
3 Celestial Mechanics

Assign: Read Chapter 2 of Carrol and Ostlie (2006)

3.1 Kepler’s Laws

� OJTA: 3. The Copernican Revolution/Kepler

– (4) Kepler’s First Law

a

b

εa

r

θ

r'

r C r 0 D 2a b2 D a2.1 � �2/ (1)

r D
a.1 � �2/

1 C � cos�
AreaD �ab (2)

Example: For Mars
a D 1:5237 AU � D 0:0934

At perihelion� D 0ı and

r D
a.1 � �2/

1 C � cos�
D

.1:5237 AU/.1 � 0:09342/

1 C 0:0934 cos.0ı/
D 1:3814 AU

At aphelion� D 180ı and

r D
.1:5237 AU/.1 � 0:09342/

1 C 0:0934 cos.180ı/
D 1:6660 AU
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Difference = 19%

– (5) Kepler’s Second Law

– (6) Kepler’s Third Law

P 2.yr/ D a3.AU/

Example: For Venus,a D 0:7233 AU. Then the period is

P D a3=2 D .0:7233/3=2 D 0:6151 yr D 224:7 d

3.2 Galileo

� OJTA: 4. The Modern Synthesis/Galileo

– (3) New Telescopic Observations

– (4) Inertia

3.3 Mathematical Interlude: Vectors

Vectors are objects that have a magnitude (length) and a direction.

V

Length

Direction
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Therefore, they require more than one number to specify them. In contrast ascalar is
specified by only one number. One way to specifiy a vector is to give its components:

x

y

V

Vx = |V |cos θ

V
y
 =

 |
V

|s
in

 θ

Components

θ = tan-1(Vy /Vx)

θ
|V |  = Vx

2 Vy
2

+ Vz
2

+

The direction of a vector can be specified by orientation angles (one in two dimensions and
two in three dimensions). Its length is given by the Pythagorean theorem in terms of its
components. For a 3-dimensional vector,

jV j D
q

V 2
x C V 2

y C V 2
x :

The components are related to the angles by basic trigonometry. In the 2-D example above,

� D tan�1

�
Vy

Vx

�

Some important vector quantities include the position, velocity, momentum, and accelera-
tion of objects. Let us illustrate in 2-D for simplicity.

Position: The position of a point can be specified by a vectorr
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x

y

r

rx = | r | cos θ

r y
 =

 |
r
|s

in
 θ

Position

θ = tan-1(ry /rx)

θ
|r |  = rx

2 ry
2

+

where
rx D r cos� ry D r sin� r � jrj D

q
r2

x C r2
y :

Velocity: The velocity vector can be defined in terms of the time derivative of the position
vector,

v �
dr

dt
'

�r

�t
D

r1 � r2

t1 � t2

x

y

v

vx = |v |cos θ

v
y
 =

 |
v

|s
in

 θ

Velocity

θ = tan-1(vy /vx)

θ
|v |  = vx

2 vy
2

+

The standard units of velocity in the SI system are m s�1.

Momentum: The momentum vector is defined to be the massm times the velocity vector,

p � mv D m
dr

dt
:

Its standard units are kg m s�1.
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Acceleration: The acceleration vectora is defined to be the time derivative of the velocity
vector,

a �
dv

dt
D

d 2r

dt2
:

x

y

a

ax = |a |cos θ

a
y
 =

 |
a

|s
in

 θ

Acceleration

θ = tan-1(ay /ax)

θ
|a |  = ax

2 ay
2

+

The standard units of acceleration in the SI system are m s�2.

Example: Uniform circular motion

Consider the case of uniform circular motion

The magnitude of the 

velocity is constant, but

the direction is

changing, so there is

an acceleration

v

Is this accelerated motion? Yes, because there is a continuous change in the direction of
the velocity, even though its magnitude is constant.
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Addition of vectors: Vectors can be added graphically by a head–to–tail rule:

A B

C

C  = A + B

Unit vectors: It is convenient to define unit vectors that point along the coordinate system
axis and have unit length. For cartesian coordinates,

y

z

x

z

y
x

In terms of components, we can write for a vectorA

A D Ax Ox C Ay Oy C Az Oz:

Scalar product of vectors: There are two kinds of vector products of interest to us. The
scalar product of two vectorsA andB is a number (a scalar), defined by

A�B � jAjjBj cos� D AB cos�; (3)

where� is the angle between the two vectors. The order does not matter in the scalar
product:A �B D B �A. That is, the scalar productcommutes. The scalar product is often
called thedot product.

Note some special cases of the scalar product:
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1. If A andB point in the same direction, cos� D 1 andA�B D AB.

2. If A andB point in the opposite direction, cos� D �1 andA�B D �AB.

3. If A andB are perpendicular, cos� D 0 andA�B D 0.

Example: Scalar Product of Two Vectors

Consider the following two vectors

|B| = 8

|A
| =

 5

A

B
θ = 30o

Their scalar product is

A�B D B �A D AB cos� D .5/.8/ cos.30ı/ D 34:6:

Cross product of vectors: The second kind of vector product is called thecross product
or thevector product. It differs from the scalar product in that it produces a newvector, not
a scalar like the scalar product. The cross product is defined by

A�B D .AB sin�/ OI; (4)

where� is again the angle between the vectors andOI is a unit vector that is perpendicular
to the plane containing the vectorsA andB, with its direction (up or down) given by the
right-hand rule:

Right hand

A

B Rotate A into B with the right

hand.  The thumb points in 

the direction (up or down) of 

the new vector A x B.

A   B
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Unlike for the scalar product, the order in the cross product matters:

A � B D �B � A

(easily seen from the right-hand rule: try to rotateB into A in the preceding diagram and
note the direction that your thumb points).

Note some special cases of the vector product:

1. If A andB point in the same or opposite directions, sin� D 0 andjA�Bj D 0.

2. If A andB are perpendicular, sin� D 1 andjA�Bj D AB.

Example: Angular Momentum

Angular momentumL is a vector that measures the tendency of a body in angular motion
to remain in that motion. It is conserved (the reason an ice skater spins faster if the arms
are drawn in is conservation of angular momentum).

Angular momentum with respect to some coordinate system is the cross product of the
position vector with the momentum vector:

L � r � p D r � .mv/: (5)

For example, consider the angular momentum associated with uniform circular motion

Right hand

r

p

p

r

90o

L = r   p

The magnitude of the angular momentum is

L D rp sin90ı D rp
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and the direction is out of the paper, as illustrated by the right-hand rule in the figure. The
SI units for angular momentum are kg m2s�1.

3.4 Conservation Laws

The case of angular momentum just considered is an example of a quantity that isconserved
by all interactions in Newtonian physics. Conservation of angular momentum is an example
of a conservation law. In Newtonian physics, we believe that

� Energy

� Momentum

� Mass

� Angular momentum

are always conserved in isolated systems. Conservation laws are very important. Since
they must be obeyed, no matter what, they often can be used to simplify the solution of
problems. We will see specific examples shortly.

3.5 Newton’s Three Laws of Motion

Newton’s 1st Law:

Objects in a state of uniform motion remain in that state of motion unless an
external force acts on them (The law of inertia).

Newton’s 2nd Law:

If an external forceF acts on an object, the accelerationa experienced by
the object is given by the force divided by the mass, so that:

F D ma

This permits the change in velocity (acceleration) to be computed.
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The forceF in this case is the vector sum of all forces acting on the object:

F D F 1 C F 2 C : : : C F n D
nX

iD1

F i :

Assuming constant mass, Newton’s 2nd law may be written in the equivalent forms

F D ma D m
dv

dt
D

d.mv/

dt
D

dp

dt
: (6)

These vector equations are equivalent to three simultaneous equations in the components
(in 3-D). For example

F D ma !

8
<
:

Fx D max

Fy D may

Fz D maz:

(7)

The standard unit of force in the SI system is the Newton:

1 Newton� 1 N D 1 kg m s�2 :

Newton’s 3rd Law:

For every reaction, there is an equal and opposite reaction.

Notice that in Newton’s 3rd law the action and reaction are forces that always act ondiffer-
ent objects (never on the same object):

1
F12

2
F21

If object 1 exerts a forceF 21 on object 2, then object 2 exerts a forceF 12 D �F21 on
object 1. These forces are equal in magnitude but opposite in direction.

3.6 Newton’s Universal Law of Gravitation

Newton reasoned that gravity was a force, obeying his three laws of motion.
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3.6.1 The gravitational force

From the observed properties of gravity, Newton deduced hisUniversal Law of Gravita-
tion:

Universal Law of Gravitation

Every mass in the Universe exerts a force on every other mass that is at-
tractive and directed along the line of centers for the two masses, with the
magnitude of the force given by

F � jF j D G
m1m2

r2
; (8)

F -F
m1 m2

r

F = G  
m1m2

r2

where theuniversal gravitational constant G is measured to be

G D 6:673 � 10�11 N m2kg�2

D 6:673 � 10�11 kg�1m3s�2. (9)

An important property of the gravitational force is that we can prove (see Carrol and Ostlie)
that for a spherical mass distribution exerting a gravitational force on a point mass outside
the mass distribution, the gravitational force is exactly as if all the mass of the mass distri-
bution were concentrated at its center.

Extended masses
Point masses

m1

m2

r m1 m2
r

15



For an object of massm at the surface of the Earth or a heighth above it

m

M
+

R

h

the magnitude of the gravitational force acting onm is

F D G
M˚m

.R C h/2
:

But by Newton’s 2nd lawF D ma, so by comparing thelocal acceleration due to gravity
is given by

g � G
M˚

.R C h/2
;

and we can write
F D mg

Typically, near the surface of the Earth (h� 0) we measure that

g ' 9:8 m s�2:

Let us check this explicitly:

M˚ D 5:97 � 1024 kg R˚ D 6:38 � 106 m:

Therefore, the gravitational acceleration should be

g D G
M˚

R2

D 6:673 � 10�11 kg�1m3s�2

�
5:97 � 1024 kg

.6:38 � 106 m/2

�

D 9:79 m s�2 :
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Example: Acceleration Due to Earth’s Gravity at the Moon’s Orbit

What is the the local gravitational acceleration due to Earth at a distance equal to the
Moon’s orbit (ignoring the gravity of the Moon)? The Moon’s orbit is about 384,000 km
from the center of the Earth, so

g D G
M˚

.R C h/2

D 6:673 � 10�11 kg�1m3s�2

�
5:97 � 1024 kg

.3:84 � 108 m/2

�

D 0:0027 m s�2:

Thus, the ratio of the gravitational force exerted by the Earth on a mass at its surface to the
force exerted on that same mass at the distance of the Moon is

F1

F2

D
mg1

mg2

D
g1

g2

D
9:79

0:0027
' 3626:

3.6.2 Weight and mass

Weight and mass are not the same thing. Weight is the gravitational force exerted on a
mass,

WeightD ForceD mg:

Its SI units are Newtons (N). In the English system the unit of weight is the pound (lb),
with the conversion 1 lb = 4.448 N.

The mass of an object is constant but its weight depends on its
location (because it depends on the local gravitational accelera-
tion).

3.6.3 Gravitational potential energy

Energy is conserved in physical processes. The total energy of an object is generally a
sum of a kinetic energy (energy of motion) and a potential energy. If an object is in a
gravitational field, its gravitational potential energy can change if it changes its location.
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Consider a massm that moves from a positionr i to r f in a gravitational field that is gener-
ated by a massM at the origin of the coordinate system:

y

z

x

ri

rf

F

dr

m

M

The gravitational forceF exerted onm is directed toward the origin and the definition of
the change in potential energy is

�U D Uf � Ui D �
Z r f

r i

F �dr :

Let’s take a simple case of a massm moving vertically along thez axis.

y

z

x

ri

rf

F

m

M

dr

Then the scalar product is easy since the position vectors and the force vector are pointed
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in opposite directions (� D �) and

�U D �
Z r f

r i

F �dr D
Z r f

r i

F cos.�/dr D �
Z r f

r i

�Fdr

D
Z r f

r i

G
M m

r2
dr D �

GMm

r

ˇ̌
ˇ̌
rf

ri

D �GM m

�
1

rf
�

1

ri
:

�
:

This is the change in the gravitational potential energy. We make three general remarks
about it

1. A more general derivation would have shown that the result isindependent of path,
depending only on the endpointsr i andr f .

2. Generally, only changes in the potential are relevant and we can define an arbitrary
zero for the gravitational potential energy scale. It is conventional to choose

U ! 0 as ri ! 1:

Then1=ri ! 0 and (dropping subscripts) we may write for thegravitational poten-
tial

U � �
GMm

r
: (10)

Conventional: we could choose any zero for the scale if we wished.

3. The magnitude of the gravitational force is obtained from the derivative of the gravi-
tational potential,

Fgrav D �
dU

dr
D �

d

dr

�
�GMm

r

�
D �

GMm

r2
;

where the minus sign indicates that it is attractive.

3.6.4 Escape velocity

The escape velocity from a gravitational field is a useful concept:
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Escape Velocity

The initial vertical component of velocity from a given location that gives
v ! 0 asr ! 1.

We may derive a formula for escape velocity simply by using conservation of energy. The
total energy of some massm moving in a gravitational field is

E D
1

2
mv2 � G

Mm

r
D Ekinetic C Epotential:

As r ! 1, by definitionv ! 0, so at infinity,

Ekinetic ! 0 Epotential ! 1 E ! 0:

Thus, at infinity the total energy is zero. But since energy is conserved, the total energy
must be zero at anyr. SettingE D 0 in the preceding equation gives

1
2
mv2 � G

Mm

r
D 0;

which may be solved forv to give

vesc D
r

2GM

r
: (11)

Notice that

� The mass of the objectm has cancelled out. The escape velocity depends only on the
properties of the gravitational field, not on the mass of the object that is escaping.

� The escape velocity depends on where we start from (r in the preceding formula).
The escape velocity from the surface of the Earth is greater than the escape velocity
from an orbit 200 km above the surface of the Earth, for example.

20



Example: Escape velocity from Earth’s surface

vesc D
r

2GM

r
D

r
2GMr

r2
D

p
2gr

D
q

2.9:8 m s�2/.6:38 � 106 m/

D 11; 182 m s�1 D 11:2 km s�1:

Example: Escape velocity from Jupiter’s surface

vesc D
r

2GM

r

D

s
2.6:673 � 10�11 kg�1m3s�2 /.1:9 � 1027 kg/

7:149 � 107 m

D 59; 556 m s�1 D 59:6 km s�1:

Example: Escape velocity from Sun’s surface

vesc D
r

2GM

r

D

s
2.6:673 � 10�11 kg�1m3s�2 /.1:99 � 1030 kg/

6:96 � 108 m

D 617; 728 m s�1 D 618 km s�1:

Example: Escape velocity from surface of Phobos

The Martian moon Phobos is not spherical but its average radius is about 11 km. Using this
and its mass of1:08 � 1016 kg, we may estimate that

vesc D
r

2GM

r

D

s
2.6:673 � 10�11 kg�1m3s�2 /.1:08 � 1016 kg/

11 � 103 m

D 11:4 m s�1:
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That’s not very much. Could a basketball player with Michael Jordan leaping ability attain
escape velocity on Phobos just by jumping straight up?

Suppose a basketball player can leap vertically by 40 inches (about one meter) on Earth.
By energy conservation again we have

1
2
mv2

1 C mgy1 D 1
2
mv2

2 C mgy2;

where quantities on the left side refer to the player on the floor, and the quantities on the
right side to the player at the top of his leap. Dividing through bym and rearranging,

v2
1 � v2

2 D 2g.y2 � y1/:

But v2 is at the top of the leap so it is equal to zero, andy2 � y1 D �y is just the vertical
leap of 1 meter. Therefore, solving for the initial velocityv1,

v1 D
p

2g�y D
q

2.9:8 m s�2/.1 m/ D 4:4 m s�1:

So Michael Jordan could not launch into orbit by jumping from Phobos, but he wouldn’t
miss it by very far!

For further reference, a world-class sprinter can attain a speed
of a little over 10 m s�1, UT softball pitcher Monica Abbot’s 70
mph fastball corresponds to about 31 m s�1, and a hard kick in
a world cup football (soccer) match, or the serve of a top tennis
player, can reach initial speeds in the vicinity of 50–60 m s�1.
(Convenient conversion: 1 mph is 0.447 m s�1.)

3.6.5 Center of mass reference frame

Consider a collection of massesmi at position coordinatesr i ,
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y

z

x

m1

r1

m2

r2

m3

r3

Define a position vectorR that is the weighted average

R D

nX

iD1

mi r i

nX

iD1

mi

:

The positionR is termed thecenter of mass. The total mass isM D
nX

iD1

mi so

M R D
nX

iD1

mi r i :

Assume the masses to be constant and differentiate

M
dR

dt
D

nX

iD1

mi

dr i

dt

which is equivalent to

M V D
nX

iD1

mi vi

and also to

P D
nX

iD1

pi ;
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whereV in the CM velocity andP is the CM momentum. Thus, the system behaves as if all
mass were concentrated at the CMR, moving with the CM velocityV and CM momentum
P.

Differentiate with respect tot ,
dP

dt
D

nX

iD1

dpi

dt
:

But if no external forces act on the masses (all forces are internal between the masses) the
total force must be zero, by Newton’s third law applied to any two interacting pairs (equal
and opposite forces for each pair). Therefore

F D
dP

dt
D M

d 2R

dt2
D 0:

The center of mass does not accelerate if there are no external
forces acting on the system of masses.

This implies that we may simplify the manybody problem by choosing a coordinate system
for which

R D 0 V D 0:

This is called the CM frame. It is aninertial frame (one in which Newton’s first law is
valid).

3.6.6 Center of mass for a binary system

Consider the important special case of two masses (binary system):
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y

z

x

m1

r1

m2

r2

M
r

R

r1 C r D r2 ! r D r2 � r1:

Then choosing the center of mass as the origin,

R D
m1r1 C m2r2

m1 C m2

D 0

Therefore,
m1r1 C m2r2 D 0;

and sincer2 D r1 C r,

m1r1 C m2.r1 C r/ D 0

m1r1 C m2r1 D �m2 r

r1 D �
m2

m1 C m2

r D �
m2

M
r :

By a similar proof,

r2 D
m1

m1 C m2

r D
m1

M
r :

Introducing thereduced mass �

� �
m1m2

m1 C m2

;

we can write

r1 D �
m2

m1 C m2

r D �
m2m1

m1.m1 C m2/
r

D �
�

m1

r :
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By a similar proof,

r2 D
�

m2

r :

Total energy: The utility of the CM system can be seen in writing the total energy of the
binary system,

E D 1
2
m1jv1j2 C 1

2
m2jv2j2 � G

m1m2

jr2 � r1j
:

Substituting and rearranging,

E D 1
2
�v2 � G

M�

r
;

wherer D jrj D jr2 � r1j andv D jvj, with

v D
dr

dt
D

d

dt
.r2 � r1/ D v2 � v1:

The total energy is now the sum of the kinetic energy of the reduced mass� and the
potential energy of the reduced mass moving about the total massM D m1 C m2 at the
origin.

Orbital angular momentum: The orbital angular momentum for the binary is

L D r1 � p1 C r2 � p2

D m1r1 � v1 C m2r2 � v2:

Substituting gives

L D m1

�
�

�

m1

�
r � v1 C m2

�
�

m2

�
r � v2

D ��r � v1 C �r � v2

D �r � .v2 � v1/

D �r � v;

so the totalL is the angular momentum of thereduced mass only.
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The binary problem of calculating the motion of two bodies has
been replaced by the calculation of the motion of a single effec-
tive mass (the reduced mass�) about a stationary point contain-
ing the total massM of the system, with the separation between
M and� given by the separation betweenm1 andm2.

Binary center of mass: Choosing the CM as the origin for the binary,

m1 m2CM

r1 r2

Take the line of centers as thex axis. From the preceding equations,

r1

r2

D
�.�=m1/r

.�=m2/r
D �

m2

m1

D
rx

1

rx
2

:

But from the diagram

rx
1 D �jr1j D �r1 rx

2 D jr2j D r2

Substituting these gives theseesaw equation,

r1m1 D r2m2 wherer1 C r2 D r D distance between masses:

Two special cases are of interest.

� Suppose thatm1 D m2. Then

r1m1 D r2m2 � r2 D r1 D 1
2
r;

and the CM lies halfway between the masses.
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� Suppose one mass much larger than the other,m1 >> m2. Then

r1

r2

D
m2

m1

' 0:

Therefore, the CM almost coincides with the center of the large mass.

Example: Center of mass for the Earth–Sun system

We have

Mˇ D 1:99 � 1030 kg M˚ D 5:97 � 1024 kg r D 1:496 � 1011 m

and we must solve simultaneously

r2

r1

D
M˚
Mˇ

r1 D r � r2:

Substituting the right equation into the left,

r2

r � r2

D
M˚
Mˇ

;

which may be solved forr2 to give

r2 D
M˚=Mˇ

1 � M˚=Mˇ
r:

For the Earth–Sun system,

M˚
Mˇ

D
5:97 � 1024 kg

1:99 � 1030 kg
D 3 � 10�6:

Neglecting this term in the denominator,

r2 '
M˚
Mˇ

r D .3 � 10�6/.1:496 � 1011 m/ ' 4:5 � 105 m:

For reference,Rˇ ' 7 � 108 m, so the CM of the Earth–Sun system is well inside the Sun.

Elliptical Kepler motion in the CM system for a binary star:
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Center of
Mass

Star 1

Star 2

r1 r2

Orbit of 
Star 1

Orbit of 
Star 2

Center of
Mass

(See the Java applet OJTA 4.25 for binary motion.)

Actual example of ellipical motion for the Sirius B system:

Sirius B

1990

Sirius A

Center of 
Mass

5 arcsec

3.7 Kepler’s Laws from Newton’s Law of Gravitation

We now outline how Kepler’s laws follow from Newton’s law of gravitation
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3.7.1 Kepler’s first law

By considering the effect of gravity on the orbit of a planet in the CM sysem (see Ostlie
and Carrol, pp. 43–45), we can prove

r D
L2=�2

GM.1 C � cos�/
: (12)

But this is the equation of aconic section, which corresponds to equations for parabolas,
ellipses, and hyperbolas:

r D
L2=�2

GM.1 C � cos�/

D

8
ˆ̂̂
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂̂
ˆ̂:

2p
1 C � cos�

�
parabola; � D 1; 2p D L2=�2

GM

�

a.1 � �2/
1 C � cos�

�
ellipse; � < 1; a.1 � �2/ D L2=�2

GM

�

a.�2 � 1/
1 C � cos�

�
hyperbola; � > 1; a.�2 � 1/ D L2=�2

GM

�
(13)

The geometrical definition of a conic section is summarized in the following figure

Focus F

Directrix d

g

hP
g/h = constant

Conic

section

ε = g/h = eccentricity

Parabola (ε = 1)

Ellipse (ε < 1)

Hyperbola (ε > 1)

Cases:

The three general types of conic sections are parabolas, ellipses, and hyperbolas (the cir-
cle is a special case of an ellipse). The geometrical properties of parabolas, ellipses, and
hyperbolas are summarized in the following figure.
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b

a

θ
r

FF ’

aε

dd’

a(1-ε)
(1-ε)ε

a

b

θF

d

pp

a(ε -1)

d

θF

d’

F ’

asy
m

pto
te

asym
ptote

a
a/ε

Parabola

Ellipse

Hyperbola

So “orbits of the planets are ellipses” generalizes to “orbits in gravitational fields are conic
sections”, with the ellipse as a special case for a bound orbit.

Examples of conic-section gravitational orbits are shown in the following figure,
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which shows conic section orbits having the same focus and the same vertex (distance of
closest approach to the focus).

3.7.2 Kepler’s second law

Consider the following ellipse:

rdθ

dθ
dr

v
r

θ
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The differential area of the shaded strip isrd� , so the differential area swept out by the
angled� is

dA D d�

Z r

0

rdr D d�.1
2
r2/

ˇ̌r
0

D 1
2
r2d�

and the rate of change of the area swept out in a timedt is

dA

dt
D 1

2
r2 d�

dt
:

From the diagram, the velocity vectorv can be resolved into componentsvr along the radial
drawn from the focus andv� perpendicular to the radial. In terms of unit vectorsOr and O� in
these directions,

v D vr Or C v�
O� D

dr

dt
Or C r

d�

dt
O�

Therefore,v� D rd�=dt and substitutingd�=dt D v�=r into the earlier equation gives

dA

dt
D 1

2
r2 v�

r
D 1

2
rv� :

SinceOr and O� are orthogonal,jr�vj D rv� sin.90ı/ D rv� and

rv� D jr � vj D
1

�
jr � .�v/„ƒ‚…

p

j

D
1

�
j r � p„ƒ‚…

L

j D
L

�
;

whereL is the magnitude of the orbital angular momentum. Therefore, the change in area
is

dA

dt
D 1

2
rv� D

L

2�
D constant

since angular momentum and the reduced mass are conserved. But constantdA=dt is just
Kepler’s 2nd law:

The line joining the planet to the focus sweeps out equal areas in
equal times.
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3.7.3 Kepler’s third law

From the results for Kepler’s 2nd law, the total area of the ellipse is

A D
I

orbit
dA D

I

orbit

�
dA

dt

�
dt

D
Z P

0

L

2�
dt D

L

2�

Z P

0

dt D
Lt

2�

ˇ̌
ˇ̌
P

0

D
L

2�
P;

whereP is the period for one orbit. But we also have from geometry that the area of an
ellipse isA D �ab [see Eq. (2)], so

�ab D
L

2�
P;

which we can square and solve forP 2 to give.

P 2 D
�

2�

L
�ab

�2

D
4�2�2a2b2

L2
D

4�2�2a2Œa2.1 � �2/�

L2
; (14)

where in the last step we have used Eq. (1) for ellipses:

b2 D a2.1 � �2/: (15)

But we can also equate Eqs. (2) and (12)

r D
a.1 � �2/

1 C � cos�
r D

L2=�2

GM.1 � � cos�/

for ellipses and solve for the angular momentumL to give

L D �
p

GMa.1 � �2/

Inserting this into Eq. (14) forP 2 then gives

P 2 D
4�2�2a2Œa2.1 � �2/�

�2GMa.1 � �2/

D
�

4�2

GM

�
a3:
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Thus, inserting explicitly thatM D m1Cm2, we arrive at the most general form of Kepler’s
3rd law,

P 2 D
4�2

G.m1 C m2/
a3: (16)

This expression is valid for any appropriate units and can be written in the form

P 2 D ka3 k �
4�2

G.m1 C m2/
: (17)

Example: Mass of the Earth determined from the Moon’s orbit

For the Moon, the period and semimajor axis of the orbit around Earth are

P D 27:322 d D 2:3606 � 106 s a D 3:844 � 108 m:

Then from Kepler’s 3rd law in the general form (17),

M D m1 C m2 D
4�2

G

a3

P 2

Evaluating the constants

4�2

G
D

4�2

6:673 � 10�11 kg�1m3s�2
D 5:916 � 1011 kg m�3s2

so in these units

M D 5:9161 � 1011
� a

meters

�3
�

seconds

P

�2

Neglecting the mass of the Moon relative to that of the Earth,M D M˚ C MMoon ' M˚,

M˚ D 5:9161 � 1011
� a

meters

�3
�

seconds

P

�2

D 5:9161 � 1011 .3:844 � 108/3

.2:3606 � 106/2

D 6:03 � 1024 kg:

If we subtract from this the mass7:349 � 1022 kg of the Moon, we obtain5:97 � 1024 kg,
which is almost exactly the mass of the Earth.
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Let’s now demonstrate that we can choose a particular set of units such that numerically
k D 1, so that we recover Kepler’s 3rd law in the form originally proposed by Kepler, if
we neglect the mass of the planet relative to the mass of the Sun.

We adopt the following units for time, distance and mass:

Œtime� D Earth years (yr) Œdistance� D AU Œmass� D Mˇ

where we use the general notation [X] to denote the units of X. Converting the units of the
gravitational constant we can write

4�2

G
D

4�2

6:673 � 10�11 kg�1m3s�2
D 5:916 � 1011 kg m�3s

2

D 5:916 � 1011 kg m�3s
2

�
1Mˇ

1:989 � 1030 kg

�

�
�

1:496 � 1011 m

1 AU

�3 �
1 yr

3:156 � 107 s

�2

D 1Mˇ yr2 AU�3

Therefore, employing these units for the factor4�2

G
, Kepler’s 3rd law can be expressed as

P 2 D
�

1Mˇ
m1 C m2

� � a

AU

�3

yr2;

and if the masses are measured in solar masses and the semimajor axisa in AU, the units
of P will be years.

Finally, if we take
M D mˇ C mplanet ' mˇ D 1Mˇ;

the mass factor is just unity and we obtain

P 2 D a3 (Kepler’s 3rd Law)

wherea is in AU andP is in Earth years.

If we want to be explicit about the units that are required for Kepler’s 3rd law in this form,
we could write

P 2 D
�

a3

AU3

�
yr2:

for Kepler’s 3rd law.
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