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This document provides supplemental material and proofs of some important
equations for the review article “Emergent Fermion Dynamical Symmetries
for Monolayer Graphene in a Strong Magnetic Field” by Mike Guidry, Lianao
Wu, and Fletcher Williams.

1. Introduction
In the following all citations of sections, subsections, equation numbers, figure numbers, and table numbers are by default
references to the primary document “Emergent Dynamical Symmetries for Monolayer Graphene in a Strong Magnetic Field”. If
a reference is flagged by “[this document]”, it is instead a reference to objects in the present Supplement document.

2. Pairing operators
As a representative example, from Eq. (126) the S = 1,MS = 0,T = 0 pair is,

A
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But generally for Clebsch–Gordan coefficients,
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δn1,−n2 , (2)

so that

A
†10
00 = ∑

mk

∑
m1m2

∑
n1

(−1)1/2−n1
√

2
⟨ 1

2 m1
1
2 m2|10⟩c†

m1n1mk
c†

m2−n1−mk
.

The remaining Clebsch–Gordan coefficient in this expression vanishes unless m2 =−m1, so
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Writing the four terms in the sum over m1 and n1 out explicitly for n1 = (− 1
2 ,

1
2 ) and m1 = (− 1

2 ,
1
2 ) gives
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Utilizing from Table I [this document] that
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we may write
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where in the second equation the mapping between spin and isospin quantum numbers and the label a in Fig. 25(a) has been
used to replace labels (σ ,τ) with the label a, we have performed manipulations such as
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where the first equality is because independent fermion creation operators anticommute, the second equality is because mk is a
dummy summation index that may be replaced with another summation index, and the third equality employed the definition of
A†

ab in Eq. (119). The other five possibilities may be determined in a completely analogous way, with the results
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The hermitian conjugates of these give the six corresponding pair annihilation operators in coupled representation. These are the
generators given in Eq. (127), up to a normalization.

To take another example, from Eq. (126) the S = 0,T = 1,MT = 1 pair is,
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But generally for Clebsch–Gordan coefficients,
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The remaining Clebsch–Gordan coefficient in this expression vanishes unless n1 = n2 =
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Writing the two terms in the sum over m1 out explicitly for m1 = (− 1
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2 ) gives
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3. Coupled representation for particle–hole operators
It is desirable to express the particle–hole generators of Eq. (120) in coupled representation. Let us begin by introducing a set of
operators

Pr
µ = ∑

m jml

(−1)
3
2+mℓ⟨ 3

2 m j
3
2 mℓ|r µ⟩Bm j−mℓ

, (7)
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where m j and mℓ take the values of the fictitious angular momentum projection mi in the table of Fig. 25(a), providing a labeling
equivalent to that of a and b in Bab, with m j or mℓ values

{ 3
2 ,

1
2 ,−

1
2 ,−

3
2

}
mapping to a or b values {1,2,3,4}, respectively.

For example, from the table of Fig. 25(a), Bab = B12 and Bm jmℓ
= B3/2,1/2 label the same quantity, which is defined in Eq. (120).

From the standard selection rules for coupling of angular momentum, the index r in Eq. (7) [this document] can take the values
r = 0,1,2,3, with 2r + 1 projections µ for each possibility, which gives a total of 16 operators Pr

µ . By inserting the explicit
values of the Clebsch–Gordan coefficients the Pr

µ may be evaluated in terms of the Bab. For example,
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where the mapping between the labels mi in line 2 and a in line 3 in this equation may be found in Fig. 25(a), and Bab is defined
in Eq. (120). Evaluating for other values of the indices gives
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where the quantities ni given by

ni = Bii = ∑
mk

c†
imk

cimk −
1
4

Ω (10)

are number operators for each of the four states and the total particle number n is the sum over the four states labeled by a in
the table of Fig. 25(a), n = n1 +n2 +n3 +n4 = total particle number. It will be convenient to sometimes replace the operator P0

0
with the operator S0, according to

S0 ≡
1
2
(n−Ω) = P0

0 , (11)
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where 2Ω is the degeneracy of the space for the particles that participate in the SO(8) symmetry. Physically S0 =
1
2 (n−Ω) is

one half the particle number measured from half filling (which corresponds to n = Ω).

4. Transformations between different basis states
In exploring dynamical symmetries of the SO(8) algebra in Eq. (121) it is often useful to use different basis sets for the generators.
This section gathers the relationships between the different sets of basis vectors employed in the main text. For brevity in the
following, {P1,P2,P3,S0,S,S†,Dµ ,D

†
µ} will be termed the nuclear SO(8) basis and {Sα , Tα , Nα , Παx, Παy,S0,S,S†,Dµ ,D

†
µ}

will be termed the graphene SO(8) basis.
First note that the SO(8) particle–hole operators (120) can be replaced by the operators of Eq. (110) through a comparison of

their definitions. For example, consider the spin operator Sy. From Eq. (110),

Sy = ∑
mk

∑
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= ∑
mk

(
−ic†

+↑mk
c+↓mk

+ ic†
+↓mk

c+↑mk
− ic†

−↑mk
c−↓mk
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)
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where the standard 2× 2 Pauli matrix representation for σ2 = σy was employed and equivalences between the indices a and
(τ,σ) in the table of Fig. 25(a) were used to map to indices for Bab. The results for the complete set of operators are displayed
in Eqs. (122)-(125).

In transforming from the nuclear SO(8) basis to the graphene SO(8) basis the particle number (charge) operator n or S0 and
the 12 pairing operators {Dµ , D†

µ , S, S†} are retained, but the 15 SU(4) generators {P1, P2, P3} in the nuclear representation are
replaced with the 15 SU(4) generators {Sα , Tα , Nα , Παx, Παy} defined in the graphene representation of Eq. (110). The explicit
transformation from the {P1, P2, P3} generators to the {Sα , Tα , Nα , Παx, Παy} generators is given by
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In Eqs. (122)=(125) (and in Eqs. 12 [this document]) the graphene basis {Sα , Tα , Nα , Παx, Παy} has been expressed in
terms of the generators Bab defined in Eq. (120). The inverse transformations giving the Bab generators in terms of the
{Sα , Tα , Nα , Παx, Παy} generators are [23]
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(13)
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where the unlisted operators may be obtained from Bba = B†
ab and the diagonal operators have been assumed to obey the U(4)

constraint

B11 +B22 +B33 +B44 = n−Ω, (14)

with n = n1 +n2 +n3 +n4 the total particle number and Ω the total pair degeneracy given by Eq. (104).

5. Lie algebra in the nuclear SO(8) basis
Because the six operators defined by Eq. (127), their six hermitian conjugates, and the 16 operators defined by Eq. (7) [this
document] are independent linear combinations of the SO(8) generators defined in Eqs. (119) and (120), the 28 operators
{Pℓ

µ , S, S†, Dµ , D†
µ} also close an SO(8) algebra under commutation. The SO(8) commutation relations for the coupled-

representation generators

G ′
SO(8) = {P1, P2, P3, S0, S, S†, Dµ , D†

µ}

in Eq. (152) are given explicitly by [31,48]

[S,S† ] =−2S0, (15a)

[Dµ ′ ,D†
µ ] =−2δµµ ′S0 + ∑

t odd
(−1)µ ′⟨2,−µ

′ 2 µ| t, µ −µ
′⟩
{

2 2 t
3
2

3
2

3
2

}
Pt

µ,−µ ′ , (15b)

[D†
µ ,S ] = P2

µ , (15c)

[Pr
µ ,S

† ] = 2δr2D†
µ +2δr0δµ0S†, (15d)

[Pr
µ ′ ,D†

µ ] = 2(−1)µ ′
δr2δ−µµ ′ −4

√
5(2r+1)⟨r µ

′ 2 µ|2, µ +µ
′⟩
{

2 2 r
3
2

3
2

3
2

}
D†

µ+µ ′ , (15e)

[Pr
µ ′ ,Ps

µ ] = 2(−1)r+s
√
(2r+1)(2s+1) ∑

t
⟨r µ

′ s µ| t, µ +µ
′⟩
[
1− (−1)r+s+t]{r s t

3
2

3
2

3
2

}
P t

µ+µ ′ , (15f)

where S0 is defined in Eq. (11) and {} denotes the Wigner 6- j symbol [49] for the recoupling of three angular momenta to good
total angular momentum.

6. Tables
For convenience we include below Table I [this document] of Clebsch–Gordan coefficients and Table II [this document] of
3J-symbols, with the Clebsch–Gordan coefficients ⟨ j1 m1 j2 m2|J M⟩ and 3J-symbols related by(

j1 j2 J
m1 m2 −M

)
=

(−1) j1− j2+M
√

2J+1
⟨ j1 m1 j2 m2|J M⟩. (16)

The values of these vector coupling coefficients are useful in various proofs contained in this Supplement.
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TABLE I: Some SO(3) Clebsch–Gordan Coefficients ⟨ j1m1 j2m2|JM⟩ from Ref. [4]

j1 j2 m1 m2 J M CG j1 j2 m1 m2 J M CG

1/2 1/2 1/2 1/2 1 1 1 1/2 1/2 1/2 −1/2 1 0
√

1/2

1/2 1/2 1/2 −1/2 0 0
√

1/2 1/2 1/2 −1/2 1/2 1 0
√

1/2

1/2 1/2 −1/2 1/2 0 0 −
√

1/2 1/2 1/2 −1/2 −1/2 1 −1 1

1 1/2 1 1/2 3/2 3/2 1 1 1/2 1 −1/2 3/2 1/2
√

1/3

1 1/2 1 −1/2 1/2 1/2
√

2/3 1 1/2 0 1/2 3/2 1/2
√

2/3

1 1/2 0 1/2 1/2 1/2 −
√

1/3 1 1/2 0 −1/2 3/2 −1/2
√

2/3

1 1/2 0 −1/2 1/2 −1/2
√

1/3 1 1/2 −1 1/2 3/2 −1/2
√

1/3

1 1/2 −1 1/2 1/2 −1/2 −
√

2/3 1 1/2 −1 −1/2 3/2 −3/2 1

1 1 1 1 2 2 1 1 1 1 0 2 1
√

1/2

1 1 1 0 1 1
√

1/2 1 1 0 1 2 1
√

1/2

1 1 0 1 1 1 −
√

1/2 1 1 1 −1 2 0
√

1/6

1 1 1 −1 1 0
√

1/2 1 1 1 −1 0 0
√

1/3

1 1 0 0 2 0
√

2/3 1 1 0 0 1 0 0

1 1 0 0 0 0 −
√

1/3 1 1 −1 1 2 0
√

1/6

1 1 −1 1 1 0 −
√

1/2 1 1 −1 1 0 0
√

1/3

1 1 0 −1 2 −1
√

1/2 1 1 0 −1 1 −1
√

1/2

1 1 −1 0 2 −1
√

1/2 1 1 −1 0 1 −1 −
√

1/2

1 1 −1 −1 2 −2 1

2 1/2 2 1/2 5/2 5/2 1 2 1/2 1 −1/2 5/2 3/2
√

1/5

2 1/2 2 −1/2 3/2 3/2
√

4/5 2 1/2 1 1/2 5/2 3/2
√

4/5

2 1/2 1 1/2 3/2 3/2 −
√

1/5 2 1/2 1 −1/2 5/2 1/2
√

2/5

2 1/2 1 −1/2 3/2 1/2
√

3/5 2 1/2 0 1/2 5/2 1/2
√

3/5

2 1/2 0 1/2 3/2 1/2 −
√

2/5 2 1/2 0 −1/2 5/2 −1/2
√

3/5

2 1/2 0 −1/2 3/2 −1/2
√

2/5 2 1/2 −1 1/2 5/2 −1/2
√

2/5

2 1/2 −1 1/2 3/2 −1/2 −
√

3/5 2 1/2 −1 −1/2 5/2 −3/2
√

4/5

2 1/2 −1 −1/2 3/2 −3/2
√

1/5 2 1/2 −2 1/2 5/2 −3/2
√

1/5

2 1/2 −2 1/2 3/2 −3/2 −
√

4/5 2 1/2 −2 −1/2 5/2 −5/2 1

3/2 1/2 3/2 1/2 2 2 1 3/2 1/2 3/2 −1/2 2 1 1/2

3/2 1/2 3/2 −1/2 1 1
√

3/4 3/2 1/2 1/2 1/2 2 1
√

3/4

3/2 1/2 1/2 1/2 1 1 −1/2 3/2 1/2 1/2 −1/2 2 0
√

1/2

3/2 1/2 1/2 −1/2 1 0
√

1/2 3/2 1/2 −1/2 1/2 2 0
√

1/2

3/2 1/2 −1/2 1/2 1 0 −
√

1/2 3/2 1/2 −1/2 −1/2 2 −1
√

3/4

3/2 1/2 −1/2 −1/2 1 −1 1/2 3/2 1/2 −3/2 1/2 2 −1 1/2

3/2 1/2 −3/2 1/2 1 −1 −
√

3/4 3/2 1/2 −3/2 −1/2 2 −2 1
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TABLE II: Some 3J coefficients
(

j1 j2 J
m1 m2 M

)
from Ref. [50](

a a+1/2 1/2
b −b−1/2 1/2

)
= (−1)a−b−1

[
a+b+1

(2a+1)(2a+2)

]1/2

(
a a 1
b −b−1 1

)
= (−1)a−b

[
(a−b)(a+b+1)
2a(a+1)(2a+1)

]1/2

(
a a 1
b −b 0

)
= (−1)a−b b

[a(a+1)(2a+1)]1/2(
a a+1 1
b −b−1 1

)
= (−1)a−b

[
(a+b+1)(a+b+2)

(2a+1)(2a+2)(2a+3)

]1/2

(
a a+1 1
b −b 0

)
= (−1)a−b−1

[
(a−b+1)(a+b+1)
(a+1)(2a+1)(2a+3)

]1/2

(
a a+1/2 3/2
b −b−3/2 3/2

)
= (−1)a−b−1

[
3(a+b+1)(a+b+2)(a−b)

2a(2a+1)(2a+2)(2a+3)

]1/2

(
a a+1/2 3/2
b −b−1/2 1/2

)
= (−1)a−b(a−3b)

[
a+b+1

2a(2a+1)(2a+2)(2a+3)

]1/2

(
a a+3/2 3/2
b −b−3/2 3/2

)
= (−1)a−b−1

[
(a+b+1)(a+b+2)(a+b+3)
(2a+1)(2a+2)(2a+3)(2a+4)

]1/2

(
a a+3/2 3/2
b −b−1/2 1/2

)
= (−1)a−b

[
3(a−b+1)(a+b+1)(a+b+2)
(2a+1)(2a+2)(2a+3)(2a+4)

]1/2

(
a a 2
b −b−2 2

)
= (−1)a−b

[
3(a+b+1)(a+b+2)(a−b−1)(a−b)

a(2a+3)(2a+2)(2a+1)(2a−1)

]1/2

(
a a 2
b −b−1 1

)
= (−1)a−b(2b+1)

[
3(a−b)(a+b+1)

a(2a+3)(2a+2)(2a+1)(2a−1)

]1/2

(
a a 2
b −b 0

)
= (−1)a−b 3b2 −a(a+1)

[a(a+1)(2a+3)(2a+1)(2a−1)]1/2(
a a+1 2
b −b−2 2

)
= (−1)a−b

[
(a+b+1)(a+b+2)(a+b+3)(a−b)

a(a+1)(2a+4)(2a+3)(2a+1)

]1/2

(
a a+1 2
b −b−1 1

)
= (−1)a−b−1(a−2b)

[
(a+b+2)(a+b+1)

a(a+1)(2a+4)(2a+3)(2a+1)

]1/2

(
a a+1 2
b −b 0

)
= (−1)a−b−1b

[
3(a+b+1)(a−b+1)

a(a+1)(a+2)(2a+3)(2a+1)

]1/2

(
a a+2 2
b −b−2 2

)
= (−1)a−b

[
(a+b+1)(a+b+2)(a+b+3)(a+b+4)
(2a+1)(2a+2)(2a+3)(2a+4)(2a+5)

]1/2

(
a a+2 2
b −b−1 1

)
= (−1)a−b−1

[
(a+b+1)(a+b+2)(a+b+3)(a−b+1)
(a+1)(a+2)(2a+1)(2a+3)(2a+5)

]1/2

(
a a+2 2
b −b 0

)
= (−1)a−b

[
3(a+b+1)(a+b+2)(a−b+1)(a−b+2)
(a+1)(2a+5)(2a+4)(2a+3)(2a+1)

]1/2


