1 The Celestial Sphere

Assign: Read Chapter 1 of Carrol and Ostlie (2006)

1.1 Geocentric Universe of the Greeks

1.2 Getting to Know the Celestial Sphere

- OJTA: 2. Overview of the Sky/The Celestial Sphere
 - (1) The Celestial Sphere
 - (2) The Ecliptic
 - (3) The Coordinate System
 - (4) Equinoxes and Solstices
 - (5) Motion on the Celestial Sphere
- OJTA: 2. Overview of the Sky/Constellations
 - (1) Groupings and Asterisms
 - (2) Classical Constellations
 - (3) Modern Constellations
 - (6) Naming the Stars
- OJTA: 2. Overview of the Sky/Aspects and Phases
 - (1) Classification
 - (4) Wanderers
 - Animation 3.2
- OJTA: 2. Overview of the Sky/Timekeeping
 - (1) Sidereal and Solar Time
 - (2) Sidereal and Solar Days
 - (3) Precession of the Earth's Axis
 - Animation 2.13
 - Animation 3.2

- (5) Inferior Planets

- (6) Superior Planets

Example Problem: Synodic and sidereal orbital period

For synodic period S and sidereal period P,

$$\frac{1}{S} = \begin{cases} \frac{1}{P} - \frac{1}{P_{\oplus}} & \text{(Inferior)} \\ \frac{1}{P_{\oplus}} - \frac{1}{P} & \text{(Superior)} \end{cases}$$

Generally, $P_{\oplus} = 365.26$ days and For Mercury, $P \simeq 88$ days. Thus

$$\frac{1}{S} = \frac{1}{88 \text{ d}} - \frac{1}{365.26 \text{ d}} = 8.63 \times 10^{-3} \text{ d}^{-1},$$

so for Mercury S = 115.9 days.

- OJTA: 2. Overview of the Sky/The Seasons
 - (1) The Northern Hemisphere
 - (2) The Southern Hemisphere
- OJTA: 2. Overview of the Sky/The Moon (be brief)
 - (1) Revolution in Orbit
 - (2) Lunar Phases
 - (3) Rotational Period
 - (4) Tidal Locking (omit details til later)

1.3 Important "Rules of Thumb"

- Sun and Moon subtend about 1/2 degree (width of outstretched thumb)
- The sky appears to turn

 $\frac{360^{\circ}}{24 \text{ hr}} = 15^{\circ}/\text{hour} \quad \text{(Width outstretched pointer and pinkie)}$ $\frac{360^{\circ}}{24 \times 60} = 0.25^{\circ}/\text{ min} \quad \text{(Width outstretched thumb every 2 minutes)}$

This means that the sky turns about 1° every 4 minutes.

• The Sun drifts eastward on the ecliptic

$$\frac{360^{\circ}}{365.25} \simeq 1^{\circ} \text{ per day}$$

• The Moon drifts eastward with respect to the constellations

$$\frac{360^{\circ}}{27.3} \simeq 13.2^{\circ} \text{ per day}$$

 $(13.2/15) \times 60 \simeq 52.8$ minutes later rising per day

1.4 Angular Measure

• 360° in circle

•
$$\left(\frac{1}{60}\right)^{\circ} = 1$$
 arcminute (')
• $\left(\frac{1}{60 \times 60}\right)^{\circ} = \left(\frac{1}{3600}\right)^{\circ} = 1$ arcsecond (")

- 1 radian (rad) = $\frac{180}{\pi} \simeq 57.3^{\circ}$
- 1 arcsecond = 4.848×10^{-6} rad

One arcsecond is the angle subtended by a dime viewed at a distance of 2 km! Many properties in astronomy require measuring angles of this size or smaller.