarf phase.

• Computer simulations of this event suggest that in such a

star

– the helium shell can re-ignite and the small remaining

H envelope can be convectively mixed into the helium

shell,

– which leads to additional rapid hydrogen-driven flash

burning and renewed mass ejection.

• Late thermal pulse events in asymptotic giant branch stars

are expected to be rare, with a predicted rate of only about

one per decade in our galaxy.
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The star V4334 Sgr (Sakurai’s Object) is thought to be a star

caught undergoing a late thermal pulse.

• Since discovery in 1996, it has exhibited rapid evolution

on the HR diagram accompanied by mass ejection.

• Model simulation of the evolution of Sakurai’s object on

the HR diagram is illustrated in the following
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with a solid line indicating the prediction for evolution be-

fore discovery and a dashed line afterwards.

• These predicted loops imply surface-T variations by fac-

tors of 10 on timescales of 10–100 years.

• The observed surface T increased by about a factor of 2 in

just the 10 years following discovery in 1996.
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Figure 13.9: Solar System elemental abundances relative to silicon abun-

dance.

13.7.1 Slow Neutron Capture

Figure 13.9 summarizes observed elemental abundances.

• Elements up to iron can be produced by fusion reactions

and by nuclear statistical equilibrium in stars.

• Elements beyond Fe can’t be produced in the same way

because the Coulomb barriers become so large that ex-

tremely high temperatures are required.

• These high temperatures would produce a bath of high-

energy photons that would photodisintegrate any heavier

nuclei that were formed.

• Thus other mechanisms produce heavier elements.
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One possibility is the capture of neutrons on nuclei to build

heavier nuclei.

• Because neutrons are electrically neutral they do not have

a Coulomb barrier to overcome.

• This permits reactions to take place at low enough tem-

peratures that the newly-formed heavy nuclei will not be

dissociated immediately by high-energy photons.

• There are two basic neutron capture processes that are

thought to produce heavy elements:

– the slow neutron capture or s-process and

– the rapid neutron capture or r-process.

• Astrophysical sites for these neutron capture reactions

have not been confirmed, but it is widely believed that

– the s-process takes place in AGB stars

– the r-process takes place in neutron star mergers and

in core-collapse supernova explosions.

We shall discuss the s-process here and will address the r-

process in later chapters.
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Figure 13.10: Example of slow neutron capture and β -decay (s-process).

The s-process refers to a sequence of neutron capture reac-

tions interspersed with beta decays to produce heavier elements

where the rate of neutron capture is slow on a timescale set by

competing beta decays.

• We can illustrate by considering an iron nucleus subject to

a low-intensity neutron source, as in Fig. 13.10.

• In this example, 56Fe captures 3 neutrons sequentially to

become 59Fe.

• But as iron isotopes become neutron rich they become in-

creasingly unstable against β− decay.

• In this example the neutron flux is such that 59Fe is likely

to beta decay before it can capture another neutron.
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• Now the 59Co nucleus can absorb neutrons and finally

beta decay to produce an isotope of the next atomic num-

ber (nickel), and so on.

• By this process, heavier elements can be built up slowly if

a source of neutrons and the seed nuclei (iron in this case)

are available.



554 CHAPTER 13. EVOLUTION OF LOWER-MASS STARS

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

Neutron number

P
ro

to
n
 n

u
m

b
e
r

Neutron drip line

Pro
to

n d
rip

 li
ne

β-stable isotopes

Unstable against 

spontaneous

emission of neutrons

Unstable against 

spontaneous

emission of protons

β-unstable
β-unstable

Sta
bilit

y 
lle

Va
y

Figure 13.11: The valley of beta stability (shaded region). Isotopes lying in

this valley are stable against β -decay. The “drip lines” mark the boundaries

for spontaneous emission of protons or neutrons. Isotopes outside the sta-

bility valley are increasingly unstable against β -decay as one moves toward

the drip lines.

• Because of the competition from beta decay, it is clear that

the s-process can build new isotopes only in the valley of

beta stability illustrated in Fig. 13.11.
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Figure 13.12: The s-process path in the Yb–Os region.

In Fig. 13.12 the s-process path is shown in the Yb–Os region.

• The path stays very near the stability valley (dark boxes).

• This figure also illustrates the competition between the s-

process and r-process in producing the heavier elements.

• The r-process generally populates very neutron-rich iso-

topes that then β− decay toward the stability valley.

• Some isotopes (for example, 186−187Os) can be populated

only by the s-process because other stable isotopes pro-

tect them from r-process populations β -decaying from the

neutron-rich side of the proton–neutron plane.

• Other isotopes (e.g. 186W) can be populated only by the

r-process because an unstable isotope lies to their left in

Fig. 13.12, blocking the s-process path.
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heavy element abundances.

Many isotopes can be produced by both the s-process and

the r-process. The relative contributions of the s-process and

r-process to heavy element abundances are summarized in

Fig. 13.13.
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A source of slow neutrons is required for the s-process.

• Only a few nuclear reactions that are likely to occur in

stars under normal conditions produce neutrons.

• Free neutrons are unstable against β -decay on a 10-

minute timescale.

• Thus neutrons for the s-process are not easy to come by.

The box on the next page discusses possible neutron sources

for the s-process that are thought to be present in red-giant stars

during the AGB phase.
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For the slow capture process it is thought that two reactions that

can occur in AGB stars are primarily responsible for supplying

the neutrons:

4He+ 13C−→ 16O+n 4He+ 22Ne−→ 25Mg+n

• The 13C(α , n)16O reaction is expected to provide the neu-

tron flux at low neutron densities ( <∼ 107 cm−3).

• The reaction 22Ne(α , n)25Mg plays a secondary role, oc-

curring at higher T during thermal pulses.
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13.7.2 Development of Deep Convective Envelopes

• Once a thin helium shell source develops the resulting

temperature gradients drive very deep convection extend-

ing down to the shell sources (above).

• As we shall discuss later, mixing associated with this deep

convection is central to understanding the observation of

nuclear-processed material associated with surfaces and

winds for red giant stars.
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13.7.3 Mass Loss

Observations indicate that once stars leave the main sequence

they experience large mass losses, particularly in the AGB and

RGB phases.

• This is most directly indicated by the observation of gas

clouds with outwardly directed radial velocities of 5–30

km s−1 near such stars.

• It has been found that this mass loss is described by a

semiempirical expression of the form

ṁ≃−A
LR

M
M⊙ yr−1,

where A ∼ 4× 10−13 is a constant, L is the luminosity, R

is the radius, and M is the mass of the star.

• Thus, the rate of mass ejection increases linearly with

– larger luminosity,

– larger radius, and

– smaller mass.

• This would be expected for mass loss from the surface of

a luminous object with a surface gravitational field deter-

mined by its mass and radius.
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Therefore, on the RGB and AGB

• the rapid increase in radius and luminosity leads to in-

creased mass loss, and

• as the star sheds its matter the decreased residual mass

reduces the gravitational potential and further accelerates

the loss.

• The detailed mechanism is not well understood but:

It is clear empirically that mass loss can increase

by orders of magnitude relative to that associated

with normal stellar winds in the RGB and AGB

phases.
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Example: Mass loss can be large for red giants.

• For RGB stars mass losses of 10−6 M⊙ yr−1 have been

recorded, while

• for AGB stars the losses can approach 10−4 M⊙ yr−1.

If these rates were sustained a red-giant star would eject all

of its mass on a timescale that is tiny compared to its overall

lifetime.
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13.8 Ejection of the Envelope

In the AGB phase the envelope of the star is consumed both

from within and without:

• The surface is ejecting mass, while the carbon–oxygen

core is growing internally as the shell sources burn out-

ward.

• Detailed estimates indicate that the surface mass loss is

more important by orders of magnitude.

This rapid loss of the envelope primarily from surface ejection

while the core grows at very small comparative rates has two

important implications:

1. The envelope of the star is lost rapidly into space, leaving

behind a carbon–oxygen core.

• The rapid loss of the envelope implies that a range of

initial masses will leave behind cores (white dwarfs)

of almost the same mass.

• This is significant because white dwarf masses are

observed to be concentrated in a narrow range near

M ≃ 0.6 M⊙.

2. The ejected envelope is a natural candidate for producing

planetary nebulae, which are commonly observed phe-

nomena in late stellar evolution.
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Thus, we expect the primary outcome of AGB evo-

lution to be

• ejection of most of the star’s envelope as a

planetary nebula,

• leaving behind a bare C–O (or Ne-Mg in

heavier stars) core that will cool to form a

white dwarf.
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13.9 White Dwarfs and Planetary Nebulae

Late in the AGB phase, mass loss increases dramatically for

a short period called the superwind phase (which, as for other

mass-loss phases, is not well understood).

• The radius decreases and the temperature increases, with

the luminosity about constant.

• From this point onward it is useful to consider the evolu-

tion of the core and the envelope separately.
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Figure 13.14: Evolution after the asymptotic giant branch.

As the core compresses, it follows the approximate evolution-

ary track shown in Fig. 13.14.

• This takes it to much higher temperatures than for the nor-

mal HR diagram.

• It finally cools to the white dwarf region with attendant

decrease in luminosity.

• This high temperature is a result of

– retained thermal energy

– gravitational compression

since the core is no longer capable of producing energy by

thermonuclear processes.
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• The remnants of the ejected envelope recede from the star.

• When the temperature of the bare core reaches about

35,000 K

– a fast wind, probably associated with radiation pres-

sure from the hot core, accelerates the last portion of

the envelope to leave,

– this forms a shock wave that proceeds outward and

defines the inner boundary of the emitted cloud.

• As the temperature of the central star climbs, the spectrum

is shifted far into the UV.

• The resulting bath of high energy photons from the central

star ionizes the hydrogen in the receding envelope.

• The resulting recombination reactions between ions and

electrons emit visible light and account for the luminosity

and the often beautiful colors associated with the plane-

tary nebula.

• The core and the planetary nebula now proceed on their

separate ways:

– the core cools slowly to a white dwarf,

– the planetary nebula expands and grows fainter,

eventually dispersing into the interstellar medium.
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Figure 13.15: A variety of planetary nebulae imaged by the Hubble Space

Telescope. Such observations indicate that the ways in which dying AGB

stars eject their envelopes can be quite complex.
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13.10 Stellar Dredging Operations

Observations indicate that red giant stars exhibit isotopic abun-

dances in their surfaces and winds that could only have been

produced by nuclear burning in core and shell sources.

• Post main-sequence evolution in the red giant region in-

volves various episodes of deep convection.

• Thus it is logical to assume that the observed nuclear-

processed material is brought to the surface by such deep

convective mixing.

• This mechanism of transporting the products of nuclear

burning and processing to the surface by deep convection

is termed a dredge-up.
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Three dredge-up episodes have been identified in post main-

sequence evolution:

1. First dredge-up is thought to occur as the star develops

deep convection driven by the hot hydrogen shell source

prior to triple-α ignition on the RGB.

2. Second dredge-up can occur early in AGB evolution for

intermediate-mass main sequence stars as a result of con-

vective gradients generated by the narrowing helium shell

source.

3. Third dredge-up appears to be necessary to understand

surface abundances for many evolved AGB stars. It is

thought to be associated in a complex way with

• thermal pulses in AGB evolution, through deep con-

vection that

• extends at least periodically into the region between

the H and He shell sources

Although these dredge-up episodes are only par-

tially understood, they are key to explaining ob-

servations like

• carbon stars (stars with a greater abundance

of C than O in their surfaces) and

• abundance of interstellar carbon dust grains.



13.11. THE SUN’S RED GIANT EVOLUTION 571

0.0

0.001

0.02

0.03

1

7

10 11
11.5

12

12.05

12.06

12.0628

2R

5R

1R

10R

20R

50R

100R

200R

3.753.80

0

-1

1

2

3

4

3.70 3.65 3.60 3.55 3.50 3.45 3.40

Log Te(K)

L
o

g
 L

/L

You are
here Oceans frozen

Oceans

boil

Iron

melts

Earth

engulfed

ZAMS

Protostar

Sun

Earth

orbit

RR=1 RR=5 RR=50 RR=200

Figure 13.16: Evolution of the Sun showing implications for Earth. Times

in units of 109 years are shown beside the curve. The parallel diagonal lines

join points of constant stellar radius. Protostar evolution is indicated by the

dotted curve, beginning from when the protostar has collapsed to a radius

10 times that of the present Sun. The top panel shows Earth’s orbit and the

Sun drawn to scale at various stages of the evolution.

13.11 The Sun’s Red Giant Evolution

The Sun will

• evolve into a red giant and

• shed its envelope to become a white dwarf,

with consequences for Earth.
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• The Sun has 5 billion years left on the main sequence.

• The above figure illustrates a simulation for expansion of

the Sun in the beginning of its red-giant phase.

• The top panel shows the Sun and Earth’s orbit drawn to

scale at various stages of the evolution.

• Presently the Earth’s orbital radius is 214 times the radius

of the Sun, so the Sun is largely invisible on this scale.

• In this simulation the Sun expands to the size of Earth’s

present orbit 12.0628×109 yr after the time marked zero.
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Figure 13.17: Evolution off the main sequence for stars of 5 M⊙ or less.

13.12 Overview for Lower-Mass Stars

An overview of evolution after leaving the main sequence for

various stars in the 0.25–5 M⊙ range is given in Fig. 13.17.

• All but the lightest evolve into the red giant region but they

exhibit mass-dependent differences:

– Evolution is faster for the heavier stars, with possible

looping and switchbacks.

– For higher mass the post main-sequence HR motion

is increasingly horizontal and to the right.

– For lower mass the ascent is highly-vertical.
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Chapter 14

Evolution of Higher-Mass Stars

In this chapter we address the evolution of high-mass stars,

which will be defined as a ZAMS mass M >∼ 8M⊙. There are

some important issues that are unique to high-mass stars:

• The same burning stages as for lower-mass stars are en-

countered, but additional advanced burning stages of

heavier fuels are initiated that are not accessible to lower-

mass stars.

• The evolution through all stages occurs more rapidly and

at greater luminosity than for less-massive stars.

• Nucleosynthesis occurring in evolution after the main se-

quence produces heavier and more varied elements than

those synthesized for less-massive stars.

• The role of neutrino emission becomes increasingly pro-

nounced in more advanced burning stages, with core-

cooling dominated by neutrinos for carbon burning and

beyond.
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• The luminosity on the main sequence and after is often

close to the Eddington limit and remains relativity con-

stant after the main sequence.

• Thus the evolution after the main sequence for massive

stars is very horizontal on the HR diagram.

• Mass loss by strong stellar winds can be significant, even

on the main sequence.

• The central temperatures are high and the core electrons

typically remain nondegenerate until the latest burning

stages, despite the high density.

• The iron core formed in the last stages of main-sequence

evolution for massive stars is supported by electron de-

generacy pressure and is inherently unstable if it grows

beyond a critical mass.

• This implies that the endpoint of stellar evolution will be

fundamentally different for a massive star relative to that

for an low-mass star.

Each of these issues will be addressed in this chapter or in the

discussion of core collapse supernova explosions in Ch. 20. It

is useful to begin with the consequences of advanced burning

stages for massive stars.
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Figure 14.1: Evolution off the main sequence for high-mass stars.

14.1 Advanced Burning Stages in Massive Stars

An overview of evolution for two stars in the M > 8M⊙ range

after leaving the main sequence is given in Fig. 14.1.

• The rate of evolution after the main sequence for these

stars is extremely rapid.

• For example, from the 9 M⊙ star reaches point 10 in

Fig. 14.1 only about 5 million years after leaving the main

sequence.
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Figure 14.2: Central region of a 25 solar mass star late in its life. This

central region is only a few thousand kilometers in radius and lies at the

center of a supergiant star.

Because of sequential advanced burning stages, massive

stars build up the layered structure depicted schematically in

Fig. 14.2.

• If the star has a mass M >∼ 8M⊙, successively heavier fuels

can be burned as the star compress and heats up, until an

iron core is formed in the center of the star.

• The iron core cannot produce energy by fusion.

• The iron core is supported by electron degeneracy pres-

sure.
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• The silicon layer surrounding the iron undergoes reactions

producing more iron and the iron core grows more mas-

sive.

• Beyond a critical mass of about 1.2 M⊙ the core becomes

gravitationally unstable and collapses.

• This collapse will be described in some detail later.

• Here we will concentrate on describing the evolution of

high-mass stars prior to encountering the gravitational in-

stability of the iron core.
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14.1.1 Envelope Loss from Massive Young Stars

As we discuss later, there is strong observational evidence that

very massive stars eject large amounts of material from their

envelopes early in their lives. It is thought that

• Radiation pressure and

• pulsational instabilities

play a leading role in these mass-loss processes.
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Massive stars may go through early stages where they expel

large portions of their envelopes into space at velocities as large

as 1000 km s−1.

• In such stars, the timescale for mass loss

τloss ∼
M

Ṁ
,

where M is the mass and Ṁ the rate of mass loss, may be

shorter than their main sequence timescales.

• One class of stars exhibiting large mass loss is that of

Wolf–Rayet stars, which are characterized by

1. large luminosity,

2. envelopes strongly depleted in hydrogen, and

3. high rates of mass loss.

• Most Wolf–Rayet stars have masses of 5−10M⊙.

• They are thought to be the remains of stars initially more

massive than 30M⊙ that have

– ejected all or most of their outer envelope,

– exposing the hot helium core.

• The envelopes of Wolf–Rayet stars typically contain 10%

or less hydrogen by mass, with individual stars exhibiting

different levels of envelope stripping.
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HD56925

(a)

η Carinae

(b)

Figure 14.3: (a) Wolf–Rayet star HD56925 surrounded by remnants of its

former envelope. (b) η Carinae, surrounded by ejected material.

• Figure 14.3a shows the nebula N2359, a wind-blown shell

of gas that has been expelled from the Wolf–Rayet star

HD56925 (marked by the arrow.)

• The nebula contains shock waves generated by interaction

of the wind and interstellar medium, and is glowing from

excitation of expelled material.

• Figure 14.3b shows an extreme example of mass loss: the

supermassive, highly unstable star, η Carinae.

• Elemental abundances in the nebula around η Carinae are

consistent with this being the supergiant phase of a 120

M⊙ star that has evolved with very large mass loss on the

main sequence and afterwards.

• (η Carinae may be a binary or triple star, which compli-

cates details but not the essence of the interpretation.)
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14.2 Neutrino Cooling of Massive Stars

In advanced burning stages neutrino cooling is important.

• The conditions in stars leading to these burning stages

often involve extreme energy-production rates in regions

deep within stars having high photon opacity.

• Then neither radiative nor convective transport can re-

move the energy fast enough to maintain equilibrium.

• But the high-temperature, high-density environment is at

the same time conducive to neutrino production and the

material is still transparent to neutrinos that are produced.

• Hence the very stability of stars undergoing advanced

burning depends fundamentally on neutrino cooling.

• This in turn implies that the properties of late stellar evo-

lution and the types of remnants that result are bound up

inextricably with neutrino cooling of the star.

• Neutrino cooling assumes particular importance for high-

mass stars, which can access all the advanced burning

stages that have been discussed.

From carbon burning and beyond the dominant

mode of cooling in stellar evolution becomes neu-

trino emission.
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14.2.1 Local and Non-Local Cooling

Below temperatures of about 5× 108 K stars are cooled domi-

nantly by radiation and convection.

• The net rate of heat removal depends on temperature gra-

dients.

• Thus the cooling at a given point in the star is nonlocal, in

that it depends on conditions in the surrounding region.

In contrast, neutrino cooling is highly local:

• The energy carried by a neutrino produced at a point

– is removed from the star at nearly the speed of light ,

– with little probability to interact with any of the rest

of the star.

• Thus neutrino cooling depends only on the conditions at

the point of production and not on spatial derivatives eval-

uated at that point.
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14.2.2 Neutrino Cooling and the Pace of Stellar Evolution

Neutrino emission begins to dominate the energy-removal bud-

get in stars when temperatures exceed about 109 K and densi-

ties are sufficiently low that the electrons are not too degener-

ate.

• However, it should be noted that “neutrino cooling”

– is apt when applied to white dwarfs or neutron stars,

but

– is something of a misnomer for stars undergoing ther-

monuclear burning in hydrostatic equilibrium.

• Instead of cooling the star, the rapid energy loss from neu-

trino emission stimulates increased thermonuclear rates

that are required to keep the star in equilibrium.

Thus, neutrino “cooling” actually accelerates

burning and the pace of stellar evolution for mas-

sive stars.
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14.3 Massive Population III stars

An interesting and exotic aspect of massive star evolution con-

cerns the first generation of stars that formed in the Universe

(Population III).

• Observations suggest that the first stars began forming

several hundred million years after the big bang.

• These stars would have been

– hydrogen and helium stars with

– negligible metals,

since they formed from material produced by the big bang.

• Simulations indicate that because of their low metal con-

tent these stars likely were very massive, with 100–

1000 M⊙ being common.

• Because of their large mass,

– these stars would have evolved quickly and

– most would have exploded as pair-instability super-

novae within several million years of their birth.

• These explosions seeded the Universe with heavier ele-

ments up to iron.
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At the recombination transition in the early Universe, which

occurred at a redshift z ∼ 1100 (some 380,000 years after the

big bang),

• Electrons combined with protons to make neutral hydro-

gen and the Universe became transparent.

• There were no stars yet, so the ensuing period until stars

formed is called the dark ages.

• From redshift z ∼ 20 to z ∼ 6 (roughly from 500 million

years to almost a billion years after the big bang) the neu-

tral hydrogen was reionized in the reionization transition.

• It is widely believed that Pop III stars were responsible for

this reionization of the Universe.

• Spectra of high-redshift quasars indicate that there were

heavy elements present during reionization.

• These could have come only from stars, and because of

their large masses stars in this first generation would have

been hot and would have bathed their neighborhoods with

ionizing UV radiation.

• No conclusive observational evidence exists for Pop III

stars.

• Some candidates have been proposed for star clusters

found in faint galaxies at large redshift (z ≥ 6), but the

observations are difficult and thus conclusions are neces-

sarily qualified.
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14.4 Evolutionary Endpoints for Massive Stars

Stars having M <∼ 8M⊙ when they leave the main sequence are

all thought to end their lives with

• their cores evolving to some form of white dwarf (helium,

carbon–oxygen, or neon-magnesium), and

• their envelopes ejected as planetary nebulae.

In contrast, the most massive stars appear ordained to one of

three qualitatively different fates more dramatic than becoming

white dwarfs, with all three initiated by gravitational collapse

of the star’s core:

• The majority of stars having M >∼ 8M⊙ will eject the outer

layers of the star violently in a core collapse supernova,

with the central regions crushed gravitationally into a neu-

tron star that is stabilized by neutron degeneracy pressure.

• For some core collapse events the mass of the

gravitationally-collapsed central region will be too large

for neutron degeneracy pressure to halt the infall and the

star will collapse instead to a black hole.

• For the special case of very massive stars (M ∼ 130−
250M⊙) and low metallicities, the star can destroy itself in

a pair-instability supernova, which leaves behind no com-

pact remnant. This was probably the fate of many Pop III

stars.
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14.4.1 Observational and Theoretical Characteristics

The neutron star and black hole endpoints for core collapse

likely have different observational characteristics.

• For the neutron star outcome

1. gravitational waves and a burst of neutrinos will be

emitted from the supernova explosion,

2. the ejected outer layers will produce an expanding su-

pernova remnant, and

3. the neutron star will cool primarily by neutrino emis-

sion, perhaps manifesting as a pulsar.

• For the black hole outcome,

1. a direct collapse to a black hole is expected to produce

bursts of neutrinos, gravitational waves, and possibly

γ-ray bursts, but

2. little in the way of traditional supernova remnants

may be ejected.

Hence it is possible that some or all core collapse

events leading to black hole formation are “dark”,

with only the emission of gravitational waves, neu-

trinos, and possibly gamma-ray bursts, but no tra-

ditional astronomy observations, to mark their pas-

sage.
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Figure 14.4: Evidence for a failed supernova. HST optical and IR images of

the region surrounding the 25M⊙ red supergiant N6946-BH1. (a) In these

optical images from July, 2007, N6946-BH1 is the spot at the center of the

circles, which have radii of 1 arcsec. (b) in optical images of the same region

from October, 2015, N6946-BH1 has disappeared. (c) In 2015 very faint IR

emission was observed consistent with the former position of N6946-BH1.

14.4.2 Black Holes from Failed Supernovae?

Can massive stars collapse directly to black holes, without ejec-

tion of a remnant and without a large increase in optical lumi-

nosity? Such failed supernovae would produce

• a black hole,

• gravitational waves, and

• neutrinos,

but few other characteristics of core collapse supernovae.
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• In 2007 the 25M⊙ red supergiant N6946-BH1 appears as a

dark spot in HST optical images (circled in above figure).

• In 2009 this star brightening to L≥ 106L⊙ but then faded

to less than pre-outburst luminosity over a few months.

• Images from 2015 [Fig. (b)] indicate that N6946-BH1 has

disappeared in the optical, but Fig. (c) indicates faint IR

emission at the former location of N6946-BH1.

• The luminosity of N6946-BH1 in 2017 was much less

than the progenitor, suggesting that the star is no more.

These observations are consistent with the 25M⊙
supergiant undergoing a failed supernova and col-

lapsing directly to a black hole, with faint residual

IR from weak accretion on the black hole.
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Figure 14.5: Summary of late stellar evolution: HB (horizontal branch),

RGB (red giant branch), AGB (asymptotic giant branch), PN (planetary

nebula), and WD (white dwarf). Reactions in burning stages are indicated.

14.5 Summary: Evolution after the Main Dequence

A summary of late stellar evolution is shown in Fig. 14.5.

• Low-mass stars evolve slowly to white dwarfs, with emis-

sion of the envelope as a planetary nebula.

• High-mass stars evolve quickly to catastrophic core col-

lapse, leaving behind a neutron star or black hole.

This is yet another installment in the ongoing saga: for stars,

mass is destiny.
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14.6 Stellar Lifecycles

We conclude this chapter by noting that stellar evolution leads

to extensive recycling of stellar material.

• Each star ties up a certain amount of mass at its birth.

• As the star evolves, some of that mass is returned to the

interstellar medium to participate in future star formation

by winds and explosions.

• Some becomes locked forever in white dwarfs, neutron

stars, and black holes, assuming that white dwarfs and

neutron stars don’t undergo interactions with other objects

after their formation.

The birth, evolution, and death of successive generations of

stars has three general consequences for a galaxy:

1. The gas available to make stars decreases as more of it be-

comes locked in white dwarfs, neutron stars, black holes,

brown dwarfs, and very low mass stars .

2. Over time the luminosity declines and the light reddens as

• massive, bright stars die more quickly and

• the population is increasingly dominated by less-

massive, long-lived, fainter stars.

3. The gas in the galaxy becomes enriched in metals as

nuclear-processed material is returned from stars to the in-

terstellar medium by winds and explosions.
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Thus, successive generations of stars typically have higher

metallicities. However,

• The metal content does not increase uniformly with time.

• Example: From metallicities of stars with different ages in

the Milky Way it may be estimated that the mass fraction

of heavy elements Z increased by much more early in the

history of the galaxy than it has more recently.

• The contribution to metallicity also is not uniform with

star mass.

• Massive stars are rare but they are the primary source of

metallicity increase because they eject large amounts of

processed mass as winds and explosions on a relatively

short timescale.

• The fraction and composition of stellar ma-

terial returned to the interstellar medium de-

pends strongly on the mass of a star.

• Thus the initial mass function discussed ear-

lier is important in understanding the recy-

cling of stellar material.



Chapter 15

Stellar Pulsations and Variability

One commonplace of modern astronomy that would have been

highly perplexing for ancient astronomers is that many stars

vary their light output by detectable amounts over time.

• In some cases these variations are asynchronous and in

others they are highly periodic.

• They may be so small as to require precise instruments

to detect them, or sufficiently large that they are easily

visible to the naked eye.

595
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These variable stars may be loosely classified into three cate-

gories.

1. Eclipsing binaries are binary stars in which the total light

output of the system is altered by geometrical eclipses of

one star by the other. If the binary system is too far away

to resolve the two components, this will appear to be a

single star with periodic variation in light output.

2. Eruptive and exploding variables are stars that suddenly

increase light output and often eject mass because of a

rapid and violent disruption or partial disruption of the

star. Novae and supernovae are dramatic examples in this

category.

3. Pulsating variable stars appear to undergo (possibly com-

plex) pulsations that alter the light output in periodic or ir-

regular fashion, without disrupting significantly the over-

all structure of the star, Well-known examples of this cat-

egory are Cepheid variables and RR-Lyrae stars.

In this chapter we examine in more depth this latter category

and the reasons that some stars become unstable against pulsa-

tions for certain periods of their lives.
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Table 15.1: Pulsating variable stars

Variable type Period Population Mode†

Long-period variables 100–700 d I, II R

Classical Cepheids 1–50 d I R

Type-II Cepheids 2–45 d II R

RR Lyrae stars 1.5–24 hr II R

δ Scuti stars 1–3 hr I R, NR

β Cephei stars 3–7 hr I R, NR

ZZ Ceti stars 100–1000 s I NR

†R = Radial; NR = Non-radial

15.1 The Instability Strip

Some common classes of pulsating variable stars and their

characteristics are given in Table 15.1.
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Figure 15.1: The instability strip and the region of long-period variables

in the HR diagram. With the exception of the long-period variables, most

variable stars are found within the instability strip.

Pulsating variables are found in specific regions of the HR dia-

gram, as illustrated in Fig. 15.1.

• There we see that many types of pulsating variables are

confined to a narrow, rather vertical, strip in the HR dia-

gram called the instability strip.

• This suggests that there is a fundamental mechanism

– operating in various stars of different luminosity, but

– over a narrow range of surface temperatures,

that leads to pulsational instability.
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15.2 Adiabatic Radial Pulsations

At the simplest level we may examine stellar pulsation in terms

of oscillations within the body of the star that are adiabatic and

linear in the displacement, and that maintain spherical symme-

try for the star.

• Such an analysis has much in common with the study of

small-amplitude vibrations in other physical systems:

– The pulsations are treated as as free radial vibrations.

– Gas compression plays the role of a spring constant.

• One finds that stars disturbed slightly from spherical hy-

drostatic equilibrium exhibit discrete vibrational frequen-

cies that are called radial acoustic modes.



600 CHAPTER 15. STELLAR PULSATIONS AND VARIABILITY

15.2.1 Radial Acoustic Modes

It is convenient to discuss stellar pulsation in terms of La-

grangian coordinates, where m(r) is the independent variable

and corresponds to the mass contained within a radius r.

• Then if we expand the pressure, radial coordinate, and

density as time-dependent oscillations around the equilib-

rium values (which are denoted by a subscript zero),

P(m,t) = P0(m)
(
1+δP(m)eiωt

)

r(m,t) = r0(m)
(
1+δ r(m)eiωt

)

ρ(m,t) = ρ0(m)
(
1+δρ(m)eiωt

)
,

where the radial displacement δ r(m) is described by

d2(δ r)

dr2
0

+

(
4

r0
− ρ0g0

P0

)
d(δ r)

dr0

+
ρ0

Γ1P0

[

ω2+(4−3Γ1)
g0

r0

]

δ r = 0,

where Γ1 is an adiabatic exponent, g0 ≡ Gm/r2
0, and ω is the

adiabatic oscillation frequency.

• This equation must be solved with two boundary condi-

tions, one at the center of the star and one at the surface.

– At the center one requires d(δ r)/dr0 = 0.

– The simplest physically reasonable surface boundary

condition is to require δPP0 = 0.
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Most intrinsically variable stars are pulsing in radial acoustic

modes, which correspond to standing waves within the star.

• The fundamental mode has no nodes (points of zero mo-

tion) between the center and surface, implying that the

stellar matter involved in the vibration all moves in the

same direction at a given time.

• The first overtone has one node between the center and

the surface, so the matter moves in one direction outside

this node and in the opposite direction inside this node at

a given phase of the pulsation.

• Likewise, higher overtones with additional nodes and

more complex motion may be defined.

• Just as for musical instruments and other acoustically vi-

brating systems, a star may exhibit several modes of oscil-

lation at once.

• The physical motion of the gas in radial stellar pulsations

is largest in the fundamental mode and is considerably

smaller in the first overtone.

• In higher overtones the motion of the gas in an oscillation

cycle is even smaller.

Pulsating variables appear to be oscillating primar-

ily in the fundamental mode and/or the first over-

tone.
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It is thought that

• most Classical and Type II Cepheids oscillate in the fun-

damental mode, while

• RR Lyrae stars oscillate in either the fundamental mode or

first overtone (or both).

For long-period red variables the evidence is less conclusive

and they may pulsate in either the fundamental or first overtone

modes.
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15.2.2 Pulsations in Realistic Stars

Pulsations in realistic stars are more complicated than the linear

adiabatic analysis discussed in the preceding paragraphs would

indicate.

• For example both the

– rate of energy production and

– the rate of internal energy transport may be modified

by pulsations,

so we may expect that they are not completely adiabatic

and must examine deviations from adiabaticity.

• In particular, we must ask the question:what energy input

sustains the pulsation modes of a pulsating variable star?
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Eddington first examined systematically the idea that stellar

pulsations are free radial oscillations, but realized that dissi-

pation processes in the gas would damp out such oscillations

quickly.

• Example: pulsations of Cepheid variables should be

damped on a timescale of order 104 years without some

mechanism to amplify and sustain the oscillations.

• Thus the steady, long-term pulsing of a Cepheid variable

– cannot be due to a one-time excitation of eigenmodes

and

– cannot be adiabatic.

Eddington proposed that pulsating variable stars

are a form of heat engine continuously transform-

ing thermal energy into the mechanical energy of

the pulsation.
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On the other hand, it will turn out that in realistic stars the pul-

sation may often be approximated as nearly adiabatic:

• Instabilities grow on a timescale that is long relative to the

time for one pulsation.

• Over one acoustic oscillation cycle (which is essentially a

hydrodynamic timescale), the amount of heat exchanged

is typically small.

• This is because energy transfer occurs on a Kelvin–

Helmholtz timescale, which is much longer than the hy-

drodynamic timescale.

• Therefore after a single acoustic cycle the star returns al-

most—but not quite—to the initial state.

• The “not quite” measures the lack of reversibility and

therefore the non-adiabaticity of the process.

With this as introduction, let us now consider the role of non-

adiabatic effects in sustaining stellar pulsation.
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15.3 Non-Adiabatic Radial Pulsations

For each layer of the star a net amount of work is done during a

pulsation cycle that must be equal to the difference of the heat

flowing into that layer and that flowing out.

• If the oscillation is to be self-sustaining for a single layer,

we must have a mechanism whereby

– heat enters the layer at high temperature and

– heat leaves the layer at low temperature.

• If layers driving the pulsation absorb energy near the time

of maximum compression, the oscillations will be ampli-

fied because the time of maximum pressure in the layer

will occur after maximum compression.

This is similar to the reason that it is optimal to

fire the spark plug near the end of the compression

stroke in an internal combustion engine.

• A sustained oscillation for a significant part of the star

then requires that a set of different layers have some level

of phase coherence in these driven oscillations.

Let us now justify these assertions using basic ideas from ther-

modynamics.
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15.3.1 Thermodynamics of Sustained Pulsation

Many features required to sustain stellar pulsation follow from

the 1st and 2nd laws of thermodynamics.

• Let’s work in Lagrangian coordinates and assume the gas

to be almost but not quite adiabatic.

• Consider a mass zone. By the 1st law, for a pulsation cycle

the change in heat Q for a mass zone is a sum of contribu-

tions from changes in internal energy U and work W done

on its surroundings during the pulsation,

dQ = dU +dW.

• After a complete oscillation cycle we assume that the in-

ternal energy U returns to its original value so that the

work done over the cycle is entirely contributed by the

change in Q,

W =
∮

dQ.

• To drive oscillations, the gas must do positive work on

its surroundings (absorb heat). However, we assume the

system to be nearly adiabatic, so the gas returns essentially

to its original state after one cycle.

• Therefore, in zero order there is no change in entropy

∮

dS =
∮

dQ

T
= 0.
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• Now suppose that during the cycle we perturb the system

by a small periodic variation in the temperature T of the

form

T = T0 +∆T (t),

where ∆T = 0 at the beginning and end of the cycle.

• Then
∮

dS =
∮

dQ

T
= 0 →

∮
dQ(t)

T0 +∆T (t)
= 0.

• Assuming the variation in T to be small, we expand the

denominator of the integrand to first order and obtain
∮

dQ(t)(T0−∆T (t)) = 0,

or upon rearrangement,

∮

dQ(t) =

∮
∆T (t)

T0
dQ(t).

• Then for the work done in one pulsation cycle

W =
∮

dQ

∮

dQ(t) =
∮

∆T (t)

T0
dQ(t)







→ W =
∮

∆T

T0
dQ.
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• For the cyclic integral

W =

∮
∆T

T0
dQ

to give a net positive value (so that the mass zone does

work on its surroundings over one cycle and can therefore

drive an oscillation), we see that generally

∆T and dQ must have the same sign over a major

part of the cycle.

• That is, heat must be

– absorbed (dQ > 0) when the temperature is increas-

ing in the cycle (∆T > 0), and

– released (dQ < 0) when temperature is decreasing in

the cycle (∆T < 0).
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The preceding discussion has concentrated on the behavior of

a single mass zone.

• Oscillation of the entire star means that some zones may

do positive work and other zones may do negative work

within a pulsation cycle.

• Thus, the condition for amplifying and sustaining oscilla-

tion of the entire star is that

W = ∑
i

Wi = ∑
i

∮ (
∆T

T0

)

i

dQi > 0,

where i labels the mass zones of the star.

• (Strictly this sum is an integral over the continuous mass

coordinate, but in practical numerical simulations the

zones are normally discretized.)

We must now ask whether there are situations in

stars that allow this condition to be realized.
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15.3.2 The Role of Radiative Opacity

One way to favor sustained oscillations is to ar-

range that the opacity increases as the gas in a

layer is compressed.

• Then the radiative energy outflow can be trapped more

efficiently by the layer (it begins to “dam up” the outward

energy flow).

• This can push it and layers above it upward until

– the layer becomes less opaque upon expansion,

– the trapped energy is released,

– the layer falls back to initiate another cycle.

If a sequence of layers one above the other behaves in this way,

a sustained oscillation could be set up.

• Conversely, if compressing the layer increases T and

thereby decreases κ , the layer allows heat to flow through

it more easily than before the compression, implying that

dQ < 0 while T is increasing.

• Likewise, decompression in the 2nd part of the pulsation

cycle causes T to fall and κ to increase, which traps more

heat and causes dQ to be positive.

• Thus heat flow works against the oscillation under these

conditions and will tend to damp it.
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15.3.3 Opacity and the κ-Mechanism

Normal stellar radiative opacities do not increase

with compression of the gas.

• From the Kramers form

κ ∼ ρT−3.5

the opacity κ is proportional to ρ and to T−3.5.

• Compression of a layer increases both ρ and T .

• However, the temperature dependence is much stronger

than the density dependence for κ .

• Thus a gas described by a Kramers opacity tends to expe-

rience a decrease in opacity under compression.

Hence a star exhibiting the usual opacity behavior

has a built-in damping mechanism that stabilizes it

against pulsations.

• This explains why most stars are not pulsating variables.
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However, there is a special situation for which the opacity

could be expected to increase with compression.

• If a layer contains partially ionized gas, a portion of the

energy flowing into it can go into more ionization.

• The energy absorbed into internal electronic excitations is

not available to increase temperature.

• Thus, if there is sufficient ionization during the compres-

sion portion of the pulsation cycle,

– the effect on the opacity of the smaller rise in T

– can be more than offset by the increase in ρ and

compression can increase the opacity.

• Conversely, electron–ion recombination in the decom-

pression portion of the cycle can release energy and lead

to a decreased opacity.

• Then, in partial ionization zones

– a layer can absorb heat during compression when T

is high and

– release it during expansion when T is low,

thereby setting the stage for a sustained oscillation.

This heat-engine mechanism for driving oscilla-

tions through ionization-dependent opacity effects

is called the κ-mechanism.
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15.3.4 Partial Ionization Zones and the Instability Strip

The κ-mechanism provides a possible way to drive stellar os-

cillations, but where do we expect the κ-mechanism to be able

to operate?

• For most stars there are two significant zones of partial

ionization, corresponding to the possible stages of ioniza-

tion for hydrogen and helium:

1. The hydrogen ionization zone, where

– hydrogen is ionizing (H I→ H II) and

– helium is undergoing first ionization (He I →
He II).

This region is broad and typically has a temperature

in the range 10,000-15,000 K.

2. The helium ionization zone, where second ionization

of helium (He II→ He III) occurs, typically at a tem-

perature around 40,000 K.

From the preceding discussion, we may expect one

or both of these ionization zones to play a role in

driving the pulsations of many variable stars.



15.3. NON-ADIABATIC RADIAL PULSATIONS 615

Example: Detailed analysis indicates that

• For classical Cepheids (and most variables found in the

instability strip)

– the pulsation is caused by the κ-mechanism,

– primarily by forcing of the fundamental mode in the

helium ionization zone.

• On the other hand, the long-period red variables (large

AGB stars like Mira) are thought to be driven by hydrogen

ionization zones.
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Temperature Boundaries for the Instability Strip

The radial location of hydrogen and helium ionization zones in

stars of particular surface temperatures, and onset of convection

near the surface for stars with surface temperatures that are too

low, are determining factors in producing the instability strip.

• The physical radius for the hydrogen and helium partial

ionization zones within a given star will depend strongly

on the effective surface temperature of that star.

• For stars with higher temperatures, ionization zones will

be near the surface and there will be insufficient mass in

the partially-ionized layers to drive sustained oscillations.

• If the surface temperature is too low, convection in the

outer layers will undermine the κ-mechanism (detailed

simulations show that convection interferes with the trap-

ping effect and thus damps stellar pulsations).

• This suggests an optimal range of surface temperatures for

which

1. the ionization zones are deep enough to drive sus-

tained oscillations by coupling to the fundamental and

overtones of the characteristic vibrational frequencies

(→ higher-temperature end of the optimal range),

2. but for which the convection is not strong enough to

invalidate the mechanism (→ lower-temperature end

of the optimal range).

Thus, pulsating variables should be found in local-

ized regions of the HR diagram.
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Figure 15.2: Rosseland mean opacity versus pressure and temperature.

15.3.5 Cepheid Variables and the Helium Ionization Zone

In Fig. 15.2 opacities expected for Cepheid variable stars are

plotted as a function of temperature and pressure.

• Shaded regions correspond to conditions expected to

damp oscillations and lighter regions represent conditions

in which the opacity increases sufficiently with increased

pressure to favor the κ-mechanism.

• The dashed line indicates the relationship between T and

P expected for a 7 M⊙ Cepheid variable.

• The helium ionization region crossed by the dashed line

near logT = 4.6 is thought to be the primary driver of

classical Cepheid oscillations.
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15.3.6 Cepheid Variables and the Hydrogen Ionization Zone

Helium ionization zones are primarily responsible for driving

pulsations within the instability strip.

• However, the hydrogen ionization zones at lower tempera-

ture nearer the surface also play a (more subtle) role in the

pulsation for stars like Cepheid variables and RR Lyrae

stars.

• From the figure, maximum luminosity for a Cepheid is

shifted systematically later relative to minimum radius in

the pulsation (maximum brightness for a Cepheid is cor-

related with maximum surface T , not maximum radius).
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• This is called the phase lag, and it is thought to be caused

by oscillation of the hydrogen ionization zone toward and

away from the surface.

• Simulations indicate that at minimum radius the luminos-

ity at the base of the hydrogen ionization zone is maxi-

mum,

– but this luminosity is delayed in reaching the surface

because of opacity in the hydrogen ionization zone

– thus the time of maximum surface luminosity occurs

after the time of minimum radius.
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The ε-Mechanism and Stability of Massive Stars

Before the κ-mechanism was proposed it was suggested that

stellar pulsations could be driven by variations in the thermonu-

clear energy production caused by radial oscillations.

• This was called the ε-mechanism.

• Just as oscillations can be driven by the κ-mechanism if

opacity increases upon contraction, the ε-mechanism can

enhance oscillations if energy production increases upon

contraction (a condition that is usually satisfied).

• Although oscillations can alter the thermonuclear energy

production by causing density and temperature variations,

this is of importance only in the more central regions of

the star where energy production is taking place.

• The problem then is that in the central regions the am-

plitudes of fundamental modes and overtones are small,

making it difficult for changes there to drive oscillations

strongly enough to sustain them.

• Thus the ε-mechanism is not likely to be significant for

most variable stars.

• However, it is thought that it may be important for the sta-

bility of very massive stars (of order 100 M⊙), where os-

cillations coupled to variations in energy production deep

in the star may generate pulsations causing the star to shed

surface layers.
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15.4 Non-Radial Pulsation

For the variable stars in Table 15.1 that are labeled NR, the

mode of pulsation is not spherically symmetric. The corre-

sponding oscillations are called non-radial modes.

• Stars exhibiting non-radial pulsation include the δ Scuti

stars, β Cephei stars, and ZZ Ceti stars.

• In addition, our own Sun is not presently classified as a

variable star (it presumably will become variable after it

leave the main sequence and passes through the instability

strip in the HR diagram),

• but it undergoes weak non-radial pulsations that are the

target of the helioseismology observations described ear-

lier.

• Such non-radial pulsations are somewhat beyond the

scope of our present discussion.
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Chapter 16

White Dwarfs and Neutron Stars

Red giants will eventually consume all their accessible nuclear

fuel.

• After ejection of the envelope, the cores of these stars

shrink to the very hot, very dense objects that we call white

dwarfs.

• An even more dense object termed a neutron star can be

left behind after the evolution of more massive stars ter-

minates in a core-collapse supernova explosion.

Technically, white dwarfs and neutron stars are stellar corpses,

not stars, but it is common to refer to them loosely as stars.

623
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16.1 Sirius B

The bright star Sirius, in Canis Major, is actually a double star.

• The brighter component is labeled Sirius A and the fainter

companion star is known as Sirius B.

• Sirius B is an example of a white dwarf.

• Because of its proximity to Earth, Sirius B is not partic-

ularly dim (visual magnitude mV = 8.5), but it is difficult

to observe because it is so close to Sirius A.

• Sirius B is clearly not a normal star; its spectrum and lu-

minosity indicate that it is hot (about 25,000 K surface

temperature) but very small.

• This spectrum contains pressure-broadened hydrogen

lines, implying a surface environment with much higher

density than that of a normal star.
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• Assuming the spectrum of Sirius B to be blackbody and

using the well-established distance to Sirius,

• we conclude from its luminosity that Sirius B has a radius

of only about 5800 km.

• But Sirius is a visual binary with a very well studied orbit.

• Therefore, we may use Kepler’s laws to infer that the mass

of Sirius B is about 1.03 M⊙.

• We conclude that a white dwarf like Sirius B packs the

mass of a star in an object the size of the Earth.

Sirius B is the nearest and brightest white dwarf

and we shall often use it as illustration.

• However, it is in some respects not so repre-

sentative because

• its mass of about 1.03 M⊙ is much larger than

the average mass of about 0.58M⊙ observed

for white dwarfs.
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16.2 Properties of White Dwarfs

The preceding discussion allows us to make some immediate

estimates that will shed light on the nature of white dwarfs even

before we carry out any detailed analysis.
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16.2.1 Density and Gravity

• Since white dwarfs contain roughly the mass of the Sun in

a sphere the size of the Earth, we expect that white dwarfs

have densities in the vicinity of 106 g cm−3.

• For Sirius B the average density calculated from the ob-

served mass and radius is about 2.5×106 g cm−3.

• The gravitational acceleration and the escape velocity at

the surface for Sirius B are

g =
Gm

R2
≃ 3.7×108 cm s−2 vesc

c
=

√

2Gm

Rc2
≃ 0.02,

respectively, indicating that

– the gravitational acceleration is almost 400,000 times

larger than at the Earth’s surface, but

– general relativity effects, while not completely neg-

ligible, are sufficiently small to be ignored in initial

approximation.
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16.2.2 Equation of State

• We conclude from the preceding that hydrostatic equilib-

rium under Newtonian gravitation is adequate as a first

approximation for the structure of white dwarfs.

• What about the microphysics of the gas?

– Can we apply a Maxwell–Boltzmann description, or

will the quantum statistical properties of the gas play

a crucial role?

– Will electron velocities be describable classically or

will velocities become relativistic?
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Let’s assume nonrelativistic velocities and that electrons are re-

sponsible for the internal pressure of the white dwarf.

• For simplicity we assume that the white dwarf is com-

posed of a single kind of nucleus having atomic number

Z, neutron number N, and atomic mass number A= Z+N.

• Then the average electron velocity is v̄e = p̄/me where p̄

is the average momentum and me is the electron mass.

• By the uncertainty principle, the average momentum is

p̄≃ ∆p≃ h̄/∆x≃ h̄n
1/3
e ,

where ne is the electron number density.

• We may expect the gas to be completely ionized and the

corresponding electron number density is

ne =

(
number e−

nucleon

)(
number nucleons

unit volume

)

=

(
Z

A

)(
ρ

mH

)

.

• Therefore, the average electron velocity is

v̄e

c
=

p̄

mec
=

h̄n
1/3
e

mec
=

h̄

mec

(
Zρ

AmH

)1/3

≃ 0.25,

where we assume that A = 2Z, as would be true for 12C,
16O, or 4He (primary constituents of most white dwarfs).

We conclude that electron velocities will become

relativistic for higher-density white dwarfs.
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• The average spacing between electrons in the gas is

d ≃ n
−1/3
e ≃ 1.5×10−10 cm,

using Z/A = 0.5 and the average density of Sirius B.

• The average deBroglie wavelength of the electrons is

λ̄e =
h

p̄
=

h

mev̄e
≃ 9.6×10−10 cm.

• Since d < λ̄e, the electron gas will be degenerate, pro-

vided that the temperature is not too high.

• For a degenerate fermion gas the fermi energy is

Ef =
√

k2
f +m2 (h̄ = c = 1).

The gas remains degenerate as long as Ef≫ kT .

• From the preceding equation Ef≥mec2 = 0.511 MeV, and

T = E/k > 0.511 MeV/k ≃ 6×109 K

is required to break the degeneracy.

• Simulations indicate that interior white dwarf tempera-

tures are typically 106–107 K, so we conclude that white

dwarfs contain cold, degenerate gases of electrons.

• Thus they approximated by polytropic equations of state,

P = Kργ ,

1. γ = 5
3

for nonrelativistic degenerate electrons

2. γ = 4
3 for ultrarelativistic degenerate electrons.
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• While we expect the electrons to be degenerate and to be-

come relativistic at higher densities, the ions are much

more massive than the electrons.

• The ions are neither relativistic nor degenerate, and are

well described by an ideal gas equation of state.

• Ions move slowly so they contribute little pressure.

• However, calculations indicate that most of the heat en-

ergy stored in the white dwarf is associated with motion

of the ions.

• Finally, photons constitute a relativistic gas approximated

by a Stefan–Boltzmann equation of state,

P = 1
3 aT 4,

where T is the temperature.

A white dwarf is a hot, dense object for which

• mechanical properties (like pressure, gener-

ated mostly by the degenerate electrons)

• are decoupled from the thermal properties

(which are associated primarily with the ions

at normal temperatures).
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16.2.3 Ingredients of a White Dwarf Description

An initial description of a white dwarf requires a theory where

1. Stable configurations correspond to hydrostatic equilib-

rium under Newtonian gravitation.

2. Ions carry most of the mass and store most of the thermal

energy, but electrons provide most of the pressure.

3. The electron equation of state is that of a cold degenerate

gas, approximated as P = Kργ , with γ = 5
3 for nonrela-

tivistic and γ = 4
3

for relativistic electrons, respectively.

4. Ions constitute a nonrelativistic ideal gas.

5. Photons obey a Stefan–Boltzmann equation of state.

6. Because the degenerate electron gas is primarily respon-

sible for the pressure but its equation of state does not de-

pend on temperature, the thermal and mechanical proper-

ties of the white dwarf are decoupled.

7. As density increases the velocity of the electrons increases

and special relativity becomes important, corresponding

to a transition

P≃ Kρ5/3 −→ P≃ K′ρ4/3.

in the electron equation of state.

Let us now turn to a theoretical description embodying these

basic ideas in a relatively simple formulation.
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16.3 Polytropic Models of White Dwarfs

We expect that white dwarfs are approximately described by

systems in hydrostatic equilibrium having degenerate electron

equations of state.

• Thus, we may expect that solutions of the Lane–Emden

equation with polytropic index n = 3
2 , corresponding to

γ = 5
3 , are relevant for the structure of low-mass white

dwarfs where electron velocities are nonrelativistic.

• Likewise, we may expect that in more massive white

dwarfs the electrons become relativistic and the corre-

sponding structure is related to a Lane–Emden solution

with polytropic index n = 3, corresponding to γ = 4
3
.

• Between these extremes the electron equation of state

must generally be described in numerical terms permitting

an arbitrary level of degeneracy and degree of relativity.



634 CHAPTER 16. WHITE DWARFS AND NEUTRON STARS

16.3.1 Low-Mass White Dwarfs

Let us first consider a low-mass white dwarf.

• Assuming a γ = 5
3

polytropic equation of state (n = 3
2
), the

relationship of the mass M and radius R is given by the

Lane–Emden result (see Ch 8)

M = 4πR(3−n)/(1−n)

(
(n+1)K

4πG

)n/(n−1)

ξ
(3−n)/(n−1)
1 ξ 2

1 |θ ′(ξ1)|.

which implies that

MR3 = constant,

since

R(3−n)/(1−n) = R(3−3/2)/(1−3/2) = R(3/2)/(−1/2) = R−3.

• Thus the product of the mass and the volume of a low-mass

white dwarf is constant.

We obtain the surprising result that, contrary to the

behavior of normal stars, increasing the mass of a

low-mass white dwarf causes its radius to shrink.

• This behavior is a direct consequence of a degenerate

electron equation of state.
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16.3.2 The Chandrasekhar Limit

If we continue to add mass to a white dwarf, the electrons even-

tually will become relativistic (γ = 4
3 or n = 3), and

M = 4πR(3−n)/(1−n)

(
(n+1)K

4πG

)n/(n−1)

ξ
(3−n)/(n−1)
1 ξ 2

1 |θ ′(ξ1)|.

then implies that

M = constant×R0 = constant

This even more surprising result defines the Chan-

drasekhar limiting mass, which implies that there

is an upper limit for the mass of a white dwarf.

Inserting the constants, we find for a high-mass white dwarf

R = 3.347×104

(
ρc

106 g cm−3

)−1/3(µe

2

)−2/3

km,

and for the Chandrasekhar mass,

M0 = 1.457

(
2

µe

)2

M⊙ ≃ 1.4M⊙,

where the last estimate follows because generally 2/µe ∼ 1.

Thus the Chandrasekhar limiting mass is slightly

composition dependent but implies an upper mass

limit for a white dwarf of approximately 1.4 M⊙.
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Figure 16.1: Dependence of radius on mass for a white dwarf. The Chan-

drasekhar limit of 1.44 solar masses is indicated. This calculation assumes

an electron fraction of Ye = 0.5. (The electron fraction Ye is the ratio of the

number of electrons to the total number of nucleons. For symmetric matter

Z = N, so for fully-ionized symmetric matter, Ye = 1
2
.) Thus, for electrons

this equation of state approximates a γ = 5
3

polytrope at low mass and a

γ = 4
3

polytrope at high mass, with a smooth transition in between. Ions of

the white dwarf are assumed to obey an ideal gas equation of state and the

photons are described by a Stefan–Boltzmann photon gas equation of state.

• In Fig. 16.1 the radius versus mass for white dwarfs in hy-

drostatic equilibrium is shown for a numerical simulation.

• This calculation uses a numerical equation of state that

accounts fully for arbitrary degrees of electron degeneracy

and arbitrary relativity for electrons.

• Thus, for electrons this equation of state approximates a

γ = 5
3 polytrope at low mass and a γ = 4

3 polytrope at high

mass, with a smooth transition in between.
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• The ions of the white dwarf are assumed to obey an ideal

gas equation of state and the photons are described by a

Stefan–Boltzmann photon gas equation of state.

• The above figure shows the behavior implied by the pre-

ceding equations.

1. For lower masses the radius of the white dwarf de-

creases steadily with increase in mass, in accord with

MR3 = constant, but

2. At high masses the curve approaches a vertical

asymptote given by M = M0, with the calculation be-

coming numerically unstable near the limiting mass.
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Figure 16.2: The variation of mass and radius for white dwarfs as a function

of the central density in units of central solar densities.

• In Fig. 16.2 the variation of the mass and radius of white

dwarfs as a function of the central density in central solar

units is plotted for calculations similar to those described

in Fig. 16.1.

• Note the steady trend to zero radius as the white dwarf

approaches the limiting mass asymptotically.
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16.3.3 Heuristic Derivation of the Chandrasekhar Limit

The Chandrasekhar limiting mass was obtained above as a con-

sequence of the Lane–Emden equations, which embody

1. Polytropic equations of state and

2. Hydrostatic equilibrium.

It will prove useful in understanding the limiting mass for white

dwarfs to obtain the Chandrasekhar result in a somewhat more

intuitive way.
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• Assume a fully-ionized sphere of symmetric (equal num-

bers of protons and neutrons) matter containing N elec-

trons.

• The mass of the sphere is then M ≃ 2mpN,

• the average spacing between electrons is d ∼ R/N1/3, and

• the average momentum of the electrons is (uncertainty

principle)

pf ∼
h̄

d
∼ h̄M1/3

Rm
1/3
p

.

• Estimate the total energy of the degenerate electrons and

balance that against the gravitational energy of the pro-

tons.

• This gives in the nonrelativistic and relativistic limits,

E = a
M5/3

R2
−b

M2

R
(nonrelativistic)

E = c
M4/3

R
−d

M2

R
(relativistic)

where a, b, c, and d are positive constants.

• Notice that the two terms in the nonrelativistic case have

different dependence on R.

• Thus, by setting ∂E/∂R = 0, we find an equilibrium con-

figuration in the nonrelativistic case that generally satisfies

MR3 = constant.
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• On the other hand, in the relativistic case

E = c
M4/3

R
−d

M2

R
(relativistic)

the two terms have the same dependence on R.

• Thus, trying to solve ∂E/∂R = 0 for R corresponding to

a stable configuration leads to an indeterminate result (the

resulting equation does not depend on R).

• Note that both terms in this equation vary as R−1, but the

first term depends on M4/3 while the second varies as M2.

• The second term has a net negative sign and a stronger

dependence on M than the first term, so the total energy

becomes negative if the mass is made large enough.

• But the total energy scales as R−1, so once the total energy

becomes negative the energy can be minimized by shrink-

ing to zero radius:

For a relativistic degenerate gas, exceeding a lim-

iting mass leads to gravitational collapse.

• We may estimate this critical mass by equating the two

terms in E = cM4/3/R−dM2/R, yielding

M0 =

(

h̄c

Gm
4/3
p

)3/2

≃ 1 M⊙,

which is correct to order of magnitude.
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16.3.4 The Adiabatic Index γγγ and Gravitational Stability

The preceding results are another variation of the theme intro-

duced previously in conjunction with the collapse of protostars.

• There we found that an adiabatic index of γ ≤ 4
3

implies

an instability against expansion or contraction.

• From the polytropic equation of state P = Kργ ,

dP

dρ
= Kγργ−1 → ρ

P

dP

dρ
= γ

ρ

P
Kργ−1 = γ

Kργ

P
= γ

suggesting that we define γ for any equation of state P(ρ)

by

γ ≡ ρ

P

dP

dρ
=

d lnP

d lnρ
.

• Taking this logarithmic derivative as the definition of an

effective adiabatic index γeff, we may expect that in any

simulation of hydrostatic equilibrium,

γeff ≡
ρ

P

dP

dρ
≃ 4

3

heralds the onset of a radial scaling instability.
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Figure 16.3: Values of the parameter γ ≡ d lnP/d lnρ at constant tempera-

ture for white dwarfs of various masses (solar units). The values of γ cor-

responding to nonrelativistic (γ = 5/3) and relativistic (γ = 4/3) polytropes

are indicated. The calculation becomes unstable as the mass approaches the

Chandrasekhar limiting mass which is 1.44 solar masses for this calculation

(for which Ye = 0.5). The central temperature is assumed to be 5×106 K in

all calculations.

• In Fig. 16.3 the value of γeff as a function of radius is cal-

culated numerically using

γ =
ρ

P

dP

dρ
=

d lnP

d lnρ
.

for white dwarf solutions that have been obtained with an

equation of state allowing arbitrary electron degeneracy

and relativity.
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• For low-mass white dwarfs the effective value of γ is near

the nonrelativistic expectation of 5
3

for the entire interior.

• However, as the mass of the white dwarf is increased, the

effective value of γ in the deep interior begins to drop.

• As the mass approaches the Chandrasekhar limit, γeff→ 4
3

and the numerical solution becomes very unstable.

• These numerical fluctuations reflect the incipient gravi-

tational instability that in this case occurs at 1.44 solar

masses.
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The roles of relativity and quantum mechanics are central to the

preceding results.

• Nonrelativistic degenerate matter has γ ∼ 5
3 , which is

gravitationally stable.

• But quantum mechanics (the uncertainty principle) re-

quires the electrons to move faster as the density increases,

implying that the velocities eventually become relativistic

as the white dwarf mass increases.

• Relativistic degenerate matter has γ ∼ 4
3
, which inherently

is gravitationally unstable.

• Because the speed of the electrons is limited by the speed

of light, there is a mass beyond which even the degener-

acy pressure cannot prevent gravitational collapse of the

system.

This critical point is the Chandrasekhar limiting mass.
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Figure 16.4: Behavior of density, enclosed mass, and temperature for a

white dwarf. In this calculation the white dwarf has a central density of

2.9×106 g cm−3, a central temperature of 5.0×106 K, a total mass of 0.595

solar masses, and a radius of 9234 km.

16.4 Internal Structure of White Dwarfs

• A numerical calculation of the internal structure of a white

dwarf is illustrated in Fig. 16.4, which plots the density,

enclosed mass, and temperature as a function of radius.

• The calculation corresponds to hydrostatic equilibrium

with a realistic electron equation of state in which the elec-

trons have arbitrary degeneracy and degree of relativity.

• The ions are assumed to obey an ideal gas equation of

state and radiation to obey a Stefan–Boltzmann equation

of state.
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Figure 16.5: Relative contributions of the electronic pressure and ionic pres-

sure for the calculation described in Fig. 16.4. The contribution to the pres-

sure from radiation under these conditions is completely negligible relative

to the electronic and ionic contributions. The electronic contribution is very

nearly that expected for a fully degenerate gas.

• Figure 16.5 illustrates the relative contribution of

– electrons and

– ions

to the pressure in the preceding calculation.

• It provides strong justification for our earlier assumption

that the pressure in white dwarfs is dominated by the con-

tribution from degenerate electrons.
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The internal temperature variation in the calculation shown

above is determined as follows.

• Degenerate matter is a good conductor of thermal energy.

• Thus the interior of a white dwarf cannot support a sub-

stantial temperature gradient and

• we assume all but a thin surface layer to be isothermal and

strongly heat conducting.

• Near the surface the density drops to zero and the nearly

ideal gas expected there is a very good insulator.

• This suggests that a good model of how white dwarfs cool

is one of a conducting sphere with no temperature gradient

surrounded by a thin layer of normal gas with a gradient

set by its transport properties (that is, by its opacity).

• This model is analogous mathematically to cooling of a

hot metal ball surrounded by a thin insulating jacket, since

degenerate gases have many of the properties of metals.
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In the “metal ball plus insulating blanket” model for the above

figure,

• The interior is assumed fully conductive,

• The surface is assumed insulating with a radiative opacity

given by the Kramers bound–free opacity, and

• the transition between the two is governed by the degen-

eracy parameter

α =
µ−mec2

kT
,

where µ is the chemical potential for the electrons.
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Figure 16.6: The degeneracy parameter α ≡ (µ −mec2)/kT versus radius

for a white dwarf simulation, where µ is the electron chemical potential and

me the electron mass. A similar equation of state as for Fig. 16.1 was used

in the calculation. We see that the electron gas is highly degenerate except

very near the surface of the star. Shown inset are occupation profiles for a

normal gas and a degenerate electron gas, with εF the Fermi energy.

• The variation of the degeneracy parameter

α =
µ−mec2

kT
,

with radius is illustrated in Fig. 16.6.

• In the interior α is large, indicating high degeneracy.

• But very near the surface α falls to zero, implying that in

a thin surface layer the electrons obey approximately an

ideal gas law.
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16.5 Cooling of White Dwarfs

Although white dwarfs have no internal heat source, they can

remain luminous for long periods of time as the heat left over

from their glory days slowly leaks away.

• The cooling curve for a white dwarf should then reflect

both the internal structure and the age of the star.

• As we have seen, white dwarfs are well described by a

spherical ball of electron degenerate matter surrounded by

a very thin surface layer that obeys an ideal gas equation

of state.

This can serve as a simple but quantitative model for cooling

rates in white dwarfs.

• By determining observationally the surface temperature of

white dwarfs in a stellar population and relating these to

theoretical cooling curves,

• it is possible to estimate the age of the white dwarfs and

hence infer the age of the stellar population.

Such methods are used extensively to determine

the age of stellar populations in our galaxy.
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• White dwarfs may cool by neutrino emission from hot,

dense central regions in addition to cooling by photon

emission from the surface.

• This is in fact thought to be the dominant source of cooling

for young, hot white dwarfs and occurs primarily through

emission of plasma neutrinos from the deep interior.
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Neutrino Cooling of White Dwarfs:

White dwarfs can cool by emission of neutrinos from the inte-

rior as well as through photons emitted from the surface.

• The dominant source of neutrino cooling is expected to

be plasma neutrinos emitted from the central region, for

white dwarfs with surface temperatures greater than about

25,000 K.

• It has been proposed that neutrino emission might be ob-

served indirectly by studying the effect of neutrino cooling

on pulsations of young, hot, variable white dwarfs.

• The DBV white dwarfs (white dwarfs with a helium atmo-

sphere that are pulsating variables) have effective surface

temperatures around 25,000 K,

• so they are thought to cool largely through emission of

plasma neutrinos.

• Simulations indicate that the rate of change in the ob-

served pulsation period versus time is affected signifi-

cantly by neutrino emission.

This suggests that changes observed in the pulsation period of

a suitable DBV white dwarf could be used to infer the rate of

neutrino cooling.
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16.6 Crystallization of White Dwarfs

In the early 1960s it was predicted that as the plasma in a white

dwarf cools

• it may become energetically favorable for the ions to form

a body-centered cubic (BCC) crystalline lattice to mini-

mize the Coulomb repulsion.

• This is expected to occur through a first-order liquid to

solid phase transition.

• The corresponding latent heat of crystallization provides

a new energy source.

• This supplements the thermal energy stored in the ions and

influences the subsequent thermal evolution of the white

dwarf.

• Whether this transition occurs, and its detailed properties

if it does, constitutes one of the largest uncertainties in

calculating white dwarf cooling.

• This in turn has implications for the use of white dwarf

cooling curves to determine the age of stellar populations.

• It is possible to study the internal structure of some stars

through asteroseismology, by extending the helioseismol-

ogy concepts used to study the Sun.

These methods provide a way to test the hypothetical crystal-

lization of cooling white dwarfs.
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• For typical white dwarfs theory suggests that crystalliza-

tion in the core begins when the surface temperature de-

creases to 6000–8000 K.

• However, in more massive white dwarfs crystallization is

expected to set in at a higher surface temperature.

• Thus asteroseismology on massive white dwarfs is a

promising source of evidence for crystallization.

• Asteroseismology of the pulsating DAV white dwarf BPM

37093 has been used to infer its internal structure.

• This star represents a particularly favorable case because

its mass of 1.1M⊙ is the largest known for a DAV white

dwarf.

• The oscillations of this and other pulsating white dwarfs

correspond to non-radial gravity waves (g-modes), which

represent oscillations with a restoring force provided by

gravity.

• If the core of a white dwarf becomes solid because of the

crystalline phase transition, the difference in density at the

solid–liquid core boundary is very small.

Thus the mechanical properties of the white dwarf

are not altered significantly and the effect on evo-

lution of the white dwarf is expected to be mini-

mal.
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• However, formation of a crystalline core may have a sig-

nificant effect on the star’s pulsations because

– the additional shear in the solid relative to the liq-

uid causes a mismatch between interior and exterior

waves at the core boundary, and

– the exterior waves are almost completely reflected by

the boundary.

• Hence, the nonradial g-modes

– cannot penetrate the solid–liquid interface,

– the white dwarf’s observable pulsations become

linked to g-modes confined to the non-crystalline liq-

uid region outside the core, and

– the size of the crystalline core exerts a potentially-

observable effect on the pulsations of the star.
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From analysis of the observed pulsation frequencies

• it was concluded that BPM 37093 has a core of crys-

tallized carbon and oxygen containing about 90% of the

white dwarf’s mass.

• A different analysis of BPM 38093 observational data

concluded that the crystalline mass most likely lies be-

tween 32% and 82%.

• In either case there is credible evidence that a substantial

fraction of the white dwarf has entered the crystal phase

predicted by theory.

• Most white dwarfs are rich in carbon so crystallized white

dwarfs have been referred to whimsically as “diamonds in

the sky”.

Accordingly, BPM 37093 has been nicknamed

“Lucy” by some, in reference to the famous Beat-

les song Lucy in the Sky with Diamonds.
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16.7 Beyond White Dwarf Masses

The preceding discussion of limiting masses for white dwarfs

assumes all pressure to derive from electrons.

• However, if the Chandrasekhar mass is exceeded and the

system collapses, eventually a density will be reached

where the nucleons (also fermions) will begin to produce

a strong degeneracy pressure.

• Whether this nucleon degeneracy pressure can halt the

collapse depends on the mass.

• Calculations indicate that for a mass less than about 2–

3 solar masses (depending weakly on details such as the

equation of state), the collapse converts essentially all pro-

tons into neutrons through the weak interactions, produc-

ing a neutron star.

• The degeneracy pressure of the neutrons halts the col-

lapse at neutron-star densities and radii approximately 500

times smaller than for white dwarfs.

• Calculations, and general considerations for strong grav-

ity, indicate that for masses greater than this even the neu-

tron degeneracy pressure cannot overcome gravity and the

system collapses to a black hole.

• These considerations also indicate that white dwarfs and

neutron stars are the only possible stable configurations

lying between normal stars and black holes.

Therefore, let us now consider neutron stars.
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16.8 Basic Properties of Neutron Stars

• Neutron stars were predicted in 1933 by Baade and

Zwicky as a possible end result of what we would now

call a core-collapse supernova.

• Oppenheimer and Volkov worked out equations describ-

ing their general structure and properties in 1939. (Re-

quires general relativity)

• However, they were not taken very seriously until the dis-

covery of radio pulsars in the 1960s pointed to rapidly ro-

tating neutron stars as their most likely explanation.

• Now thousands have been observed.
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• Most neutron stars have been discovered as radio pulsars

but the vast majority of the energy emitted by neutron stars

is in very high-energy photons (X-rays and γ-rays), rather

than radio waves.

• Typically only about 10−5 of their radiated energy is in

the radio-frequency spectrum.

• Most neutron stars have masses of 1–2 M⊙ and diameters

of 10–20 km. Very loosely, a neutron star packs the mass

of a normal star like the Sun into a volume of order 10 km

in radius.

• From the density of a little over 1 g cm−3 and radius of

about 7× 105 km for the Sun, we may estimate immedi-

ately an average density of order 1014 g cm−3 for neutron

stars (it can actually be about an order of magnitude larger

than that).

• Thus, they have enormous densities that are similar to

those encountered in the nucleus of the atom.

• In fact, in certain ways (but not all), neutron stars are sim-

ilar to giant atomic nuclei the size of a city.

• Their enormous densities imply strong gravitational fields

and the possibility of significant general relativistic devi-

ations from Newtonian gravity.
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Electron Capture and Neutronization

The formation of a neutron star results from a process called

electron capture (a form of beta decay), which can follow the

core collapse of a massive star late in its life to produce a super-

nova (see further Ch. 15).

• The process is also called neutronization, because its ef-

fect is to destroy protons and electrons and create neutrons.

The basic reaction is

e−+ p+→ n0+νe.

• It is slow under normal conditions (because it is mediated

by the weak interaction), but very fast in the high density

and temperature environment produced by core collapse in

a massive star.

• In the supernova explosion the enormous amount of en-

ergy released gravitationally in the collapse of the core

blows off the outer layers of the star and leaves behind

an extremely dense, hot remnant.

• As the neutronization reaction proceeds, the neutrinos es-

cape carrying off energy and leave behind the neutrons.

• Because neutrons carry no charge, there is no electrical

repulsion as in normal matter and the core can collapse to

very high density once it has become mostly neutrons.

• The structure of actual neutron stars is more complex than

this, and they are not composed entirely of neutrons, but

this simple picture captures the basic idea.
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Figure 16.7: Chandra X-ray observatory image of a neutron star in the center

of an expanding supernova remnant. This neutron star is also a pulsar.

Because neutron stars are tiny it might be expected that they

would be very difficult to detect.

• In fact, neutron stars have luminosities that are compara-

ble to that of stars like the Sun because they have very

high surface temperatures (of order 106 K).

• Because of the high temperature, the light emitted peaks

in the extreme-UV and soft X-ray portion of the spectrum,

• so neutron stars are readily visible to X-ray observatories.

• An X-ray image of a neutron star at the center of an ex-

panding supernova remnant is shown in Fig. 16.7.

It is believed that the neutron star and the expanding remnant

surrounding it were produced by a supernova seen on Earth in

386 AD by Chinese observers.
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Figure 16.8: Internal structure of a typical neutron star.

Internally, we believe that a neutron star can be divided into the

following general regions (see Fig. 16.8).

• The atmosphere of hot, ionized gas is ∼ 1 cm thick.

• The outer crust is about 200 meters thick and consists of

a solid lattice or a dense liquid of heavy nuclei. The dom-

inant pressure in this region is from electron degeneracy.

The density is not high enough to favor neutronization.

• The inner crust is from 1
2 to 1 kilometer thick. The pres-

sure is higher and the lattice of heavy nuclei is permeated

by free superfluid neutrons that begin to “drip” out of the

nuclei. Pressure is mostly from degenerate electrons.
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10 km

Atmosphere

Outer Crust

Inner Crust

Outer Core

Inner Core?

Fluid or solid lattice of heavy 
nuclei; pressure: degenerate 
electrons.

Lattice of heavy nuclei; superfluid free 
neutrons; pressure:  degenerate 
electrons.

Superfluid neutrons; some 
superconducting protons; pressure: 
degenerate neutrons.

Uncertain, but there may be a core of 
elementary particles. Density of order 
1015 g cm-3.

Hot plasma.

• The outer core consists primarily of superfluid neutrons

and the neutrons supply most of the pressure through neu-

tron degeneracy, though there are some free superconduct-

ing protons. This region gives the neutron star its name.

• The structure of the inner core is less certain because we

are less certain about how matter behaves under the in-

tense pressure at the center (that is, the equation of state

for matter under these conditions is not well understood).

• It might even consist of a solid core of particles more ele-

mentary than nucleons (pions, hyperons, quarks, . . . ).

Much of a neutron star consists of closely packed neutrons and

has some resemblance to a giant atomic nucleus, but it is im-

portant to remember that it is gravity, not the nuclear force, that

holds a neutron star together (see the following box). .
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Neutron Stars Are Bound by Gravity

In some ways a neutron star is like 20-km diameter atomic nu-

cleus, but there is one important difference:

A neutron star is bound by gravity, and the strength

of that binding is such that the density of neutron

stars is even greater than that of nuclear matter.

• How can the weakest force (gravity) produce an object

more dense than atomic nuclei, which are held together

by a diluted form of the strongest force?

• The answer: range and sign of the forces involved.

– Gravity is weak, but long-ranged and attractive.

– The strong nuclear force is short-ranged, acting only

between nucleons that are near neighbors.

– The normally attractive nuclear force becomes repul-

sive at very short distances. (A neutron star would

explode if gravity were removed.)

• This is a kind of Tortoise and Hare fable:

– Gravity is weak, but relentless and always attractive.

– Thus, over large enough distances and long enough

time, gravity—the plodding Tortoise of forces—

always wins.

That is why the material in a neutron star can be compressed to

such high density by the most feeble of the known forces.
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16.8.1 Cooling of Neutron Stars

Neutron stars form from the innermost material left behind in a

core collapse supernova.

• The protoneutron star formed in the supernova is initially

very hot and bloated.

• It typically has T ∼ 1011 K and a radius some 30% larger

than the final neutron star that it will become),

• It is still being powered by accretion from the part of the

envelope that did not escape the star in the explosion.

As the accretion tapers off the nascent neutron star cools rapidly

by neutrino emission.

• In high-energy astrophysics temperatures are often quoted

in energy units,

• with the corresponding temperature in kelvin given by

T = E/k, where k is Boltzmann’s constant.

A characteristic temperature for a protoneutron

star is ∼ 50 MeV, from which

T ≃ 50 MeV

8.617×10−11 MeV K−1
= 5.8×1011 K

for the corresponding temperature in kelvin.
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16.8.2 Evidence for Superfluidity in Neutron Stars

Just as for certain systems in condensed matter—though for dif-

ferent microscopic reasons—in neutron stars the neutrons and

protons can exhibit properties of essentially

• zero resistance to mass flow (superfluidity), or

• zero resistance to charge flow (superconductivity).

This can have strong influence on the rotational and magnetic

properties of the neutron star, as well as its rate of cooling.

For convenience we shall sometimes use “super-

fluidity” to mean either superfluidity or supercon-

ductivity.
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Figure 16.9: Cas A neutron star cooling. Curves indicate theory: “Nor-

mal matter” (dashed curve) assumes no superfluidity, the solid curve la-

beled “Proton superfluid” assumes only protons to be superfluid, and the

solid curve labeled “Neutron-proton superfluid” assumes both protons and

neutrons to be superfluid. Predicted temperatures are marked beginning 10

years after the birth of the neutron star in ∼1680. Chandra data points (×)

suggest rapid cooling.

The Cas A Neutron Star: The Chandra X-ray Observatory dis-

covered a compact object in the Cas A supernova remnant.

• It was subsequently identified as the neutron star left over

from a supernova that occurred in the year 1681 ± 19.

• The corresponding age of about 330 years makes the Cas

A neutron star the youngest known.

Evidence for superfluidity from cooling is shown in Fig. 16.9.
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A Possible Superfluid Phase Transition: The theoretical

curves suggest substantial differences between neutron stars

with “normal” matter and those containing superfluids.

• Proton superconductivity sets in soon after formation.

– This suppresses neutrino emission and

– lowers the cooling rate relative to normal matter.

• When the core neutrons also become superfluid around

1930 the crust is predicted to cool very quickly for several

hundred years.

• The rapid drop of surface temperature observed by Chan-

dra between 1999 and 2010 has been interpreted as a

phase transition to superfluid neutrons in the core.
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16.9 Hydrostatic Equilibrium in General Relativity

The discussion of neutron stars has been based primarily on

Newtonian gravity.

• This is adequate at a qualitative level.

• However, gravity for neutron stars is of sufficient strength

that a quantitative description of them requires general

relativity (GR),

• with their structure determined by solving the Einstein

equations for their dense-matter interior.

• This task is beyond our present scope. It is taken up in

Modern General Relativity:

Black Holes, Gravitational Waves, and Cosmology

Mike Guidry, Cambridge University Press, 2019

to which the reader is directed for more details.

However, let us sketch briefly how hydrostatic equilibrium is

modified by general relativity in neutron stars.
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16.9.1 The Oppenheimer–Volkov Equations

Stable neutron stars are in

• hydrostatic equilibrium, with gravity balanced against

pressure-gradient forces, just as for normal stars.

• However, when gravity is derived from general relativity

the corresponding equations for hydrostatic equilibrium

are modified in a non-trivial way.

By assuming a perfect fluid (no shear or viscosity) the GR equa-

tions for hydrostatic equilibrium can be written in the form

4πr2dP(r) =
−m(r)dm(r)

r2

(

1+
P(r)

ε(r)

)(

1+
4πr3P(r)

m(r)

)(

1− 2m(r)

r

)−1

dm(r) = 4πr2ε(r)dr.

where P is pressure, ε(r) is energy density, and units have been

chosen so that the gravitational constant G is equal to one.

• The first equation expresses hydrostatic pressure balance

for a fluid in general relativity and

• the second equation implies conservation of mass–energy;

• These are termed the Oppenheimer–Volkov equations.

It is instructive to compare the Oppenheimer–Volkov equations

with their Newtonian counterparts.
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16.9.2 Comparison with Newtonian Gravity

The equations of hydrostatic equilibrium (G= 1 units) for New-

tonian gravity are

4πr2dP(r) =−m(r)dm(r)

r2
dm(r) = 4πr2ρ(r)dr,

while the corresponding GR equations are

4πr2dP(r) =
−m(r)dm(r)

r2

×
(

1+
P(r)

ε(r)

)(

1+
4πr3P(r)

m(r)

)(

1− 2m(r)

r

)−1

dm(r) = 4πr2ε(r)dr.

Comparing these equations indicates that

• the formulation of hydrostatic equilibrium in GR is equiv-

alent to that in Newtonian gravity provided that

• energy density is substituted for mass density, ρc2→ ε ,

• except for three correction factors (in red in parentheses)

in the GR version that depend on the pressure and the

mass.

• These factors represent GR corrections to Newtonian

gravitation.
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Newtonian Hydrostatic Equilibrium:

4πr2dP(r) =−m(r)dm(r)

r2
,

General Relativistic Hydrostatic Equilibrium:

4πr2dP(r) =
−m(r)dm(r)

r2

×
(

1+
P(r)

ε(r)

)(

1+
4πr3P(r)

m(r)

)(

1− 2m(r)

r

)−1

.

• In stars described by Newtonian gravity,

– ε is dominated by baryon rest mass and

– baryons don’t contribute much to pressure (which is

dominated by electrons).

• Thus we have

P(r)

ε(r)
∼ 0

P(r)

M(r)
∼ 0,

and the first two correction factors in red are
(

1+
P(r)

ε(r)

)

≃ 1

(

1+
4πr3P(r)

m(r)

)

≃ 1.

• For Newtonian gravity generally 2m(r)/r ∼ 0 and

(

1− 2m(r)

r

)−1

≃ 1.

• Thus, in weak gravity GR hydrostatic equilibrium takes

the same form as Newtonian hydrostatic equilibrium.



674 CHAPTER 16. WHITE DWARFS AND NEUTRON STARS

Newtonian Hydrostatic Equilibrium:

4πr2dP(r) =−m(r)dm(r)

r2
,

General Relativistic Hydrostatic Equilibrium:

4πr2dP(r) =
−m(r)dm(r)

r2

×
(

1+
P(r)

ε(r)

)(

1+
4πr3P(r)

m(r)

)(

1− 2m(r)

r

)−1

.

• Conversely, in stronger gravity the three factors in red

in the Openheimer–Volkov hydrostatic equation are all

greater than one,

(

1+
P(r)

ε(r)

)

> 1

(

1+
4πr3P(r)

m(r)

)

> 1

(

1− 2m(r)

r

)−1

> 1

and these three factors

– cause deviations between Newtonian and GR gravity,

and

– in general make GR gravity stronger than Newtonian

gravity.



16.9. HYDROSTATIC EQUILIBRIUM IN GENERAL RELATIVITY 675

One of the most important consequences following from these

differences between Newtonian and general relativistic gravity

is that

• in GR, gravity is stronger and it is

• enhanced by coupling to pressure.

• This will imply ultimately that there are fundamental lim-

iting masses for stable strongly-gravitating objects

In GR, if the mass is large enough no amount of

pressure can prevent gravitational collapse to a

black hole.
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16.10 Pulsars

In 1967 something remarkable was discovered in the sky:

• a star that appeared to be pulsing on and off with a period

of about a second.

• Quickly, even faster “pulsars” were discovered

and the fastest now known (the millisecond pulsars) pulse on

and off at nearly a thousand times a second.

Pulsars exhibit several common characteristics:

1. They have well-defined periods that challenge the accu-

racy of the best atomic clocks.

2. The measured periods range from tens of seconds down to

1.4 milliseconds.

1.4 ms corresponds to more than 700 revolutions

per second, implying a 20-km wide object spin-

ning as fast as a kitchen blender.

3. The period of a pulsar decreases slowly with time.

• The typical rate of decrease is a few billionths of a

second each day,

• implying that the pulsation frequency will drop to

zero after about 10 million years for typical pulsars.

We shall now argue that only a neutron star can cause this.
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16.10.1 The Pulsar Mechanism

The observational details for pulsars are inconsistent with an

actual pulsation on that timescale for realistic objects.

• However, a rotating star could appear to pulse if it had

some way to emit light in a beam that rotated with the

source (like a lighthouse).

• What kind of object would be consistent with observed

pulsar periods?

• Simple calculations show that only a very dense object

could rotate fast enough and not fly apart because of the

forces associated with the rapid rotation.

• A white dwarf is not dense enough.

– The minimum rotational period for a typical white

dwarf would be several seconds;

– for shorter periods it would fly apart.

• But a neutron star is so dense that it could rotate more than

a thousand times a second and still hold together.

• This qualitative inference, augmented by much more de-

tailed considerations, leads to the conclusion that

The only plausible explanation is that pulsars are

rapidly spinning neutron stars, with a mechanism

to beam radiation in a lighthouse effect.
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The Lighthouse Mechanism

A magnetic field varying in time produces an electrical field.

• Thus, the rapidly spinning magnetic field of the pulsar gen-

erates a very strong electrical field around the neutron star.

• This field accelerates electrons away from the surface at

“hot spots” near the magnetic poles and these accelerated

electrons produce radiation by the synchrotron effect.

• The synchrotron radiation is beamed strongly in the direc-

tion of electron motion.

• These beams rotate with the star, but the magnetic axis

does not generally coincide with the rotation axis (recall

Earth), so the beams rotate in a kind of corkscrew fashion:

Rotation

axis

Pulsar

beam

Pulsar

beam

Magnetic

field lines

Magnetic

field lines

Magnetic

axis

Neutron

star

• If these gyrating beams sweep over the Earth, they act sim-

ilar to a lighthouse and we observe flashes of light.

Thus, the neutron star appears to be pulsing to an observer.
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Table 16.1: Some typical magnetic field strengths

Object Strength (gauss)

Earth’s magnetic field 0.6

Simple bar magnet 100

Strongest sustained laboratory fields 4×105

Strongest pulsed laboratory fields 107

Strong magnetic stars 104−105

Radio pulsars 1010−1012

Magnetars 1012–1015

16.10.2 Magnetic Fields

Some pulsars contain the strongest magnetic fields in our

galaxy; many of their basic properties derive from these fields.

• Some typical magnetic field strengths for various objects

are listed in Table 16.1 (1 tesla = 104 gauss).

• From the table, the two classes of objects with the largest

known magnetic fields are seen to be

1. radio pulsars and

2. magnetars (discussed below),

both of which involve rotating neutron stars.

Very strong magnetic fields are likely common for

neutron stars but deducing that is more difficult if

the neutron star is not a pulsar or magnetar.
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16.10.3 The Crab Pulsar

The first pulsar was found by Jocelyn Bell and Anthony Hewish

at the Cambridge radio astronomy observatory in 1967.

• The most famous pulsar was discovered shortly after that.

• It lies in the Crab Nebula (M1), which is about 7000 light

years away in the constellation Taurus.

• The Crab Pulsar rotates about 30 times a second, emit-

ting a double pulse in each rotation in the radio through

gamma-ray spectrum.

• In visible light,

– the Crab Pulsar appears to be a magnitude 16 star near

the center of the nebula, but

– stroboscopic techniques reveal it to be pulsing.
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Figure 16.10: Light pulses from the Crab Pulsar. In this composite of Euro-

pean Southern Observatory data, the pulsar is shown in a time lapse image at

the top and the light curve is displayed at the bottom on the same timescale.

Figure 16.10 shows the Crab Pulsar in action.

• The sequence is a composite of images taken through 3

different filters, all in the visible spectrum.

• Both the image sequence and the light curve show clearly

the “double pulsing” of the Crab:

• in each cycle there is a strong primary pulse followed by

a much weaker secondary pulse.

• The period (time between successive primary or sec-

ondary pulses) implies one primary and one secondary

pulse about 30 times every second.
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Light Curve

Crab Pulsar time-lapse image
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• This double pulsing effect can be explained by the light-

house model if

• the geometry is such that the beam from one magnetic

pole sweeps more directly over the Earth but the beam

from the other pole does so only partially.

• The Crab Pulsar emits visible light (and X-rays and

gamma rays), but

• most pulsars are detectable only by their radio frequency

radiation.

• However, a few pulse strongly in other wavelength bands.
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Figure 16.11: Glitches for the Vela Pulsar.

16.11 Pulsar Spindown and Glitches

In some pulsars “glitches” are observed where the spin rate sud-

denly jumps to a higher value (Fig. 16.11).

• The fractional change in period caused by a glitch is typi-

cally from 10−6 to 10−9 of the original period.

• Glitches indicate some internal rearrangement has altered

the rotation rate by a small amount.

– Proposal: “Starquakes” in the dense crust cause the

neutron star to contract slightly and thus to spin faster

(angular momentum conservation).

– Another: Angular momentum stored in circulation of

an internal superfluid liquid is suddenly transferred to

the crust, altering the rotation rate.



684 CHAPTER 16. WHITE DWARFS AND NEUTRON STARS

16.12 Millisecond Pulsars

As a pulsar radiates energy away its spin rate decreases slowly.

• This change is small but can be measured very precisely.

• The rate of change in the rotational period for a radio pul-

sar can be used to estimate the strength of the magnetic

field associated with the neutron star.

• Since pulsars are slowing down with time as they emit

energy both in electromagnetic and gravitational waves,

we may expect that

The fastest pulsars are the youngest pulsars.

• For example, the Crab Pulsar is young (less than 1000

years), and pulses 30 times a second.

• However, this reasoning breaks down for those pulsars

with millisecond periods.

• For many of these fast pulsars there is evidence that they

are old, not young as we would expect for the fastest spin

rates.

• This evidence consists primarily of

– the rate at which the pulsar spin is slowing, and

– where the millisecond pulsars are found.
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• For example, the first millisecond pulsar discovered, PSR

1937 + 21, is very fast but it is spinning down very slowly.

This is an example of the standard pulsar naming

system where

– the designation PSR indicates a pulsar,

– the first part of the number gives the right as-

cension in hours and minutes, and

– the second part of the number gives the dec-

lination (with a sign) in degrees.

• This slow spindown rate implies that it has a weak mag-

netic field and is old.

• (Older pulsars should have weaker fields and these should

be less effective than younger, stronger fields in braking

their motion.)

• Also, many of the millisecond pulsars that have been dis-

covered are found in globular clusters, which contain an

old population of stars.

• Therefore, they are not likely to be sites of recent super-

nova explosions that could have produced young pulsars

since core collapse supernovae occur in very short-lived,

massive stars.
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Figure 16.12: The spin-up mechanism for producing millisecond pulsars.

• The most plausible way of explaining the contradiction

that the fastest pulsars seem very old is that

Millisecond pulsars have been “spun up”.

• The mechanism involves mass transfer in binaries that

adds angular momentum to the neutron star (Fig. 16.12).

• This accretion mechanism (binary spinup) transfers angu-

lar momentum from orbital motion to rotation of the neu-

tron star.

• Later, after the neutron star has been spun up to high rota-

tional velocity, the primary star may become a supernova

and disrupt the binary system.

• This leaves the rapidly spinning but old neutron star as

a millisecond pulsar that defies the systematics expected

from the evolution of isolated neutron stars.
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Figure 16.13: Orbits of the triplet hierarchical system PSR J0337+1715.

(a) Orbits of the outer white dwarf (WD) and the center of mass (CM) for

the inner white dwarf and neutron star pair. (b) Left side scaled up by a

factor of 30 to show the orbits for the inner white dwarf and neutron star

(NS). Arrows indicate orbital velocities for the center of mass of the inner

binary and the individual white dwarfs and neutron star. All orbits lie almost

in the same plane, are nearly circular, and have a tilt angle i∼ 39◦.

The Pulsar–WD–WD Triplet PSR J0337+1715:

A rather exotic example of a millisecond pulsar is the triple-star

system PSR J0337+1715, which contains

• a millisecond radio pulsar of period 2.3 ms and two white

dwarfs, with orbits shown in Fig. 16.13.

• This is a hierarchical triple-star system, meaning that two

of the stars are relatively close to each other and the other

is much further away.

Such systems can have long periods of dynamical stability.
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Figure 16.14: Evolutionary history of PSR J0337+1715.

PSR J0337+1715 has an interesting evolutionary history that is

sketched in Fig. 16.14.
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According to the computed scenario sketched above, this sys-

tem underwent

• a common envelope (CE) phase,

• three periods of Roche lobe overflow (RLO),

• a supernova, and

• Two low-mass X-ray binary (LMXB) episodes

to arrive at the present configuration of a neutron star + WD +

WD system in which the neutron star is a millisecond pulsar.

• This explanation stretches current understanding of stellar

evolution and stellar interactions to the limit.

• Hence PSR J0337+1715 should prove to be an excellent

laboratory to study many aspects of stellar evolution, such

as common envelope phases and binary spinup.
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The triple-degenerate system PSR J0337+1715 also is ex-

tremely promising as a test of the strong equivalence principle

of general relativity because of

• the large gravitational acceleration of the inner pulsar-

WD binary by the outer white dwarf, and

• the precise timing afforded by the pulsar.

In this context the strong equivalence principle as-

serts that

• the neutron star and inner white dwarf should

fall in the same way in the gravitational field

of the outer white dwarf,

• despite their having very different gravita-

tional binding energies.

Any observed deviation from this behavior would

signal a breakdown of general relativity.
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16.12.1 Binary Pulsars

Several binary star systems are known in which

• both components are neutron stars and one component is

observed as a pulsar (binary pulsars), or

• both components are observed as pulsars (double pulsars).

Formation of Neutron-Star Binaries:

Binary neutron stars are of considerable interest for stellar

physics because of the question of how such systems could

form.

• Either a binary star system

– survives two successive supernova explosions to form

the neutron stars,

– without disrupting the binary gravitationally, or

• Two free neutron stars in a dense cluster capture gravita-

tionally into a binary.

• Neither scenario is easy to pull off and each appears to be

possible only under very special conditions.

Nevertheless, binary neutron stars may be rare but

they are observed!
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Figure 16.15: (a) Orbit of the Binary Pulsar and its decay by gravitational

wave emission, drawn to scale with the Sun shown for comparison. (b) Shift

of periastron time because of gravitational wave emission. Dots with error

bars indicate data; the curve is the prediction of general relativity.

Laboratories for Testing General Relativity:

Binary pulsars and double pulsars are of great value in their

own right as exotic endpoints of stellar evolution, but

• they also provide extremely precise tests of the general

theory of relativity.

• This follows because pulsar periods give precise timing.

• Thus the discovery of one (better yet, two) pulsars in a

binary system permits precise tests of gravitational theory.

For example, as illustrated in Fig. 16.15(a),

• the orbital semimajor axis for the Binary Pulsar is ob-

served to decay by about three millimeters per revolution.

• This is the amount expected because of emission of grav-

itational waves predicted by general relativity.
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Likewise, as illustrated in Fig. (b) above,

• the time of closest approach (periastron) between the two

neutron stars has been observed to shift in precise agree-

ment with the predictions of general relativity.

• The precise tracking of the Binary Pulsar orbit was the

first compelling (although indirect) proof that gravita-

tional waves exist.

• With the detection of a gravitational wave produced in the

merger of two black holes by LIGO (Laser Interferometer

Gravitational-Wave Observatory) in 2015,

• the evidence became direct that gravitational waves—

the last major untested prediction of Einstein’s general

relativity—exist and can be observed.

This confirmation came 100 years after gravita-

tional waves were predicted by Einstein (though

Einstein had later doubts about whether they were

physical).
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16.13 Magnetars

Neutron stars have extremely strong magnetic fields. However,

a new class of spinning neutron stars with abnormally large

magnetic fields, even for a neutron star, have been discovered.

• These have been called magnetars.

• The magnetar SGR 1900+14 is estimated to have a mag-

netic field so strong (∼ 1015 gauss) that if a magnet of

comparable strength were placed halfway to the Moon, it

could pull a metal pen out of your pocket on Earth!

SGR (soft gamma-ray repeater) indicates a magne-

tar. Like pulsars, the 1st part of the number gives

the right ascension in hours and minutes, and the

2nd part gives the declination (±) in degrees.

• In these rotating neutron stars it thought that the huge

magnetic fields act as a brake, slowing the rotation.

• One proposal: This slowing of rotation disturbs the inte-

rior structure and “starquakes” release energy that cause

emission of bursts of gamma rays.

These are also called soft gamma ray repeaters (SGR):

• “Soft” means that the gamma rays are of low energy (in

fact, they lie more in the X-ray portion of the spectrum);

• “Repeater” means that the bursts can repeat.
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Black Holes

We have seen that the endpoints for stellar evolution grow in-

creasingly bizarre as the mass of a star is increased.

• For lighter stars the final chapter is a white dwarf of in-

credible density, stabilized by electron degeneracy.

• For more massive stars the endpoint is a neutron star, with

a density exceeding that of atomic nuclei, stabilized by

neutron degeneracy pressure.

• In this chapter we consider the strangest endpoint of all:

– The most massive stars collapse until the mass is con-

centrated at a point singularity.

– The singularity is surrounded by a one-way spacetime

membrane called the event horizon that forbids the

escape of light or matter.

This most extreme consequence of modern gravi-

tational physics is called a black hole.

695
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For even a basic understanding of black holes, general relativity

(GR) is essential.

• A systematic introduction to general relativity is outside

the present agenda. For a comprehensive introduction,

see:

Modern General Relativity:

Black Holes, Gravitational Waves, and Cosmology

Mike Guidry, Cambridge University Press, 2019

• But in this chapter some essential concepts and a few for-

mulas will be imported from that book to allow a mean-

ingful discussion of collapse to a black hole.

Some observational evidence for black holes will then be dis-

cussed for two categories:

• High-mass compact objects in spectroscopic binary sys-

tems.

• Gravitational waves generated by the interaction of black

holes with other black holes or with neutron stars.
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17.1 The Failure of Newtonian Gravity

The Newtonian theory of gravity is a remarkably good descrip-

tion of the Universe.

• It gives predictions for most phenomena that are in prac-

tically exact agreement with observations (and the corre-

sponding predictions of general relativity).

• However, there is a small set of phenomena for which gen-

eral relativity gives the correct prediction but Newtonian

gravity fails.

These failures of Newtonian gravity typically share some com-

bination of three characteristics:

1. Gravity becomes extremely strong, by measures that we

shall quantify shortly.

2. Characteristic velocities approach the speed of light.

3. A measurement may require sufficient precision that even

small deviations from Newtonian gravity become mani-

fest.

An example of the latter is the Global Positioning

System (GPS), where the precise timing required

to determine position implies that even the special

and general relativistic corrections for low velocity

in Earth’s weak gravitational field are large.
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If any of these conditions is fulfilled, the predictions of Newto-

nian gravity begin to fail. In the extreme case where all are true

general relativity becomes the only viable theory of gravity.

• Black holes tend to fall into this latter category.

• Newtonian concepts often are unreliable or even in down-

right error where the physics of black holes is concerned.
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17.2 General Covariance

The essential idea of both special and general relativity is an

extremely powerful principle:

The laws of physics should not depend on the ref-

erence frame in which they are formulated and so

should be unchanged by transformation to a new

coordinate system.

The basic difference between special and general relativity then

is just that

• In general relativity the laws must be invariant under the

most general possible transformations between coordinate

systems.

• Special relativity requires only invariance only under a

more restricted set of transformations (between inertial

frames: coordinate systems that are not accelerated with

respect to each other)
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17.2.1 The Principle of Equivalence

The fundamental insight that allowed Einstein to generalize

special relativity to a theory of gravity began with the idea—

known since the time of Galileo—that

• objects of different mass fall at the same rate in a gravita-

tional field.

• This is one formulation of the (weak) equivalence princi-

ple.

An alternative formulation is that

• the inertial mass of an object, corresponding to the mass

m in Newton’s second law, F = ma,

• is measured to be equivalent to the gravitational mass of

that same object, corresponding to the mass m in the grav-

itational law F = GmM/r2.

Starting from this insight, Einstein was led to propose that

• it is impossible locally to distinguish the effect of gravity

from the effect of an arbitrary acceleration.

• This is called the (strong) equivalence principle, which

henceforth will be termed simply the equivalence princi-

ple.
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Furthermore, Einstein reasoned that

• since the acceleration of an object by gravity was indepen-

dent of the mass or any other characteristic of the object,

• the effect of gravity cannot be a property of objects in

spacetime and therefore must be a property of spacetime

itself.

This led Einstein eventually to the central thesis of general rel-

ativity:

Spacetime is curved, and gravity is not a force but

rather corresponds to the motion of free particles

in a curved spacetime.

In this view the Earth is in orbit around the Sun,

• not because of a force acting between them, but

• because the gravitational field of the Sun curves the space-

time around it and

• the Earth follows freely a curved path in that curved space-

time.

This means that general relativity is a theory about

the geometry of spacetime.
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In relativity it is natural to unite space and time in a 4-

dimensional manifold called spacetime.

• The coordinates of a point P in spacetime are given by the

4-vector xµ denoted by

xµ ≡ (x0,x2,x3,x4) = (ct,x,y,z) (µ = 0,1,2,3),

where x, y, and z are spatial coordinates, t is the time, and

c is the speed of light.

• Since general relativity is invariant even under transforma-

tions between non-inertial frames, it can describe gravity.
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The most powerful and useful mathematical implementation of

general relativity is in terms of objects called rank-n tensors.

• A tensor of rank n may be viewed mathematically as a

function (map) of n vectors into the real numbers.

• This implies that components of tensors evaluated in some

basis carry a total of n upper and lower indices, and trans-

form in a particular way under coordinate transformations.

Practically, tensors are

• an extension of vectors to objects that gener-

alize the vector transformation law and that

• may carry more than one index when evalu-

ated in a basis.

Indeed, a vector may be viewed as a rank-1 tensor.
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17.3 The Geometry of Spacetime

The geometry of spacetime is described by a rank-2 tensor

called the metric tensor, gµν .

• Einstein showed that gµν can be viewed as the source of

the gravitational field.

• Thus the problem in general relativity is “simple”:

Just determine the metric tensor for the manifold,

which then determines the complete effect of grav-

ity.

• But not so fast! Not only does the gravitational “force”

acting on mass and energy in spacetime result from the

curvature of spacetime, but that same mass and energy

acts on spacetime to curve it.

• This implies that general relativity is a highly non-linear

theory (to determine the metric you must already know the

metric).

Thus the equations of general relativity

• can be written concisely using tensors, but

• they are extremely difficult to solve.
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17.4 Curvature and the Strength of Gravity

Our primary concern here will be with strong gravity.

• But what does that mean in this context?

• Gravity in GR is a property of curved spacetime.

• This causes the path of light to be bent in a gravitational

field.

Thus a natural measure of the strength of the grav-

itational field near a spherical object is the ratio of

the curvature of space to the curvature of the sur-

face of that object.



706 CHAPTER 17. BLACK HOLES

In general relativity light follows a curved path in a gravita-

tional field.

• A radius of gravitational curvature rc may be obtained by

fitting a circle to the local curved path.

• This gives rc = c2/g, where g is the gravitational acceler-

ation and c the speed of light.

• A natural measure of gravitational strength at the surface

of a spherical object such as a star is then

R

rc
=

Actual radius

Light curvature radius
=

GM

Rc2
,

where g = GM/R2 was used.

• Then weak gravity is characterized by GM/Rc2≪ 1, but

if R/rc ∼ 1 a gravitational field may be characterized as

strong.

It is also instructive to multiply the above equation by m/m and

write it in the form

R

rc
=

GMm/R

mc2
=

Eg

E0
=

Gravitational energy

Rest mass energy
.

• Thus, the weak-gravity condition GM/Rc2 ≪ 1 implies

that the gravitational energy of a test particle is much less

than its rest mass energy.

If the gravitational field is strong by this natural standard, gen-

eral relativity must be used to describe gravity.
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Table 17.1: Gravitational strengths R/rc at the surface of some objects

Object R(km) M(kg) ρ(gcm−3) g(ms−2) rc(km) R/rc

Earth 6378 6×1024 5.6 9.8 9.2×1012 6.9×10−10

White dwarf 5500 2.1×1030 ∼ 106 4.6×106 1.9×107 2.8×10−4

Neutron star 10 2×1030 ∼ 1014 1.3×1012 67.5 0.15

Most gravitational fields are weak by the natural measure

R

rc
=

Actual radius

Light curvature radius
=

GM

Rc2
.

Table 17.1 gives some examples.

• You may tend to think of Earth’s gravity as relatively

strong when climbing stairs, but it corresponds to a pal-

try R/rc ∼ 10−9!

• Even a white dwarf has only R/rc ≃ 10−4.

• This is still weak on the natural scale set by light curvature

(though enormous by Earth standards).

• Thus Newtonian gravity is still a rather good approxima-

tion for white dwarfs.

• But for gravity at the surface of a neutron star or the event

horizon of a black hole, the gravitational curvature radius

and actual radius will be comparable.

Thus a correct description of gravity for neutron stars and black

holes requires general relativity.
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17.5 Some Important General-Relativistic Solutions

In general relativity the rank-2 metric tensor gµν is both

• the source of the gravitational field and

• the description of the geometry of spacetime.

• Thus the task is to determine gµν , which is generally de-

pendent on the spacetime coordinates, for a given situa-

tion.

But this is a quite non-trivial task.

• In Newtonian physics the metric is fixed and specified im-

plicitly at the beginning of a problem.

• It corresponds to

– the flat (euclidean) spatial coordinates and

– the time, which is assumed in Newtonian physics

to be defined globally and thus the same for all ob-

servers.

• In contrast, in general relativity the metric is not known

beforehand: it is the solution of the problem.

Thus the framework of spacetime in which the

problem is formulated is itself unknown at the be-

ginning for a GR problem.



17.5. SOME IMPORTANT GENERAL-RELATIVISTIC SOLUTIONS 709

17.5.1 The Einstein Equation

This highly-nonlinear problem can be solved because it can be

shown that solutions obey the Einstein equation,

Rµν − 1
2gµνR =

8πG

c4
Tµν .

In this expression

• The indices µ and ν each range over the labels for the

spacetime dimensions (0,1,2,3).

• Rµν and R are rank-2 and rank-0 tensors called the Ricci

tensor and the Ricci scalar, respectively.

• The Ricci tensor and Ricci scalar depend on the metric

tensor gµν and describe the curvature of spacetime.

• Tµν is a rank-2 tensor called the stress–energy tensor.

• Tµν describes the coupling of gravity to matter, energy,

and momentum.

Because of the indices, each term in the Einstein equation can

be viewed as a matrix with 16 components.

• However only 10 are independent because all terms are

symmetric under exchange of indices.

• Hence this deceptively simple expression actually repre-

sents 10 coupled, non-linear, partial differential equations

that determine the effect of gravity.
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In the general case analytical solutions of the Einstein equation

are hopeless.

• However, in some cases of physical interest the problem

has a high degree of symmetry.

• This may reduce the problem to solving a much smaller

set of equations that is still often formidable, but tractable.

Often only the gravitational solution outside some mass respon-

sible for producing the gravitational field is of physical interest.

• Then if the exterior region is assumed to be a vacuum, the

Einstein equation reduces to

Rµν = 0.

which is called the vacuum Einstein equation.

• Don’t be fooled by the seeming triviality of this equation

either!

Because of the nonlinearity and the tensor indices,

the vacuum Einstein equation is also extremely

difficult to solve.
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17.5.2 Line Elements and Metrics

In the following some solutions of the Einstein equation will be

quoted without derivation.

• Such solutions are often called “spacetimes”.

• Instead of giving the metric tensor that corresponds to the

solution it is common to express solutions in terms of the

line element ds2 ,

• where a standard notation ds2 ≡ (ds)2 has been used.

• This is related to the metric tensor gµν by

ds2 =
3

∑
µ=0

3

∑
ν=0

gµνdxµdxν ≡ gµνdxµdxν ,

• where we’ve introduced in the last step the Einstein sum-

mation convention:

An index repeated twice on one side, once in a

lower and once in an upper position, implies a

summation on that index.

• Whether a tensor index is in an upper or lower position is

mathematically and physically important.

• But it will be sufficient for present purposes just to re-

member that, without going into details of why.

Often the line element ds2 is just called “the metric”.
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17.5.3 Minkowski Spacetime

Let’s warm up with the “trivial” case.

• The simplest possibility is no gravitational fields, so that

spacetime has no curvature (flat spacetime).

• Then general relativity reduces to special relativity.

• The resulting 4-dimensional manifold is called Minkowski

spacetime, or just Minkowski space.

• The corresponding metric is

ds2 =−c2dt2 +dx2+dy2+dz2.

• The time-like component c2dt2 has a sign opposite that of

the three space-like components dx2, dy2, and dz2.

• A metric for which the terms in the line element do not all

have the same sign is called indefinite.

• Indefinite metrics are characteristic of physical spacetime,

whether gravity is present or not.

Thus 4-dimensional Minkowski space has

• a very different geometry than 4-dimensional

Euclidean space,

• even though both are flat and both correspond

to spaces with no intrinsic curvature.
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In fact, the relative negative sign between space and time coor-

dinates in the Minkowski metric (indefinite metric) is the source

of all the “strange” behavior associated with special relativity:

• space contraction,

• time dilation,

• relativity of simultaneity,

• the “twin paradox”,

all derive from the indefinite Minkowski metric.
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The metric must be used to compute physical observables,

which illustrates another fundamental difference between rel-

ativity and Newtonian physics.

• In a Newtonian description coordinates may be them-

selves physical quantities.

• For example, the value of r in spherical coordinates is a

distance that could be measured.

• In general (and special) relativity, space and time coordi-

nates are just labels, without direct physical significance.

• Physical quantities must be

– computed using the metric.

– They generally are not given directly by values of co-

ordinates.

• This is illustrated by the metric itself:

– (ds2)1/2 measures the physical length of an

infinitesimal line segment.

– By inspection this distance is not given di-

rectly by any of the coordinates.

– Rather it is a mixture of contributions from

space and time coordinates.
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Example: Consider the time coordinate t.

• In Newtonian theories the coordinate time t is a direct

measure for all observers of the passage of time.

• In Minkowski space the proper time τ is defined to be the

time measured by a clock carried by an observer in the

observers’s inertial frame.

• The proper time and distance interval are related (Exer-

cise) by dτ2 =−ds2/c2.

• Then from the line element ds2,

dτ =

(

1− v2

c2

)1/2

dt.

• The proper time that elapses between coordinate times t1
and t2 is then

τ12 =
∫ t2

t1

(

1− v2

c2

)1/2

dt.

• For constant velocity, this yields

∆τ =

(

1− v2

c2

)1/2

∆t,

which is just the time dilation equation of special relativ-

ity: The proper time interval ∆τ is shorter than the coor-

dinate time interval ∆t because the square root is always

less than one.
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Thus time dilation in special relativity is a direct consequence

of the indefinite Minkowski metric,

ds2 =−c2dt2 +dx2+dy2+dz2.

• Specifically, time dilation follows from the difference in

signs between the timelike and spacelike components of

the metric.

• In a similar manner the Minkowski metric may be used

to derive the space contraction effect and other standard

features of special relativity.
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17.5.4 Schwarzschild Spacetime

If gravitational fields are present the Minkowski metric no

longer applies. The simplest solution in that case is obtained

by assuming the spacetime where the solution is valid to be

• devoid of matter, pressure, and fields,

• independent of time, and

• spherically symmetric in the spatial coordinates.

That is, some time-independent, spherical distribution of mass

is assumed to produce a gravitational field, but

• the Schwarzschild solution is valid only outside the mass

distribution responsible for the field.

• For a spherical star, this solution would be valid beyond

the radius of the star.

• For the spherical black holes to be discussed below, all the

mass that is the source of the gravitational field has been

crushed into a singularity at the center of the black hole.
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This solution of the vacuum Einstein equation is called the

Schwarzschild spacetime, and has the metric

ds2 =−
(

1− 2M

r

)

dt2

+

(

1− 2M

r

)−1

dr2+ r2dθ 2+ r2 sin2 θdϕ2,

where

• t is a time coordinate,

• r is a radial coordinate,

• θ and ϕ are the usual spherical angular coordinates,

• M is the single parameter of the theory,

• In the weak-field limit M may be interpreted as the mass

responsible for the gravitational field.

In this equation another standard convention of the

relativity formalism has been introduced:

• A special set of units is used where G= c= 1.

• Thus G and c do not appear explicitly in the

equations.



17.5. SOME IMPORTANT GENERAL-RELATIVISTIC SOLUTIONS 719

As for Minkowski space,

• The coordinates (t,r, θ ,ϕ) are just labels.

• Physical quantities must be computed from the metric.

The Schwarzschild solution implies a very unusual situation

if the mass M is compressed into a region smaller than the

Schwarzschild radius rs defined by

rs =
2GM

c2
,

where the c and G factors have been reinserted.

• By computing observables using the metric, it is found

that in this case the radius rs defines an event horizon.

• As a consequence of the extreme curvature of spacetime

at the event horizon,

– matter or light can fall through the horizon but

– once inside nothing can escape, not even light.

This solution is the simplest example of a black hole.
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17.5.5 Kerr Spacetime

The Schwarzschild black hole described above is spherically

symmetric and has no angular momentum.

• It is useful to illustrate the idea of black holes.

• However, black holes formed from gravitational collapse

of stars are expected to have angular momentum.

• The solution giving black holes that are deformed and

spinning is called the Kerr spacetime.

• It is specified in terms of what are called Boyer–Lindquist

coordinates (t,r,θ ,ϕ) by the metric

ds2 =−
(

1− 2Mr

ρ2

)

dt2− 4Mrasin2 θ

ρ2
dϕdt

+
ρ2

∆
dr2+ρ2dθ 2 +

(

r2+a2+
2Mra2 sin2 θ

ρ2

)

sin2 θdϕ2

with the definitions

a≡ J/M ρ2 ≡ r2+a2 cos2 θ ∆≡ r2−2Mr+a2.

• This gives a 2-parameter family of solutions in terms of

the parameters a (or equivalently J) and M, where

• in the weak-field limit J may be interpreted as angular mo-

mentum and M as the mass.
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Coordinates are labels without direct physical significance and

the metric must be used to calculate observables. The most

important features of Kerr black holes for us are:

• A Kerr spacetime has a region near the black hole but out-

side its event horizon called the ergosphere.

• A particle could enter the ergosphere and still escape, car-

rying off part of the rotational angular momentum and ro-

tational energy of the black hole.

• If the rotational energy and angular momentum are re-

moved completely from a Kerr black hole, what remains

is a Schwarzschild black hole, from which no additional

mass or energy can be removed.

• The spinning black hole drags the surrounding spacetime

as it rotates. This is called frame dragging.

• Thus objects near the black hole will be dragged with the

rotation of the black hole even if no angular force acts

between the object and the black hole.

• There is a maximum possible angular momentum for a

Kerr black hole of mass M that is given by

Jmax = M2.

Kerr black holes having J = Jmax are called extremal Kerr

black holes.

• It is expected that near-extremal Kerr black holes could be

relatively common.
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• Schwarzschild black holes are a special case of Kerr black

holes corresponding to J = 0.

• In principle black holes could be electrically-charged,

which corresponds to yet other solutions of the Einstein

equations.

• However, it is generally thought that any black holes

formed in realistic astrophysical processes would be

quickly charge-neutralized.

• Hence our interest here will be solely in uncharged black

holes.

• It may be assumed that any real black holes are Kerr black

holes, usually with J 6= 0.
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17.6 Evidence for Black Holes

With an understanding that

• black holes are intrinsically objects that must be described

by general relativity, and

• armed with a qualitative understanding of concepts from

general relativity,

let us now summarize some of the observational evidence sup-

porting the thesis that black holes exist.

• Their very name suggests that they are difficult to observe

directly, but

– if black holes are not isolated they should often be

accreting matter and interacting gravitationally with

nearby masses.

– These could have observable consequences.
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There are in fact strong reasons to believe in the reality of black

holes, based on three kinds of observations.

1. Massive unseen companions in binary star systems that

are strong X-ray sources.

2. Detection of gravitational waves, for which the properties

of the wave suggest that it originated in the merger of two

black holes.

3. Observational anomalies in the centers of many galaxies,

where

• very large masses (millions to billions of solar

masses) inferred from star velocities exist,

• often accompanied by evidence for enormous energy

generation in the core of the galaxy.

Our primary interest here is in black holes with masses com-

parable to those of stars that are potential endpoints for stellar

evolution (stellar black holes).

• So let us concentrate on evidence for stellar black holes in

categories 1 and 2.

• At the end of the discussion some evidence for the super-

massive black holes in category 3 will be presented for

completeness.
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17.6.1 Masses for Compact Objects in X-Ray Binaries

There is appreciable indirect evidence for stellar black holes

with masses ∼ 5−50M⊙.

• Much of this evidence comes from observation of X-ray

sources powered by accretion in binary star systems.

• Most such systems are spectroscopic binaries, where an

unseen compact object (usually a neutron star or black

hole) is inferred from periodic Doppler shifts of spectral

lines for the visible star.

• Typically X-ray emission in a spectroscopic binary is

caused by significant accretion onto the compact compan-

ion.

• This implies a relatively small separation between compo-

nents of the binary.

• Tidal interactions in close binaries tend to circularize el-

liptical orbits.

• Hence our discussion will be considerably simplified but

not seriously compromised by assuming circular orbits.
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Orbital phase
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Figure 17.1: (a) Tilt angle i for a binary orbit. (b) Radial velocity curve for

the spectroscopic binary A 0620–00. The period is P = 0.323 days and the

semiamplitude is K = 433±3 km s−1.

The mass function f (M) may be related to an observed radial

velocity curve as in Fig. 17.1(b) through

f (M)≡ (M sin i)3

(M+Mc)2
=

M sin3 i

(1+q)2
=

PK3

2πG
,

where

• K is the semiamplitude and P the period of the radial ve-

locity curve,

• i is the tilt angle relative to the observer of the orbit,

• Mc is the mass of the visible companion star,

• M is the mass of the unseen component, and

• the mass ratio q≡Mc/M has been introduced.
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The mass function

f (M)≡ (M sin i)3

(M+Mc)2
=

M sin3 i

(1+q)2
=

PK3

2πG
,

is useful because

• the right side is determined by direct observation of the

radial velocity curve and

• the left side is a function of the masses,

• so the measured velocity curve can be related to the

masses in the binary.

• As will be seen below, the mass function places a lower

limit on the sum of the masses in the binary.

• With some additional information can often place con-

straints on the mass of the unseen compact object.



728 CHAPTER 17. BLACK HOLES

Orbital phase

-1.0 -0.5 0 0.5 1.0

+500

0

-500

R
a

d
ia

l 
v
e

lo
c
it
y
 (

k
m

/s
)

P

K

A 0620-00

(b)

To

observer

i

v

Binary

orbit

(a)

The tilt angle i is illustrated in Fig. (a) above and a typical ob-

served velocity curve for a binary system is shown in Fig. (b)

above.

• The angle i is generally not known for a spectroscopic bi-

nary

• (except that the presence or absence of eclipses can place

some limits on it).

• Hence the measured mass function places a lower limit

on the mass of the unseen component if the mass of the

(visible) companion can be determined.

• This is often possible from spectral systematics for the

companion.
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Example: Let’s compute the mass function for a binary having

• a period of P = 5.6 days and

• a semiamplitude for the radial velocity curve K =
75 km s−1.

From the mass function equation expressed in convenient units

f (M) =
PK3

2πG
= 1.036×10−7

(
P

1 day

)(
K

km s−1

)3

M⊙.

Inserting P = 5.6 day and K = 75 km s−1 gives

f (M) = 0.245

for the mass function.
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Suppose that the period P and velocity semiamplitude K have

been determined from the observed velocity curve for a spec-

troscopic binary and that the quantity

F = F(P,K)≡ PK3

2πG

has been computed from that information. Then from

f (M)≡ (M sin i)3

(M+Mc)2
=

M sin3 i

(1+q)2
=

PK3

2πG
,

the unknown compact-object mass M is determined by

M3 sin3 i

(M+Mc)2
= F,

for which the solution of physical interest is given by the real

root

M(F,Mc, i) =
(

R+
√

Q3+R2
)1/3

+
(

R−
√

Q3+R2
)1/3
− a

3

R≡ 1
54
(9ab−27c−2a3) Q≡ 1

9
(3b−a2)

a =− F

sin3 i
b =−2FMc

sin3 i
c =−FM2

c

sin3 i

.

Since F is known, the mass M of the compact unseen compo-

nent is a function of two unknowns:

• the mass of the visible companion Mc and

• the tilt angle i.
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Figure 17.2: Mass plots assuming a measured mass function F = 3.19M⊙.

(a) Mass M of the unseen component versus the tilt angle i for different

values of the companion mass Mc. (b) Mass M of the unseen component

versus Mc for different values of i. The measured mass function F is seen

to set a lower limit on the unseen mass M.

In Fig. 17.2, the solution M(F,Mc, i) is plotted as a function of

i and Mc assuming that F = 3.19 M⊙. These figures illustrate

clearly

1. The degeneracy of the unknown mass M with respect to

the parameters i and Mc

2. That the measured value F = 3.19M⊙ is the minimum

possible mass for the unseen component.

Point 2 already is a powerful constraint but a more precise state-

ment about M is possible if further information can be obtained

about Mc and i, as we shall demonstrate below.
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17.6.2 Causality Constraints

Another important argument that can be marshaled to deter-

mine whether a spectroscopic X-ray binary harbors a black hole

is causality.

• If the X-ray source is observed to vary periodically, some

signal must correlate the periodic variation and it cannot

travel faster than light.

• Hence the maximum size of the source is limited by the

finite speed of light.

If such considerations point to a very small energy source, typ-

ically a black hole or a neutron star is implicated.
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If the luminosity of an energy source is periodic, some signal

must tell the source to vary. The maximum size D of an object

varying with a period P is the distance that light could have

traveled during that time, D∼ cP:

P

D ~c P

Energy

source

Time

In
te

n
s
it
y

The distances covered by light for various fixed times are sum-

marized in the following table.

Time km AU Parsecs

Year 9.46×1012 63,240 3.07×10−1

Month 7.88×1011 5270 2.58×10−2

Week 1.82×1011 1216 5.90×10−3

Day 2.59×1010 173 8.41×10−4

Hour 1.08×109 7.21 3.50×10−5

Minute 1.80×107 0.120 5.84×10−7

Second 3.00×105 0.002 9.73×10−9

Millisecond 3.00×102 0.000002 9.73×10−12
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This causality argument places only an upper limit on source

size and the energy-producing region may be smaller than the

limit imposed by c. But it is a very powerful argument because

it depends only on causality.
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Figure 17.3: Artist’s conception of the high-mass X-ray binary, Cyg X-1.

17.6.3 The Black Hole Candidate Cygnus X-1

Let us use the preceding ideas to analyze the black hole candi-

date Cygnus X-1.

• Optical, X-ray, and RF observations in the 1960s and

1970s determined that Cygnus X-1 is an X-ray source in

a binary system consisting of

– the visible blue supergiant HDE 226868 and

– an unseen companion that must be a white dwarf,

neutron star, or black hole

• The X-ray source flickers with a period of ms.

• From causality, this suggests that the source size is no

more than a few hundred kilometers

• This rules out a white dwarf and implicates either a neu-

tron star or a black hole.

An artist’s conception is displayed in Fig. 17.3.
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Figure 17.4: Analysis of masses in Cygnus X-1 based on the observed mass

function F = 0.245M⊙. (a) Mass of unseen companion M versus tilt angle i

for various assumed masses Mc of the supergiant companion. (b) M versus

Mc for various tilt angles i. Gray boxes indicate further observational con-

straints discussed in the text. The minimum possible mass for the unseen

companion is given by the measured mass function F = 0.245M⊙, which

corresponds to the limit Mc→ 0 and i→ 90◦.

Analysis of the observed velocity curve for the blue supergiant

indicates P = 5.6 days and K = 75 km s−1, which gives

F =
PK3

2πG
= 0.245.

Solving the cubic equation and plotting M versus i and M ver-

sus Mc gives the graphs shown in Fig. 17.4.

• The spectrum–luminosity class of the blue supergiant is

O9.7Iab, which permits its mass to be estimated from stel-

lar systematics as 20–30 M⊙.

• The tilt angle cannot be measured directly.

• However, detailed comparison with observed systematics

for the system such as whether eclipses are seen permits it

to be estimated as i = 25−35◦.
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• These allow the acceptable ranges for a solution to be dis-

played as the gray boxes in the above figure.

• From this it may be concluded that the mass of the unseen

companion lies in the range 10–20 M⊙.

• No plausible equation of state supports a neutron star with

M > 2–3M⊙.

Hence it may be concluded that the unseen companion in

Cygnus X-1 can only be a black hole.
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A more comprehensive analysis concludes that

i = 27.1±0.8◦ Mc = 19.2±1, M⊙

implying that

M = 14.8±1.0 M⊙.

• This more precise result is consistent with our simple es-

timate for Cyg X-1.

• It may also be noted that an extensive analysis has con-

cluded that the black hole in Cyg X-1 has a spin greater

than 95% of the maximal Kerr value.

• Thus, Cyg X-1 may be a near-extremal Kerr black hole.
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Table 17.2: Black hole candidates in galactic X-ray binaries

X-ray source Period (days) f (M) Mc(M⊙) M(M⊙)

Cygnus X-1 5.6 0.24 24–42 11–21

V404 Cygni 6.5 6.26 ∼0.6 10–15

GS 2000+25 0.35 4.97 ∼0.7 6–14

H 1705–250 0.52 4.86 0.3–0.6 6.4–6.9

GRO J1655–40 2.4 3.24 2.34 7.02

A 0620–00 0.32 3.18 0.2–0.7 5–10

GS 1124–T68 0.43 3.10 0.5–0.8 4.2–6.5

GRO J0422+32 0.21 1.21 ∼0.3 6–14

4U 1543–47 1.12 0.22 ∼2.5 2.7–7.5

A similar analysis has been carried out for many X-ray binaries

in the galaxy.

• A summary of the cases that place the mass of the unseen

companion well above the maximum mass for a neutron

star or white dwarf is shown in Table 17.2.

• These binary systems are assumed to contain a black hole

of mass M as the unseen companion.

• Even in the absence of further information on Mc and i,

the measured value of the mass function defines the lowest

possible mass for the unseen companion.

• For several entries in Table 17.2, f (M) is well above the

maximum mass thought to be possible for a neutron star

or white dwarf.
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17.7 Black Holes and Gravitational Waves

The first direct observation of gravitational waves (GW) in

2015 has opened a new window on the Universe.

• Gravitational waves are capable of probing dark events

that might not be observable using the tools of traditional

astronomy.

• Black holes are the quintessential dark objects, so GW as-

tronomy is well suited to their study.

• Indeed the first two gravitational waves reported by the

LIGO collaboration were each interpreted as resulting

from the merger of binary black holes.

These gravitational-wave observations

• Provide the strongest evidence to date for the existence of

black holes with masses comparable to stars.

• In addition, their detailed interpretation has begun to yield

quantitative information about the black holes that were

involved in the merger.

• This in turn establishes a new methodology to study late

stellar evolution for massive stars.

Gravitational wave astronomy may be the most powerful

method at our disposal for the study of black holes, as will be

discussed more extensively in a later chapter.
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17.8 Supermassive Black Holes

The center of the Milky Way lies in the constellation Sagittarius

(Sgr).

• The center coincides approximately with the radio source

Sgr A∗.

• Sgr A∗ is weak by radio-galaxy standards but is the

strongest RF source in our galaxy.

• The center of the galaxy is cloaked by dust but it can be

studied at IR wavelenths that penetrate the dust.

• A number of stars have been tracked for more than two

decades near the center of the galaxy.

• The most-studied is a 15 solar mass main sequence star

denoted S0-2 (also often called S2) that has been tracked

since 1992.

• The star S0-2

– is in a highly-elliptical Keplerian orbit with

– Sgr A∗ near a focus.

• Thus Kepler’s laws and the orbit of S0-2 may be used to

deduce the mass of Sgr A*.
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Figure 17.5: Orbit of S0-2 around Sgr A∗ through 2002. The filled circle

indicates the position uncertainty for Sgr A∗ assuming a point mass located

at the focus to be responsible for the orbital motion. The star completed this

orbit in 2008 and the parameters displayed in the box are those obtained

from the completed orbit. Periapsis is the general term for closest approach

of an orbiting body to the center of mass about which it is orbiting.

Positions for S0-2 through 2002 are shown in Fig. 17.5.

• Dates are shown in fractions of a year from 1992.

• The orbit drawn in Fig. 17.5 corresponds to the projection

of the best-fit ellipse with Sgr A∗ at a focus.

• At closest approach the separation of S0-2 from Sgr A∗ is

only 17 light-hours.
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From fits to the orbit of S0-2 assuming Keplerian motion,

• The mass inside the orbit is 4.3×106 M⊙.

• This mass is contained in a region that cannot be much

larger than Solar System (and may be smaller).

• Within this region there is little luminous mass.

The simplest explanation is that the radio source

Sgr A∗ coincides with a 4.3× 106 M⊙ black hole

at the center of the Milky Way.
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From extensive evidence based on observing average star mo-

tion near the centers of other galaxies

• The motion of the stars indicates enormous amounts of

invisible mass at the centers of large galaxies.

• The simplest explanation is that black holes containing

millions to billions of solar masses are common in the cen-

ters of galaxies.

• Whether such supermassive black holes form by

– the merger of many stellar black holes created by stel-

lar core collapse, or

– by some process independent of stellar evolution like

direct collapse from gas clouds

is unknown at present.

Thus it is unclear whether supermassive black

holes are directly relevant to our discussion of stel-

lar evolution.
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17.9 Intermediate-Mass and Hawking Black Holes

For completeness we remark briefly about two other possible

classes of black holes that might not be connected very directly

to issues in stellar evolution:

1. Intermediate-mass black holes: The evidence for

intermediate-mass black holes (hundreds to tens of thou-

sands of solar masses) has been inconclusive.

• However in 2017 a pulsar was discovered orbiting an

unseen mass concentration in the globular cluster 47

Tucanae.

• The precise timing of the pulsar indicates that

the magnitude of the unseen mass concentration is

2200+1500
−800 M⊙.

• No electromagnetic signal has been detected, so if

this is a black hole it must not be accreting.

• Does this represent evidence for an intermediate-

mass black hole?

2. Hawking black holes: Because of quantum effects,

• Black holes can radiate their mass over time as Hawk-

ing radiation.

• The emission rate is negligible except for black holes

of tiny mass (say the mass of a proton).

These are termed Hawking black holes.
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The detailed properties and formation mechanisms for

intermediate-mass black holes are not well understood.

• Hence it is not clear whether they have any connection to

stellar evolution.

• For example,

– do they form through clumping of stellar-mass black

holes, and

– is this an intermediate step in forming the supermas-

sive black holes, or

– do they collapse directly from gas clouds, indepen-

dent of stellar evolution?

For Hawking mini black holes

• there is no observational evidence thus far, and

• if they exist they must have been formed in the incredibly

high temperatures and densities of the big bang, not in

stellar processes.

Thus Hawking black holes are of large potential

interest for theories of quantum gravity, but they

are not relevant for the present discussion.
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17.10 Proof of the Pudding: Event Horizons

A compelling circumstantial case may be made for the exis-

tence of black holes.

• However, the black hole property that distinguishes it

from anything else is its event horizon, and

• None of the evidence for black holes to date (2018) de-

mands the existence of an event horizon.

• Therefore, irrefutable proof requires finding evidence for

the event horizon of a black hole, which is obviously a

considerable challenge.

• The best prospects are for the supermassive black hole at

Sgr A*, which has a Schwarzschild radius of about 18R⊙.

• Thus, seeing the event horizon of the Sgr A* black hole

requires resolving an object of this size at a distance of

about 8 kpc.

This may be possible soon, as very long base-

line RF interferometry with arrays of broadly-

dispersed radio telescopes can now achieve reso-

lutions of this magnitude.
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(a)

(b)

Figure 17.6: Computer simulation showing what the two black holes

might have looked like just prior to merger in the gravitational wave event

GW150914. (a) Background stars in the absence of the black holes. (b) Im-

age including black holes. The ring around the black holes is an Einstein

ring, which results from strong focusing by gravitational lensing of the light

from stars behind the black holes. .

• A hint of what a resolved event horizon might look like

comes from detailed analysis of data from the gravi-

tational wave event GW150914 (corresponding to the

merger of 29M⊙ and 36M⊙ black holes).

• A frame from a computer simulation of how the merger

might have looked from nearby is shown in Fig. 17.6.
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(a)

(b)

The jet-black shapes are the event horizons shadowing all light

from behind.

• All stars are in the background but

• gravitational lensing in the strongly-curved space near the

black holes severely distorts their apparent positions, and

• produces various lensed features around the event hori-

zons and surrounding the black holes.
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In the preceding image the black holes are assumed isolated

with no surrounding matter.

• Hence the image is dominated by

– the shadowing of the black hole event horizons and

– strong gravitational lensing effects.

• In contrast, the black hole at Sgr A*

– is in a dense cluster of stars and

– is likely accreting surrounding matter and producing

radiation from this accretion.

• The dominant observational feature may still be

– the complete and sharply-defined shadowing of back-

ground light by the event horizon and

– strong gravitational lensing near the horizon.

• However, the open question is how the environment of Sgr

A* will distort this picture and

• whether the event horizon will still be identifiable in

sufficiently-resolved observations.
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Figure 17.7: Summary of black hole masses determined from X-ray binary

and gravitational wave (GW) data. Arrows indicate black hole mergers.

17.11 Summary of Measured Black Hole Masses

The most reliable methods for discovering stellar-size black

holes and determining their masses are

• the mass-function analysis of X-ray binaries and

• Analysis of gravitational waves from black hole mergers.

Figure 17.7 summarizes masses for more than 35 black holes

determined from these two types of analysis.

• These data constitute the strongest evidence now available

for the existence of stellar-size black holes.

• It would be difficult to account for these data through any

hypothesis other than that of black holes.
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Part III

Accretion, Mergers, and Explosions
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Chapter 18

Accreting Binary Systems

Observation suggests that most stars are in binary systems.

• When binary components are well separated they largely

behave as isolated stars unless there are strong winds.

• However, if the semimajor axis of the orbit is small

enough, mass may spill directly from one star onto the

other. This is an example of accretion.

• Although accretion may not sound like a very exciting

topic, in fact it is a critical ingredient in many of the most

interesting phenomena in astrophysics.

• It plays this role either as

– a mechanism initiating such phenomena (novae or

Type Ia supernovae), or

– as the primary power source (supermassive black hole

engines that power quasars),

or both (high-mass X-ray binaries).

We now investigate some accretion-driven phenomena.
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18.1 Categories of Accretion in Binary Systems

It is useful to divide binary star accretion into two categories.

1. If the stars are sufficiently close together,

• a gas particle “belonging” to one star may wander far

enough from that star to be captured by the gravita-

tional field of the other star.

• This is termed Roche-lobe overflow.

2. Even if the two stars are not close enough together for

Roche-lobe overflow to occur,

• mass may be transferred between them if one star has

a very strong wind blowing from its surface and

• the second star captures particles from this wind.

• This is termed wind-driven accretion.

As we shall see, these two methods of accretion

tend to involve binary systems having very differ-

ent total masses, with

• Roche-lobe overflow favored in low-mass

systems.

• Wind-driven accretion favored in high-mass

systems.
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Figure 18.1: Three-body gravitational interaction. The restricted 3-body

problem corresponds to assuming that m is much smaller than M1 and M2.

18.1.1 The Roche Potential

Consider the restricted 3-body problem, which is a 3-body

gravitational problem where 2 of the masses may be consid-

ered to be much larger than a 3rd test mass (Figure 18.1).

• We are interested in the case where M1 and M2 are the two

components for a binary star system in revolution around

its center of mass and m is the mass of a gas particle.

• If we use a coordinate system rotating with the binary, the

potential acting on the gas particle is termed the Roche

potential ΦR(rrr), and is given by

ΦR(rrr) =−
GM1

|rrr− rrr1|
− GM2

|rrr− rrr2|
− 1

2(ωωω × rrr)2,

where ωωω is the frequency for revolution, and the other

quantities are defined in Fig. 18.1.
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Figure 18.2: Gravitational potential and Lagrange points Ln for a binary

system (surface courtesy of John Blondin).

A typical energy surface corresponding to the potential

ΦR(rrr) =−
GM1

|rrr− rrr1|
− GM2

|rrr− rrr2|
− 1

2
(ωωω × rrr)2,

is illustrated in Fig. 18.2.



18.1. CATEGORIES OF ACCRETION IN BINARY SYSTEMS 759

L5

7

6

5
4
3
2

L4

L3L2

L1

1

2
3

2

1

4

4

5

6

5

6
7

M2 M1

CM

Figure 18.3: Gravitational potential contours for a binary system and the

Lagrange points Ln. Dashed contours lie inside the Roche lobes (indicated

in gray) and CM denotes the location of the center of mass.

A typical contour plot corresponding to the potential

ΦR(rrr) =−
GM1

|rrr− rrr1|
− GM2

|rrr− rrr2|
− 1

2(ωωω × rrr)2,

is shown in Fig. 18.3.
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• The final term in

ΦR(rrr) =−
GM1

|rrr− rrr1|
− GM2

|rrr− rrr2|
− 1

2(ωωω × rrr)2,

is required because we have chosen a non-inertial coordi-

nate system rotating with the binary.

• It leads to centrifugal and Coriolis (pseudo-) forces in the

rotating frame. For example, the fall-off of the potential

L1

L2

L4

L5
L3

at large distance is a consequence of centrifugal effects.

• The rotational frequency entering this equation is given by

ωωω =

√

GM

a3
eee,

where a is the semimajor axis, M = M1 +M2 is the total

mass, and eee is a unit vector normal to the orbital plane.
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18.1.2 Lagrange Points

The five Lagrange points associated with the restricted 3-body

problem are indicated in the following figure

L1

L2

L4

L5
L3

• These points correspond to the five special points in the

vicinity of two large orbiting masses where a third body

of negligible mass can orbit at a fixed distance from the

larger masses.

• (Because at these points the gravity of the two large bodies

is exactly balanced by the centripetal forces required for

the small mass to rotate with them).

• The Lagrange points L1, L2, and L3 lying on the line of

centers for the two large masses are points of unstable

equilibrium (saddle points of the potential).
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L1

L2

L4

L5
L3

• The points L4 and L5 are “hilltops” in the potential and

seem to also be points of unstable equilibrium.

• However, for particular ranges of masses for the two large

bodies, L4 and L5 are actually stable equilibrium points.

• The reason is the Coriolis force ofthe rotating frame.

• Basically, a particle rolling away from the hilltop at L4 or

L5 experiences a Coriolis force that alters its direction.

• For favorable values of the parameters, the Coriolis deflec-

tion is sufficiently strong to put the particle into an orbit

around the Lagrange point.
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L1

L2

L4

L5
L3

• For binary star systems the L1 Lagrange point is of par-

ticular interest because mass flow between the stars can

occur through the L1 point.

• The L2 point is also of potential interest, because mass

overflow from star 1 to star 2 can in some cases overshoot

and escape the system through the L2 point.

• Such Lagrange points are also of considerable interest in

the dynamics of natural and artificial objects in the Solar

System, as discussed below.
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Lagrange Points in the Solar System

The Lagrange points play significant roles in the Solar System

when one of the large masses is the Sun and one a planet.

• The Trojan Asteroids lie at the Jupiter–Sun L4 and L5

points, 60 degrees ahead and behind Jupiter in its orbit.

• The Solar and Heliospheric Observatory Satellite (SOHO)

is parked at L1 and the Wilkensen Microwave Anisotropy

Probe (WMAP) at L2 of the Earth–Sun system.

• The mythical “Planet X” of science fiction was purported

to be at the L3 point of the Earth–Sun system, and there-

fore always on the opposite side of the Sun from Earth.

• Dynamical analysis indicates that for the Earth-Sun sys-

tem

– the L1 and L2 points are unstable on a timescale of

about 25 days;

– thus the observatories parked there require small or-

bit corrections on that timescale to remain at the La-

grange points.

• The L3 point for the Earth–Sun system is dynamically un-

stable on a 150-day timescale (bad news for Planet X!).

• The parameters of the Earth–Sun system, as for the

Jupiter–Sun system, indicate that the L4 and L5 points are

stable because of Coriolis forces.

• No Trojan-like asteroids have been found for Earth, but

there is evidence for dust concentrations at L4 and L5.
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18.1.3 Roche Lobes

One contour of the Roche potential intersects itself at the L1

Lagrange point lying on the line connecting the center of mass

for each star.

• The interior of this figure-8 contour defines a tear-drop

shaped region for each star called a Roche lobe.

• The Roche lobes for the potential
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Figure 18.4: Roche lobes and the inner Lagrange point.

Fig. 18.4 illustrates Roche lobes more schematically.

• Roche lobes define the gravitational domain of each star.

• A gas particle within the Roche lobe of one star feels a

stronger attraction from that star than from the other.

• It “belongs” gravitationally to the star unless there are in-

stabilities (such as those responsible for winds) that upset

the hydrostatic equilibrium.

• However, the L1 Lagrange point is a saddle between the

potential wells corresponding to the two stars.

• A particle at L1 belongs equally to both stars, suggesting

that mass transfer can be initiated if a star expands to fill

its Roche lobe, thereby placing gas at the L1 saddlepoint.
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18.2 Classification of Binary Star Systems

The Roche lobes provide a convenient classification scheme for

binary systems.
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Detached Binary

Neither star fills its Roche 
lobe.  Mass transfer unlikely 
except through strong winds.

Semidetached Binary

One star fills its Roche lobe; 
the other does not.  Mass 
transfer can occur throught 
the L1 point.

Contact Binary

Each star fills or even overfills 
its Roche lobe.  The two stars 
may revolve within a common 
envelope.

Figure 18.5: Classification of binary systems.

1. In detached binaries, each star is within its Roche lobe.

2. In semidetached binaries, one star has filled its Roche

lobe.

3. In contact binaries (W UMa stars), both stars have filled

or overfilled their respective Roche lobes. This may

• lead to a “neck” between the stars, or to

• both stars orbiting within a common envelope.

During stellar evolution the classification of particular binary

systems may change, as we discuss in the next section.
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18.3 Accretion Streams and Accretion Disks

Let us now consider mass transfer through Roche-lobe over-

flow in a more quantitative manner. To do so requires a quan-

titative description of the gas flow between stars in a binary

system.
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18.3.1 Gas Motion

Gas motion is governed by the Euler equation

ρ
∂vvv

∂ t
+ρvvv·∇∇∇vvv,= ∇∇∇P+ fff

vvv is velocity, ρ is density, P is pressure, and fff is force density.

• This equation has the form

(mass density)× (acceleration) = (force density),

and is a continuum version of Newton’s second law.

• In a frame rotating with the binary at a frequency ω , the

Euler equation takes the form

∂vvv

∂ t
+(vvv·∇∇∇)vvv =−∇∇∇ΦR−2ωωω×vvv− 1

ρ
∇∇∇P.

• However, we shall now argue that many of the basic fea-

tures of accretion through Roche-lobe overflow may be

understood with only minimal calculation.

• These features follow largely from two observations:

1. Mass transfer is extremely likely and highly efficient

if a star fills its Roche lobe, and

2. Usually, conservation of angular momentum for the

transfered matter implies the formation of an accre-

tion disk around the primary star.
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18.3.2 Initial Accretion Velocity

Let us imagine that we view the accretion process from the van-

tage point of the compact primary onto which accretion takes

place.

• In what follows we shall term the star onto which accre-

tion takes place the primary and the other star the sec-

ondary of the binary.

• Notice that the primary then is not necessarily the brighter

star (in most cases of interest it will be the less bright star).

• Tidal forces tend to quickly circularize orbits and to syn-

chronize rotation with revolution in close binaries.

• Therefore we assume that the compact binary and the sec-

ondary star keep the same faces turned toward each other

during the orbital period on a circular orbit.

• From our perch on the compact star the companion ap-

pears to be moving across the sky since it makes a com-

plete circuit of the celestial sphere once each binary pe-

riod.

• If the Roche lobe of the companion is filled so that matter

comes across the L1 point, it appears from our location on

the compact star to have a large transverse component of

motion because of the revolution of the binary system.
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Figure 18.6: Angular momentum in Roche-lobe overflow.

• The relevant geometry is shown on the left side of

Fig. 18.6.

• The components of velocity perpendicular to and parallel

to the line of centers for the two stars are illustrated on the

right side of Fig. 18.6.

• In the non-rotating frame, the perpendicular and paral-

lel components of velocity for the stream of gas coming

across the L1 point satisfy

v⊥ ∼ b1ω v‖ ≤ cs

where cs is the local speed of sound in the vicinity of the

L1 point.
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• The perpendicular component of the velocity may be esti-

mated by using Kepler’s third law. We may write

a = 2.9×1011m
1/3
1

(

1+
m2

m1

)1/3(
P

1 day

)2/3

cm,

where m1 = M1/M⊙ and m2 = M2/M⊙.

• Taking b1 ∼ 1
2a and utilizing ω = 2π/P, we find that

v⊥ ≃ 105m
1/3

1

(

1+
m2

m1

)1/3(
P

1 day

)−1/3

km s−1

• The local sound speed may be approximated by

cs ≃ 10

(
T

104 K

)1/2

km s−1.

• For normal stellar envelopes T ≤ 105 K and therefore

v‖ ≤ cs ≤ 10 km s−1. Thus we obtain

v⊥ ∼ O

(

100 km s−1
)

v‖ ∼ cs ∼ O

(

10 km s−1
)

for typical semidetached binaries having periods of days.
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18.3.3 General Properties of Roche-Overflow Accretion

The preceding results have immediate implications for mass

transfer through Roche-lobe overflow in binary star systems:

1. Since generally v⊥ >> v‖, gas particles coming across the

L1 point will have large angular momentum.

2. Because |vvv|= (v2
‖+ v2

⊥)
1/2 >> cs, the accretion flow is in

general supersonic.

• Therefore, pressure effects will be small

• (Supersonic flow has no time to react to pressure

waves since they are limited to sound speed.)

• Hence motion of the gas packets flowing across the

L1 point may be considered to be ballistic.

3. Because of the large angular momentum of particles the

accretion stream will be deflected by Coriolis effects.

4. If it is deflected enough to miss the body of the primary,

the accreting material will go into orbit around the pri-

mary, forming an accretion disk.

5. Because v‖ ∼ cs << vff, where vff is the velocity acquired

by the particle as it is accelerated in the gravitational field

of the primary, initial conditions at the L1 point will have

little influence on the accretion trajectory.

6. Thus the accretion stream should be narrow as it flows

through the L1 point into the Roche lobe of the primary.
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With these assumptions, after passing through the L1 point

• the test particle falls essentially freely in the gravitational

potential of M2, with the angular momentum that it had at

the L1 point.

• Thus, the test particle enters an approximately elliptical

orbit in the plane defined by revolution of the binary.

• The test particles executing elliptical motion in the gravi-

tational field of the primary form an accretion disk if

– the transverse velocity of the particles entering the

Roche lobe of the primary is sufficiently high that

– the deflection of the accretion stream by the Coriolis

effect causes it to miss the body of the primary.

• This is not always the case, but it typically will be in the

most interesting situation where the primary is a compact

object.
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18.3.4 Disk Dynamics

The preceding discussion introduces most of the basic features

of accretion by Roche-lobe overflow.

• However, the orbit of the test particle within the Roche

lobe of the primary

– is not actually a closed ellipse because of

– gravitational perturbations,

– most notably that caused by the presence of the sec-

ondary mass M1.

• This deviation from a 1/r potential causes the ellipses to

precess, leading to collisions of particles as orbits cross

each other.
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Collisions will have the following effects on the accretion disk:

• The collisions of particles will heat the gas in the disk,

which can then emit energy as electromagnetic radiation.

• Shock waves presumably play a leading role in this heat-

ing because the velocities are generally supersonic.

• The accretion disk has limited opportunity to exchange

angular momentum with external objects.

• Thus, the timescale for angular momentum transfer out of

the disk is expected to be much longer than the timescale

for radiating energy from the disk.

• As a consequence of the mismatch between timescales for

radiating energy and transferring angular momentum, the

particles in the disk will tend quickly to nearly circular or-

bits having the original angular momentum of the particle.

• (Circular orbits have the lowest energy for a given angular

momentum.)

• The circularization radius Rcirc is defined to be the orbit

of lowest energy (that is, circular orbit) having the angular

momentum of the test particles passing through L1.

• It may be approximated by

Rcirc

a
=

4π2

GM1P2
a3

(
b1

a

)4

=

(

1+
M2

M1

)(
b1

a

)4

.
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• Since the disk radiates energy,

– some particles must descend lower into the gravita-

tional potential of the primary to conserve energy.

– To do so requires losing angular momentum.

– But the timescale for transferring angular momentum

from the disk is long compared with that for radiating

energy,

Thus the disk must transfer angular momentum internally:

– Some particles in the disk must spiral inward while

other particles spiral outward.

– This net outward transfer of angular momentum im-

plies that the disk is broadened both inward and out-

ward around the circularization radius.

A primary unresolved issue is the detailed mechanism by

which an accretion disk accomplishes this internal redis-

tribution of angular momentum.

The picture that emerges then is of a set of particles in the in-

ner portion of the disk that slowly spiral inward on a series of

nearly circular orbits of gradually decreasing radius in the bi-

nary plane.

We may view an accretion disk as a device to

slowly lower particles in the gravitational field of

the primary until they accrete on its surface.
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• The density and total mass of the accretion disk are typ-

ically low enough that we may safely ignore the self-

gravity of the disk material.

• The particle orbits then tend to circular Kepler orbits with

angular velocity

Ω(R) =

√

GM1

R3
,

where M1 is the mass of the primary and R is the radius of

the orbit.

• For a Kepler orbit just grazing the surface of the primary

at radius R∗, the binding energy of a gas packet of mass

∆M is

Ebind =
GM1∆M

2R∗
.

• In equilibrium the total luminosity of the disk must be

Ldisk =
GM1Ṁ

2R∗
=

1

2
Lacc,

where Ṁ is the accretion rate and Lacc is the accretion lu-

minosity defined below.

Thus, half of the energy derived from accretion is

radiated from the disk as the matter spirals inward

toward the primary.
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Figure 18.7: Roche-lobe overflow and wind-driven accretion. A bow shock

is expected in the latter case because the wind flow is highly supersonic.

18.4 Wind-Driven Accretion

The schematic mechanisms for accretion driven by Roche-lobe

overflow and by winds is illustrated in Fig. 18.7.

• Wind-driven accretion is far less well understood than is

accretion by Roche-lobe overflow.

• Wind-driven accretion may be particularly important for

those binary systems that contain an O or B spectral class

star with a neutron star or black hole companion.

• These systems tend to be luminous sources of X-rays (see

the discussion below of high-mass X-ray binaries).
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The stellar wind from the early spectral class star is generally

both supersonic and intense.

• Wind velocity may be approximated by escape velocity,

vwind ≃ vesc =

√
2GM∗

R∗
,

where R∗ is the radius and M∗ the mass of the O or B star.

• This will typically be several thousand kilometers per sec-

ond—far higher than the sound speed of ∼10 km s−1.

• The rate of mass emission from such hot, luminous stars

is often as large as 10−6–10−5 M⊙ yr−1.

• The highly supersonic particles may be assumed to follow

ballistic trajectories, which allows a simple estimate of

the accretion rate on a compact companion.

• Such estimates indicate that wind-driven accretion is

highly inefficient: the accretion rate is 1000–10,000 times

lower than the mass-loss rate from the companion.

• In contrast, Roche-lobe overflow is highly efficient, with

close to 100% of the mass loss from one star accreting

onto the other star in normal cases.

It is only the high mass-loss rate from the O or B

star, and that energy is emitted largely as X-rays

for neutron star or black hole companions, that

permit wind-driven accretion to be observed.
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18.5 Classification of X-Ray Binaries

For binaries with highly compact remnants (neutron stars or

black holes), persistent binary accretion seems to occur in only

two general cases:

1. High-Mass X-Ray Binaries (HMXB) and

2. Low-Mass X-ray Binaries (LMXB).

These two extremes are summarized in the figure above and in

the discussion below.
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18.5.1 High-Mass X-Ray Binaries

Characteristics of high-mass X-ray binaries:

• Optical counterparts are typically luminous O or B stars.

• The optical luminosity from the system (dominated by

visible and UV from the O or B star) is typically larger

than the X-ray luminosity.

• They are commonly found in the galactic plane.

• They exhibit regular X-ray emission and transients with

variation on timescales of minutes, but no large bursts.

• The X-ray spectrum is “hard”, with kT ≥ 15 keV.

• HMXB are thought to consist of

– a neutron star or black hole, and

– a high-mass (≥ 15M⊙) companion with a strong stel-

lar wind, leading to wind-driven accretion on the

compact object.

• Accretion rates Ṁ ∼ 10−10−10−6 M⊙ yr−1, with wind

velocities v∼ 2000 km s−1.

HMXB are often very luminous X-ray sources and were among

the first X-ray binaries discovered in the galaxy.

The famous black hole candidate Cygnus X-1 is an

example of a high-mass X-ray binary.
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18.5.2 Low-Mass X-Ray Binaries

In contrast to high-mass X-ray binaries, low-mass X-ray bina-

ries exhibit the following characteristics:

1. LMXB have faint blue optical counterparts and the emis-

sion from the accretion disk may dominate over emission

from the stars.

2. The optical luminosity is typically less than the X-ray lu-

minosity by a factor of 10 or more, and the non-compact

component is normally of spectral class A or later.

3. They are commonly parts of old stellar populations,

spread out of the galactic plane and concentrated toward

the galactic center.

4. They give rise to strong X-ray outbursts, with regular pul-

sations seen in only a few cases.

5. The X-ray spectrum is softer than for HMXB, with an ef-

fective kT ≤ 10 keV.

6. LMXB are thought to correspond to binary systems hav-

ing a compact star and a low-mass companion (≤ 2M⊙),

with accretion onto the compact star by Roche-lobe over-

flow.

The X-ray bursters discussed later are examples of low-mass

X-ray binaries.
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18.5.3 Suppression of Accretion for Intermediate Masses

Thus, we see that

• HMXB correspond to wind-driven accretion from high-

mass companions and

• LMXB correspond to Roche-lobe overflow accretion from

low-mass companions,

with essentially no X-ray binaries lying in between.

This separation of mass scales can be understood as being

caused by strong suppression of accretion onto compact objects

from companions in the 2–15 M⊙ range that arises for two rea-

sons:

1. For companion masses lying in this intermediate range,

stellar winds from the companion are too weak to drive

significant X-ray luminosity from accretion.

2. For companion masses in this range, Roche-lobe over-

flow accretion is quenched because the mass transfer rates

would become super-Eddington, effectively halting the

accretion by virtue of the radiation pressure generated by

the accretion.
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Table 18.1: Energy released by accretion onto various objects

Accretion onto Max energy released (erg g−1) Ratio to fusion

Black hole 1.5×1020 25

Neutron star 1.3×1020 20

White dwarf 1.3×1017 0.02

Normal star 1.9×1015 10−4

18.6 Accretion Power

The most spectacular consequence of accretion is that it is an

efficient mechanism for extracting gravitational energy.

• The energy released by accretion is approximately

∆Eacc = G
Mm

R
,

where M is the mass of the object, R is its radius, and m is

the mass accreted.

• In Table 18.1 the amount of energy released per gram of

hydrogen accreted onto the surface of various objects is

summarized.

• From Table 18.1, we see that accretion onto very compact

objects is a much more efficient source of energy than is

hydrogen fusion.

• But accretion onto normal stars or even white dwarfs is

much less efficient than converting the equivalent amount

of mass to energy by fusion.
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Let us assume for the moment, unrealistically, that

• all kinetic energy generated by conversion of gravitational

energy in accretion is radiated from the system

• (we address the issue of efficiency for realistic accretion

shortly).

Then the accretion luminosity is

Lacc =
GMṀ

R
≃ 1.3×1021

(
M/M⊙
R/km

)(
Ṁ

g s−1

)

erg s−1,

if we assume a steady accretion rate Ṁ.
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Table 18.2: Some Eddington-limited accretion rates and temperatures

Compact object Radius (km) Max rate (g s−1) Tacc (K) kTacc (eV) Spectrum

White dwarf ∼ 8000 8×1020 ∼ 106 ∼ 100 UV

Neutron star ∼ 10 1×1018 ∼ 107 ∼ 1000 X-ray

10M⊙ black hole ∼ 30 3×1018 ∼ 107 ∼ 1000 X-ray

18.6.1 Limits on Accretion Rates

The Eddington luminosity is

Ledd =
4πGMmpc

σ
,

with σ the effective cross section for photon scattering.

• For fully ionized hydrogen, we may approximate σ by the

Thomson cross section to give

Ledd ≃ 1.3×1038

(
M

M⊙

)

erg s−1.

• If the Eddington luminosity is exceeded (in which case we

say that the luminosity is super-Eddington), accretion will

be blocked by the radiation pressure, implying that there

is a maximum accretion rate on compact objects.

• Equating Lacc and Ledd gives

Ṁmax ≃ 1017

(
R

km

)

g s−1

Eddington-limited accretion rates based on this formula are

given in Table 18.6.2.
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18.6.2 Accretion Temperatures

A crude estimate can be made of the accretion temperature for

compact objects by

• assuming steady accretion at a rate Ṁ corresponding to the

Eddington limit, and

• assuming that the accreted material equilibrates in a sur-

face layer with a blackbody temperature Tacc given by

Tacc =

(
GMṀ

4πσR3

)1/4

,

where R is the radius and M the mass of the compact ob-

ject, and σ is the Stefan–Boltzmann constant.

Accretion onto realistic compact objects is more complicated,

involving

• accretion disks with possibly complex dynamics, and

• general relativistic effects that may not be negligible for

accretion onto neutron stars and black holes.

Nevertheless, this simple estimate gives the right

order of magnitude for accretion temperatures be-

cause they are determined primarily by the release

of gravitational energy.
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Some Eddington-limited accretion rates and temperatures

Compact object Radius (km) Max rate (g s−1) Tacc (K) kTacc (eV) Spectrum

White dwarf ∼ 8000 8×1020 ∼ 106 ∼ 100 UV

Neutron star ∼ 10 1×1018 ∼ 107 ∼ 1000 X-ray

10M⊙ black hole ∼ 30 3×1018 ∼ 107 ∼ 1000 X-ray

The accretion temperatures and corresponding spectral regions

for

• white dwarfs,

• neutrons stars, and

• a 10M⊙ black hole

are also displayed in the table above. From this table we expect

that

• Accretion on white dwarfs should lead to Tacc ∼ 106 K.

• Accretion on neutron stars and stellar-size black holes

should lead to Tacc in excess of 107 K.

This corresponds to spectra in the UV to X-ray region for ac-

cretion on these objects.
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18.6.3 Accretion Efficiencies

• For the gravitational energy released by accretion to be

extracted,

– it must be radiated as electromagnetic radiation or

– matter must be ejected at high kinetic energy (for ex-

ample, in AGN jets).

• Generally, we expect that such processes are inefficient

and that only a fraction of the potential energy available

from accretion can be extracted to do external work.

• This issue is particularly critical when black holes are the

central accreting object, since

– they have no “surface” onto which accretion may take

place and

– the event horizon makes energy extraction acutely

problematic.
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Accretion Efficiencies: From the previous equation for accre-

tion power an efficiency factor η may be introduced through

Lacc =
GMṀ

R
=

GM

Rc2
Ṁc2 = ηṀc2 η ≡ GM

Rc2
,

where R is the effective accretion radius.

• Thus η is a measure of the efficiency of converting mass

to energy by accretion.

• For accretion onto a white dwarf or neutron star we may

take the radius of the object for R.

• For accretion on a spherical black hole we may assume

that R is some multiple of the Schwarzschild (event hori-

zon) radius, which is given by,

rs =
2GM

c2
= 2.95

(
M

M⊙

)

km,

since any energy to be extracted from accretion must be

emitted from outside that radius.

• Then for a spherical black hole

Lbh
acc ≡

rs

2R
Ṁc2 = ηṀc2 η =

rs

2R
.

For a black hole a typical choice for R is the ra-

dius of the innermost stable circular orbit in the

Schwarzschild spacetime, located at 3rs.
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Efficiencies for Various Processes: Varying ranges of energy

are available from processes that convert mass to energy.

• For nuclear burning of hydrogen to helium the mass to

energy conversion efficiency is η ∼ 0.007.

• For accretion on compact spherical objects like

Schwarzschild black holes or neutron stars, reason-

able estimates suggest η ∼ 0.1.

• For rotating, deformed (Kerr) black holes, it is possible to

be more efficient in energy extraction and efficiencies of

η ∼ 0.3 might be possible.

Example: The high energy-extraction efficiency

provides a convincing argument that active galac-

tic nuclei (AGN) and quasars must be powered by

rotating supermassive (M ∼ 109M⊙) black holes.

• For example, it is found that a quasar could

be powered by accretion of as little as a few

solar masses per year

• onto an object of mass ∼ 109M⊙, and that

• this mass would occupy a volume the size of

the Solar System or smaller.

Such properties are essential to explaining the en-

ergy sources of quasars and AGN.
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18.6.4 Storing Energy in Accretion Disks

In addition to being a primary source of power for varied astro-

physical phenomena, an accretion disk can function as a stor-

age reservoir for gravitational energy.

• This can meter the energy release out over a much longer

period than the dynamical timescale for direct collapse.

• For example, the long-period gamma-ray bursts to be dis-

cussed in later chapters last as long as many tens of sec-

onds and are thought to be powered by the collapse of the

core of a massive star.

• It is proposed that the core collapse leads to

– a rotating black hole

– surrounded by an accretion disk and

– emitting ultrarelativistic jets on its rotation axis.

• The gamma-ray burst is then produced by the jets, ener-

gized partially by the accretion of matter from the disk.

Thus the accretion disk spreads part of the collapse energy

out over tens to hundreds of seconds to power the long-period

gamma-ray burst.
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18.7 Some Important Accretion-Induced Phenomena

Accretion is a primary factor in a number of astrophysical phe-

nomena, either as initiator, or as the primary power source, or

as both. Let us summarize briefly some of these phenomena.
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18.7.1 Cataclysmic Variables

Cataclysmic variables are accreting binary systems in which

accretion is onto a white dwarf, with the accretion giving rise

to a variety of outbursts depending on the circumstances.

• The most spectacular are novae, which correspond to a

thermonuclear runaway under degenerate conditions that

is triggered by the accumulation of a thin layer of accreted

hydrogen on the surface of the white dwarf.

• This runaway ejects a rapidly expanding, hot shell, which

is responsible for the sudden large increase in light output

from the system.

• Accretion triggers the nova by dumping nuclear fuel on

the surface of the white dwarf, but

• the nova outburst is powered by thermonuclear burning,

primarily the hot-CNO cycle.

• Typical timescales for the thermonuclear runaway are

100–1000 seconds, but

• the increased light output by virtue of the expanding shell

may last for decades as it expands and thins.

• Some novae have been observed to be recur over periods

of years or decades.
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18.7.2 X-Ray Bursters

X-ray bursts are events that occur in low-mass X-ray binaries.

There are thought to be two categories.

• Type II bursts are less common and appear to be associated

with fluctuations in the accretion rate, though convincing

models are lacking.

• Type I bursts are more common and are characterized by

X-ray luminosities that increase by factors of 10 or more

over a period of a few seconds.

• Type I bursts exhibit large increases in X-ray luminosities

during bursts but the integrated steady luminosity is larger

than the burst luminosities by factors of 100 or more be-

cause bursts are of short duration.

• The accepted mechanism for Type I bursts is similar to

that of a nova: thermonuclear runaway under degener-

ate conditions initiated by accretion, but the compact ob-

ject onto which the accretion takes place is a neutron star

rather than a white dwarf.

• The typical duration of the thermonuclear runaway in an

X-ray burster is 1–10 seconds and bursts may recur on

timescales of hours, days, or longer.

• The runaway is powered initially by hot-CNO reactions,

but these break out into a series of rapid proton and α-

particle capture interspersed by β+ decays that produce

proton-rich isotopes up to ∼ mass-100.
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18.7.3 High-Mass and Low-Mass X-Ray Binaries

We have already discussed the distinction between low-mass

and high-mass X-ray binaries. These systems, in which the

compact object is either

• a neutron star or

• a black hole,

lead to a variety of X-ray emission associated with

• wind-driven accretion for the HMXB and

• Roche-lobe overflow for the LMXB

the X-ray bursters mentioned separately above are

a particular example of low-mass X-ray binaries.
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18.7.4 Type Ia Supernovae

Type Ia supernovae have been ascribed to two primary mod-

els, both likely involving accretion onto a white dwarf as the

initiator of the explosion.

• Single-degenerate scenario: Accretion from a non-

degenerate star onto a white dwarf triggers a runaway ther-

monuclear flash in the degenerate white dwarf matter that

consumes the entire star.

• Double degenerate scenario: A binary white dwarf sys-

tem spirals together and merges. Near merger one of the

white dwarfs likely is tidally disrupted, forming a disk that

accretes mass onto the other, triggering a thermonuclear

runaway in degenerate white-dwarf matter.

Type Ia supernovae will be discussed further in later chapters.
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18.7.5 Supermassive Rotating Black Holes

Rotating black hole engines are thought to power active galax-

ies and quasars.

• These central engines produce far more power within a

small region than can be accounted for easily by any

source of energy other than gravitational.

• The standard paradigm is that these engines are powered

by accretion onto supermassive, rotating black holes.

On a stellar scale, gamma-ray bursts are believed

to be powered in a similar way by accretion onto a

rotating black hole produced either by

• the core collapse of a massive star, or by

• merger of two neutron stars (or a black hole

and neutron star).

This will be discussed further in later chapters.
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18.8 Accretion and Evolution: the Algol Paradox

Mass is destiny for stars:

• Generally, the more massive a star is the faster it passes

through all stages of it life.

• The evidence is overwhelming for this hypothesis but

there are particular data sets that appear to contradict it.

• These apparent contradictions tend to involve stars inter-

acting with another stars, either through accretion in a bi-

nary system or through collisions and mergers.

An interesting case is the Algol system shown

above, where the more massive B8 star seems

much less evolved than the less-massive K0 star.
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Figure 18.8: Mass transfer in the Algol system.

However, there is spectroscopic evidence that

• weak accretion is occuring in the Algol system

• (and that the accretion is directly into the body of the pri-

mary rather than through an accretion disk).

Therefore, we may ask whether it is possible that

accretion in the Algol system is distorting our pic-

ture of which star is the older star.
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Figure 18.9: Resolution of the “Algol paradox”.

This Algol paradox is thought to be resolved by the evolution-

ary sequence depicted in Fig. 18.9, which indicates that previ-

ous mass transfer has altered the system from what would have

been expected for the evolution of isolated stars.
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• Initially the present K0 star (star B in figure) was a more

massive main sequence star that evolved faster than its less

massive companion (present B8 star, denoted star A).

• This initially more massive star evolved off the main se-

quence, expanded to fill its Roche lobe, and began rapid

mass transfer to its companion.

• Over time enough mass transfer occurred to make the

companion more massive and the present K0 star less

massive, and accretion has diminished to a trickle.

• In some binary systems there is evidence for such mass

transfer occurring first in one direction and then in the

other, modifying substantially the evolution of both stars.

We may expect that the B8 star will fill its Roche lobe and begin

mass transfer back to the K0 star at some point in the future.
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A related issue may be “blue stragglers” in clusters, where

• main sequence stars more blue (earlier spectral class) than

the turnoff point for the cluster are observed.

• According to standard evolutionary models, such stars

should already have evolved off the main sequence.

• However, the presence of blue stragglers could be ex-

plained if they are not isolated stars but

• instead are stars that have interacted strongly with another

star,

– either with a companion from a binary system, or

– by collision encounter in the dense environment of

the cluster.

Then our normal evolutionary picture would be

skewed because these stars have not always been

as massive as they presently are.



806 CHAPTER 18. ACCRETING BINARY SYSTEMS



Chapter 19

Nova Explosions and X-Ray Bursts

• Some stars appear to increase their brightness suddenly at

visible (and other) wavelengths by large amounts over a

period of days.

• Then they dim slowly back to obscurity over a matter of

months.

• The increase in brightness can be as large as factors of a

million.

• We call such a star a nova.

• Furthermore, many star systems are observed to be strong

sources of X-rays.

• In some cases these X-ray sources are relatively steady.

• In others the emission of X-rays can come in sudden X-ray

bursts superposed on a background emission

807
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What is the nature of these nova and X-ray burst events, and

what are the energy sources that power them?

• Strong clues are provided by the observation that both of

these kinds of events seem to be associated with binary

star systems.

• In this chapter we shall discuss novae and X-ray bursts in

more detail and argue that they are caused by a similar

mechanism:

Novae and X-ray bursts are caused by a thermonu-

clear runaway triggered by accretion onto a com-

pact object.

• The primary difference is that the compact object is

– a white dwarf in the case of the nova and

– a neutron star in the case of the X-ray burst.
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19.1 Novae: Periodic Outbursts in Binary Systems

The nature of a nova event is suggested by three key observa-

tions.

1. Novae seem to be associated with binary systems in which

one star is a white dwarf.

2. Doppler shifts indicate an expanding shell of gas emitting

the light being observed from a nova.

3. There are recurrent novae (novae that repeat after some

period of time).
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Figure 19.1: (a) Binary accretion leading to a nova outburst. (b) Hydrogen

accumulated on the surface of the white dwarf can ignite in a thermonuclear

runaway, blowing off a thin shell and producing the nova outburst.

This suggests the nova mechanism illustrated in Fig. 19.1,

• A nova can occur in a binary system in which one star

is noncompact, with a white dwarf companion accreting

from the noncompact star.

• Matter from the first star accretes in a thin layer on the

surface of the white dwarf.
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• Eventually this layer ignites in a thermonuclear explosion

under degenerate conditions.

• The resulting thermonuclear runaway (recall the earlier

discussion of the helium flash in red giant stars and see the

following box) blows a thin surface layer off into space.

• This causes a large rise in light output from the system.
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Degeneracy and Thermonuclear Runaways in Novae

The equation of state for a gas of electrons under conditions

expected in novae is illustrated in the following figure
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• At low T the equation of state is degenerate and the pres-

sure is essentially independent of the temperature.

• At high T the degeneracy is lifted and the pressure in-

creases with temperature, as expected for an ideal gas.

• Thus, a thermonuclear reaction ignited in degenerate mat-

ter on the surface of the white dwarf becomes a runaway.

• This continues until the temperature rises sufficiently to

break the degeneracy and produce a pressure increasing

rapidly with temperature.

• This blows off the hot burning surface layer in a rapidly

expanding thin shell.
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Figure 19.2: The expanding shell of gas around Nova Cygni 1992, two years

after the nova explosion.

19.1.1 Nova Cygni 1992

Figure 19.2 shows the shell ejected by Nova Cygni 1992, as

imaged by the Hubble Space Telescope two years after the ex-

plosion was first observed.

It is common to name novae using the word

“Nova", followed by the constellation and the year

the outburst was first observed. This nova was ob-

served in the constellation Cygnus in 1992.
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Figure 19.3: Visual lightcurve of Nova Cygni 1992 from the AAVSO In-

ternational Database. The Julian dates on the bottom axis span August 31,

1991 to August 13, 2002.

The lightcurve (brightness versus time) for Nova Cygni 1992 is

shown in Fig. 19.3(b).

• Nova Cygni 1992 was the brightest nova observed in re-

cent years, and

• was visible without a telescope at its peak.



19.1. NOVAE: PERIODIC OUTBURSTS IN BINARY SYSTEMS 815

β+

(p,γ)

(p,γ)

(p,γ)

(p,γ)

CNO

Cycle

(p,α)

(p,α)

β+

(α,p)

(p,γ)
(p,γ)

(p,γ)

β+

β+

β+

(α,p)

(p,γ)

(p,α)

t1/2 = 122 s

T9 = 0.8 T9 = 0.5

T9 = 0.4

T9 = 0.2

12C

12C

13C
15N

15N

14
O

14N

17F Ne

21
Na

19
Ne

18F

14N
15

O

13N
15

O

18

t1/2 = 9.97 m

t1/2 = 71 s

Figure 19.4: The hot CNO cycle and its relationship to the CNO cycle.

19.1.2 The Hot CNO Cycle

Given that a nova corresponds to a thermonuclear runaway on

the surface of a white dwarf under degenerate conditions, what

is the actual sequence of nuclear reactions that is responsible

for the explosion?

• A nova explosion is powered by an extension of the CNO

cycle at higher temperatures to a wider set of reactions

called the hot CNO cycle.

• Figure 19.4 illustrates the relationship between the CNO

and hot-CNO cycles.
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Figure 19.5: Main branch of the hot CNO cycle illustrated as a closed path

in the proton–neutron plane. See also Fig. 19.4.

Alternatively, we may represent the hot CNO cycle in isotope

space as in Fig. 19.5.
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Figure 19.6: Competition of proton capture and β -decay in breakout from

the CNO to hot CNO cycle. The solid line represents to total rate and dashed

lines indicate resonant and non-resonant contributions to the total.

The transition from the CNO cycle to the hot CNO cycle is

initiated by a proton capture reaction on 13N.

• Whether the hot CNO cycle is populated is a strong func-

tion of temperature and its influence on the competition

between proton capture and β -decay, as in Fig. 19.6.

• The β -decay of 13N, which keeps the reaction flow within

the CNO cycle, is essentially independent of temperature.

• However, 13N can also capture a proton to make 14O,

which initiates the breakout into the hot CNO cycle.

• This reaction has an extremely strong temperature depen-

dence, since it is inhibited by a Coulomb barrier.
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• At low temperatures the β -decay wins.

• But for temperatures in excess of T9 ∼ 0.1 the proton cap-

ture reaction begins to compete strongly and quickly dom-

inates with even small increases in temperature.

• The rising temperature of the initial nova outburst triggers

this breakout into the hot CNO cycle and the nova is pow-

ered by the corresponding energy that is released.

Nuclear burning through the hot CNO cycle is of-

ten termed explosive hydrogen burning.
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19.1.3 Recurrence of Novae

The characteristic total energy output of a nova is ∼ 1045 erg.

• This is about 1012 times more energy than the Sun pro-

duces each second.

• The duration of the thermonuclear runaway that produces

most of this energy is 100-1000 seconds.

• Despite this large energy output, a nova outburst typically

ejects only about 10−4 of the mass of the white dwarf, thus

leaving the white dwarf largely intact.

This is confirmed by observation of recurrent novae, where af-

ter a nova the white dwarf begins accumulating accreted mate-

rial again that eventually will trigger a new explosion.

RS Ophiuchi is an example of a recurrent nova.

• It consists of a white dwarf and red giant bi-

nary, some 5000 lightyears away from us in

the constellation Ophiuchus.

• It has been observed in nova outburst six

times since 1898.

• In its quiet phase RS Ophiuchi has an appar-

ent visual magnitude of about mV ∼ 12.5.

• In nova outburst this can rise to mV ∼ 5.
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Table 19.1: Nova Cygni 1992 abundances.

Chemical element Abundance relative to H

He 4.5

C 70.6

N 50.0

O 80.0

Ne 250.0

Na 37.4

Mg 129.4

Al 127.5

Si 146.6

S 1.0

Ar 5.0

Ca 46.8

Fe 8.0

Ni 36.0

19.1.4 Nucleosynthesis in Novae

The hot CNO cycle leads to synthesis of new elements.

• The species of elements produced in nova explosions are

relatively few in number compared with other events like

supernova explosions.

• However, certain isotopes likely owe their existence pri-

marily to nova events.

The inferred abundances of elements in the expanding shell

around Nova Cygni 1992 are given in Table 19.1.
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19.2 The X-Ray Burst Mechanism

In an X-ray burst the mechanism is thought to be similar to a

nova, except that the star onto which the matter accretes is a

neutron star rather than a white dwarf.

X-ray bursters may also produce steady X-ray

emission upon which bursts are superposed.

• The steady emission is probably due to heat-

ing of matter in the accretion disk.

• Flickering is sometimes observed for the

more steady emission. It is probably caused

by accretion-disk instabilities.

The X-ray burst is triggered by a thermonuclear runaway under

degenerate conditions, as for a nova.

• However, the gravitational field of a neutron star is much

stronger than that of a white dwarf.

• Thus, matter falling onto the neutron star is accelerated to

high velocities and

• the accretion-induced thermonuclear runaway occurs at

much higher temperatures and densities than in a nova

outburst.

• This in turn tends to produce X-rays rather than visible

light in the thermonuclear runaway.
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Production of X-rays

X-rays are emitted when fast-moving electrons pass close to

slow-moving ions and are accelerated.

• Only if the temperatures are millions of degrees are the

electrons moving at high enough velocities to produce X-

rays.

• The higher the temperature, the faster the electrons move.

• This both increases the energy of the X-rays and their in-

tensity, since collisions become more violent and more fre-

quent at high temperature.

• An X-ray burst on the surface of a neutron star may last

for a few seconds, during which time the temperatures can

reach ∼ 109 degrees.

• This causes X-rays to be produced in abundance.

Most nova events have maximum temperatures in the vicinity

of several times 108 degrees, and this tends to produce light at

visible and other longer wavelengths.
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Figure 19.7: The path for the rp-process. Also shown are the s-process and

r-process paths.

19.2.1 Rapid Proton Capture

Temperatures in an X-ray burst can become very high com-

pared with a nova (T > 109 K is possible).

• Then the hot CNO cycle that powers novae can break out

into a much more extensive network of reactions involving

competition between proton capture, α-particle capture,

and β -decay.

• This is called the rapid proton capture process or rp-

process.

• The rp-process path is illustrated in Fig. 19.7.
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• The energy released in the reactions of the hot-CNO cy-

cle and the rp-process are thought to provide the primary

power source for X-ray bursts.

• The typical duration of the thermonuclear runaway pow-

ering the burst is a few seconds, during which time up to

1039 erg may be released, largely as X-rays.

• X-ray bursts are typically highly recurrent, with some re-

peating on timescales as short as hours.
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19.2.2 Nucleosynthesis and the rp-Process

It is not known precisely how high in proton and neutron num-

ber nucleosynthesis can go during a strong X-ray burst.

• This is because of uncertainties in nuclear reaction rates

and conditions characterizing a burst)

• The rp-process could be responsible for producing many

of the isotopes occurring naturally that are found on the

proton-rich side of Fig. 19.7 (isotopes lying to the left of

the β -stability valley).

• A major uncertainty in this statement is whether the rp-

process can lead to ejection of the synthesized elements

into the interstellar medium.
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• Because the gravitation field of a neutron star is so large,

even if proton-rich nuclei are produced by the rp-process it

is not clear that they can escape the gravity of the neutron

star.

• It has been proposed that some material might escape in

special circumstances, but this is uncertain.



Chapter 20

Supernovae

Supernovae represent the catastrophic death of certain stars.

They are among the most violent events in the Universe,

• They typically release about 1053 erg of energy,

• much of it in the first second of the explosion.

• Comparison: total luminosity of the Sun is only about

1033 erg s−1,

• and even a nova outburst releases only of order 1047 erg

over a characteristic period of a few hundred seconds.

There is more than one type of supernova, with two general

methodologies for classification:

1. According to the spectral and lightcurve propertiesz,

2. According to the fundamental explosion mechanism re-

sponsible for the energy release.

827
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In addition to their intrinsic interest, supernovae of various

types are of fundamental importance for a variety of astrophys-

ical phenomena, including

• element production and galactic chemical evolution,

• potential relationship to some types of gamma-ray bursts,

• energizing and compressing the interstellar medium (im-

plying a connection with star formation),

• gravitational wave emission, and

• distance-measuring applications in cosmology associated

with standardizable candle properties.

We begin our discussion by considering the taxonomy of these

events.
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20.1 Classification of Supernovae

The traditional classification of supernovae is based on obser-

vational evidence, primarily their

• spectra

• lightcurves.

Some representative supernova spectra are displayed in

Fig. 20.1 on the following page.
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(Early)

(Late)

Figure 20.1: Early-time and late-time spectra for several classes of super-

novae.



20.1. CLASSIFICATION OF SUPERNOVAE 831

Days

0 100 200 300 400

B
lu

e
 m

a
g
n
it
u
d
e

Ia

Ib

II-P

II-L
SN1987A

Figure 20.2: Schematic lightcurves for different classes of supernovae.

Some typical lightcurves are illustrated in Fig. 20.18.
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• In most cases now we have at least a schematic model that

can be associated with each class

• that can account for the observational characteristics of

that class.

• Those models suggest that all supernova events derive

their enormous energy from

– gravitational collapse of a massive stellar core or

– a thermonuclear runaway in dense, electron-

degenerate matter.
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The observational characteristics of supernovae derive both

from

• the internal mechanism causing the energy release (for ex-

ample, collapse of a stellar core) and

• the interaction of the energy release with the surrounding

medium (outer layers or extended atmosphere of the star).

Therefore

• some observational characteristics are direct diagnostics

of the explosion mechanism itself,

• while others are only indirectly related to the explosion

mechanism and instead are diagnostics for the state of the

star and its surrounding medium at the time of the out-

burst.

The standard classes of supernovae and some of their charac-

teristics are illustrated in Fig. 20.3.
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Figure 20.3: Classification of supernova events. Note that Type II-n is not

shown here but discussed in the text.
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The primary initial distinction concerns whether hydrogen lines

are present in the spectrum, which divides supernovae into

• Type I (no hydrogen lines) and

• Type II (significant hydrogen lines).

The standard subclassifications then correspond to the follow-

ing characteristics:
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20.1.1 Type Ia

A Type Ia supernova is thought to be associated with a

thermonuclear runaway under degenerate conditions in white

dwarf matter.

• This class of supernovae is sometimes termed a thermonu-

clear supernova.

• This distinguishes it from all other classes that derive their

power from gravitational collapse and not from thermonu-

clear reactions.

• No hydrogen is observed but calcium, oxygen, and silicon

appear in the spectrum near peak brightness.

• Type Ia supernovae are found in all types of galaxies and

their standardizable candle properties make them a valu-

able distance-measuring tool (see following Box).
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Standard and Standardizable Candles

We may distinguish

• A standard candle, which is a light source that always has

the same intrinsic brightness under some specified condi-

tions.

• A standardizable candle, which is a light source that may

vary in brightness but that can be standardized (normalized

to a common brightness) by some reliable method.

Standard candles, or standardizable candles, then permit dis-

tance measurement by comparing observed brightness with the

standard brightness.

• Different Type Ia supernovae have similar but not identical

lightcurves.

• Hence they are not standard candles.

• However, there are empirical methods that allow the

lightcurves of different Type Ia supernovae to be collapsed

to a single curve.

• Thus, they are standardizable candles.
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Figure 20.4: Empirical rescaling of Type Ia supernova lightcurves to make

them standardizable candles. (a) B-band lightcurves for low-redshift Type

Ia supernovae (Calan-Tololo survey). As measured, the intrinsic scatter is

0.3 mag in peak luminosity. (b) After 1-parameter correction the dispersion

is 0.15 mag.

The establishment of Type Ia supernovae as standardizable

candles is illustrated in Fig. 20.4.
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Type Ia standardizable candles are particularly valuable be-

cause their extreme brightness makes them visible at very large

distances.

• The standardizable candle and brightness properties of

Type Ia supernovae have made them central tools of mod-

ern cosmology.

• For example, they are the most direct indicator of accel-

erated expansion of the Universe.

• This implies that the Universe is permeated by a mysteri-

ous dark energy that can effectively turn gravity into anti-

gravity.
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20.1.2 Type Ib and Type Ic

Type Ib and Ic supernovae are thought to represent

• core collapse of a massive star that has

• lost much of its outer envelope because of strong stellar

winds or interactions with a binary companion.

These progenitors are called Wolf–Rayet stars.

The distinction between Types Ib and Ic is thought to lie in

whether

• only the hydrogen envelope has been lost before core col-

lapse (Type Ib), or

• whether most of the helium layer has also been expelled

(Type Ic).
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20.1.3 Type II

Type II supernovae are characterized by prominent hydrogen

lines.

• They are thought to be associated with the core collapse

of a massive star.

• They are found only in regions of active star formation.

For example, Type II supernovae are unlikely to be

found in elliptical galaxies.
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Type II supernovae may be further subdivided according to de-

tailed spectral and light-curve properties:

1. Type II-P: In the designation II-P, the P refers to a plateau

in the light curve.

2. Type II-L: In the designation Type II-L, the L refers to

a linear decrease of the light curve in the region where a

Type II-P lightcurve has a plateau.

3. Type II-b: In a Type II-b event the spectrum contains

prominent hydrogen lines initially, but it transitions into

one similar to that of a Type Ia,b supernova.

The suspected II-b mechanism is core collapse in a

red giant that has lost most but not all of its hydro-

gen envelope through stellar winds or interaction

with a binary companion.

4. Type II-n: In this class of core-collapse supernova, nar-

row emission lines and a strong hydrogen spectrum are

present.

Type II-n supernovae are thought to originate in

the core collapse of a massive star embedded in

dense shells of material ejected by the star shortly

before the explosion.
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We conclude that

• all of the Type-II subcategories, and

• the Type Ib and Type Ic subcategories,

correspond to a similar core-collapse mechanism. The obser-

vational differences derive primarily from

• differences in the outer envelope and

• their influence on the spectrum and lightcurve,

not in the primary energy-release mechanism.
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20.2 Type Ia (Thermonuclear) Supernovae

A Type Ia supernova is thought to correspond to

• a runaway thermonuclear explosion that occurs in

electron-degenerate, carbon–oxygen white dwarf matter

• that is triggered by

– accretion on a white dwarf from acompanion that

isn’t a white dwarf, or

– merger of two white dwarfs

in a binary system.

Thus it differs fundamentally from all of the other classes of

supernovae.
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Figure 20.5: The single-degenerate mechanism for a Type Ia supernova.

20.2.1 The Single Degenerate Mechanism

One Type Ia scenario is illustrated in Fig. 20.5. It is related to

the nova scenario. The difference is that

• In a nova a thermonuclear runaway is initiated in a thin

surface layer after some accretion and the white dwarf re-

mains largely intact after the explosion.

• In the Type Ia situation the matter accumulates on the sur-

face of the white dwarf over a long period without trigger-

ing a runaway in the accumulated surface layers.
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• As unburned matter accumulates, the mass of the white

dwarf grows and can approach the Chandrasekhar limit.

• Near the Chandrasekhar limit the very high density can

trigger a thermonuclear runaway in the interior of the star

that initially ignites carbon and then oxygen.

• Quickly (in a matter of a second or less) the runaway burns

a large percentage of the mass of the white dwarf to iron-

group nuclei, with an enormous release of energy

• Most of the iron in the Universe probably originates in

Type Ia and core-collapse, supernovae.
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Thus, unlike

• a nova, or

• a core-collapse supernova,

a Type Ia supernova does not leave behind a compact remnant
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Single-Degenerate and Double-Degenerate Scenarios

The Type Ia mechanism described above is sometimes termed

the “singly-degenerate model”, since it involves only one de-

generate object (the white dwarf).

• Alternative mechanism: triggering of a thermonuclear

burn by merger of two white dwarfs.

• This is called the “double-degenerate” model, because it

involves two degenerate objects.

• In either the single-degenerate or double-degenerate mod-

els the cause of the explosion is the same: A thermonuclear

runaway in dense electron-degenerate matter.

• The primary difference is in how the explosion is initiated.

• At present neither model can yet describe all aspects of a

Type Ia explosion without assumptions.

• It is possible that more than one progenitor scenario is

needed to explain all Type Ia supernovae.
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One side benefit of the singly-degenerate model is that it can

provide a plausible explanation for the standardizable candle

property.

• The Chandrasekhar mass is almost the same for all white

dwarfs.

• Thus, if the white dwarf that explodes is always near the

Chandrasekhar mass it makes sense that the total energy

produced by different Type Ia events is similar.

• In contrast, for the doubly-degenerate model there is no

obvious reason for the sum of the masses of the two white

dwarfs that merge to be similar in different events.

However, the preceding may be an oversimplified analysis.

• The later-time Type Ia lightcurve is largely determined by

how much 56Ni is produced in the explosion.

• Thus the standardizable candle property could result from

any mechanism that causes a similar amount of 56Ni to be

made in all Type Ia explosions.
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20.2.2 Thermonuclear Burning under Extreme Conditions

Because of the gigantic energy release in a small region over a

very short period of time, the conditions in a Type Ia explosion

are extreme. Simulations indicate that

• Temperatures in the hottest parts can approach 1010 K,

with densities as large as 109 g cm−3.

• In the thermonuclear burn front, temperature changes as

large of 1017 K/s are seen in simulations.

The physics of the Type Ia explosion presents a number of is-

sues that are difficult to deal with in the large numerical simu-

lations that are required to model such events, as discussed in

the following box.
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Thermonuclear Burns: Different Scales

In the Type Ia explosion a thermonuclear burn corresponding to

conversion of carbon and oxygen fuel into heavier elements by

nuclear reactions releases large amounts of energy.

• This burn is extremely violent and involves energy and

temperature scales far beyond our everyday experience.

• But it shares many qualitative properties with ordinary

chemical burning.

• There is a burn front that proceeds through the white

dwarf, with “cooler” (a highly relative term!) unburned

fuel in front and hot burned products (ash) behind.

• This burn front can be remarkably narrow—as small as

millimeters.

Thus there are two extremely different distance scales charac-

terizing the explosion:

• the size of the white dwarf, which is of order 104 km, and

• the width of the burn front that consumes it, which can be

billions of times smaller.

This presents severe difficulties in accurately mod-

eling Type Ia explosions, since standard numerical

methods to solve the equations cannot handle such

disparate scales without drastic approximation.
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DeFlagration and Detonation Waves

In thermonuclear and ordinary chemical burning there is an im-

portant distinction associated with the speed of the burn front.

• If the burn front advances through the fuel at a speed less

than the speed of sound in the medium (subsonic), it is

termed a deflagration wave.

• If the burn front advances at greater than the speed of

sound in the medium (supersonic) it is called a detonation

wave.

Deflagration and detonation waves have different characteris-

tics:

• In a deflagration, fuel in front of the advancing burn is

heated to the ignition temperature by conduction of heat

across the burn front.

Recall that matter described by a degenerate equa-

tion of state is a very good thermal conductor,

much like a metal.

• In a detonation a shock wave forms and the fuel in ad-

vance of the burn front is brought to ignition temperature

by shock heating.

• Generally detonation is more violent than deflagration.
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DeFlagration, Detonation and Isotopic Abundances

Deflagrations and detonations produce different isotopic abun-

dance signatures in the ash that is left behind.

• The elemental abundances detected in the expanding de-

bris of Type Ia explosions could be accounted for most

naturally if we assume that

– part of the burn is a deflagration and

– part of it is a detonation.

• This is a difficulty for the theory because general consid-

erations suggest that

– the explosion starts off as a deflagration and

– it is not easy to get the burn in computer simulations to

transition to a detonation without making significant

untested assumptions.
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Thus, we believe that the proposed Type Ia mechanism is plau-

sible in outline, but there are bothersome details that leave some

doubt about whether we understand fully the mechanism of

these gigantic explosions.



20.2. TYPE IA (THERMONUCLEAR) SUPERNOVAE 855

20.2.3 Element and Energy Production

The energy released in a Type Ia supernova explosion derives

primarily from the thermonuclear burning of carbon and oxy-

gen to heavier nuclei.

• If the explosion lasts long enough to achieve nuclear sta-

tistical equilibrium (NSE), the primary final products of

this burning will be iron-group nuclei.

• An example of network evolution under conditions typical

of the Type Ia explosion in the deep interior of the white

dwarf is illustrated in Fig. 20.6 (next page).



856 CHAPTER 20. SUPERNOVAE

ρ = 108 g/cm3

-6 -5 -4

Log time

1

3

5

7

T9

A
b
u
n
d
a
n
c
e
 Y

9.5176E-16

0.0417
0.0018
7.7890E-5
3.3679E-6
1.4563E-7
6.2969E-9
2.7227E-10
1.1773E-11
5.0906E-13
2.2011E-14

P
ro

to
n
s

16

14

12

10

8

6

4

2

36

34

32

30

28

26

24

22

20

18

0

1 Neut rons

3 5
7

9
11

13

15 17
19 21 23 25 27 29 31

33
35

37
39

41
43

Time = 3.162278E-5 s

-5.130 -5.129 -5.128 -5.127 -5.126 -5.125

Log X 

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

Log time (seconds)

12C 16O

Figure 20.6: Element production in a Type Ia explosion. Upper: mass frac-

tions X for 468 isotopes and integrated energy production ∑E in MeV per

nucleon. Lower: distribution of abundances Y for all isotopes at end of cal-

culation in the upper figure. Inset on left shows the variation of temperature

with time (density remains almost constant over this time period).
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• In this calculation

– the initial temperature was T9 = 2,

– the initial density was ρ = 1×10−8 g cm−3, and

– the initial composition was equal mass fractions of
12C and 16O.

• The explosion is initiated by carbon burning, which

quickly raises the temperature (see the inset to the figure)

and initiates burning of oxygen and all the reaction prod-

ucts that are produced by carbon and oxygen burning.

• The rapid temperature rise is associated with the coupling

of the large energy release from the thermonuclear burn-

ing described by the reaction network to the fluid of the

white dwarf, which is described by hydrodynamics.

• This energy release (through the equation of state) causes

a rapid rise in temperature of the fluid representing the

white dwarf.

• This in turn increases rapidly the rate of nuclear reactions

in the network.

• The net result is the almost vertical rise in temperature

from T9 ∼ 2 to T9 ∼ 6.6 in a period of less than 10−5 s.

• During this time the number of isotopic species in the net-

work has increased from two to about five hundred.

• Significant population of iron group nuclei is already evi-

dent.
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Under these conditions, as the thermonuclear flame burns

through the white dwarf

• the carbon and oxygen fuel in each region is burned in a

tiny fraction of a second, and

• the entire white dwarf is consumed by the thermonuclear

flame on a timescale of less than a second.
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20.2.4 Late-Time Observables

A Type Ia supernova is expected to leave no remnant behind.

The primary late-time observables are

• the supernova lightcurve and

• the motion and spectrum of the expanding supernova rem-

nant.

A typical shape of a Type Ia lightcurve is shown above.
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Figure 20.7: Supernova remnants. (a) Tycho’s supernova of 1572 in X-rays;

it was a Type Ia. (b) Cas A supernova remnant in X-rays. It was a core

collapse supernova that occurred about 300 years ago. (c) Crab Nebula,

which is the remains of the core collapse supernova of 1054, in visible light.

Some supernova remnants are shown in Fig. 20.7.

• Figure (a) is an example of a Type Ia remnant.

• Spectroscopy of a Type Ia remnant can determine

– the elements in the debris and

– their radial velocity.

• The radial velocity is in turn correlated with how deep in

the explosion the element was produced (higher velocity

is expected to come from deeper).

• Measurements indicate that many intermediate-mass

species like Si are produced; not just iron-group nuclei.

This suggests that the explosion is not a pure detonation (which

would produce mostly iron-group nuclei).
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Another proposed supernova mechanism involves some aspects

of both core collapse and thermonuclear runaway: massive

stars of low metallicity can undergo a pair-instability super-

nova.
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20.3 Pair-Instability Supernovae

More massive stars (M ∼ 130−250M⊙) of low metallicity are

predicted theoretically to undergo a pair-instability supernova.

• In very massive stars the radiation pressure is primarily

responsible for balancing the enormous gravity, with the

gas pressure playing a smaller role.

• At high temperatures and densities energetic photons can

produce electron–positron pairs in abundance.

• This removes photons and part of the pressure support for

the core.

• If pairs are produced at a high-enough rate the core begins

to collapse,

• which leads to increased pair production that accelerates

the collapse.

• This in turn greatly accelerates thermonuclear burning

and leads to

• a thermonuclear runaway that blows the star apart, with-

out leaving behind a neutron star or black hole.

• For massive progenitors, pair-instability supernovae can

be brighter than Type Ia or core collapse supernovae.

It has been proposed that some overly-luminous

supernovae may have been of this type.
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• For stars with M < 130 M⊙ the pair production rate is not

high enough to trigger the above-mentioned runaway.

• A pair-instability explosion also is unlikely if the metal-

licity of the star is too high, because

– this leads to high photon opacity and

– prevents the runaway collapse that initiates the explo-

sion.

• For stars more massive than ∼ 250 M⊙,

– photodisintegration of nuclei removes pressure sup-

port so rapidly that

– the star collapses to a black hole

before encountering the pair instability.
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• For stars in the mass range∼ 100−130M⊙ the pair insta-

bility does not lead to a supernova.

• However, the pair instability

– destabilizes the star sufficiently that

– it exhibits pulsations

causing large mass ejection.

A possible explanation for the strange behavior of

η Carinae:

η Carinae

is mass ejection caused by such an instability.
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20.4 Core-Collapse Supernovae

A core-collapse supernova is one of the most spectacular events

in nature, and is one possible source of the heavy elements that

are produced in the rapid neutron capture or r-process.

• Considerable progress has been made in understanding the

mechanisms responsible for such events.

• This understanding was tested both qualitatively and

quantitatively by the observation of Supernova 1987A in

the nearby Magellanic Cloud.

• This was the brightest supernova observed from earth

since the time of Kepler and

• the first nearby supernova to occur in the era of modern

scientific instrumentation.
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20.4.1 The “Supernova Problem”

The observations of Supernova 1987A, and the continuing stud-

ies of its aftermath,

• Provide compelling evidence that a core-collapse super-

nova represents the death of a massive star in which

– a degenerate iron core of approximately 1.2–1.3 M⊙

– collapses catastrophically on timescales of tens of

milliseconds.

• This gravitational collapse is reversed as the inner core

exceeds nuclear densities because of the properties asso-

ciated with the stiff nuclear equation of state.

• A pressure wave reflects from the center of the star and

propagates outward.

• The pressure wave steepens into a shock wave as it passes

into increasingly less dense material of the outer core.

• This shock blows off the outer layers of the star, producing

the spectacular explosion seen in observations.
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However, the most realistic simulations of this event indicate

that

• The shock wave loses energy rapidly as it propagates

through the outer core.

• If the core has a mass of more than about 1.1 M⊙,

• the shock stalls into an accretion shock within several hun-

dred milliseconds of the bounce, several hundred kilome-

ters from the center.

• Thus the “prompt shock” does not blow off the outer lay-

ers of the star and fails to produce a supernova.

This is the “supernova problem”:

• there is good evidence that we understand the

basics, but

• the details fail to work robustly.

In this chapter we summarize the present status of

this problem.
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Figure 20.8: Center of a 25 solar mass star late in its life.

20.4.2 The Death of Massive Stars

Because of sequential advanced burning stages, massive stars

near the ends of their lives build up the layered structure de-

picted in Fig. 20.8.

• The iron core that is produced in the central region of the

star cannot produce energy by fusion (the curve of binding

energy peaks in the iron region).

• Thus, it must ultimately be supported by electron degen-

eracy pressure.

• As the silicon layer undergoes reactions the central iron

core becomes more massive.



20.4. CORE-COLLAPSE SUPERNOVAE 869

Center of 25 solar
mass star

25 M

T = 4 ×109  K

ρ = 10
7
 gcm

-3

T = 2 ×107  K

ρ = 10
2
 gcm

-3 Hydrogen

Carbon

Silicon

Iron

Oxygen

Helium

• Electron degeneracy supports the iron core against gravi-

tational collapse only if its mass remains below the Chan-

drasekhar limit, which depends on the electron fraction

but is approximately 1.1–1.4 M⊙.

• When the core exceeds this mass it begins to collapse be-

cause electron degeneracy can no longer balance gravity.

• When the collapse begins, the core of a 25M⊙ star has a

mass of about 1.2 M⊙ and a diameter of several thousand

kilometers.

This is a tiny fraction of the total diameter. The

star is typically a supergiant and its outer layers

would encompass much of the inner Solar System

if placed at the location of the Sun.
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• The core density is about 6×109 g cm−3,

• the core temperature is approximately 6×109 K, and

• the entropy per baryon per Boltzmann constant of the core

is about 1, in dimensionless units.

• This is a very small entropy, as discussed on the following

page.
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Entropy of the Iron Core

This entropy of the iron core in a pre-supernova star is re-

markably low: the entropy of the original main-sequence star

that produced this iron core is about 15 in units of entropy per

baryon per Boltzmann constant.

• At first glance, it may seem contradictory for the entropy

to decrease as the star burns its fuel.

• However, the star is not a closed system: as nuclear fuel

is consumed, energy leaves the star in the form of photons

and neutrinos.

• In the process, the nucleons in the original main-sequence

star are converted to iron nuclei.

• In 56Fe, the 26 protons and 30 neutrons are highly ordered

compared with 56 free nucleons in the original star, be-

cause they are constrained to move together as part of the

iron nucleus.

• Thus, the core of the star becomes more ordered compared

with the original star as the nuclear fuel is consumed.

• The entire universe tends to greater disorder, as required

by the second law of thermodynamics, because the star

radiates energy in the form of photons and neutrinos as it

builds its ordered core.
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20.4.3 Sequence of Events in Core Collapse

When the mass of the Fe core exceeds the Chandrasekhar limit

the core collapses gravitationally. The collapse is accelerated

by two factors:

1. High-energy γ-rays lead to photodisintegration of iron

into α-particles by reactions like

56Fe→ 13α +4n,

which is highly endothermic, with Q =−124.4 MeV.

2. As the density and temperature increase, the rate for the

neutronization reaction,

p++ e−→ n+ν,

is greatly enhanced, which removes electrons from the

core.

As we will now show, these factors remove energy

and sources of pressure rapidly from the core, thus

destabilizing it.
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Figure 20.9: Simulated photodisintegration of 56Fe at a temperature of

1010 K and density of 109 g cm−3. (a) Initially only pure 56Fe is present;

after ∼ 10−12 s the original 56Fe has been transformed into 365 isotopes

with non-zero populations, but the only species with abundances in excess

of 10−3 are alpha particles, neutrons, and protons. (b) The rate of energy

absorption for this very endothermic reaction.

As the core heats up, high-energy γ-rays are produced rapidly.

• These photodisintegrate iron-peak nuclei, as illustrated in

the simulation of Fig. 20.9.

• Hundreds of isotopes are produced .
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• The most abundant species at equilibrium under these con-

ditions is α-particles, and

• only α-particles, neutrons, and protons have abundances

larger than 10−3.

• Photodisintegration of iron is highly endothermic, as indi-

cated in Fig. 20.9(b).

• For example, 56Fe→ 13α +4n has Q =−124.4 MeV.

• This decreases the kinetic energy of electrons in the core,

which lowers the pressure and hastens the collapse.



20.4. CORE-COLLAPSE SUPERNOVAE 875

In the collapsing core the neutronization reaction,

p++ e−→ n+ν,

converts protons and electrons into neutrons and neutrinos.

• This lowers the pressure contributed by electrons.

• The neutrinos escape the core during the initial collapse

• because their mean free path is much larger than the initial

radius of the core.

• These neutrinos carry off energy,

– decreasing core pressure and

– accelerating collapse even further.

• They also deplete the lepton fraction (defined analogous

to the electron fraction, but for all leptons).
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• The core collapse accelerated by photodisintegration and

neutronization

– proceeds on a timescale of tens of milliseconds,

– with velocities that are significant fractions of the

free-fall velocities.

• The core separates into

– An inner core that collapses subsonically and ho-

mologously (Homologous means that the collapse is

“self-similar”, in that it can be described by changing

a scale factor.)

– An outer core that collapses largely in free-fall, with

a velocity exceeding the local velocity of sound in the

medium (it is supersonic).

• This collapse is

– Rapid on timescales characteristic of most stellar evo-

lution,

– Slow compared with the reaction rates and the core is

approximately in equilibrium during all phases of the

collapse.

Thus entropy is constant, and the highly-ordered

iron core before collapse (S ≃ 1) remains ordered

during the collapse.
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• As the collapse proceeds and the temperature and density

rise, a point is reached where because of coherent scat-

tering the neutrino interactions become sufficiently strong

that

– the mean free path of the neutrinos becomes less than

the core radius.

– Shortly thereafter, the time for neutrinos to diffuse

outward becomes longer than the characteristic time

of the collapse and

– the neutrinos are effectively trapped in the collapsing

core (neutrino mean free paths in the collapsed core

can become as short as a fraction of a meter).

– The radius at which this occurs is termed the trapping

radius, and it is closely related to the neutrinosphere

to be defined below.
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• Because the collapse proceeds with low entropy,

– There is little excitation of the nuclei and

– the nucleons remain in the nuclei until densities are

reached where nuclei begin to touch.

• At this point, the collapsing core begins to resemble a gi-

gantic “macroscopic nucleus”.

• This core of extended nuclear matter

– is a nearly degenerate fermi gas of nucleons, and

– has a very stiff equation of state because nuclear mat-

ter is highly incompressible.

• At this point, the pressure of the nucleons begins to dom-

inate that from the electrons and neutrinos.
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Figure 20.10: The sonic point during collapse (left) and the beginning of

shock-wave formation following the bounce (right).

• Somewhat beyond nuclear density,

– the incompressible core of nearly-degenerate nuclear

matter rebounds violently as

– a pressure wave reflects from the center of the star

and proceeds outward.

– This wave steepens into a shock wave as it moves out-

ward through material of decreasing density (and thus

decreasing sound speed),

– The shock wave forms near the boundary between the

subsonic inner core and supersonic outer core (this

point is called the sonic point; see Fig. 20.10).

In the simplest picture this shock wave would eject

the outer layers, resulting in a supernova explo-

sion. This is called the prompt shock mechanism.
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• The gravitational binding energy of the core at rebound is

about 1053 erg, and

• the typical observed energy of a supernova (the expanding

remnant plus photons) is about 1051 erg.

• Thus, only about 1% of the gravitational energy need be

released in the form of light and kinetic energy to account

for the observed properties of supernovae.

1051 erg defines a unit of energy that is termed the

foe:

1 foe≡ 1051 ergs,

with the name “foe” deriving from the first letters

of fifty-one ergs.

In more modern usage, this unit is termed the

bethe,

1 beta = 1 foe≡ 1051 ergs,

in honor of Hans Bethe.
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Figure 20.11: (a) Neutrinosphere. (b) Conditions at time of shock stagna-

tion. The neutrinosphere and the gain radius are indicated.

• Unfortunately, a simple prompt-shock mechanism appears

to be energetically prohibited:

1. The shock dissociates nuclei as it passes through the

outer core, sapping it of a large amount of energy.

2. As the shock wave passes into less dense material,

– the mean free path for the trapped neutrinos in-

creases until the neutrinos can once again be

freely radiated from the core.

– The radius at which neutrinos change from diffu-

sive to radiative is termed the neutrinosphere.

– When the shock penetrates the neutrinosphere a

burst of neutrinos is emitted.

– This carries away large amounts of energy.

This further depletes the shock by lowering pressure behind it.
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Figure 20.12: Conditions at shock stagnation in a core-collapse supernova.

The neutrinosphere and the gain radius are indicated.

• Realistic calculations indicate that the shock wave stalls

into an accretion shock (a standing shock wave at a con-

stant radius) before it can exit the core, unless the original

iron core contains less than about 1.1 solar masses.

– In a typical calculation, the accretion shock forms at

about 200–300 km from the center of the star within

about 10 ms of core bounce.

– Since there is considerable agreement that SN1987A

resulted from the collapse of a core having 1.3–1.4 so-

lar masses, the prompt shock mechanism is unlikely

to be a generic explanation of Type-II supernovae.

Figure 20.12 illustrates the conditions characteristic of a

stalled accretion shock in a core-collapse supernova.
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20.4.4 Neutrino Reheating

The idea that neutrinos might play a significant role in supply-

ing energy to eject the outer layers of a star in a supernova event

is an old one.

• Failure of the prompt mechanism to yield supernova ex-

plosions consistently led to a revival of interest in such

mechanisms.

• This evolved into what is generally termed the delayed

shock mechanism or neutrino reheating mechanism.

• In this picture, the stalled accretion shock is re-energized

through heating of matter behind the shock by interactions

with neutrinos produced in the region interior to the shock.

• This raises the pressure sufficently to impart an outward

velocity to the stalled shock on a timescale of approxi-

mately one second, and

• the reborn shock then proceeds through the outer envelope

of the star.
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Figure 20.13: Neutrino reheating mechanism for a supernova explosion (af-

ter Bruenn). Figures are approximately to scale; the surface of the star

would be 3 km from the center on this scale.

The schematic mechanism for the supernova event thus be-

comes the two-stage process depicted in Fig. 20.13.
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Figure 20.14: Neutrino luminosities in a supernova explosion.

20.4.5 Reheating of Shocked Matter

Neutrinos and antineutrinos are emitted copiously from the hot,

dense center of the collapsed core (Fig. 20.14).
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Neutrinos can interact with the matter behind the shock. It is

useful to introduce two characteristic radii.

• The first we already met: the neutrinosphere marks a

boundary between diffusive and free-streaming transport.

• The second is associated with the observation that interac-

tions with the matter could either cool it or heat it.

– There is always a radius outside of which the net ef-

fect of the neutrino interactions is to heat the matter.

– This break-even radius is termed the gain radius.

– The neutrinosphere and gain radius are indicated

schematically in the figure above.

– Shock revival is favored by deposition of neutrino en-

ergy between the gain radius and the shock.
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20.4.6 Calculations with Neutrino Reheating

The result of a large number of calculations is that

• Neutrino reheating helps, but generally does not produce

successful explosions without artificial boosts of the neu-

trino luminosities.

• This suggests that there still are missing ingredients in the

supernova mechanism that must be included to obtain a

quantitative description.

• One possibility is that convection interior to the shock

alters the neutrino spectrum and luminosity in a non-

negligible fashion.

Let’s now turn to a general discussion of the role

that convection might play in supernova explo-

sions.
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20.4.7 Convection and Neutrino Reheating

In Ch. 7 we discussed general conditions under which stars can

become convectively unstable.

• Substantial convection inside the stalled shock

– could have significant influence on the possibility of

neutrinos reenergizing the shock, and influence

– quantitative characteristics of a reenergized shock.

• To boost the stalled shock it is necessary for neutrinos to

– deposit energy behind the shock front,

– but outside the gain radius,

• Convective motion inside the shock front could, by over-

turning hot and cooler matter,

– cause more neutrino production and

– alter the neutrino spectrum.

• The convection could also move neutrino-producing mat-

ter outside the neutrinosphere.

• Then neutrinos that are produced would have a better

chance to propagate into the region closely behind the

shock where deposition of energy optimizes reheating.

This would provide a method to produce a supernova explosion

with the required O
(
1051

)
ergs of kinetic and visible energy.
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Figure 20.15: Lepton fractions and entropy 6.3 ms after bounce in a super-

nova calculation. Regions particularly favorable for convective motion are

described in the text. The progenitor had a mass of 15 M⊙.

20.4.8 Convectively-Unstable Regions in Supernovae.

Armed with earlier results for predicting convectively-unstable

regions, let’s examine entropy and electron-fraction gradients

found during shock stagnation in supernova calculations.

• Fig. 20.15 shows results for a 15 M⊙ star 6 ms after

bounce. There are two potentially unstable regions:

– A Schwarzschild unstable region lying inside the

shock front at about 80 km with a large negative en-

tropy gradient.

– A region inside the neutrinosphere where both the en-

tropy and lepton fraction exhibit strong negative gra-

dients that favor Ledoux convection.
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Figure 20.16: 2D core collapse simulation exhibiting violent convection be-

hind a stalled shock. r is the distance from the z axis. Entropy in grayscale,

with white maximum and dark gray minimum. The shock is being distorted

by the convection beneath it. In modern calculations a standing accretion

shock instability (SASI) develops associated with deformations of the shock

that can be significant in producing successful explosions.

The preceding arguments identify regions that are unstable.

• Whether such regions develop convection, the convective

timescale, and the quantitative implications for supernova

explosions can only be settled by simulations.

• Many calculations have demonstrated that convection is

significant in core-collapse supernovae.

• An example is shown in Fig. 20.16, where we see the onset

of spectacular convection below the stalled shock.

• Such violent and large-scale convection can only be mod-

eled using numerical multi-D hydrodynamics simulations.
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The present feeling is that

• A completely successful model of core-collapse super-

novae will require both

– Full 3D radiation hydrodynamics and

– a full treatment of neutrino transport.

• It has not been possible to include both in current codes

because of inadequate computing power.

• It is thought that the next generation of supercomput-

ers (exascale computers) may provide sufficient compu-

tational power to determine whether

– the ingredients described above lead to a succesful

model of core-collapse supernovae, or

– whether they point to the necessity of new physics not

yet incorporated into the models.
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20.4.9 Remnants of Core Collapse

A core collapse supernova is expected to eject an expanding

supernova remnant, as illustrated in Figs. (b) and (c) above.

• Unlike a Type Ia explosion, a core collapse supernova is

expected to leave behind also a compact remnant—either

a neutron star or a black hole.

• Less-massive progenitors lead to neutron stars but

• for more massive stars the end result is a black hole,

– produced either immediately, or

– with a time delay corresponding to accretion on a pro-

toneutron star causing it to collapse to a black hole.

For increasingly-massive progenitors it is expected

that less envelope is ejected and more falls back

into the black hole.
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For masses above about 30 M⊙, current simulations indicate

that

• core collapse may lead to complete fallback of the outer

layers of the star,

• leaving only a black hole with no ejected supernova rem-

nant.

• However, even for direct collapse to a black hole,

– gravitational waves, and

– significant neutrino emission

are expected.

This direct collapse to a black hole without a traditional su-

pernova explosion is probably the general fate of stars more

massive than about 30 M⊙.

Direct collapse to black holes with masses in the

∼ 100− 250M⊙ range could be excluded by the

pair instability, if metallicities are low.
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20.4.10 Natal Kicks

Simulations indicate that core collapse explosions are asym-

metric,

• Hence the compact remnant is expected to receive a natal

kick in the explosion.

• Neutron stars have been observed with space velocities as

large as ∼ 1000 km s−1, presumably arising from natal

kicks in the supernova explosion that produced them.

• For core collapse in more massive stars it is expected that

the natal kick is less severe, since less matter is ejected.

• For the collapse of massive cores directly to black holes

with no ejected remnant it is often assumed to be zero.

Natal kicks and the amount of ejected matter affect

strongly whether a binary remains bound if one of

the stars undergoes core collapse.
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20.5 Supernova 1987A

The Tarantula Nebula is a star-forming region in the Large

Magellanic Cloud, a satellite galaxy of the Milky Way visible

in the Southern Hemisphere.

• Some 163,000 years ago the core of a mag 12 blue super-

giant in the Tarantula, Sanduleak −69 202, imploded,

– producing a burst of neutrinos and

– a shockwave that reached the surface several hours

later,

– sending most of the star’s mass hurtling into space

and

– generating a billion-fold increase in luminosity.

• Time passed . . .
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On February 23, 1987 on Earth, 163,000 ly away, detectors

searching for something else entirely

• saw an unexpected burst of ∼ 20 neutrinos.

• A clue to their origin was not long in coming.

• Three hours later, light from the explosion arrived and

• that night observers in Chile and New Zealand were star-

tled to find a “new star”, visible to the naked eye, in the

Tarantula.

• The progenitor (right) and supernova (left) are shown be-

low.

Supernova

1987A Sk -69 202

progenitor

Tarantula

Nebula

• Thus did neutrinos and light from SN 1987A announce the

demise of Sk −69 202 (which could no longer be found

after the supernova dimmed) in a core collapse supernova.
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Supernova
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progenitor
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Nebula

The first nearby supernova since the invention of the telescope,

SN 1987A has been studied extensively,

• confirming most and

• modifying some

of our understanding of core collapse supernovae.
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• This section summarizes how the core collapse mecha-

nism outlined in preceding sections has fared in the light

of SN 1987A data.

• In this summary, it is important to remember the distinc-

tion made earlier between

– classification of supernovae with respect to spectral

and lightcurve characteristics, and

– classification with respect to explosion mechanism.
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Figure 20.17: Neutrino burst from SN 1987A detected in two water

Cerenkov detectors. The inferred direction (with large errors) was consis-

tent with origin of the burst in the Large Magellanic Cloud. This means that

the neutrinos passed through the Earth en route to the detectors, which were

located in Earth’s Northern Hemisphere.

20.5.1 The Neutrino Burst

• Arguably the most important result from SN 1987A was

detection of the neutrino burst.

• Neutrinos detected in the Kamiokande II and IMB water

Cerenkov detectors are shown in Fig. 20.17.
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Only 20 neutrinos in total were seen but the general background

expected in this plot is very low.

• This low background,

• systematic analysis to rule out the burst being created by

a cosmic ray shower, and

• the coincidence of the burst with light from SN1987A

(offset by about three hours, as expected)

• leaves no doubt that the neutrinos came from SN 1987A.

Observation of the neutrinos in Fig. 20.17 makes it certain that

• a neutron star or black hole was produced by SN 1987A

• with the release of ∼ 1053 erg of gravitational energy,

thus confirming the basic core collapse mechanism.
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Most other observational characteristics of SN 1987A that will

now be discussed

• are related to the properties and evolution of the envelope

of the progenitor star and are

• only indirectly connected to the collapse of the core defin-

ing the explosion mechanism.

Thus they affect observational characteristics, but not the ve-

racity of the basic core collapse mechanism.
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Figure 20.18: Lightcurves for some Type II supernovae.

20.5.2 The Progenitor Was Blue!

The progenitor of Supernova 1987A came as a surprise for

many because:

• It was widely (but not uniformly) believed at the time that

supernova explosions resulted from core collapse in red

supergiant stars, not blue supergiants like Sk −69 202.

• The early lightcurve of SN 1987A deviated substantially

from that expected for a Type II supernova (see figure

above). For example,

– the luminosity did not peak until 80 days after the

explosion, and

– SN 1987A was∼ 100 times less luminous than a typ-

ical Type II supernova.
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Theoretical efforts to understand why the progenitor of SN

1987A was blue when the star exploded focused initially on

two possibilities:

1. Extensive mass loss in prior evolution.

2. Effects due to the low metallicity of the Large Magellanic

Cloud (LMC).

Subsequent work indicated that the crucial ingredients required

to produce a supernova from a blue supergiant with properties

similar to SN 1987A were

• low metallicity,

• a progenitor mass not much greater than ∼ 20M⊙,

• mass loss of no more than a few solar masses in prior evo-

lution, and

• a tuned prescription for convection.
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Figure 20.19: (a) Size of a typical red supergiant supernova progenitor;

(b) size of the blue supergiant progenitor of Supernova 1987A.

Because Sk −69 202 exploded as a blue supergiant

• the radius of the envelope was much smaller than for a

supernova in a red supergiant, as illustrated in Fig. 20.19.

– A 20M⊙ red supergiant has a radius comparable to

the size of the Earth’s orbit, but

– the radius of Sk −69 202 when its core collapsed was

only about 20% of the radius of Earth’s orbit.

• Thus there was much less envelope for the shockwave to

plow through, and

• delay between emission of the initial neutrino burst and

the sudden increase in light output when the shock reached

the surface was only about 3 hours for SN 1987A.

• For core collapse in a red supergiant of similar mass the

time for the shock to reach the surface is likely several

times larger than that.
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The much more compact nature of the blue supergiant Sk

−69 202 relative to a red supergiant

• also explains the abnormally low luminosity of SN 1987A

relative to other Type-II supernovae.

• The primary energy budget may be divided into

1. production of neutrinos,

2. ejection of the envelope by the shock, and

3. powering the lightcurve.

• Neutrino emission dominates the energy budget but it is a

property of the core, so it is similar in the two cases.

• For a compact blue supergiant the envelope lies in a deeper

gravitational potential than for a red supergiant.

• Therefore, more energy must be expended to eject it, leav-

ing less energy for the subsequent light emission.

• Thus supernovae exploding as blue supergiants are much

less luminous than those exploding as red supergiants.
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Figure 20.20: Lightcurve of Supernova 1987A (solid curve). The domi-

nant radioactive decays powering the lightcurve at different times are indi-

cated above the lightcurve. The rate of decay for the isotopes powering the

lightcurve are indicated by the dashed curves.

20.5.3 Radioactive Decay and the Lightcurve

Initially the lightcurve is powered by the shockwave.

• However, at later times it derives its energy from radioac-

tive decay of isotopes produced in the explosion.

• Figure 20.20 illustrates for SN 1987A.

• The lightcurve is for optical photons.

• However, the energy causing the optical emission at later

times is supplied primarily by radioactive decay.

From the shape and height of the lightcurve the isotopes pro-

duced and their abundances may be inferred.
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The initial part of the lightcurve for SN 1987A is accounted for

• if the explosion produced 0.075M⊙ of 56Ni, decaying by

56Ni→ 56Co+ e++νe + γ

with a 6.1 d halflife.

• Initially optical depth was high and energy released in
56Ni decay produced the early bump in the lightcurve.

• Soon after peak luminosity the lightcurve becomes domi-

nated by decay of the 56Co daughter of 56Ni through

56Co→ 56Fe+ e++νe + γ,

which has a halflife of 77 d.

• Rate of light production soon becomes determined by rate

of energy production and lightcurve slope is then deter-

mined by halflife of the radioactive decay powering it.
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The explosion also produced a much smaller amount of ra-

dioactive 57Co, which decays with a 271 d halflife.

• After about 1000 days enough 56Co had decayed away

that 57Co decay became dominant.

• The lightcurve then assumed the shallower slope deter-

mined by the halflife of 57Co.

• In 2017, thirty years after the explosion, the 56Ni, 56Co,

and 57Co had all decayed away.

• The lightcurve was being powered in 2017 by decay of

the 44Ti produced in the explosion, which has a 47-year

halflife.
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Figure 20.21: Images from 1994 to 2016 showing the collision of the SN

1987A shockwave with a ring of matter emitted by the progenitor before the

supernova explosion. See also Fig. 20.22.

20.5.4 Evolution of the Supernova Remnant

Evolution of the expanding remnant of SN 1987A has been

studied extensively at multiple wavelengths.

• Fig. 20.21 displays a time lapse of Hubble Space Tele-

scope images from 1994 to 2016.

• The time lapse shows the collision of the SN 1987A blast

wave with a ring of matter emitted by the progenitor be-

fore the supernova explosion.
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Figure 20.22: Multiwavelength composite 30 years after SN 1987A. In the

center dust forming in the supernova remnant is imaged at submillimeter

wavelengths by ALMA. Locus of a ring of gas emitted by the star before

the explosion is indicated. Brightest clumps in the ring indicate visible light

captured by the Hubble Space Telescope that was emitted from the collision

of the supernova shockwave with the ring. The more diffuse glow concen-

trated outside the ring is X-rays imaged by the Chandra X-ray Observatory.

Figure 20.22 shows a multiwavelength composite from 2017.

• In the center dust forming in the supernova remnant is im-

aged at submillimeter wavelengths by ALMA.

• The locus of a ring of matter ∼ 1 ly in diameter that was

emitted by the star before the explosion is indicated.

• This ring was likely produced by a late wind from the pre-

supernova star (at least 20,000 years before the explosion)

• A flash of UV from the supernova ionized the ring and it

has glowed for decades due to electron recombination.
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Beginning in the early 2000s the ring began to brighten further

as the shockwave from the explosion reached it.

• In the figure above the brightest regions indicate visible

light emitted from this collision and captured by the Hub-

ble Space Telescope.

• The more diffuse glow corresponds to X-rays emitted

from hot gas produced in the collision and imaged by the

Chandra X-ray Observatory.

Concentration of X-rays outside the ring suggests

that the shockwave has now passed through the

ring and into the less dense matter beyond.
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20.5.5 Where is the Neutron Star?

A significant mystery concerns the compact remnant.

• The observed burst of neutrinos is a sure sign that a neu-

tron star or black hole was formed,

• since gravitational collapse to a compact remnant is the

only plausible way to release the energy to make the neu-

trinos.

• From stellar systematics it is estimated that Sk −69 202

had a mass of about 18M⊙ when its core collapsed.

• Simulations indicate that for a progenitor of that mass the

compact remnant should be a neutron star.

• However, no clear evidence for a neutron star has been

found, despite extensive searches.

Various explanations have been proposed, none supported con-

clusively by data. The most plausible are that

• the neutron star is obscured by dust and not accreting,

making it difficult to see, or that

• the compact object formed was a black hole and not a neu-

tron star, which would not be visible if it isn’t accreting.

The latter explanation would indicate that we do

not fully understand when core collapse forms

neutron stars and when it forms black holes.
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Figure 20.23: Schematic representation of the rapid neutron capture or r-

process.

20.6 Producing Heavy Elements: the r-Process

An important question concerns the origin of the heaviest nu-

clei.

• They cannot be made by normal charged-particle reac-

tions in equilibrium in stars because

• the peak of the binding energy curve occurs for the iron-

group nuclei and because of Coulomb barrier effects.

• We have noted that neutron capture reactions could cir-

cumvent the Coulomb barrier problem (since neutrons

carry no charge).

• It is thought that many heavy elements are made in the

rapid neutron capture or r-process (Fig. 20.23).
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Figure 20.24: The path for the r-process.

This is similar to the s-process in red giants, except that

• Now conditions are such that there is a very high flux of

neutrons and they can be captured very rapidly compared

with the time for β decay.

• This takes the population very far to the neutron-rich side

of the chart of the nuclides before it begins to β -decay

back toward the stability valley (Fig. 20.24).

• Thus the r-process can make neutron-rich isotopes out of

the stability valley that can’t be reached by the s-process.

• Further, the path illustrated in Fig. 20.24 can populate iso-

topes beyond the gap in the stability valley found near lead

and bismuth, thus accounting for the actinide isotopes.
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The most likely astrophysics sites for the r-process are

• a core-collapse supernova,

• merging neutron stars, or possibly

• jets produced in mergers or core collapse of rapidly rotat-

ing stars.

with the first two being the stronger candidates.

• Supernovae and neutron star mergers imply different

timescales for r-process nucleosynthesis.

– A supernova requires a massive star to evolve to grav-

itational instability of its core, which occurs essen-

tially instantaneously on cosmic timescales.

– A merger requires a neutron star binary to form by

two successive supernova explosions in a massive bi-

nary, or by capture of one neutron star by another, and

– the binary must then spiral together by emission of

gravitational waves on a much longer timescale.

Thus, the r-process associated with mergers has an

inherent time delay.
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The merger delay timescale depends strongly on initial condi-

tions for formation of the binary and in general can be billions

of years.

• However, it has been argued that there is a population of

fast-merger binaries that can merge on timescales of 108 yr

or less.

• An open question then is whether binary mergers can ac-

count for r-process nuclides observed in low-metallicity

stars, which likely formed early in galactic history.
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One theme for understanding the origin of r-process nuclei is

to ask whether observations suggest that they

• were produced in a few rare events (neutron star mergers

are relatively rare, occurring maybe only once every mil-

lion years in a large galaxy),

• or instead were produced in many more-common events

(core collapse supernovae are much more common, oc-

curring about once every 100 years in a large galaxy).

Some evidence had been accumulating that at least some r-

process nuclei were produced in rare events (presumably neu-

tron star mergers).

• The neutron star merger leading to gravitational wave

GW170817 and associated gamma-ray burst to be de-

scribed later gives direct evidence for the production of

large r-process abundances in a single rare event.

• This has led to much speculation that neutron star mergers

are the primary site of the r-process.

• However, there are open questions about the rate of neu-

tron star mergers and

• whether they can account for all r-process observations

because of the time-delay issues discussed above.

Thus, even if mergers turn are the primary r-

process site, it seems likely that core-collapse su-

pernovae contribute to some r-process abundances.
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Chapter 21

Gamma-Ray Bursts

The atmosphere absorbs high-frequency photons strongly.

• Thus systematic observation of gamma-rays from space

had to await orbiting observatories.

• Because gamma-rays are energetic, they can be produced

only in rather unusual and often violent events.

• Therefore, the realization beginning in the 1960s that

gamma-rays could be seen from many sources in the sky

was a revelation.

• These observations suggested that our Universe was much

less sedate and orderly than had often been assumed.

• The most mysterious of the gamma-ray sources were

gamma-ray bursts.

• These were first observed in the 1960s, but began to be

understood only in the 1990s.

919
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As will be discussed in this chapter, it is now believed that

gamma-ray bursts represent

• the violent death of a certain class of massive stars, or

• the nearly as violent demise of merging neutron stars.

As such, they are an important part of the story of late stellar

evolution, in addition to being of high intrinsic interest because

• they are among the most energetic events that occur in the

Universe, and

• because they are potential sources of gravitational waves

and perhaps heavy-element synthesis.
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Figure 21.1: (a) Galactic coordinate system. The angle b is the galactic

latitude and the angle λ is the galactic longitude, which are related to right

ascension and declination by standard spherical trigonometry. (b) The sky at

gamma-ray wavelengths in galactic coordinates, with white the most intense

and black the least intense. The diffuse horizontal feature at the galactic

equator is from gamma-ray sources in the plane of the galaxy.

21.1 The Sky at Gamma-Ray Wavelengths

When seen from space the sky glows in gamma-rays, in addi-

tion to the other more familiar wavelengths.

• Figure 21.1 shows the continuous glow of the gamma-ray

sky, as measured from orbit by the Compton Gamma-Ray

Observatory (CGRO).

• In addition to the steady gamma-ray flux illustrated in

Fig. 21.1, sudden bursts, which can be

– as short as tens of milliseconds and

– as long as several minutes,

are observed.
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Figure 21.2: Time profile of a gamma-ray burst.

Figure 21.2 displays the time profile for a typical burst event.

• These gamma-ray bursts were discovered unexpectedly in

the 1960s by gamma-ray detectors aboard satellites.

• These satellites were testing the feasibility of detecting

gamma-rays from nuclear explosions violating test bans

treaties.

• Quite surprisingly, the satellites began to see strong bursts

of gamma-rays coming from above.

• These gamma-ray bursts (GRBs) were for several decades

a great puzzle.,

As will now be discussed, newer observations have led to a

much deeper understanding of these remarkable events.
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Figure 21.3: Location on the sky of 2704 gamma-ray bursts recorded by the

Burst and Transient Source Experiment (BATSE) of the Compton Gamma-

Ray Observatory (CGRO), plotted in galactic coordinates with the grayscale

indicating the fluence (energy received per unit area) of each burst.

About one burst a day is seen by orbiting observatories.

• Figure 21.3 shows the position of 2704 gamma-ray bursts

observed by the CGRO.

• The distribution of GRB events is highly isotropic over a

broad range of fluences (energy received per unit area).

• This argues strongly that they occur at cosmological dis-

tances—hundreds of megaparsecs or greater).

• The origin of gamma-ray bursts far outside out galaxy will

be confirmed more directly below.
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Figure 21.4: Hardness HR (a parameter measuring the propensity to contain

higher-energy photons) of the spectrum vs. burst duration, illustrating sep-

aration of the GRB population into long, soft bursts and short, hard bursts.

T90 is the time from burst trigger for 90% of the energy to be collected.

Figure 21.4 illustrates two classes of gamma-ray bursts:

1. Short-period bursts, which

• last less than two seconds and

• exhibit harder (higher-energy) spectra.

2. Long-period bursts, which

• typically last from several seconds up to several hun-

dred seconds and

• have softer (lower-energy) spectra.

These two classes share many common features but their dif-

ferences suggest that they arise from two different mechanisms.
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21.2 Localization of Gamma-Ray Bursts

The first step in understanding what causes gamma-ray bursts

was to pin down the astrophysical environment in which they

originate.

• Could they be associated with known galaxies or with spe-

cific events like supernova explosions, for example?

• BATSE observations in the 1990s had angular resolutions

no better than several degrees.

• Thus it was difficult to know exactly where to point tele-

scopes to find evidence associated with the gamma-ray

burst at other wavelengths.

Help in this regard came from a small satellite looking not at

gamma-rays, but at X-rays.
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Figure 21.5: (a) First localization of an X-ray afterglow for a GRB by the

BeppoSAX. (b) Optical association of short-period GRB 050509B with an

elliptical galaxy at z = 0.225 by SWIFT. The larger circle is the error circle

for the Burst Alert Telescope (BAT). The smaller circle is the error circle for

the X-Ray Telescope (XRT), which was slewed to point at the event when

alerted by the BAT. The XRT error circle is shown enlarged in the inset at

the upper left, suggesting that the GRB occurred on the outskirts of the large

elliptical galaxy (dark oval) partially overlapped by the XRT error circle.

In the late 1990s it became possible to correlate some GRBs

with other visible, RF, IR, UV, and X-ray sources.

• This was enabled initially by a satellite called BeppoSAX

that could localize X-ray transients after a GRB with 2

arc-minute resolution, within hours.

• This permitted other instruments to look quickly at the

burst site at multiple wavelengths.

• For the first time transient sources (“afterglows”) at other

wavelengths could be correlated with a burst.

• Figure 21.5(a) shows an X-ray transient observed by Bep-

poSAX after a long-period gamma-ray burst.
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• Figure (b) above shows a corresponding localization for a

short-period burst by the SWIFT satellite (see caption on

the previous slide).

• Redshifted spectral lines were observed in the transients

after the burst.

• For the first time this allowed reliable distances to be as-

signed to gamma-ray bursts.

• These observations showed conclusively that gamma-ray

bursts are occurring at cosmological distances.

• Thus GRBs must emit enormous power at gamma-ray

wavelengths to be visible at such distances.

• This raises challenging questions concerning the source of

all that power.
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• Typical stellar spectra are thermal, meaning that they arise

from a gas in thermal equilibrium and obeying a Planck

radiation law.

• To continue our discussion of gamma-ray bursts we must

introduce the important idea of a non-thermal emission

spectrum.
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Figure 21.6: Thermal and nonthermal emission

21.2.1 Nonthermal Emission

The Planck law describes thermal emission, characterized by

emission of radiation from a hot gas in thermal equilibrium;

the resulting spectrum is a blackbody spectrum.

• Planck law curves for thermal emission peak at some

wavelength, and fall off rapidly at longer and shorter

wavelengths (curve “Blackbody” in Fig. 21.6).

• The position of the peak moves to shorter wavelength as

the gas temperature is increased (the Wien law).

• Light from most stars, and light from normal galaxies, is

dominantly thermal in character.

Sometimes nonthermal emission is observed, with a spectrum

that increases in intensity at very long wavelengths.
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The most common form of nonthermal emission in astronomy

is synchrotron radiation.

• Created when high-velocity electrons (or other charged

particles) in strong magnetic fields follow a spiral path

around the field lines, radiating their energy in the form

of highly-beamed and polarized light (figure above left).

• The figure above right contrasts a thermal spectrum char-

acteristic of 6000 K and nonthermal emission.

• The wavelength of the emitted synchrotron radiation is re-

lated to how fast the charged particle spirals in the mag-

netic field.

• Thus, as the particle emits radiation, it slows and emits

longer wavelength radiation.

• This explains the broad distribution in wavelength of syn-

chrotron radiation relative to thermal radiation.
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Nonthermal emission is less common than thermal emission in

astronomy, but

• The presence of a nonthermal component in a spectrum

typically signals violent processes and large accelerations

of charged particles.

• High-frequency synchrotron radiation also implies the

presence of very strong magnetic fields, since the fre-

quency increases with tighter electron spirals, which are

characteristic of strong fields

• The resulting synchrotron radiation has a nonthermal

spectrum and is partially polarized.

• It is strongly focused in the forward direction by relativis-

tic beaming.

• Fluctuations of the jet in time will also be compressed into

shorter apparent periods by relativistic effects.

• For an observer in the general direction of a jet, these ef-

fects will exaggerate both the apparent intensity and the

time variation of the nonthermal emission.

• Thus, the nonthermal part of the continuum emission orig-

inates largely in the synchrotron radiation produced in the

jets.

• The thermal continuum is typically produced in the accre-

tion disk and surrounding matter that it heats.
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Figure 21.7: Spectrum of a gamma-ray burst. The spectrum is nonthermal.

21.3 Generic Characteristics of Gamma-Ray Bursts

It is now thought that gamma-ray bursts have the following gen-

eral characteristics:

• Cosmological origin: The isotropic distribution of

gamma-ray bursts suggests a cosmological origin, which

has been confirmed by redshift measurements on emission

lines in GRB afterglows.

Known spectroscopic redshifts for GRBs range up

to z = 8.2 for GRB 090423.

• Nonthermal spectrum: The spectrum is not thermal.

Fig. 21.7 illustrates a typical GRB spectrum.
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• Duration and time structure: The lengths of individual

bursts vary from about 0.01 seconds to several hundred

seconds, and their time structure can range from smooth to

millisecond fluctuations (with the latter implying a com-

pact source).

• Ultrarelativistic jets: The gamma rays are strongly

beamed, implying emission from tightly-collimated, ultra-

relativistic jets. Furthermore, the gamma-rays must suffer

little interaction with surrounding matter before escaping,

as will be discussed further shortly.

• Two classes of bursts: As already noted, there appear to be

two classes of bursts: long-period and short-period, with

sufficient differences to suggest that they occur through

distinct mechanisms.
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Figure 21.8: Relativistic fireball model for afterglows following gamma-ray

bursts. Internal shocks in the ultrarelativistic jet produce the gamma-rays;

the external shocks resulting from the jet impacting the interstellar medium

produce the afterglows.

• Afterglows and fireballs: The transients (afterglows) ob-

served after gamma-ray bursts

– can be explained reasonably well by the relativistic

fireball model illustrated in Fig. 21.8,

– where deposition of energy by some central engine

– initiates a fireball expanding at relativistic velocities

that is responsible for the afterglows.
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21.3.1 Necessity of Ultrarelativistic Jets

Gamma-ray bursts must involve ultrarelativistic jets because

observed prompt emission is nonthermal.

• If the jet were not ultrarelativistic the ejecta would be op-

tically thick to pair production for energies less than a few

hundred keV, which would thermalize the energy.

• The requirement that gamma-ray bursts be produced by

ultrarelativistic jets (and not thermalized photons) can be

understood in terms of the opacity of the medium with

respect to formation of electron–positron pairs by γγ →
e+e−.

Let’s elaborate on this crucial point.
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21.3.2 Optical Depth for a Nonrelativistic Burst

We first assume that the burst involves nonrelativistic veloci-

ties.

• The initial spectrum is nonthermal.

• The number of counts N(E) as a function of gamma-ray

energy can be approximated (roughly, but sufficient for

this estimate) for particular ranges as a power law,

N(E)dE ∝ E−αdE,

where the spectral index α is approximately equal to 2 for

typical cases.

• Because the observed spectrum is nonthermal the medium

must be optically thin (low opacity),

• since scattering in an optically-thick (that is, highly-

opaque) medium would quickly thermalize the photons.

Let’s consider the optical depth for pair production associated

with a typical gamma-ray burst to see whether this condition

can be fulfilled.
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For the reaction γγ → e+e− to occur,

• Energy conservation requires the two photons with ener-

gies E1 and E2, respectively, to satisfy (EiE2)
1/2

>∼ mec2,

where me is the electron mass.

• Let f be the fraction of photon pairs that fulfill this condi-

tion.

• The optical depth with respect to γγ→ e+e− is then

τ0 =
f σTFD2

R2mec2
≃ f σTFD2

δ t2mec4
,

where

– σT = 6.652× 10−25 cm2 is the Thomson scattering

cross section for electrons,

– F is the observed fluence for the burst,

– D is the distance to the source, and

– R is its size, which can be related to the observed pe-

riod δ t for time structure in the burst by R = cδ t.

• A typical optical depth estimated using this formula is

enormous (τ ∼ 1014).

• Therefore it is completely inconsistent with the τ <∼ 1 re-

quired by the nonthermal GRB spectrum.

Nonrelativistic jets won’t do; what about relativistic jets?
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21.3.3 Optical Depth for an Ultrarelativistic Burst

The above considerations will be altered in two essential ways

if the burst is instead ultrarelativistic with a Lorentz factor γ≫
1, so that special-relativistic kinematics apply:

1. The blueshift of the emitted radiation will modify the frac-

tion f of photon pairs that have sufficient energy to make

electron–positron pairs.

2. The size R of the emitting region will be altered by rela-

tivistic effects.

Specifically,

• The observed photons of frequency ν and energy E = hν
have been blueshifted from their energy in the rest frame

of the GRB by a factor γ .

• Thus the source energy E0 was lower than the observed

energy E by a factor of γ−1 and E0 ∼ hν/γ .

• This means that fewer photon pairs have sufficient energy

in the rest frame of the GRB to initiate γγ → e+e− than

was inferred from the observed energy assuming nonrela-

tivistic kinematics.

• From the spectrum

N(E)dE ∝ E−αdE,

so f should be multiplied by a factor of γ−2α .
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• Furthermore, relativistic effects increase the size of the

emitting region by a factor of γ2 over that inferred from

the time period δ t,

• so R should be multiplied by a factor of γ2.

• Incorporating these corrections, the ultrarelativistic modi-

fication of is

τ ≃ τ0

γ4+2α
,

where τ0 is the result with no ultrarelativistic correction.

• Thus, even if τ0 is very large an optically-thin medium can

be obtained if γ is large enough.

Typical estimates are that an optically thin medium

requires γ ∼ 100 or larger.
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Observational confirmation that gamma-ray bursts are associ-

ated with the large values of γ deduced from the preceding the-

oretical analysis comes from

• the observed location of breaks in the lightcurves for af-

terglows.

• These breaks are thought to indicate the time when

the initially-relativistic afterglow begins to slow rapidly

through interactions with the interstellar medium.

• This in turn can be related to the opening angle of the jet

that produced the afterglow.

• Such analyses typically find jet opening angles in the

range ∆θ = 10−20◦.

• Relating these jet opening angles to γ suggests Lorentz

factors of order 100 for many gamma-ray bursts.

Thus afterglow lightcurve breaks indicate directly

that gamma-ray bursts are produced by ultrarela-

tivistic jets, as was surmised from the preceding

discussion.
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21.3.4 Implications of Ultrarelativistic Beaming

The GRB beaming mechanism implies that a fixed observer

sees only a fraction of all gamma-ray bursts.

• The ultrarelativistic nature of the jets means that the

gamma-rays are highly beamed in direction.

• Afterglows are not strongly beamed after slowing, so they

could be detected even for a GRB not on-axis (not aimed

toward Earth).

Ultrarelativistic beaming solves a potential energy-

conservation problem.

• If the energy from detected bursts were assumed to be

emitted isotropically, from the energy fluxes detected on

Earth total energies exceeding 1054 erg would be inferred

for some gamma-ray bursts.

• This is comparable to the rest mass energy of the Sun,

which would be difficult to explain by any mechanism that

conserves energy.

• However, if GRBs are assumed to be emitted as collimated

jets, then the total energy released would be much smaller

than that inferred by an observer viewing it on-axis and

assuming it to be isotropic,

This places gamma-ray bursts more in the total-energy range of

well-studied events like supernova explosions.



942 CHAPTER 21. GAMMA-RAY BURSTS

21.3.5 Association of GRB with Galaxies

The localization provided by afterglows has permitted a num-

ber of long-period and (more recently) short-period GRB to be

associated with distant galaxies.

1. Long-period (soft) bursts appear to be strongly correlated

with star-forming regions (strong correlation with blue

light in host galaxies).

2. Short-period (hard) bursts are generally fainter and sam-

pled at smaller redshift than long-period bursts. They do

not appear to be correlated with star-forming regions.

3. There is some evidence that long-period bursts are prefer-

entially found in star-forming regions having low metal-

licity.

These observations provide further evidence that

long-period and short-period bursts are initiated by

different mechanisms.
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21.3.6 Mechanisms for the Central Engine

The central engines responsible for gamma-ray bursts and the

associated afterglows are not well understood, but an accept-

able model for them must embody at least the following fea-

tures:

1. All models require highly-relativistic jets to account for

observed properties of gamma-ray bursts.

• Lorentz γ factors of at least 200, perhaps as large as

1000, appear to be required by observations.

• Jets focused with opening angles∼ 0.1 rad and power

as large as ∼ 1052 erg

• As will be discussed further below, long-period bursts

must (at least sometimes) deliver ∼ 1052 erg to a

much larger angular range (∼ 1 rad) to produce an ac-

companying supernova, and

• the central engine must be capable of operating for

10 seconds or longer in these long-period bursts to

account for their duration.

2. The large and potentially long power timescale, particu-

larly for long-period bursts, implies accretion onto a com-

pact object. Thus, acceptable models must produce sub-

stantial accretion disks.

Almost the only way that we know to explain these

phenomena is from a gravitational collapse and

formation of an accretion disk.
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One unifying idea is that gamma-ray bursts are powered by a

collapse of large amounts of spinning mass to a black hole, but

that there are several mechanisms to cause this. The preferred

mechanisms based on current data are

1. Particular classes of core-collapse supernovae involving

massive stars with high angular momentum for the long-

period bursts.

2. The merger of two neutron stars or a neutron star and a

black hole for the short-period bursts.

In both cases the outcome is a Kerr black hole having large

angular momentum and strong magnetic fields, surrounded by

an accretion disk of matter that has not yet fallen into the black

hole.

• This scenario likely leads to highly-focused relativistic jet

outflow on the polar axes of the Kerr black hole.

• These jets are powered by

– rapid accretion from the disk,

– neutrino–antineutrino annihilation,

– strong coupling to the magnetic field.

Thus, the GRB black hole engine may have many similarities

with the engine powering AGN and quasars, but on a stellar

rather than galactic-core scale.
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Thus, we now discuss in more detail two general classes of

models are now thought to account for GRB.

1. Short-Period Bursts: The merger of two neutron stars, or a

neutron star and a black hole, with jet outflow perpendic-

ular to the merger plane producing a burst of gamma-rays

as the two objects collapse to a Kerr black hole.

2. Long-Period Bursts: A hypernova, where a spinning mas-

sive star collapses to a Kerr black hole and jet outflow

from the region surrounding this collapsed object pro-

duces a burst of gamma-rays.

The unifying theme is the collapse of stellar-size

amounts of spinning mass to a Kerr black hole cen-

tral engine that powers the burst.
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Figure 21.9: (a) Spectral bumps in the optical spectrum of SN2003dh (GRB

030329) in black, compared with a reference supernova SN1998bw in gray.

The initially rather featureless spectrum of the GRB 030329 afterglow de-

velops bumps similar to SN1998bw over time, suggesting that as the GRB

afterglow fades, an underlying supernova explosion is revealed. Hence GRB

030329 also has a supernova label, SN2003dh. (b) Wolf–Rayet star (arrow)

surrounded by emitted shells of gas. These massive, rapidly-spinning stars

may be progenitors of Type Ib and Type Ic core collapse supernovae, and

hence of long-period gamma-ray bursts.

21.3.7 Association of Long-Period GRB with Supernovae

There is a relationship between long-period gamma-ray bursts

and core collapse supernovae, as suggested by Fig. 21.9.
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There is an intimate relationship between long-period GRB and

particular types of core-collapse supernovae called Types Ib

and Ic.

• The supernova mechanism in both cases is thought to in-

volve core collapse in a rapidly-rotating, massive (15–30

M⊙) main-sequence star called a Wolf–Rayet star.

• These stars exhibit large mass loss and can shed their hy-

drogen and even helium envelopes before their cores col-

lapse.

• They are so massive that they can collapse directly to a

rotating (Kerr) black hole, instead of a neutron star.

It is thought that

• in a Type Ib supernova the H shell has been removed, and

• in a Type Ic supernova both the H and He shells have been

removed

before the stellar core collapses.
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Thus, long-period bursts are probably associated with core-

collapse events in Wolf–Rayet stars.

• On the other hand, there is little observational evidence

that short-period bursts are associated with star-forming

regions, or supernovae.

• The favored mechanism for short-period bursts involves

formation of an accreting Kerr black hole by merger of

– two neutron stars, or

– a neutron star and a black hole.
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21.3.8 The Collapsar Model and Long-Period Bursts

An overview of the collapsar model is shown in Fig. 21.10

(next page).
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Rest of star

Massive Wolf-Rayet star with large angular 

momentum that has lost its hydrogen and 

possibly helium envelopes.

The inner core collapses directly to a (Kerr) black 

hole and the outer core forms an accretion disk 

because of the angular momentum. Highly-

collimated, relativistic jets form on the polar axis, 

powered by neutrino-antineutrino annihilation, 

magnetic energy from the accretion disk, and 

rotational energy extracted magnetically from the 

black hole. 

Kerr black hole

Accretion disk

The jets produce the gamma-ray burst 

outside the star, while shock waves from the 

core-collapse and the jets blow the star 

apart, leading to a Type Ib or Type Ic 

supernova.

Jet

Jet

At much larger distances the interaction of the 

jets with the surrounding medium begins to 

produce the afterglow that will be detected at 

longer wavelengths.

Shock

waves

Expanding

afterglow

Figure 21.10: Collapsar model for long-period GRB and accompanying

Type Ib or Ic supernova.
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Simulations of relativistic jets breaking out of a Wolf–Rayet

star in a collapsar model and a Wolf–Rayet star 20 seconds after

core collapse are shown in Fig. 21.11 and Fig. 21.12 on the

following page.
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Figure 21.11: Simulations of relativistic jets breaking out of Wolf–Rayet

stars. Breakout of the γ ∼ 200 jet is 8 seconds after launch from the center

of a 15 M⊙ Wolf–Rayet star.
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Figure 21.12: (a) A rapidly-rotating 14 M⊙ Wolf–Rayet star, 20 seconds af-

ter core collapse. The polar axis is vertical, the density scale is logarithmic,

and the 4.4 M⊙ Kerr black hole has been accreting at ∼ 0.1M⊙ s−1 for 15

seconds at this point. (b) Simulation of the nucleon wind blowing off the

accretion disk in a collapsar model. The gray-scale contours represent the

log of the nucleon mass fraction X and arrows indicate the general flow.
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In the figure above right a strong nucleon wind blowing off the

collapsar accretion disk is shown. This wind

• produces the supernova and

• synthesizes the 56Ni that powers the lightcurve of the su-

pernova by radioactive decay.

The GRB and the supernova are powered in different ways in

the collapsar model:

1. The GRB is powered by a relativistic jet deriving its en-

ergy from neutrino–antineutrino annihilation or rotating

magnetic fields.

2. The accompanying supernova is powered by the disk wind

illustrated in this figure.
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Figure 21.13: Relativistic jets produced by frame dragging of magnetic

fields in the spacetime around a Kerr black hole.

Fig. 21.13 illustrates one model by which a rotating black hole

could couple to a surrounding magnetic field to produce jets.

• Frame-dragging effects associated with the black hole

• wind the magnetic flux lines around the black hole and

spiral them off the poles of the black hole rotation axis,

• producing bipolar ultrarelativistic jets.

The jets observed for many AGN and quasars also may be pow-

ered by a similar magnetic coupling to a Kerr black hole.
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21.3.9 Merging Neutron Stars and Short-Period Bursts

The core collapse of a Wolf–Rayet star represents a plausible

mechanism for long-period gamma-ray bursts that associates

them naturally with star-forming regions.

• On the other hand, there is little observational evidence

that short-period bursts are associated either with star-

forming regions or supernovae.

• This suggests that the mechanism responsible for them

must be something other than the core collapse of Wolf–

Rayet stars.

The favored mechanism for short-period bursts

also involves the formation of an accreting Kerr

black hole, but one produced by

• the merger of two neutron stars, or

• merger of a neutron star and a black hole,

rather than by the core collapse of a massive star.
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Figure 21.14: Neutron star merger simulation with strong magnetic fields.

Simulation of neutron-star merger to form a Kerr black hole

with strong magnetic fields is shown in Fig. 21.14. Panels show

evolution of mass density, with magnetic field lines superposed.

• The first panel shows the state shortly after initial contact.

• The second displays a merged neutron star configuration.

• In the bottom panels a Kerr black hole has formed with a

disk around it, and the magnetic field is wound up by the

disk to a strength ∼ 1015 gauss.



Chapter 22

Gravitational Waves and Stellar

Evolution

Detection of GW150914 from merger of two black holes may

be as important for stellar physics as for gravitational physics.

• The confirmation that gravitational waves exist and can be

detected was a remarkable achievement for gravitational

physics and for general relativity.

• But it is also arguably the most direct evidence yet for

black holes, and begins to place strong new constraints on

theories of massive-star evolution.

• Of even broader significance for stellar evolution was the

detection in 2017 of gravitational waves from a neutron

star merger in coincidence with a gamma-ray burst, ac-

companied by light observed at multiple wavelengths.

This chapter introduces gravitational wave astron-

omy and its implications for stellar evolution.

957



958 CHAPTER 22. GRAVITATIONAL WAVES AND STELLAR EVOLUTION

22.1 Gravitational Waves

Gravitational waves and the requisite general relativity back-

ground are covered more thoroughly in

Modern General Relativity:

Black Holes, Gravitational Waves, and Cosmology

Mike Guidry (Cambridge University Press, 2019)

This chapter will draw heavily on the discussion in that book,

• introducing only the bare minimum of mathematics and

instead

• concentrating on the potential implications of gravita-

tional wave observation for understanding stellar evolu-

tion.
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It will be useful for later discussion to summarize some ba-

sic principles without getting too deeply into the mathematical

weeds.

• The essential idea is that the Einstein equations introduced

in Ch. 17,

Rµν − 1
2gµνR =

8πG

c4
Tµν .

admit solutions that are

– wavelike and

– propagate at the speed of light (or more precisely in

this context, the speed of gravity).

• These gravitational wave solutions have many similarities

with electromagnetic wave solutions of the Maxwell equa-

tions, but with some essential differences.

• The most fundamental concerns “what is waving?”.

– Electromagnetic waves are propagating ripples in the

electric and magnetic fields, which are defined in

spacetime.

– gravitational waves are ripples propagating in the

metric of spacetime, so spacetime itself, not some

field defined in spacetime, is “waving”.
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Figure 22.1: Effect of a gravitational wave incident along the z axis on test

masses in the x–y plane. The top pattern is called plus (+) polarization (test

masses oscillate in a + pattern) and the bottom pattern is called cross (×)

polarization (the test masses oscillate in a × pattern).

As for electromagnetic waves,

• gravitational waves are transverse and

• they have two states of polarization.

• The two polarization states are commonly denoted plus

(+) and cross (×).

Gravity acts on mass so gravitational wave polarization may be

illustrated by considering the effect of a polarized gravitational

wave on a circular array of test masses, as shown in Fig. 22.1.
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Figure 22.2: Laser interferometer gravitational wave detector. In the storage

arms of actual detectors light typically is multiply reflected, greatly increas-

ing the effective length of the arms.

These wave patterns in spacetime may be detected using

Michelson laser interferometers with kilometer or longer arms,

as illustrated in Fig. 22.2.
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Figure 22.3: Analogy between interaction of a gravitational wave with a test

mass distribution and with an interferometer.

Because the gravitational wave causes periodic fluctuations in

the spacetime metric, the time for light to travel down an arm

and back is modified differently for the two arms if a grav-

itational wave passes through the detector, as illustrated in

Fig. 22.3.
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By comparing the two beams,

• an interferometer can detect tiny differential changes in

the light travel distances for the two arms, potentially in-

dicating the passage of a gravitational wave.

• The fractional change in distance traveled by the light is

measured by a dimensionless strain h, with

δL(t)

L0
≃ 1

2h(t,0),

which oscillates with the frequency of the wave.

Exquisite precision is required because

• Gravitational waves from astronomical sources require

strains h∼ 10−21 to be measured.

• δL ∼ hL0 for a strain of this size is orders of magnitude

smaller than the width of nuclei in the atoms from which

the interferometer is built!
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22.2 Sample Gravitational Waveforms

We begin with an overview of some computer simulations in-

dicating the

• varied waveforms and

• potential astrophysical information

that gravitational waves may carry.

Four kinds of events involving objects from late stellar evolu-

tion are expected to produce detectable gravitational waves:

1. Merger of two black holes,

2. Merger of a black hole and neutron star,

3. Merger of two neutron stars, and

4. A core collapse supernova explosion.

Simulations indicate that

• the corresponding waveforms carry signatures of the event

that produced the gravitational wave, and that

• these may encode detailed information about the objects

involved.
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Some computed gravitational waveforms for events of the type

described above are displayed in Figs. 22.4 (next slide).
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Figure 22.4: Some computed gravitational waveforms that might be ob-

servable in Earth-based detectors. (a) Merger of two 20 M⊙ black holes

(BH–BH). (b) Merger of 1.2 M⊙+ 1.8 M⊙ (all masses are baryonic) neu-

tron stars (NS–NS) at distance of 15 Mpc. (c) 4.5M⊙ black hole and 1.4M⊙
neutron star merger (BH–NS) at 15 Mpc. (d)–(f) Supernova at 15 kpc for

two progenitor masses; time measured from bounce. Panel (f) displays the

initial burst of panel (d) at higher resolution. In panel (a) rh is shown, where

r is the distance to the source in cm. In panels (b)–(f) strain is given in di-

mensionless units of 10−21 by assuming a distance to the source. All waves

are h+ polarization except for in (a), where both h+ and h× are shown.
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Different events have characteristic waveforms that are often

sensitive to details:

• Mergers exhibit a chirp waveform (amplitude and fre-

quency rising rapidly near merger).

• Supernova explosions are characterized by a much more

complex wave pattern reflecting detailed microphysics

that varies with the progenitor star.

• Hence, waveform templates may be used to identify

classes of observed gravitational wave events, and

• the detailed waveforms can shed new light on the physics

underlying each class of events.
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As we may see by comparing these examples,

• The gravitational waveform is very dependent on the na-

ture of the objects participating in formation of the wave.

• Hence it should be sensitive to their detailed physics.

For example, consider the following example of how gravi-

tational waves from neutron star mergers might constrain the

equation of state for neutron-stars.
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Example: The appropriate equation of state to employ for neu-

tron stars is not known very precisely.

• This is primarily because it is difficult to measure the ra-

dius and mass simultaneously for a neutron star.

• This introduces substantial uncertainty into the theoretical

understanding of neutron stars.

Gravitational waves emitted by the merger of neutron stars

would be sensitive to the properties of the neutron stars.

• This can place stronger constraints than are presently

available on the neutron star equation of state.

• An improved neutron-star equation of state would permit

answering more definitively questions like

– What is the upper limit for the mass of a neutron star

(which has implications for the search for black hole

candidates in binary star systems)?

– What are the superfluid and superconducting proper-

ties of neutron stars?

– What is the relationship of observed cooling to inter-

nal structure for the neutron star?

– Can exotic states like quark matter exist in the centers

of more massive neutron stars?

Later we shall discuss observation of gravitational

waves from a neutron star merger.
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For 100 years after they were first proposed by Einstein, grav-

itational waves had been a primarily hypothetical issue, with

only a few indirect observations indicating their existence. This

changed dramatically in late 2015.
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22.3 The Gravitational Wave Event GW150914

On September 14, 2015, almost 100 years had passed with no

direct detection of gravitational waves.

• The LIGO detectors in Livingston, Louisiana and Han-

ford, Washington were not yet officially observing after a

major upgrade, but were online and taking data.

• At 09:50:45 UTC the Livingston detector observed a

strong transient lasting ∼ 200 ms; 7 milliseconds later the

Hanford detector observed a similar transient.

• These transients were identified within 3 minutes by

generic low-latency scans as a likely gravitational wave.

• The signal had the obvious character of a compact merger

event (the chirp pattern described below).

• Low-latency data pipelines scanning with matched filter-

ing quickly ruled out the merger of two neutron stars or

the merger of a black hole and neutron star as the source.

• Thus attention focused almost immediately on a gravita-

tional wave from the coalescence of two black holes.

• Several months of thorough analysis confirmed with

greater than 5σ confidence (a false alarm probability <
2×10−7) that the transient GW150914 was indeed a grav-

itational wave emitted from the merger of two black holes.

Thus the detection of GW150914 gave the first direct confirma-

tion of Einstein’s century-old prediction that fluctuations in the

curvature of spacetime could propagate as gravitational waves.
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22.3.1 Observed Waveforms

The observed waveforms in the Livingston and Hanford detec-

tors for GW150914 are shown in Fig. 22.5 (next page)
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H1 L1

Figure 22.5: LIGO gravitational wave event GW150914. Left panels corre-

spond to data from the Hanford detector (H1) and right panels to data from

the Livingston detector (L1). Top row is measured strain in units of 10−21.

In the top right panel the Hanford signal has been superposed on the Liv-

ingston signal. The second row shows numerical relativity simulations of

the waveform assuming a binary black hole merger event. The third row

shows residuals after subtracting the numerical relativity waveform (second

row) from the detector waveform (first row). The fourth row shows fre-

quency versus time for the strain data, with grayscale contours indicating

strain amplitude. The rapidly-rising pattern (chirp) is indicative of a binary

merger.
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H1 L1

• The gravitational wave arrived first at Livingston (L1) and

then 6.9+0.5
−0.4 ms later at Hanford (H1).

• In the top-right image the H1 wave has been superposed,

shifted by 6.9 ms, and inverted to account for relative ori-

entations of the two detectors (orientations relative to local

north of L1 and H1 differ by 72◦).

• This superposition and a 24:1 signal to noise ratio leaves

little doubt that the same wavefront, traveling at light-

speed, passed first through Livingston and then Hanford.
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H1 L1

• In the second row of the above figure, numerical relativity

simulations of the waveform for merging black holes and

wavelet reconstructions with and without an astrophysical

black hole merger model are shown.

• The third row displays the result of subtracting the nu-

merical relativity waveform in the second row from the

observed waveform in the first row.

• The last row shows a time-frequency representation of the

data, with the grayscale contours representing strain.



976 CHAPTER 22. GRAVITATIONAL WAVES AND STELLAR EVOLUTION

H1 L1

• The frequency–time plot in the bottom row indicates that

over a period of ∼ 0.2 seconds the signal swept upward in

frequency from about 35 Hz to 250 Hz.

• This signal, rising in frequency and strain (“the chirp”),

is indicative of the final rapid inspiral of a merger event,

with a peak strain ∼ 1.0×10−21.

• It may be noted that this strain changed the separation be-

tween the test masses by only about 4× 10−16 cm, which

is 0.005 times the diameter of a proton.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 22.6: Computer simulation of the GW150914 merger. Panel (a) is the

undisturbed background field of stars. (b)–(h) are succesively later frames.

In Fig. 22.6 a simulation of what the black holes might have

looked like from up close during the merger is shown.

• The dark, well-defined shapes are the shadows of the black

hole event horizons as they block all light from behind.

• The flattened dark features around them and distorted star

fields are strong gravitational lensing effects.
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Table 22.1: The black-hole merger event GW150914

Quantity Value†

Primary black hole mass 36+5
−4 M⊙

Secondary black hole mass 29+4
−4 M⊙

Final black hole mass 62+4
−4 M⊙

Final black hole spin 0.67+0.05
−0.07

Mass radiated as gravitational waves 3.0+0.5
−0.5 M⊙

Peak gravitational wave luminosity (erg s−1) 3.6+0.5
−0.4×1056

Peak gravitational wave luminosity (M⊙ s−1) 200+30
−20

Source redshift z 0.09+0.03
−0.04

Source luminosity distance 410+160
−180 Mpc

†Masses in source frame. Multiply by (1+ z), where z is redshift, for mass

in detector frame. Spin given in units of spin for an extreme Kerr black hole

of that mass.

Extensive analysis comparing simulations of the merger with

data measured for the gravitational wave yields quantitative in-

formation about

• the two black holes that merged, and

• the final Kerr black hole that resulted from the merger.

These parameters for GW150914 are displayed in Table 22.1.
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• The initial masses of the merging black holes were deter-

mined to be 36M⊙ and 29M⊙, respectively.

• The mass of the final black hole was 62M⊙.

• Thus from the difference of initial and final masses, about

3M⊙ was radiated as gravitational waves.

• The 3 solar masses were converted to gravitational waves

over a period of less than half a second.

• This corresponded to a peak gravitational wave luminosity

of an astonishing ∼ 200M⊙ s−1!

• This translates through E = mc2 to a peak luminosity of

well over 1056 erg s−1.

• This peak luminosity is some

– 23 orders of magnitude greater than the Sun’s photon

luminosity and

– 5 orders of magnitude brighter than the photon lumi-

nosity of a supernova.

• The redshift and corresponding distance to the source

were z = 0.09 and 410 Mpc, respectively.

• The spin of the final black hole was determined to be 67%

of that for an extremal Kerr black hole.
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The direction to the source was determined also.

• Since the gravitational wave was observed by only two de-

tectors, tracking the wave back to its source entailed con-

siderable uncertainty.

• The analysis was able to localize the source to an error

box of about 230 deg2 in the Southern Hemisphere near

the Large Magellanic Cloud.

• As more gravitational wave observatories come online and

a signal can be triangulated from more than two detectors,

this uncertainty will decrease.

• For example, the more recent gravitational wave event

GW170817 to be discussed shortly was localized to

28 deg2.

• However, gravitational wave detectors will always have

lower intrinsic angular resolution than traditional astron-

omy instruments.

• On the other hand, gravitational wave interferometers see

essentially the entire sky at all times, not just a narrow

field as for traditional telescopes.
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22.4 A New Probe of Massive-Star Evolution

Notice from Fig. 17.7, reproduced above, that

• Each of the two initial black holes for GW150914 had at

least a factor of two more mass than the most massive

black holes inferred from X-ray binary data.

• Thus GW150914 provided the first conclusive evidence

– that such massive black holes can exist,

– that they can occur in binary pairs, and

– that these binaries can form with sufficiently compact

orbits that they can merge within the age of the Uni-

verse through gravitational wave emission.

Understanding this has implications for the evolution of mas-

sive stars, in particular for those in binary systems.
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22.4.1 Formation of Massive Black Hole Binaries

The formation of massive black hole binaries implied by the

merger event GW150914 requires a sequence of four events to

occur in the course of stellar evolution.

1. Stars must form with very large masses (probably in the

vicinity of 100M⊙).

2. These stars must not lose too much of their mass to stellar

winds while evolving to core collapse.

3. These massive stars must collapse to black holes, so they

must avoid

• collapsing to neutron stars and

• destruction by the pair instability discussed in the su-

pernova chapter.

4. The black holes thus formed must end up as part of a bi-

nary star system.

Thus the interpretation of GW150914 as resulting from merger

of two ∼ 30M⊙ black holes poses some challenging questions

for theories of stellar evolution.
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22.5 Gravitational Waves and Stellar Evolution

How does a binary composed of 30M⊙ black holes even form?

Presumably either

• A binary formed with two stars of large mass and survived

successive core collapses for each star, or

• The black holes formed independently through core col-

lapse of massive stars in a dense cluster and then were

captured by mutual gravity into a binary orbit.

Neither scenario is easy to realize without assumptions that are

not well tested. Therefore, we may expect that future detection

of gravitational wave events from

• merger of two black holes,

• merger of a black hole and neutron star,

• merger of two neutron stars, and

• core collapse supernovae

will shed considerable light on—and pose substantial chal-

lenges to—our general understanding of stellar evolution, par-

ticularly for the neutron star and black hole endpoints for

massive-stars evolution.
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Comprehensive simulations indicate that the binary black holes

responsible for the gravitational waves observed thus far by

LIGO

• could have formed in isolated binary star evolution,

• provided that they formed in regions having low concen-

tration of elements heavier than helium (regions of low

metallicity).
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22.5.1 A Possible Evolutionary Scenario for GW150914

Figure 22.7 (following page) illustrates a possible scenario for

the production of GW150914.
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Figure 22.7: A scenario for evolution of the massive black hole binary

leading to GW150914. ZAMS means zero age main sequence (the time

when the star first enters the main sequence), MS means main sequence,

HG means a star evolving through the Hertzsprung gap (the evolutionary

region between the main sequence and the red giant branch), CHeB means

core helium burning, a He star is a star exhibiting strong He and weak H

lines (indicating loss of much of its outer envelope), and BH indicates a

black hole. Time is measured from formation of the binary and the scale is

highly nonlinear. The separation of the pair is a and the eccentricity of the

orbit is e.
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A massive binary formed about 2 billion years after the big

bang (redshift z∼ 3.2), with

• initial main sequence masses of 96.2M⊙ (star A) and

60.2M⊙ (star B),

• a metal fraction Z that was 0.03 times that of the Sun,

• an average separation a∼ 2500R⊙, and

• an orbital eccentricity e = 0.15.
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Star A evolved quickly, expanded, and transferred more than

half of its mass to star B by Roche lobe overflow, as star A

evolved through the Hertzsprung gap to core helium burning.

• Star A then collapsed directly to a 35.1M⊙ black hole,

with no ejection of a supernova remnant, but with 10% of

the mass carried off by neutrinos during the collapse.

• By the time the first black hole had formed, star B had

grown by accretion to 84.7M⊙ and it evolved quickly off

the main sequence to core helium burning.



22.5. GRAVITATIONAL WAVES AND STELLAR EVOLUTION 989
T

im
e

 (
M

y
r)

0.0000

3.5445

3.5448

3.8354

3.8354

5.0445

5.0445

5.3483

10,294

5.3483

Star A

MS

MassPhase

ZAMS

Roche

overflow

Direct

collapse

Common

envelope

96.2 M

HG 92.2 M

Star B Orbit

MS

Mass Phase a (R  ) e

60.2 M

MS59.9 M

2,463 0.15

2,140 0.00

HG or

CHeB
42.3 M MS84.9 M 3,112 0.00

He star 39.0 M MS84.7 M 3,579 0.00

BH 35.1 M MS84.7 M 3,700 0.03

BH 35.1 M CHeB82.2 M 3,780 0.03

BH 36.5 M He star36.8 M 43.8 0.00

BH 36.5 M He star34.2 M 45.3 0.00

BH 36.5 M BH30.8 M 47.8 0.05

0 0

Direct

collapse

Merger

The expansion of star B initiated a common envelope (CE)

phase with the black hole that formed from star A.

• During the CE phase the average separation of the binary

components was reduced from a∼ 3800R⊙ to a∼ 45R⊙.

• At the end of the CE phase the mass of the black hole

formed from star A was 36.5M⊙ and star B was now a

helium star of mass 36.8M⊙.

Star B then collapsed directly to a black hole.
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• This left a binary black hole system with masses of

36.5M⊙ and 30.8M⊙, respectively, and orbital separation

a = 47.8R⊙.

• This system then spiraled together through gravitational

wave emission for 10.3 billion years, merging about 1.1

billion years ago (z∼ 0.09) to produce GW150914.
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The simulations described above paint a compelling picture but

they entail large uncertainties because of

• assumptions such as the metallicity, and because

• accretion and (in particular) common envelope evolution

are the least-well understood aspects of binary evolution.

Tests of these assumptions and increasingly strong constraints

on models of massive binary star evolution may be expected as

gravitational wave astronomy matures.

One crucial feature of the mechanism outlined

above is direct collapse of massive stars in a bi-

nary to black holes,

• without ejecting a supernova remnant and

• without giving a strong natal kick to the black

hole that is formed, so that it remains in the

binary.

There is now some direct observational evidence

that such failed supernovae may occur in nature,

though we won’t discuss it here.
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22.5.2 Formation of Supermassive Black Holes

Is there a connection between the formation of stellar-size black

holes and the formation of supermassive black holes found of-

ten in the centers of galaxies?

• Two pictures for the formation of supermassive black

holes have been proposed.

1. They may have formed by

– successive merger of intermediate-mass black

holes created by core collapse of massive first-

generation stars, or

– directly from the collapse of large clouds.

2. The seeds for the growth of supermassive black holes

may instead have been massive (say greater than

25M⊙) stellar black holes.

• In either case, it is possible that the evolution of massive

stars leading to the creation of massive stellar black holes

also has implications for the origin of supermassive black

holes.
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Figure 22.8: Strain amplitude and frequency ranges expected for gravita-

tional waves from various astronomical sources. Minimum strain detection

bounds for advanced LIGO (aLIGO) at full design capacity (∼2020), ad-

vanced Virgo (adV) at full design capability (∼ 2020), advanced LIGO in

the first observing run after the upgrade [aLIGO(0), indicated by the dashed

curve], during which the gravitational wave GW150914 was observed in

2015, and the proposed space-based array LISA are indicated.

Merger of supermassive black holes in galaxy collisions can’t

be studied with Earth-based observatories like LIGO because

• the gravitational wave frequency is too low, and

• the background noise level is too high,

But they could be studied in large space-based gravitational

wave arrays; see Fig. 22.8.
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22.6 Listening to Multiple Messengers

Prospects are good for the systematic accumulation of gravita-

tional wave events from

• binary black hole mergers,

• binary neutron star mergers,

• mergers of neutron star–black hole binaries, and

• core collapse supernovae.

Even more interesting is the possibility of multimessenger as-

tronomy, where, for example,

• a gamma-ray burst might be observed in coincidence with

gravitational waves from a neutron star merger, or

• a neutrino burst might be observed in coincidence with

gravitational waves from the accompanying supernova.

Since these events involve various aspects of late stellar evolu-

tion, multimessenger astronomy has the potential to revolution-

ize our understanding of how stars evolve.

In the following we shall summarize the first

gravitational-wave multimessenger event: the co-

incidence of a gravitational wave with a gamma-

ray burst and the subsequent electromagnetic tran-

sient.
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22.7 Gravitational Waves from Neutron Star Mergers

On August 17, 2017, the LIGO–Virgo collaboration detected

gravitational wave GW170817.

• This gravitational wave had a very different signature rel-

ative to previously-detected black hole merger events.

• The signal built slowly in amplitude and frequency with

more than 3000 wave cycles recorded over almost 100

seconds before peak.

This new kind of gravitational wave was quickly interpreted as

originating in the merger of two neutron stars, but the show

wasn’t over yet!

• Approximately 1.7 seconds after the peak strain of the

gravitational wave both the Fermi Gamma-ray Space Tele-

scope (Fermi) and the International Gamma-Ray Astro-

physics Laboratory (INTEGRAL) observed a gamma-ray

burst of two seconds duration in the same part of the sky

as the gravitational wave source.

• Within hours various observatories discovered a new point

source in the irregular/elliptical galaxy NGC 4993 lying

within the position error box for the gravitational wave.

• In the ensuing weeks a multitude of observatories studied

the transient afterglow in NGC 4993 (named officially AT

2017gfo) intensively at various wavelengths.

Thus was the discipline of multimessenger astronomy born.
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Figure 22.9: (a) Gravitational wave GW170817 (LIGO) and (b) gamma-

ray burst GRB 170817A (Fermi satellite). The source was at a luminosity

distance of 40 Mpc (130 Mly) and the gravitational wave and gamma-ray

burst arrived at Earth separated by only 1.7 seconds.

The gravitational wave

• was identified by matched filtering against post-

Newtonian waveform models and

• corresponded to the loudest gravitational wave signal ob-

served to that date, with a signal to noise ratio of 32.4.

The coincidence of the gravitational wave and the gamma-ray

burst is illustrated in Fig. 22.9.
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Figure 22.10: Localization of gravitational wave GW170817 and gamma-

ray burst GRB 170817A. The 90% contour for LIGO–Virgo localization is

shown in the darkest gray. The 90% localization for the gamma-ray burst

is shown in intermediate gray. The 90% annulus from triangulation us-

ing the difference in GRB arrival time for Fermi and INTEGRAL is the

lighter gray band. The zoomed inset shows the location of the transient AT

2017gfo (small white star) that was observed at various wavelengths. Axes

correspond to right ascension and declination.

Sky localization of GW170817 is illustrated in Fig. 22.10.

• The final combined LIGO–Virgo sky position localization

corresponded to an uncertainty area of 28 deg2.

• The total mass determined for the binary was between

2.73M⊙ and 3.29M⊙, and the two individual masses were

in the range 0.86M⊙ to 2.26M⊙.

These masses and the waveform indicate that the two compact

objects that merged were neutron stars.
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22.7.1 New Discoveries Associated with GW170817

The location of the afterglow is indicated by the small white

star in the error box of the figure above.

• The luminosity distance was 40+8
−14 Mpc.

• Consistent with the known distance to the host galaxy.

The multimessenger nature of GW170817 proved to be a trea-

sure trove of discoveries having fundamental importance in

• astrophysics,

• the physics of dense matter,

• gravitation, and

• cosmology.
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Viability of Multimessenger Astronomy:

The event confirmed that the gravitational wave detectors could

see and distinguish events that did not correspond to merger of

two black holes.

• It also demonstrated for the first time that electromagnetic

signals could be detected in coincidence with a confirmed

gravitational wave event, and

• demonstrated sufficient source localization that the event

could be observed at many different wavelengths.

• All told, more than 70 facilities observed the event at op-

tical, radio, X-ray, gamma-ray, infrared, and ultraviolet

wavelengths.
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Mechanism for Short-Period GRBs:

• The interpretation of the event as the merger of binary

neutron stars and

• the coincident (short-period) gamma-ray burst

provided the first conclusive evidence for the hypothesis that

short-period gamma-ray bursts are produced in the merger of

neutron stars.

• The gamma-ray burst was relatively weak, suggesting that

the gamma-ray burst beam was not pointed directly at

Earth.

• Confirmation of this hypothesis came two weeks after the

initial event when radio waves and X-rays characteristic

of a gamma-ray burst were detected.

This evidence taken together represents the first definite asso-

ciation of a gamma-ray burst with a progenitor.
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Figure 22.11: Theoretical path for the r-process. Nuclei produced along

the r-process path will undergo rapid β− decay back toward the stability

valley, thus producing most of the neutron-rich and some of the β -stable

isotopes, as well as all the actinide nuclei found in nature. (The β -stable

isotopes beyond iron but below the actinide gap can be produced also in

the slow neutron capture or s-process in red giant stars.) The two drip lines

denote the boundaries beyond which a nucleus becomes unstable against

spontaneous emission of neutrons or protons, respectively.

Site of the r-Process:

The signature of heavy-element production in the event demon-

strated that neutron star mergers are one (perhaps the dominant)

source of the rapid neutron capture or r-process thought to make

many of the heavy elements (see Fig. 22.11).
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• Now we have a quantitative way to investigate the relative

importance of the two primary candidate sites for the r-

process:

– core collapse supernovae, and

– neutron star mergers.

• Already it is clear that the dominant attitude of not very

long ago that the r-process was associated mostly with

core-collapse supernovae is probably not correct.
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One common theme for understanding the origin of r-process

nuclei is to ask whether they were produced

• in a few rare events (neutron star mergers occur maybe

only once every million years in a large galaxy), or

• in many much more common events (core collapse super-

novae occur about once every 50 years in a large galaxy).

Some evidence had been accumulating that at least some r-

process nuclei were produced in rare events.

The neutron star merger leading to GW170817

gives direct evidence for significant production of

r-process nuclei in a single rare event.
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Observation of a Kilonova:

The expanding radioactive debris was observed at UV, optical,

and IR wavelengths.

• This gave the first direct evidence for the kilonova (also

termed a macronova) predicted to occur following such

mergers as a result of radioactive heating by newly-

synthesized r-process nuclei.

• The direct nucleosynthesis of r-process species likely

ceases after a second or two, but most initially-synthesized

isotopes would be highly radioactive and

• the cloud of debris can be kept warm (103− 104 K) by

radioactive decay for as long as weeks.

That the gamma-ray burst was emitted off-axis may have been

essential in allowing the kilonova associated with the radioac-

tivity of heavy elements produced in the merger to be observed.
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As illustrated in Fig. 22.12 (following page), if the GRB is seen

nearly on-axis, the GRB afterglow (“GRB transient”) masks the

kilonova.
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Figure 22.12: Geometry of GW170817 afterglows. Neutron-rich ejected

matter labeled “Tidal dynamical” emits a kilonova peaking in the IR (solid

arrows and solid curves labeled “Red” in the time–luminosity diagrams) as-

sociated with production of heavy r-process nuclei and high opacity (the

red kilonova). Additional mass is emitted by winds along the polar axis

(dotted arrows and dotted curves labeled “Blue”) that is processed by neu-

trinos emitted from the hot central engine, giving matter less rich in neutrons

and a kilonova peaking in the optical that is associated with production of

light r-process nuclides and lower opacity (the blue kilonova). The usual

GRB afterglow is indicated by dashed curves in the plots. It dominates all

other emission when viewed on-axis but when viewed off-axis it appears

as a low-luminosity component delayed by days or weeks (until θv < θb),

which permits the kilonova to be seen.
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Nuclei Far from Stability:

The r-process runs far to the right (neutron-rich) side of the β -

stability valley in the chart of the isotopes shown above

• Little definitive information exists here because the iso-

topes cannot be made in traditional accelerators.

• Kilonova lightcurves are a statistical mix of contributions

from many neutron-rich nuclei with no sharp lines be-

cause of the high velocities (∼ 0.3c) for the ejecta.

• However, they carry information about the average de-

cay rates and other general properties of these largely un-

known r-process nuclei.

This could provide future constraints on theories of nuclear

structure far from β stability.
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The Speed of Gravity:

The GRB arrived within 1.7 seconds of the gravitational wave

from a distance of 40 Mpc.

• This established conclusively that the difference of the

speed of gravity and the speed of light lies between

−3×10−15 and +7×10−16 times c.

• (That is, no larger than 3 parts in 1015).

Thus it took 1.7 seconds of observation to elim-

inate from contention theoretical alternatives to

general relativity for which gravity does not prop-

agate at c.
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Neutron-Star Equation of State:

The multimessenger nature of the event indicates that neutron

star mergers will provide an opportunity to make much more

precise statements about the neutron-star equation of state.

• For example, the merger wave signature is sensitive to the

tidal deformability of the neutron star matter near merger.

• This is of fundamental importance for our understanding

of dense matter because prior observations have been un-

able to constrain candidate equations of state sufficiently

to understand (for example)

– the maximum mass of a neutron star and

– the minimum mass of a black hole

to better than an uncertainty of about a solar mass.
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Demographics of Neutron-Star Binaries:

The observation of GW170817 provides quantitative informa-

tion about the probability that neutron star binaries form in or-

bits that can lead to merger in a Hubble time .

• This probability has been rather uncertain to this point.

• The rate currently inferred corresponds to 0.8 × 10−5

mergers per year in a galaxy the size of the Milky way.

An accurate determination of the merger rate has implications

for

• our understanding of stellar evolution,

• the site of the r-process, and

• the expected rate of gravitational wave detection from

such events.
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Determination of the Hubble Constant:

The multimessenger nature of the GW170817 event provides

an independent way to determine the Hubble constant H0.

• This can be accomplished by comparing the distance in-

ferred from the gravitational wave signal with the redshift

of the electromagnetic signal.

• Presently, different methods of determining H0 yield a

value in the range of about 67−73 km s−1Mpc
−1

, with

– analyses of the CMB tending to give values nearer the

lower end and

– traditional “distance-ladder” methods like Cepheid

variables giving values nearer the higher end.

• Analysis of the GW170817 multimessenger event sug-

gests a value in the middle,

H0 ∼ 70+12
−8 km s−1Mpc

−1
,

but with relatively large uncertainties at this point.

• We may expect an accumulation of such multimessenger

events to yield a precise, independent determination of H0.

For example, 100 independent GW detections with

host galaxy identified as in GW170817 could de-

termine H0 with an uncertainty of 5%.
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Off-Axis Gamma-Ray Bursts:

The initial observation of the kilonova followed days later by

observation of X-ray and radio emission

• provides strong corroborating evidence for the beamed

nature of gamma-ray bursts and

• represents the first clear detection of a weak, off-axis GRB

and its slowing in the interstellar medium.

Systematic studies of such events should greatly enrich our un-

derstanding of gamma-ray bursts, which previously were un-

derstood in terms of bursts beamed more directly at us.
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22.7.2 The Kilonova

Let’s elaborate further on the kilonova powered by the produc-

tion of radioactive r-process nuclei. GR simulations of neutron

star mergers identify two mechanisms for mass ejection:

1. Matter may be

• expelled dynamically by tidal forces on millisecond

timescales during the merger itself, and

• as surfaces come into contact shock heating at the

surfaces may squeeze matter into the polar regions.

2. On a longer (∼ 1 s) timescale matter in an accretion disk

around the merged objects can be blown away by winds.

As ejected matter decompresses, heavy elements are made.

• If the matter is highly neutron-rich, repeated neutron cap-

tures form the heavy r-process nuclei (58≤ Z ≤ 90);

• if the ejecta is less neutron-rich, light r-process nuclei

(28≤ Z ≤ 58) are synthesized.

• Matter ejected in the tidal tails is cold and very neutron

rich, and tends to form heavy r-process nuclei.

• The disk winds and ejecta squeezed into the polar regions

– are irradiated by neutrinos from the central region,

which converts some neutrons to protons.

– This favors the light r-process.
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The photon opacity of the r-process ejecta may play a central

role in the observable characteristics of kilonova events.

• The photon opacity is generated largely by transitions be-

tween bound atomic states (bound–bound transitions).

• For light r-process nuclei the valence electrons typically

fill atomic d shells.

• In contrast a substantial fraction of heavy r-process

species produced by simulations (often 1–10% by mass)

are lanthanides (58≤ Z ≤ 71).

• For lanthanides the valence electrons fill the f shells.

• These have densely-spaced energy levels and an order of

magnitude more line transitions than for the d shells in

light r-process species.

• As a consequence,

The opacity of heavy r-process nuclei is roughly a

factor of 10 larger than the opacities for light r-

process species,

and they have correspondingly long photon diffusion

times.
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Hence the cloud of light r-process species

• is considerably less opaque

• has shorter diffusion times, and

• tends to radiate in the optical and fade over a matter of

days.

In contrast, the cloud of heavy r-process species

• radiates in the IR

• for as long as weeks because of the

– high opacity and

– long diffusion times.

This accounts for the observed characteristics of the transient

AT 2017gfo, which differed essentially from all other previous

astrophysical transients:

• It brightened quickly in the optical and then faded but

• a quickly-growing IR emission remained strong for many

days, and

• only after a period of weeks did X-ray and RF signals be-

gin to emerge.
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The preceding considerations suggest a general picture of the

geometry of GW170817 that is illustrated in the figure above.

• The kilonova transient AT 2017gfo that followed the

gravitational wave GW170817 and associated gamma-ray

burst GRB 170817A had two distinct components.

• First, tidal dynamical ejection flung out on ms timescales

very neutron-rich matter at high velocities v∼ 0.3c.

– This matter underwent extensive neutron capture to

produce heavy r-process species.

– It had high opacity because of the lanthanide content.
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• Secondly, winds ejected matter from the disk region on a

timescale of seconds.

– This matter was subject to shock heating and to irra-

diation by neutrinos from the hot center.

– Both tended to decrease the neutron to proton ratio.

Nucleosynthesis in this less neutron-rich matter was likely

to produce light r-process matter of lower opacity, since

there weren’t enough neutrons to produce lanthanides and

other heavy r-process nuclei.
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Figure 22.13: Evolution of GW170817 kilonova components. Total flux is

a sum of two spatially-separated components: dominantly-optical emission

from light r-process isotopes (“blue kilonova”, labeled Lr) and dominantly-

IR emission from heavy r-process isotopes (“red kilonova”, labeled Hr).

This picture is supported by simulations in Fig. 22.13.

• These simulations exhibit clearly the early emergence and

rapid decay of the optical component associated with the

light r-process (the blue kilonova).

• This is followed by the longer-lived IR component asso-

ciated with the heavy-r process (the red kilonova), which

grows within several days to dominate the lightcurve.
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• Red and blue components are visible only because the

GRB afterglow was suppressed by relativistic beaming.
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22.8 Gravitational Wave Sources and Detectors

Let’s conclude with an overview of the prospects for detecting

gravitational waves from various astrophysical sources.

• Amplitude and frequency ranges for operating and pro-

posed gravitational wave observatories, along with

• corresponding ranges expected for some important astro-

physical sources of gravitational waves,

are reproduced above.
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• Earth-based detectors like LIGO and Virgo are prime in-

struments for elucidating the physics of

– neutron stars,

– black holes, and

– core collapse supernovae.

• Space-based arrays could probe gravitational waves from

– merger of supermassive black holes in galaxy colli-

sions, and

– ordinary binary stars in the galaxy.


